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ABSTRACT
HTTP Adaptive Streaming (HAS) techniques are now the dominant
solution for video delivery in mobile networks. Over the past few
years, several HAS algorithms have been introduced in order to
improve user quality-of-experience (QoE) by bit-rate adaptation.
�eir di�erence is mainly the required input information, ranging
from network characteristics to application-layer parameters such
as the playback bu�er. Interestingly, despite the recent outburst in
scienti�c papers on the topic, a comprehensive comparative study
of the main algorithm classes is still missing. In this paper we
provide such comparison by evaluating the performance of the
state-of-the-art HAS algorithms per class, based on data from �eld
measurements. We provide a systematic study of the main QoE
factors and the impact of the target bu�er level. We conclude that
this target bu�er level is a critical classi�er for the studied HAS
algorithms. While bu�er-based algorithms show superior QoE in
most of the cases, their performance may di�er at the low target
bu�er levels of live streaming services. Overall, we believe that
our �ndings provide valuable insight for the design and choice
of HAS algorithms according to networks conditions and service
requirements.
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1 INTRODUCTION
Mobile video accounted for 60% of the global mobile data tra�c in
2016 and this percentage is projected to further increase and reach
a striking 78% by 2021 [2]. Most of this tra�c is video-on-demand
(VoD) streaming via HTTP Adaptive Streaming (HAS) [11], which
undoubtedly becomes fast an integral part of the mobile client’s life.
In order to keep pace with this explosion of video tra�c, signi�cant
progress has been made to the development and design of adaptive
streaming solutions and standards. For instance, dynamic adaptive
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streaming over HTTP (MPEG-DASH) is an international standard
that uses the existing HTTP web server infrastructure and has
become very popular in the last years [13].

�e main characteristic of HAS solutions that led to their vast de-
ployment in the market is their ability to adjust the play-out quality
during the video session. �eir target is to deliver the highest pos-
sible quality-of-experience (QoE) given the dynamic nature of the
wireless channel conditions and the presence of diverse bo�lenecks
in the video delivery system. In order to achieve that, video �les are
encoded in various quality representations which are then stored
in a web server. Each representation is subdivided in smaller �les
called segments, usually of constant duration and variable size due
to the commonly adopted variable bit-rate (VBR) encoding. A�er
obtaining a manifest �le with all the necessary video information,
the client sequentially requests and downloads each segment in the
quality indicated by the algorithm of the deployed HAS algorithm.

User perceived QoE plays a critical role for the assessment of
the various HAS solutions, since it is directly connected to the
user engagement and thus, the revenue of content providers. In
particular, video stalls and frequent video bit-rate switching are
dominating QoE factors for mobile HAS [12]. Avoiding stalls due to
the depletion of the client’s play-back bu�er, while at the same time
minimizing the frequency of adaptation and providing high average
quality, is a very challenging task, especially at high network load
or at poor wireless coverage. �e inherent trade-o�s between the
key video QoE metrics (i.e quality, stability and smoothness) makes
this a�empt even more di�cult.

In order to address these problems, several HAS algorithms have
been proposed recently, which can be classi�ed into three main
categories with respect to the required input information. Firstly,
throughput-based algorithms, such as PANDA [8] or Festive [7],
rely their decision on the observed TCP throughout, which requires
a su�cient number of probes to obtain reliable measurements. Sec-
ondly, time-based algorithms such as ABMA+ [1] rely on the same
principle of probing, but this time to estimate the download time
of each segment. Lastly, bu�er-based algorithms, such as BBA [5]
and BOLA [14], observe and react to the level of the client’s play-
back bu�er. Despite several recent research e�orts and proposals,
there still appears to be a lack of consensus and an ongoing debate
regarding the merits of the above classes of algorithms.

In this paper we try to shed some light to that debate. Speci�-
cally, we investigate throughput-based, time-based and bu�er-based
adaptation algorithms using a set of commonly studied traces of
mobile throughput measurements. Since bu�er-based adaptation
algorithms have not been included before in similar comparisons,
the main scope of this work is to provide some insight on the merits
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of each class of algorithms. Our comparison is based on the im-
plementation of the algorithms in a single simulation framework,
which uses throughput information from publicly available net-
work pro�les. Furthermore, due to the increasing popularity of
live streaming services, which have small bu�er sizes due to the
strict real-time delay requirements, we also examine the impact of
the bu�er size on the performance of the HAS algorithms. �ere-
fore another key contribution of this work is the consideration of
two typical maximum occupancy bu�er levels to investigate the
performance for both live and VoD streaming scenarios.

Several similar comparisons can be found in literature. In par-
ticular, in [15] the authors investigate typical adaptation methods
in the context of live video streaming. In [16] the authors make
both subjective and objective studies of various throughput-based
adaptive streaming algorithms, but no other class of algorithms is
included in this work. [9] is a similar experimental evaluation of
HAS algorithms on mobile vehicular networks. We have found that
a study that focuses on the categorization of the algorithms accord-
ing to their input dynamics, along with a performance evaluation
on mobile vehicular networks that considers live streaming as well,
is missing from the literature. To this end, our work presents a
comparison of the latest HAS algorithms, per class, which includes
bu�er-based and time-based solutions for the �rst time.

�e remainder of the paper is organized as follows. In Section
2 we brie�y describe the main principles and properties of the
selected state-of-the-art HAS algorithms. In Section 3 we describe
the validation process followed to obtain our comparison results,
including our implementation parameters and simulation factors.
�en, in Section 4 we present our results on the performance of the
HAS algorithms. We conclude with our remarks in Section 5.

2 ADAPTIVE STREAMING ALGORITHMS
In this section we brie�y present the �ve state-of-the-art HAS
algorithms that were studied, implemented and compared. We
have chosen the most representative algorithms, per class, as they
have been used in literature for other comparisons.

2.1 �roughput-based adaptation
A very common TCP throughput-based adaptation scheme [7, 8] is
based on a four-step adaptation model, where initially the available
network bandwidth is estimated and then smoothed using noise-
�lters to avoid estimation errors due to throughput variation. �en,
the video bit-rate is indicated based on the discretized output of
the smoothing step. �e next segment request is scheduled once
the inter-request time is estimated.

Conventional is a simple adaptation algorithm, based on the four
step model, which equates the current available bandwidth with
the TCP throughput, as it is measured during the previous segment
download. �en, the proposed video bit-rate is yielded by applying
an exponential weighted moving average (EWMA) �lter and a dead-
zone quantizer. �e algorithm determines the inter-request time
of the next segment using a bi-modal scheduler, by which the next
segment request is scheduled either with a constant delay when
the bu�er is full or immediately otherwise.

PANDA [8] is an advanced variation of the four-step model, yet
with two distinct modi�cations. In the estimation step this algo-
rithm uses a more proactive probing mechanism, that is designed
to minimize video bit-rate oscillations. �e second modi�cation
is at the scheduling step, where a more sophisticated scheduler is
considered that drives the bu�er level towards the maximum bu�er
occupancy level Bmax . At the same time the inter-request time is
matched to the necessary time needed to complete the download
based on the smoothed estimated value of the available bandwidth.

2.2 Bu�er-based adaptation
BBA is a very well known bu�er-based adaptation algorithm. In [5],
the authors introduce a segment map based on the average size of
the segments for every representation. �e map is de�ned by two
thresholds: i) an upper threshold that drives the policy to select
the maximum quality available (Rmax ), once the instantaneous
bu�er occupancy surpasses it and ii) a lower threshold that dictates
the lowest available quality (Rmin ), if the bu�er is lower than that
threshold. In the bu�er region between these thresholds the policy
may use any non decreasing function to select the quality of the
next requested segment.

BOLA [14] is a bu�er-based adaptation algorithm that uses Lya-
punov optimization in order to indicate the video bit-rate of each
segment. Practically, the algorithm is designed to maximize a joint
utility function that rewards an increase in the average quality and
penalizes potential re-bu�ering occurrences. More speci�cally, a
variation called BOLA-O, mitigates video bit-rate oscillations by
introducing a form of bit-rate capping when switching to higher
bit-rates.

2.3 Time-based adaptation
Download time is considered as a higher level parameter than
throughput, thus, in this study, time-based adaptation is treated as a
separate class of algorithms. ABMA+ [1] is an adaptation and bu�er
management algorithm, which selects the video representation
based on the predicted probability of video stalling. �e algorithm
continuously estimates the segment download time and uses a
pre-computed play-out bu�er map to select the maximum video
representation, which guarantees smooth content play-out. �e
segment download time estimation is based on the same probing
mechanism as the throughput-based method, but ABMA+ takes
into account VBR aspects as well.

3 EXPERIMENTAL FRAMEWORK
3.1 Selected network data-sets
�e performance of HAS algorithms is highly correlated with the
network conditions during the streaming. As opposed to �xed net-
works, mobile networks are characterized by their intense through-
put variation. Additionally, due to diverse coverage quality there
may appear areas with prolonged low bandwidth, which will result
to throughput outages and therefore an increased probability of a
video stall. In order to avoid stalls, an HAS algorithm needs, at the
very least, a network pro�le that o�ers a mean throughput at least
higher than the lowest available representation stored at the server.
Otherwise, the bu�er may be completely depleted, leading to a stall
event.
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Figure 1: Empirical CDF of throughput for the selected net-
work pro�les.
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Figure 2: Characteristic example of selected real-�eld net-
work pro�les

In order to obtain insightful results for our comparison, we chose
two diverse throughput pro�les for our simulations, that are repre-
sentative of a normal and a challenging network pro�le in vehicular
environments. �ese pro�les correspond to direct throughput mea-
surements from a bus and an underground metro respectively [4].
We investigate mobile networks as they are capable of stressing the
adaptation methods to highly challenging conditions, as opposed to
�xed networks. In particular, we preferred the use of 3G traces as
LTE, although more contemporary, o�ers higher throughput which
is not always experienced by the user. Additionally we use an arti�-
cial pro�le, which o�ers controlled network conditions in order to
validate our implementations. In Fig. 1 we can see the cumulative
distribution function (CDF) of all studied network pro�les.

�e controlled pro�le corresponds to a High-Low-High network
pro�le inspired from [3]. �is pro�le is shown in Fig. 3 and it is
characterized by the distinct and controlled increases and decreases
of the total throughput every 30 s. �e normal pro�le is illustrated

Table 1: Video representations

Representation
index Resolution

BBB
Max encoding
rate (kbps)

TSA
Max encoding
rate (kbps)

RBPS
Max encoding
rate (kbps)

CDF
�antiles

1 320×240 129 128 149 0.01
2 480×360 378 330 395 0.05
3 854×480 578 754 700 0.1
4 1280×720 985 1331 1536 0.25
5 1280×720 1536 2048 2048 0.5
6 1920×1080 2353 2764 2560 0.75
7 1920×1080 2969 3481 3072 0.95

in Fig. 2. It is characterized by signi�cant bandwidth variation,
which is expected from real networks. In general a high throughput
is sustained and no signi�cant outages appear. �is pro�le was
chosen as representative of a vehicular terrestrial network pro�le
and corresponds to the ”bus” data-set as described in [4], consisting
of 5 traces, a�er excluding those that showed long outages. �e
challenging pro�le corresponds to measurements made on an un-
derground metro and consists of a selection of 7 traces which, in
general, show a low throughput throughout the route and there is a
long outage period when the metro enters a tunnel towards the end
of the trace, as depicted in Fig. 2. �is pro�le allows us to stress the
selected HAS algorithms and test their performance under di�cult
and extreme conditions. We expect to see an increased re-bu�ering
frequency with this ”underground” trace-set.

3.2 Streaming content
As streaming content, we have chosen 3 representative open movies
commonly used for testing video codecs and streaming protocols
and recommended in the measurement guidelines of the DASH
Industry Forum [3]. �e �rst movie is Big Buck Bunny (BBB), a
high motion computer animated movie of 9:56 min duration. �e
second is �e Swiss Account (TSA), which is a sport documentary
with regular motion scenes and a duration of 57:34 min. �e third is
Red Bull Play Street (RBPS), which is a sport show with high motion
scenes and of 1:37 hours duration. For all movies we used the video
encodings of [6] in order to obtain the representation levels Ri ,
where i = {1, 2, . . . ,N }. We selected a total of N = 7 video bit-
rate levels, based on the quantiles of the CDF distribution of the
normal network pro�le (Table. 1), with a segment duration of 4 s.
�e particular selection of the representations was made in order
to ensure that the minimum representation level is sustainable
for 99.9% of the normal pro�le. Of course this would lead to a
very small probability of re-bu�ering for that case, yet it serves
as a good basis for the comparison with the challenging pro�le.
Additionally, we chose a high number of distinct representations in
order to make the transitions smoother between quality switches.
QoE studies [12] suggest that adaptation amplitude is the dominant
adaptation factor, which means that �ner granularity switching
may compensate for higher switching frequency. One movie was
used per trace, chosen at random to ensure unbiased statistics, and
it was repeated if the trace duration was larger than its duration.

3.3 Client model and metrics
�e client model consists of the maximum bu�er level Bmax and
the selected HAS algorithm that the player may deploy during a
video streaming session. We ran our experiments over 12 mobile
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traces (7 normal network traces and 5 challenging network traces).
Furthermore, we investigated the maximum bu�er occupancy fac-
tor Bmax , since various applications (live, VoD, short clips or long
movies) may target di�erent maximum bu�er occupancy levels. In
particular we repeated the experiment for a small Bmax = 16 s (4
segments), which simulates a live streaming service and for a larger
Bmax = 92 s (23 segments), to simulate the case of VoD. �ese stud-
ied values were selected based on measurements of the maximum
bu�er level of a popular streaming service, which o�ers both Live
and VoD streaming. We assert that our results hold for any bu�er
value larger than 4 segments, but leave the full study of the impact
of the bu�er level to future work. Also two important parameters
that may a�ect the QoE of the user are the initial bu�ering (i.e
the amount of segments that need to be downloaded in the bu�er
before play-out can start initially) and the re-bu�ering threshold (i.e
the amount of segments that need to be downloaded in the bu�er
before play-out can resume a�er a stall event). �ese parameters
were both set equal to ω = 2 segments for our experiments, as
indicated in most of the implementation guidelines of the proposed
algorithms.

Although a uni�ed framework for measuring QoE is missing
from the literature, several related works [10, 12] suggest that adapt-
ability, instability and un-smoothness of streaming are the most
important elements for quantifying QoE in an objective manner.
Inspired by [1], we selected the following metrics for our compari-
son.

Adaptability (A) is the average selected video bit-rate per seg-
ment in a stream over the minimum of either the average through-
put available during the current segment C or the maximum avail-
able representation RN

A =
1
K

K∑
i=1

Ri

min(RN ,Ci )
. (1)

�is metric may take values above 1, when the algorithm is aggres-
sive, which may lead to un-smoothness.

Instability consists of the adaptation frequency and, complemen-
tary to that, the amplitude of adaptation. Adaptation frequency (AF)
is the number of representation switches over the total number of
segments K , given by

AF =

∑K−1
i=1 (1 − δRiRi+1 )

K
, (2)

where δ is the Kronecker delta. Adaptation amplitude (AA) is the
normalized average distance, in terms of bit-rate, between the rep-
resentation levels.

AA =
1

K · AF

∑K−1
i=1 |Ri+1 − Ri |

Rmax
. (3)

When considering un-smoothness we must take into account
the re-bu�ering duration along with the frequency of re-bu�ering
events. Re-bu�ering duration (RD) is the total duration of re-bu�ering
events in a stream over the length of the played-out video L,

RD =

∑K
i=ω+1 βi · (tendi − tstar ti )

L
, (4)

where βi = 1 if a re-bu�ering event occurred during the download
of segment i and β = 0 otherwise and tendi and tstar ti are the time
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Figure 3: Example of the representation selection behavior
of the three studied classes of algorithms

of end and the start of the re-bu�ering event, which occurred during
the download of segment i , respectively. Re-bu�ering frequency (RF)
is the number of re-bu�ering events that occurred in a stream over
the number of segments K

RF =

∑K
i=ω+1 βi
K

. (5)

In the �gures of Section 4, these metrics are averaged over the
complete set of traces for every pro�le and we present the standard
error with a con�dence level of 95%.

4 RESULTS
In this section we evaluate the performance of each adaptation
algorithm based on the metrics introduced in Section 3. �e results
are not standalone and a combination of the QoE metrics is required
for the performance evaluation of the algorithms. �e scope of this
paper is not to introduce a QoE model but to present the raw results
of the selected metrics.

4.1 Implementation validation
In Fig. 3 the throughput pro�le (controlled) that was used to vali-
date our implementations is shown. We can see as a �rst di�erence,
that the bu�er-based adaptation starts with a low representation
and gradually increases it while the bu�er �lls up. On the other
hand throughput-based methods estimate the available throughput,
through probes, and match it to the respective available represen-
tation level. �e time-based starts with a low representation until
the algorithm has a su�cient amount of probes to estimate the
download time appropriately. �e second signi�cant di�erence is
that bu�er-based and time-based adaptation may select a repre-
sentation higher than the available throughput for a short period
as potential throughput drops have not, yet, a�ected the bu�er
level or registered in the time-probing sample, respectively. On the
other hand, the throughput-based algorithms can be more reactive.
It is evident that time-based adaptation has a small delay in the
adaptation to the current throughput, as the throughput variation
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Figure 5: Experimental results for re-bu�ering frequency
with 95% con�dence intervals

is registered in the time-probing sample as an average of the last
50 probes. At this moment it is worth mentioning that all studied
algorithms were designed using either heuristically or based on
pre-selected parameters. In all our implementations we used the
parameterization proposed by the designers, but be�er results could
be achieved if the parameters were �ne-tuned.

4.2 Adaptability
Fig. 4 shows that bu�er-based algorithms achieve higher adapt-
ability in normal conditions. �ey are more successful, by de-
sign, in conserving high representation levels, even higher than
the available throughput, as the adaptability becomes larger than
1. �roughput-based and time-based algorithms show a slightly
diminished ability to match the representation to the available
average throughput due to the signi�cant throughput variation
that characterizes the selected network pro�les. We also notice
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Figure 6: Experimental results for adaptation frequency
with 95% con�dence intervals
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Figure 7: Experimental results for adaptation amplitude
with 95% con�dence intervals

from this �gure that the bu�er size does not a�ect signi�cantly the
adaptability.

4.3 Un-smoothness
As far as un-smoothness is concerned, Fig. 5 shows that, as expected,
the probability of a re-bu�ering is slightly higher in the cases of a
small bu�er (i.e live streaming). A small bu�er has limited resilience
to throughput variation. Regarding the re-bu�ering frequencies per
class of algorithms, we can note that although the performances are
very close, on challenging pro�les bu�er-based algorithms, along
with PANDA, are slightly more probable to experience a re-bu�ering.
For normal scenarios we witness smooth streaming from almost
all algorithms, due to the absence of long throughput outages of
this pro�le and the design of our simulations (selection of repre-
sentation levels based on quantiles of normal pro�le). Nevertheless
AMBA+ shows a slightly increased un-smoothness compared with
the rest of the algorithms in the normal pro�le with a small bu�er,
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Figure 8: Experimental results for re-bu�ering duration
with 95% con�dence intervals

due to the fact that the number of probes (50) proposed by the
algorithm designers is very high compared to the maximum bu�er.
�erefore a short throughput drop is not registered in the estima-
tion in appropriate time before the bu�er has been depleted. Fig. 8
shows the duration (amplitude) of the re-bu�ering events, where
we see re-bu�ering events lasting about 25% of the video duration.
�is is expected since the challenging pro�le includes underground
areas, which may cause network outages, for 1/4 of the trace.

4.4 Instability
Last but not least, instability has a very signi�cant impact on QoE
[12]. Fig. 6 shows that bu�er-based algorithms are about 40% more
probable of making a quality switch when the bu�er is small. BOLA
is optimized to achieve a high e�ciency but the stability aspect
is not considered in the optimization, since it is addressed with
a heuristic in a second phase. BBA has a pre-selected constant
higher bu�er threshold which makes the segment map less agile
to throughput variation when the maximum bu�er is small. On
the contrary, throughput-based and time-based algorithms appear
to switch quality less o�en, but with similar adaptation amplitude,
which is complementary to adaptation frequency if one wants to
draw a conclusion on stability. Fig. 7 shows the average normal-
ized distance between switches. �e performance regarding this
metric shows a slight advantage in favor of the throughput-based
algorithms, in both normal and challenging pro�les.

It is important to mention that no metric should be treated sep-
arately and that only the combination of all metrics allows our
comparison to be insightful. Overall, our results match those in
[14] with the addition that BOLA is compared against another
bu�er-based adaptation for the �rst time. Moreover, our results can
be veri�ed with those in [1] where PANDA and BBA are compared
against ABMA+. In Table 2 we have gathered the best performing
classes of algorithms, per QoE element. �is table can serve as
insight to the selection of the most appropriate algorithmic class,
depending on the application parameters (live, VOD, etc.) and the
commonly experienced network conditions.

Table 2: Results per QoE metric per class

Bu�er Size Network
condition Adaptability Re-bu�ering

frequency

Re-bu�ering
duration

Adaptation
frequency

Adaptation
amplitude

Small (16 s) Normal Bu�er Time Time Time �roughput
Small (16 s) Challenging Bu�er Time Time Time �roughput
Large (92 s) Normal Bu�er Bu�er Bu�er Time �roughput
Large (92 s) Challenging Bu�er Bu�er Bu�er Time �roughput

5 CONCLUSION
In this study, we evaluated the performance of �ve state-of-the-art
adaptive streaming algorithms and made a per class comparison,
based on network traces for two di�erent throughput pro�les. Ad-
ditionally, we evaluated the maximum bu�er occupancy factor to
see how each strategy behaves for smaller and larger bu�ers, as
di�erent services may target di�erent bu�er levels. Our conclu-
sion is that bu�er-based approaches outperform any other class of
algorithms in terms of adaptability, yet they may lack in stability,
especially for small bu�ers, common in live streaming services.

�is work provides �rst guidelines to designers and operators
of HAS algorithms for the right algorithmic approach according to
expected network conditions and service requirements. Designing
robust HAS algorithms for high QoE under changing conditions and
requirements, without relying on pre-selected designer-speci�c pa-
rameters or heuristic design, is still a major challenge for research.
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