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This paper presents a new version of the Gilbert-Johnson-Keerthi (GJK) al-
gorithm that circumvents the shortcomings introduced by degenerate geo-
metries. The original Johnson algorithm and Backup procedure are replaced
by a distance sub-algorithm that is faster and accurate to machine precision,
thus guiding the GJK algorithm toward a shorter search path in less comput-
ing time. Numerical tests demonstrate that this effectively is a more robust
procedure. In particular, when the objects are found in contact, the newly
proposed sub-algorithm runs from 15% to 30% times faster than the original
one. The improved performance has a significant impact on various applic-
ations, such as real-time simulations and collision avoidance systems. Alto-
gether, the main contributions made to the GJK algorithm are faster conver-
gence rate and reduced computational time. These improvements may be
easily added into existing implementations; furthermore, engineering ap-
plications that require solutions of distance queries to machine precision
can now be tackled using the GJK algorithm.
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1. INTRODUCTION

The Gilbert-Johnson-Keerthi (GJK) algorithm [Gilbert et al. 1988]
is a descent method for computing a pair of closest points between
two convex objects. Because of its extreme versatility and simple
implementation, this procedure is being adopted in a wide range of
applications such as: robotics [Zheng et al. 2011; Dietrich et al.
2012; Zheng and Yamane 2013], real-time haptic rendering [Jimnez
et al. 2001; Laycock and Day 2007], rigid-body dynamics [Redon
et al. 2002; Tasora and Anitescu 2011], medical surgery [Liu et al.
2003], computer graphics [Museth et al. 2005; Seiler et al. 2008],
physics [Movshovitz et al. 2012; Haji-Akbari et al. 2013; Millan
et al. 2014] and, more rarely, in computational mechanics [Wachs
et al. 2012].

Several studies comparing the GJK algorithm with similar pro-
cedures can be found in the literature. Cameron [Cameron 1997a]
compared his enhanced GJK with the Lin and Canny (LC) al-
gorithm [Lin and Canny 1991], showing superiority of the former.
More recently, two incremental algorithms have been proposed:
Voronoi-clip (V-Clip) [Mirtich 1998] and Chung-Wang (CW)
[Chung and Wang 1996]. Both studies concluded that GJK al-
gorithm has comparable computational costs. Nevertheless, unlike
other procedures, the GJK algorithm is not limited to polytopes and
is therefore the most versatile. It can compute the minimum dis-
tance between two arbitrary geometrical representations — such
as polytopes, quadrics [van den Bergen 2003] and non-uniform
rational B-splines (NURBS) [Turnbull and Cameron 1998]. Incre-
mental implementations, such as enhanced GJK [Cameron 1997b],
ISA-GJK [van den Bergen 1999] or R-GJK [Ong and Gilbert
2001], are particularly efficient for dynamic simulations with high
temporal coherence. The advantage over direct (or one-shot) al-
gorithms, e.g. [Held 1998], is that, by exploiting temporal coher-
ence, the GJK algorithm reuses data cached at previous solution
steps to speed up the contact search. For overlapping objects this
procedure can also be tailored to estimate the penetration vector
[Cameron 1997b]. Overall, GJK is one of the fastest and certainly
most versatile algorithm for solving distance queries between con-
vex bodies.

Previous studies emphasised that the GJK algorithm suffers from
numerical instability when dealing with degenerate geometries
[van den Bergen 2003]; in such situations, the procedure becomes
inefficient and not suitable for applications requiring high perform-
ance and accuracy [Nye et al. 2014]. The main source of numer-
ical error is the distance sub-algorithm, also known as Johnson al-
gorithm [Johnson 1987]. Its limited accuracy reduces the conver-
gence rate and may yield to false positives that can, for example,
ruin the user experience in a computer game, produce instabilities
in finite element simulations, or lead a real-time collision avoidance
systems to failure. For these reasons the Backup procedure was ori-
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ginally added to handle pathological cases at the expense of CPU
time and implementation effort. A decade thereafter Van den Ber-
gen [van den Bergen 1999] replaced the Backup procedure with
a more robust exit condition that, however, does not fully coun-
terbalance the instabilities affecting the Johnson algorithm. In the
best of our knowledge, the only attempt to replace the original dis-
tance sub-algorithm was formalised by Ericson [Ericson 2004] and
used in [Tereshchenko et al. 2013]. Despite being mathematically
equivalent, the implementation of this method requires a cascade
of conditional statements which results less accurate than the ori-
ginal sub-distance algorithm and computationally more expensive.
Therefore the lack of success of the GJK algorithm in scientific
computing is probably due to its insufficient reliability.

The distance sub-algorithm essentially computes, in the most
general case, the point of a tetrahedron that is closer to the ori-
gin than any other point of the tetrahedron. This problem finds
many practical applications and is therefore widely studied in com-
putational geometry, but to achieve maximum performance a sub-
algorithm must take advantage of the descent nature of the GJK
procedure. Existing general-purpose approaches to this problem,
e.g. [Edelsbrunner and Mucke 1990], examine 15 subsets (4 ver-
tices, 6 edges, 4 faces and the interior) defined by an arbitrary tetra-
hedron and test which one of these contains the closest point to the
origin. Nevertheless, in the particular context of the GJK algorithm,
whilst the orientation of the tetrahedron is arbitrary, its construction
is not. This allows to discard a priori six subsets and thus to save
computational time. Overall, despite its numerical instabilities, the
Johnson sub-algorithm results extremely efficient.

With the aim of improving the performance of the GJK al-
gorithm, this paper presents a new method that replaces the John-
son sub-algorithm and Backup procedure. The proposed method is
computationally efficient as it discards a priori incompatible sub-
sets but, unlike the Johnson algorithm, it handles naturally de-
generate geometries. The enhanced robustness leads to faster con-
vergence rates and more accurate distance queries. Moreover, our
method benefits from a simple implementation that can be readily
included into existing software. The aim of this study is indeed to
improve the GJK algorithm and to inspire new applications in com-
putational sciences that use accurate numerical methods (e.g. finite
element method (FEM) [Reddy 2006], discrete element method
(DEM) [Cundall and Strack 1979], meshless method [Gingold and
Monaghan 1977] and isogeometric analysis (IGA) [Hughes et al.
2005]).

The structure of this paper is as follows. In Sections 2 and 3 back-
ground notions of convex analysis and the original GJK algorithm
are reviewed. Section 4 describes the new method and its imple-
mentation. Numerical results comparing the two sub-algorithms are
presented in Section 5. Concluding remarks are reported in Section
6.

2. BACKGROUND

The Euclidean norm ‖x‖ of a vector x in Rn is given by
‖x‖ =

√
x · x, where the dot represents the inner product. The

components of any vector are denoted by superscripts, e.g. xi for
i = 1, 2, 3 or, equivalently, [xx, xy, xz]. The convex hull of a finite
set of points Y = {y1, ..., ym} is given by

conv(Y ) =

{
m∑
i=1

λiyi : yi ∈ Y, λi ≥ 0,

m∑
i=1

λi = 1

}
. (1)

Q
P

(a)

CSO

O

(b)

Fig. 1: Physical (a) and configuration space (b) for colliding spheres P and
Q. The configuration space obstacle (CSO) includes the origin.

Q
P

(a)

CSO

O

ν (CSO)

(b)

Fig. 2: Physical (a) and configuration space (b) for separated spheres P and
Q. The configuration space obstacle (CSO) does not include the origin and
has a unique point of minimum norm ν (CSO).

The difference between two points y1 and y2 is the vector y2y1. In
what follows the vector yi corresponds to the difference between
the point yi and the origin O.

For the sake of clarity this work will consider only objects rep-
resented by non-empty and finite sets in Rn: polygons in R2 or
polytopes in R3. Moreover, we shall deal with convex objects only,
so that the space occupied by an object is defined, from Eq. (1), by
Y = conv(Y ). Concave objects may be decomposed and treated
as separate convex sets [Gilbert et al. 1988].

We shall refer to the space Rn in which two objects P and Q
reside as physical space, and for these a distance query returns a
pair of witness points zP ∈ P and zQ ∈ Q such that:

d(P,Q) = ‖zP − zQ‖ = min{‖p− q‖ : p ∈ P, q ∈ Q}. (2)

In the above equation d(P,Q) is the minimum Euclidean distance
that corresponds to the norm of the separating vector zQzP. This
is a natural choice for measuring the distance since it offers an in-
trinsic description of practical interest for many applications.

Notice that for polytopes (polygons) with parallel facets (edges)
the pair of witness points is not unique. Under these circumstances
a distance query has infinite solutions, and thus the physical space
is not best suited for computing d(P,Q).

2.1 Configuration space

It is convenient to recast the distance query in a configuration space
where a unique solution exists and can be found by solving a point-
in-polytope problem. The Minkowski difference between two ob-
jects P and Q results into the configuration space obstacle (CSO):

CSO = P −Q = {xP − xQ : xP ∈ P, xQ ∈ Q} (3)

which is a set of vectors embedded in an affine space with a fixed
frame and origin O [Lozano-Perez 1983].
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(a) (b) (c) (d)

Fig. 3: In R3 a simplex can either be a point (a), a line segment (b), a triangle
(c) or a tetrahedron (d).

It can be proven that the CSO is convex [Webster 1995] and,
from Eqs. (2) and (3), that a distance query translates into finding
the point of minimum norm ν (CSO) [Cameron and Culley 1986;
Gilbert et al. 1988]. Because the CSO is convex, it exists a unique
vector ν (CSO) which is optimal in the sense that:

‖ν (CSO) ‖ = d(CSO, O). (4)

The new Minimum Norm Duality theorem [Dax 2006] proves geo-
metrically that to the minimum distance d(CSO, O) corresponds
a separating hyperplane between the CSO and the origin O. To-
gether with Eqs. (1)-(3), this theorem links configuration and phys-
ical spaces with the following equality:

ν (CSO) = zQzP. (5)

Intuitively, the most important consequence of the Minkowski
operator is that if the objects intersect, the origin O is found inside
the CSO. Consider for example the two overlapping spheres P and
Q in Figure 1a. The CSO resulting from the Minkowski difference
P −Q, depicted in Figure 1b, includes the origin of the configura-
tion space, i.e. O ∩ CSO 6= ∅.

For distant objects the distance d(P,Q) is greater than zero. The
example in Figure 2a shows two distant objects and their separat-
ing plane defined at equal distance. In this configuration the CSO,
illustrated in Figure 2b, does not include the origin O.

2.2 Simplices

Evaluating the entire Minkowski difference at runtime for every
solution step is computationally infeasible. Instead of computing
explicitly the CSO, ν (CSO) is approximated by the point of min-
imum norm of a simplex.

A m-simplex τ = {s1, ..., sm+1} is the convex hull of a set of
m+1 affinely independent points in Rn; moreover, by selecting the
vertices {s1, ..., sm+1} on the boundary of CSO, the simplex is a
subset of CSO. Because the CSO is a compact set, every convex
combination of points of CSO belongs to CSO, i.e. τ ⊂ CSO. The
simplices for three-dimensional problems are depicted in Figure 3.

Eachm-simplex has (2m+1−1) faces (e.g. vertices, edges, faces,
volume). A face is a subset of r + 1 vertices of τ , and is called r-
face of τ .

To each face is associated a region of points of Rn defined as
the set of points which are at least as close to a point of the face
as to any other point of τ not in the face. For example, the region
associated to one of the vertices of a two-dimensional simplex is
represented in Figure 4a. Other examples of regions are shown in
Figures 4b and 4c for a planar simplex, whereas Figures 4d-4f show
examples in R3. Because the notion of region is similar to the one of
higher order Voronoi diagram, we refer to these simply as Voronoi
regions. The Voronoi region associated to a face of τ is denoted
by Vκ, where κ is an ordered and non-empty tuple. Such a tuple
lists the indices i of the set {si} defining the face to which Vκ
is associated. Moreover, if a point w ∈ conv(W ), κ defines the
region Vκ associated to the subset W ⊂ τ that supports w.

1 2

3

V(3)

(a)
1 2

3
V(1,3)

(b)
1 2

3

V(1,2,3)

(c)

4
3

2

1
V(1)

(d)

4 3
2

1

V(1,4)

(e)
4 3

2

1
V(1,2,4)

(f)

Fig. 4: Voronoi regions of a 2-simplex (a)-(c) and 3-simplex (d)-(f).

A theorem due to Carathéodory establishes that a point y ∈
conv(Y ) ⊂ Rn can be expressed as a convex combination of
n+ 1 or fewer points of Y [Webster 1995]. This allows to express
a point w laying on a r-face of a simplex τ as convex combination
of n+ 1 or fewer vertices:

w =
∑
i∈I

λisi : λi ≥ 0,

n+1∑
i=1

λi = 1

=
∑
j∈κ

λjsj : λj > 0,

r+1∑
i=1

λj = 1

(6)

where I = {1, ..., n+ 1} and r ≤ n. The coefficients λ are called
barycentric coordinates. They inherit properties from Eq. (1) and
it can be shown that they are invariant to affine transformations
[Coxeter 1989].

3. GILBERT-JOHNSON-KEERTHI ALGORITHM

3.1 Main procedure

The GJK algorithm solves the distance query in Eq. (2) iteratively.
At each k-th iteration a simplex τk is moved toward the origin O.
When ν (τk) is sufficiently close to ν (CSO), the algorithm termin-
ates as the solution to the equivalent problem in Eq. (4) is found.

The iterative search descends in the sense that the simplex τk+1

offers a better approximation to ν (CSO) than τk. This is done by
removing from τk a point that is “far from O”, and adding a closer
vertex wk ∈ CSO to form τk+1; namely,

‖ν (τk+1) ‖ = ‖ν (conv({τk, wk})) ‖ ≤ ‖ν (τk) ‖. (7)

The equation above states that a sequence of simplices indeed con-
verges monotonically to ν (CSO) [Gilbert et al. 1988], provided
that a point wk ∈ CSO is available without having to compute the
entire Minkowski difference in Eq. (3).

The point wk in Eq. (7) can be computed efficiently by evalu-
ating a support function hCSO : Rn → R. This is defined for all
vectors k = k − O, with k ∈ CSO, by hCSO(v) = max{v · k}.
The GJK algorithm computes the support function on each object
independently:

hCSO(vk) = hP −Q(vk) = hP (vk)− hQ(−vk). (8)
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Eq. (8) identifies the furthest point wk ∈ CSO from the hyper-
plane defined by vk along the direction vk. This point, not neces-
sarily unique, lays on the outer boundary of CSO and is such that
hCSO(vk) = wk · vk. The vector wk is a solution of hCSO.

The extreme versatility of the GJK algorithm is a consequence
of the fact that hCSO admits solutions for any representation of
convex body, e.g. polytopes, quadrics and NURBS. For two poly-
topes P and Q with mP and mQ points, respectively, hP (v) =
max{v · pi : i = 1, ...,mP } and hQ(−v) = max{−v · qi :
i = 1, ...,mQ}. Therefore, the cost of the evaluation of hCSO

scales linearly with the number of vertices in P and Q. In fact,
the GJK algorithm solves a problem of complexity mP + mQ,
and not mPmQ. Incremental versions of the GJK algorithm re-
duce this complexity to almost a constant [Cameron and Culley
1986; Cameron 1997b; van den Bergen 1999; Ong and Gilbert
2001]. More details on the numerical evaluation of Eq. (8) for non-
polytopes can be found in [van den Bergen 2003; de Berg et al.
2008], where the case vk = 0 is also discussed.

The numerical GJK algorithm essentially consists of a condi-
tional loop, as presented in Algorithm 1. The loop begins by evalu-
ating Eq. (8). It then tests convergence, if the test is negative a new
search direction vk+1 is computed. The algorithm repeats these
steps until: (a) the objects are found in contact, or (b) the simplex
τk cannot move closer to the origin. In this work we adopt similar
exit conditions to those proposed in [van den Bergen 2003]: the
objects are in contact if the simplex contains the origin O, or if:

‖vk‖2 ≤ εtol max{‖y −O‖2 : y ∈W} (9)

where W is the smallest subset of vertices in τk that supports
ν (τk). Additionally, the GJK algorithm terminates when ν (τk) is
sufficiently close to ν (CSO). That is, if wk ∈ τk or if:

‖vk‖2 − vk ·wk ≤ ε2rel‖vk‖2. (10)

The accuracy of the GJK algorithm is set by the arbitrary value εtol.
The user specifies this value. For usual applications this is within
10−8 and machine precision; namely, 10−8 ≤ εtol ≤ 10−16.

Upon termination of the GJK algorithm, a pair of witness
points zP and zQ is computed. By keeping track of the vertices
{s1, ..., sm+1} of the m-simplex τk, for pi ∈ P, qi ∈ Q, we write

ν (τk) =

m+1∑
i=1

λisi =

m+1∑
i=1

λi(O + si) =

m+1∑
i=1

λi(O + qipi)

=

m+1∑
i=1

λi(O + Opi + qiO) =

m+1∑
i=1

λipi +

m+1∑
i=1

λiqiO

= zP +

m+1∑
i=1

λiqiO = zQzP + zQ +

m+1∑
i=1

λiqiO

= zQzP +

m+1∑
i=1

λi(qi + qiO) = zQzP +O.

=

m+1∑
i=1

λi(pi − qi) +O.

(11)

This proof makes use Eq. (6) to derive the relationship that leads to
the solution of the initial problem in Eq. (2).

From Eq. (11) we obtain the vector vk which is of utmost import-
ance since it governs both search direction and termination tests. vk
is defined as follows:

ν (τk)−O = ‖vk‖ = min{‖s−O‖ : s ∈ τk} (12)

Algorithm 1 GJK algorithm (adapted from [van der Bergen 2003])

1: procedure GJK(P,Q,v0)
2: k = 0
3: v1 = v0

4: τk = ∅, Wk = ∅
5: repeat
6: k = k + 1
7: wk = sP −Q(−vk);
8: if wk ∈ Y or ‖vk‖2 − vk ·wk ≤ ε2rel‖vk‖2 then
9: continue

10: τk = {wk} ∪Wk−1;
11: [Wk, λ] = DistanceSubalgorithm( τk );
12: vk+1 =

∑
λiyi : yi ∈Wk, i = 1, ... , |Wk|;

13: until |Wk| = 4 or ‖vk‖2 ≤ εtol max{‖yk‖2 : yk ∈Wk}
14: return ‖vk‖

The distance sub-algorithm is responsible for computing ν (τk) and
it will be presented in the next section. This section terminates with
an example that illustrates the GJK procedure.

Let us consider the problem of measuring the minimum distance
d(P,Q) between the polygons P and Q in Figure 5a. Since the
objects are distant, a pair of witness points defining the separat-
ing vector (in red) exists. The GJK algorithm begins by initialising
W = τ0 = ∅ and an arbitrary search direction v0. In our example
v0 is set downward, such that the farthest point of the CSO along
the direction −v0 is D-G. This identifies a solution vector for the
support function, in fact hCSO(v0) = D-G · v0. For the first itera-
tion k = 1, the simplex τ1 = {D-G} and v1 = D-G. All quantities
involved are illustrated in Figures 5b (notice that the CSO is shown
for illustration purpose only). In the second iteration B-E is found
to be the farthest point of the CSO along −v1, and is listed first in
τ2. Figure 5c shows that both vertices support the point of minimum
norm ν (τ2), which is then used to update the search direction v2.
A similar situation occurs in the third iteration. As shown in Fig-
ure 5d, the subset supporting ν (τ3) is W = { C-E , B-E } ⊂ τ3
moreover, because ν (τ3) = ν (CSO), the GJK algorithm termin-
ates at the end of this iteration.

This example illustrates geometrically that the GJK is a descent
method; in fact, the radius of the dashed circles in Figure 5b–5d,
centred at the origin and passing by the point of minimum norm of
each simplex, decreases monotonically at every iteration.

3.2 Distance sub-algorithm

The GJK algorithm relies heavily on the distance sub-algorithm.
This is responsible for computing the point ν (τk), which dictates
the search direction vk, and hence controls both exit conditions and
support function evaluation. More importantly, the convergence
rate of the GJK procedure decays if the distance sub-algorithm is
not accurate to machine precision. We shall demonstrate this fact in
Section 5 with an important result: there are cases where the CPU
time is reduced by deactivating the Johnson algorithm and relying
entirely on the Backup procedure, rather than using the usual com-
bination of both.

The distance sub-algorithm computes the barycentric coordin-
ates and a subsetW ⊆ τ to express ν (τk) as a convex combination
of the smallest set of vertices. The subsetW identifies, with a tuple
κ, the face of an m-simplex supporting ν (τk). It has been shown
[Gilbert et al. 1988] that from Eq. (6) comes a representation of
ν (τk) that satisfies:

λj > 0 and λi ≤ 0 ∀ j ∈ κ : i = 1, ...,m+ 1, i 6= j. (13)
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Q

P

(a) Polygons and separating axis.

CSO
O

v1

(b) Iteration k = 1: τ1 = {D-G}, W1 = τ1
and ν (τ1) = D −G.

CSO
O

v2

(c) Iteration k = 2: τ2 = {B-E,D-G}, W2 =

τ2 and ν (τ2) = λ1B-E + λ2D-G.

CSO
O

v3

(d) Iteration k = 3: τ3 = {C-E, B-E, D-G},
W3 = {C-E, B-E}, ν (τ3) = λ1C-E +

λ2B-E.

Fig. 5: Iterative GJK procedure for the pair of distant polygons in (a). Each k-th iteration (b)-(d) involves: points on the configuration space
CSO, subset of support vertices Wk, point closest to origin ν (τk) and simplex τk.

Eq. (13) guarantees that ν (aff(W )) = ν (conv(τ)) [van den Ber-
gen 1999], which geometrically means that the vector ν (τk) is
perpendicular to a face of the simplex. This face is “optimal” in
the sense of Eq. (12), for which reason Eq. (12) is also called or-
thogonal condition. This can be seen from Figure 5d: the simplex
does have three vertices, but only two of these support ν (τ3). The
two vertices form a face that is perpendicular to v3, and their bary-
centric coordinate will be strictly positive.

The Johnson algorithm [Johnson 1987] is the distance sub-
algorithm originally adopted in [Gilbert et al. 1988] to compute
ν (τk). This is implemented, together with the Backup procedure,
in the functions DistanceSubalgorithm in Algorithm 1. John-
son algorithm recursively inspects all the Voronoi regions of a m-
simplex until the region Vκ satisfying Eq. (13) is found, i.e. until
the signs of the barycentric coordinates comply with Eq. (13).

The barycentric coordinates are computed by solving an algeb-
raic system of equations that embeds the orthogonal condition from
Eq. (12). Let a simplex τ = {si}, with i ∈ I = {1, ...,m + 1},
have its point of minimum norm ν (τ) laying on a r-face defined
by the points in {sj}, with j ∈ κ. Then this face is perpendicular
to a vector v or, equivalently, (sj −sl) ·v = 0, for all j 6= l, where
l is an arbitrary element of κ. The vector v was defined in Eq. (12)
and can be written in terms of r + 1 barycentric coordinates λj to

derive an algebraic system Aλ = b. In extended form this writes: 1 ... 1
... ... ...

(sj − sl) · s1 ... (sj − sl) · sr

 λ1

...
λr

 =

 1
...
0

 (14)

The index l ∈ κ must be kept constant, usually l = 1, and j takes
the remaining r values in κ.

Behind the computational efficiency of Johnson algorithm stands
the recursive solution of Eq. (14) for all subsets of τ . Because κ
has cardinality at the most 4, the system Aλ = b can be efficiently
solved by using Cramer’s rule. However, neither κ nor its cardinal-
ity are known a priori. The procedure for computing these quantit-
ies is detailed below.

A solution of the algebraic system in Eq. (14) can be written by
combining Cramer’s rule with a cofactor expansion as follows:

λj =
−11+j detA1j

detA
(15)

where A1j are minors of A obtained by removing the first row and
the j-th column from A.

To understand the combinatorial logic of the Johnson algorithm
let us look at A as minor of another matrix built in the same fashion
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(1, 2, 3)

(1, 3)(1, 2) (2, 3)

(2)(1) (3)

Fig. 6: Johnson algorithm conducts a bottom-up search across all Voronoi
regions of a 2-simplex.

but for a larger subset. This larger subset is obtained by adding
to W a vertex of the simplex si not yet included in W , namely
{sj : j ∈ κ} ∪ si for an i ∈ I − κ. This leads to a recursive
solution for Aλ = b:

λj =
∆j(W )∑
j∈κ ∆j(W )

. (16)

Where ∆j(W ) is a cofactor of A for one of the (2m+1−1) subsets
W of τ . Since the vertices of τ are linearly independent:

∆j(W ) = −11+j detA1j . (17)

Johnson algorithm computes the values ∆j(W ) in order of in-
creasing cardinality ofW . For the firstm+1 singleton the solution
is trivial:

∆j({sj}) = 1 j ∈ I, (18)

whereas for the remaining subsets:

∆i(W ∪ si) =
∑
j∈κ

∆j(W )(sj · sl − sj · si) : i ∈ I − κ. (19)

The equation above is tested for all subsets of τ , keeping l ∈ κ
constant, until Eq. (13) is verified.

A theorem demonstrated in [Gilbert et al. 1988] transfers the
constraints of Eq. (13) on ∆j . The theorem states that the bary-
centric coordinates for the vertices of a subset W = {sj : j ∈ κ}
comply with Eq. (13) if: (i) ∆j(W ) > 0 and (ii) ∆i(W ∪ si) ≤ 0
for all i in the complement of κ in I = {1, ...,m+ 1}. If all bary-
centric coordinates of the vertices in W are strictly positive, then
all the subsets or cardinality |W | + 1 are inspected. If these have
non-positive barycentric coordinates the algorithm terminates, oth-
erwise it continues.

The diagram in Figure 6 illustrates graphically the order in which
the Johnson algorithm seeks the point of minimum norm ν (τ) for
a 2-simplex. The bottom-up arrows indicate that the method begins
the search by inspecting the Voronoi regions associated to the ver-
tices of the simplex as formulated in Eqs.(18)-(19).

More details on the formulation and the implementation of the
Johnson sub-algorithm may be found in [Gilbert et al. 1988] and
[van den Bergen 1999]. It should be noted however that, since
the GJK algorithm updates the simplices by adding a single ver-
tex at the time, only 2m (rather than 2m+1 − 1) Voronoi regions
can possibly verify Eq. (13). This simplifies the search and re-
duces the minimum number of operations, but it requires to store
all ∆i(W ), thus introducing overheads and making the data man-
agement within the Johnson algorithm more complex.

3.3 Numerical instabilities

In practise the GJK algorithm tends to form degenerate simplices
which have severe consequences on accuracy and performance of
the algorithm itself. However, we observed that not all degenerate
simplices imply failure. A degenerate m-simplex τ is the convex
hull of a set of affinely dependent points in Rn; our interest here
is to study under which circumstances affinely dependent points
cause instabilities to the Johnson distance sub-algorithm.

This section presents two numerical tests using Algorithm 1
without the Backup procedure. It is well-known that Johnson’s pro-
cedure cannot accurately compute the point of minimum norm for
a degenerate simplex [Gilbert et al. 1988]; however, disabling the
Backup procedure allows to cut down the CPU time [van den Ber-
gen 2003] and to study more closely the effect of numerical in-
stabilities on the GJK algorithm.

The first test considers two configurations for a pair of poly-
gons: overlapping (Figure 7a) and distant (Figure 7c). To com-
pute the minimum distance with the GJK algorithm we follow
the same procedure illustrated in Figure 5. At the k-th iteration
ν (τk) = ν (CSO) and the GJK algorithm terminates. The partic-
ular orientation of the polygons however is such that the simplices
τk result nearly-degenerate for both configurations. Figure 7b and
Figure 7d present the simplex for the overlapping and distant poly-
gons, respectively.

The simplices in Figures 7b and 7d have the same nearly-
infinitesimal area but, since they have different sets of points sup-
porting ν (τk), Johnson algorithm fails only for the overlapping
configuration. The reason is that the sub-algorithm converges when
testing different Voronoi regions: V(1,2,3) for the overlapping poly-
gons, and V(1,2) for the distant polygons. The difference between
these Voronoi regions is that the first one is nearly-degenerate, the
second one is not.

The second test presented in this section focuses on the algebraic
system solved by Johnson algorithm, and in particular on |det A| to
study the conditioning of Eq. (14).

Let us consider the three-dimensional meshes of the gear teeth
P and Q in Figure 8. The GJK algorithm measures, at each solu-
tion step, the distance between the teeth as they approach each
other. Figure 9 shows the values of |det A| and d(P,Q) for con-
secutive simulation steps. The red markers indicate that the GJK
algorithm, without Backup procedure, fails three times. The fail-
ures occur when |detA| is in the order or the machine precision, in
fact they are a consequence of numerical instabilities in the distance
sub-algorithm.

From these two experiments we conclude that numerical instabil-
ities affecting Johnson algorithm are not due to degenerate sim-
plices themselves, but rather to the orthogonal condition embedded
into Eq. (14). The strategy adopted for evaluating Eq.(17) indeed
lacks robustness because the combination of dot products and dif-
ferences amplifies the numerical error. When two vertices are at a
distance from the origin, the difference will be inaccurate and the
error amplified by the product. By performing these two operations
on affinely dependent sets (i.e. degenerate simplices) the algorithm
obtains a determinant for A in the order of the rounding error (this
issues was also noticed, but not addressed, in [van den Bergen
2003]).

These observations on the numerical instabilities affecting John-
son algorithm suggests that a simpler system of equations, which
does not include products or differences, will retain accuracy even
for degenerate simplices.
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(a)

CSO

O

(b)

(c)

CSO

O

(d)

Fig. 7: Overlapping polygons (a) and distant polygons (c) with the highly-
deformed simplices generated upon termination of the GJK procedure, re-
spectively (b) and (d).

4. ENHANCED DISTANCE SUB-ALGORITHM

4.1 Method

This section presents a new distance sub-algorithm that does not
require the Backup procedure and circumvents the numerical in-
stabilities affecting the Johnson algorithm. The idea is to build a
system of equation, simpler than Eq. (14), which does not involve
multiplications of potentially small quantities.

The newly proposed procedure is named the Signed Volumes
method because it evaluates the volume form µ(τ) of a m-simplex
τ and of other m fictitious simplices associated to it. µ(τ) is the
signed measure of length, area or volume of the simplices in Fig-
ure 3 [Gallier 2011], whilst a fictitious simplex is obtained by sub-
stituting the origin O to a vertex of τ .

This method differs from the Johnson algorithm in the way it
computes the points of minimum norm ν (τ). Rather than solving
a system of equations for each subset W ⊂ τ and to test whether

QP

Fig. 8: Geometries used for the gear teeth benchmark.

Fig. 9: Distance measurements for the test in Figure 8. |detA| is the de-
terminant of the coefficient matrix assembled by Johnson algorithm, when
this value approaches the machine precision the GJK algorithm returns er-
roneous results (red marks).

Eq. (13) is verified or not, our method identifies the unique set of
points that satisfies Eq. (13) and only then it solves a system of
equations to compute the barycentric coordinates. This is done in
three steps:

(1) Project the vertices of τ into a lower dimensional space.
(2) Discard vertices, if any, not supporting ν (τ).
(3) Solve Mλ = p for the barycentric coordinates λ.

The procedure relies on the fact that the barycentric coordinates
are invariant to affine transformations, allowing to compute λ in a
lower dimensional space Rr , and to use these values in the space
Rn, for r ≤ n, where both the simplex and CSO reside.

The dimension r of the reduced space Rr is sought recursively
by projecting (Step 1) and discarding the vertices of τ (Step 2). This
search is guided toward a space in which is “safer” to compute the
barycentric coordinates. By virtue of Carathéodory’s theorem, only
r + 1 vertices of the simplex τ are needed in Rr to express the
projection of ν (τ); thus, our recursive search seeks the minimum
set of vertices W ⊂ τ supporting ν (τ) and, at the same time, gets
rid of affinely dependent vertices.

Once the subset W is found, our method computes the bary-
centric coordinates λj (Step 3) for r + 1 vertices in W = {sj}.
From Eq. (6) we assemble an elementary system of equations for
r + 1 strictly positive λj : Mλ = p. In extended form this writes:sl1 ... slr+1

... ...
1 ... 1

 λ1

...
λr+1

 =

pl...
1

 (20)

The first rows of M contain the l-th coordinate of sj and the last
one consists of the (r + 1)-dimensional unit vector. The column
vector p contains the coordinates of the point obtained from the
projection of the origin O onto the affine-hull of the points sj , fol-
lowed by 1. Since r ≤ 3, a solution for this system can be effi-
ciently computed using Cramer’s rule.

The increased robustness provided by the Signed Volumes
method over the Johnson algorithm is due to the different enforce-
ment of the condition of minimum distance (Eq. (4)). The former
embeds it directly into the system in Eq. (14), the latter transfers
it to a phase that does not directly affect the computation of the
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(1, 2, 3)

(1, 3)(1, 2) (2, 3)

(2)(1) (3)

Fig. 10: The Signed Volumes method conducts a recursive search by ex-
cluding a priori the Voronoi regions that cannot possibly contain the origin.

barycentric coordinates. While the robustness of Johnson algorithm
depends on the mutual orthogonality of the faces supporting ν (τ),
the Signed Volumes method relies on the simple matrix M whose
determinant is proportional to the volume form of τ :

detM = r!µ(τ) (21)

The diagram in Figure 10 illustrates graphically how the Signed
Volumes method seeks ν (τ) for a 2-simplex. The top-down arrows
indicate that the method begins the search by looking inside the
simplex. This is in contrast to what the Johnson algorithm does
(see Figure 6). Moreover, some tuples are disconnected and in grey
colour to emphasise that these are excluded a priori from the re-
cursive search. The Signed Volumes method selects for inspection
2m Voronoi regions, rather than 2m+1 − 1, without any additional
cached data.

4.2 Numerical algorithm

The Signed Volumes method has a simple geometrical interpret-
ation that makes its implementation straightforward. Algorithm 2
shows the main program from which three functions S3D, S2D and
S1D may be called. Apart from the trivial case that consists of a
0-simplex, each function is specific to am-simplex and follows the
three-steps described in the previous section. Step 2 is, from the nu-
merical point of view, the most challenging as it requires an accur-
ate computation of Eq.(21) and particularly of the sign of detM.

Algorithm 2 Signed Volumes distance sub-algorithm

1: procedure SignedVolumes ( τ )
2: τ has r + 1 vertices
3: if r = 3 then
4: [W,λ] = S3D( τ )
5: else if r = 2 then
6: [W,λ] = S2D( τ )
7: else if r = 1 then
8: [W,λ] = S1D( τ )
9: else

10: λ = 1 , W = τ
return W , λ

A vertex sj can be discarded from a m-simplex if it resides in
the opposite side of the hyperplane defined by the other sk points,
with k ∈ {1, ...,m + 1} − {j}. In practise this is done by com-
paring the signs of µ(τ) and of other m fictitious simplices. The
comparison is carried out by the CompareSigns function. To take
into accounts rounding errors, null and NaN values, we define the

function CompareSigns as follows:

CompareSigns( a,b ) =


1, if a > 0, b > 0

1, if a < 0, b < 0

0, otherwise.
(22)

In order to minimise the number of operations, we observe from
Eq. (21) that µ(τ) and detM have the same sign. Therefore, rather
than computing explicitly the volume form of the simplices, in
practise we use detM in Step 2, when calling CompareSigns, and
in Step 3, when solving Eq. (20) with Cramer’s rule.

The functions S3D, S2D and S1D called from Algorithm 2 are de-
scribed in details with a general three-dimensional example. Con-
sider the tetrahedron in Figure 11a. This simplex is generated by the
GJK iterative search, that is: the vertex s1 is added to the simplex
consequently to s2, s3 and s4. We use the Signed Volumes method
to compute the point of minimum norm ν (τ) and to express it as
convex combination of the least number of vertices sj , for j ∈ κ.
Since τ has four vertices, r = 3 and SignedVolumes invokes S3D
which is described below.

4.2.1 Function S3D. The function S3D computes the point of
minimum norm ν (τ) of a 3-simplex generated by the GJK iterative
search. The simplex has 15 faces, each one associated to a Voronoi
region, however only the 9 regions that can possibly contain the
origin O will be inspected.

The input to this function is the ordered list of vertices {si}, for
i ∈ I = {1, ...,m + 1}, and the outputs are a subset of points W
and the relative barycentric coordinates.
S3D takes only two of the three steps described in Section 4.1. In

the first one, Step 2, the procedure tries to discard a vertex from τ
using the function CompareSigns. Afterwards it solves Mλ = p.

For comparing the signs of the volume form µ(τ) and the other
m simplices is sufficient to compute detM, where

M =

s
x
1 sx2 sx3 sx4
sy1 sy2 sy3 sy4
sz1 sz2 sz3 sz4
1 1 1 1

 . (23)

The determinant of M, after a cofactor expansion, writes:

detM =
∑
i=4

j=1,...,4

(−1)i+jMi,j = C4,1+C4,2+C4,3+C4,4 (24)

In the equation above Ci,j is a cofactor and Mi,j is a first minor
of M: the determinant of matrix obtained by removing the i-th row
and j-th column from M. The volume form of all fictitious sim-
plices is proportional to the cofactorsC4,j . Geometrically these can
be represented as the volume of the fictitious simplices depicted in
Figures 11b–11e.

The pseudo-code in Algorithm 3 shows a possible implement-
ation for computing detM and C4,j . Once these values are avail-
able, their signs are compared using the function CompareSigns to
test whether a vertex can be discarded or not. If all signs are equal,
the origin lays inside the simplex and thus all four vertices are sup-
porting the point of minimum norm. In this case the barycentric
coordinates are given by: λj = C4,j/detM for all j. Otherwise,
the function CompareSigns has to be called for each C4,j , with
j = {2, 3, 4}, and the j-th vertex can be discarded if the output
is 0. The computation of the barycentric coordinates is then car-
ried out by the function S2D. However, if this is invoked more than
once, e.g. if two or more fictitious simplices have sign different to
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(a)

(b) (c)

(d) (e)

Fig. 11: From a 3-simplex (a) four fictitious simplices can be defined (b)-(e)
by substituting the origin O to the vertices of the simplex.

the sign of detM, its outcomes must be compared to find which
subset W returns the minimum norm ‖ν (W ) ‖.

For the example in Figure 11 sign(detM) 6= sign(C4,4), thus
the algorithm discards s4 and invokes the function S2D which is
described below.

Algorithm 3 Sub-routine for 3-simplex

1: procedure S3D( {s1, s2, s3, s4} )
2: for j = 1 : 4 do
3: C4,j = −1j+4M4,j

4: det(M) = det(M) + C4,j

5: if CompareSigns(det(M),C4,j) for all j then
6: λj = C4,j /det(M)
7: W = {s1, s2, s3, s4}
8: else
9: for j = 2 : 4 do

10: if CompareSigns(det(M),−C4,j) then
11: [W ∗,λ∗] = S2D({si : i ∈ {1, 2, 3, 4} − j})
12: d∗ = ‖

∑
i∈W ∗ λ∗isi‖

13: if d∗ < d then
14: W = W ∗

15: λ = λ∗

16: d = d∗
return W , λ

4.2.2 Function S2D. Similarly to the previous function, S2D
computes the point of minimum norm ν (τ) of a 2-simplex gen-
erated by the GJK iterative search. It receives in input an ordered
list of three vertices {sj}, with j = {1, 2, 3}, to express ν (τ) as
convex combination of the smallest the subset W ⊂ τ .
S2D begins by projecting the origin O onto the affine hull of the

vertices in {sj} to obtain the point pO . To do so, we first compute
vector pO:

pO =
s1 · n
‖n‖2

n (25)

where n is the normal of the triangle: n = (s2 − s1) × (s3 − s1).
As shown in Figure 12c, the vector pO has direction n and length
equal to the distance between the origin O and the affine hull of
{sj}.

To obtain the projected point pO , we consider the vector h =
pO − s1 laying on the affine hull of {sj}. The projection point is

(a) (b)

pO

(c)

Fig. 12: The selected face of a 3-simplex (a) is projected onto the three
Cartesian planes (b). The point pO is projected on the plane onto which the
face shades the largest area (c).

given by: s1 +h = s1 +pO−s1 = s1 +pO−s1 +O = pO +O.
In fact, the projected point is pO = pO +O.

In order to descend from R3 to R2, the point pO and all the ver-
tices of τ are projected onto the “safest” Cartesian plane. This is
identified as the plane on which the simplex shades the largest area.
For example, the triangle highlighted in Figure 12a can be projected
on the Cartesian planes to define other three triangles shown in Fig-
ure 12b. The triangle with the largest area defines which Cartesian
plane will be used for projecting pO and si. The procedure projects
and computes the areas of the fictitious simplices all at once by
evaluating the minors M1,4,M2,4,M3,4 of the matrix in Eq. (23).

The pseudo-code in Algorithm 4 shows an implementation of
S2D. A for loop computes µmax = max{|M1,4|, |M2,4|, |M3,4|}
and the coordinate J that will be discarded to project the face and
pO onto a to Cartesian plane. The projection of pO is substituted
to the projection of {sj} to set the j-th fictitious simplex, for j =
{2, 3}. Afterwards, the signs of fictitious simplices and µmax are
compared using the usual function CompareSigns.

For the 2-simplex in Figure 12c the system Mλ = p is obtained
by discarding the x-coordinate from the vertices of τ and pO . In
this case the system of equations writes:sy1 sy2 sy3

sz1 sz2 sz3
1 1 1

 λ1

λ2

λ3

 =

 pyopzo
1

 . (26)

A view of the xy-plane is shown in Figure 13. Only two of the three
fictitious simplices in Figures 13b-13d are tested to conclude that
pO lays inside the projected triangle. In fact, for this example,C3,2,
C3,3 and detM have the same sign. This proves that all vertices
support the point of minimum norm ν (τ) and that they are required
to express it as convex combination for the barycentric coordinates
λj = C3,j/detM for all j.

For cases in which pO lays outside the projected triangle, the
function CompareSigns is invoked for each C3,j and the j-th ver-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



10 • M. Montanari et al.

Algorithm 4 Sub-routine for 2-simplex

1: procedure S2D( {s1, s2, s3} )
2: n = (s2 − s1)× (s3 − s1)
3: po = (s1 · n) n / ‖n‖2
4: µmax = 0, k = 2, l = 3
5: for i = 1 : 3 do
6: µ = sk2s

l
3 + sk1s

l
2 + sk3s

l
1 − sk2sl1 − sk3sl2 − sk1sl3

7: if |µ | > |µmax | then
8: µmax = µ, J = i

9: k = l, l = i

10: Discard the J-th coordinate from {si} so that si = [sxi , s
y
i ]

11: k = 2, l = 3
12: for j = 2 : 3 do
13: Cj = (−1)j(pxos

y
k+pyos

x
l +sxks

y
l −pxos

y
l −pyosxk−sxl s

y
k)

14: k = l, l = i

15: if CompareSigns(µmax,Cj) for all j then
16: λj = Cj /µmax

17: W = {s1, s2, s3}
18: else
19: for j = 2 : 3 do
20: if CompareSigns(µmax,−Cj) then
21: [W ∗,λ∗] = S1D({si : i ∈ {1, 2, 3} − j})
22: d∗ = ‖

∑
i∈W ∗ λ∗isi‖

23: if d∗ < d then
24: W = W ∗

25: λ = λ∗

26: d = d∗
return W , λ

tex can be discarded if the output is 0. The computation of the bary-
centric coordinates is then carried out by the function S1D. How-
ever, if CompareSigns is called more than once, e.g. if one or more
fictitious simplices have sign different to detM, its outcomes must
be compared to find which subset W returns the minimum norm
‖ν (W ) ‖.

pO

(a)

(b) (c)

(d)

Fig. 13: From a 2-simplex (a) three fictitious simplices can be defined (b)-
(d) by substituting the projection of pO to the vertices of the simplex.

It should be highlighted that the robustness of this algorithm
cannot possibly be compromised by degenerate simplices. If the
triangle defined by {sj} is a needle (i.e. almost affinely de-
pendent), the vector n will indeed suffer from cancellation and
Eq. (25) will result in an NaN value, but this pathological case is
handled naturally by Algorithm 4: the NaN value will be passed
to CompareSigns that triggers independent searches on selected

Algorithm 5 Sub-routine for 1-simplex

1: procedure S1D( {s1, s2} )
2: t = s2 − s1
3: po = (s2 · t)/(t · t) t + s2
4: µmax = 0
5: for i = 1 : 3 do
6: µ = si1 − si2
7: if |µ | > |µmax | then
8: µmax = µ, I = i

9: Keep only the I-th coordinate from {s1, s2}
10: k = 2
11: for j = 1 : 2 do
12: Cj = (−1)j(sIk − pIO)
13: k = j

14: if CompareSigns(µmax,Cj) for all j then
15: λj = Cj /µmax

16: W = {s1, s2}
17: else
18: λ1 = 1 , W = s1

return W , λ

subsets of τ . Each search is carried out by S1D which is described
below.

4.2.3 Function S1D. The function S1D computes the point of
minimum norm ν (τ) of a 1-simplex generated by the GJK iterative
search. The two vertices s1 and s2 in R3 are the input to this func-
tion. As for the other functions, the output is the smallest subset W
of vertices which support ν (τ).
S1D begins by projecting the origin O onto the affine hull of

{s1, s2} to obtain the coordinates of the vector pO:

pO = s2 +
s2 · t
t · t

t (27)

Where t = (s2 − s1). A proof similar to the one in Section 4.2.2
demonstrates that the projection point is given by pO = O + pO .

In order to descend from R3 to R1, the point pO and all the ver-
tices sj are then projected onto the “safest” axis of the Cartesian
coordinate system. This is identified as the axis on which the sim-
plex shades the largest length.

The pseudo-code in Algorithm 5 shows an implementation of
S1D for computing pO and projecting it, with all the vertices of the
simplex, onto an axis.

The example considered in the previous sections terminates
without invoking S1D, however the logic for computing the bary-
centric coordinates is identical to the one described for the other
functions. If both vertices s1 and s2 support the point of min-
imum norm ν (τ), i.e. CompareSigns( detM,C2,j ) = 1, then
λj = C2,j/detM for all j = {1, 2}. Where C2,j are the minors
of a matrix M which simply includes the l-th Cartesian coordinate
of the two vertices of the simplex:

M =

[
sl1 sl2
1 1

]
. (28)

Otherwise, if pO lays outside the projected line segment, ν (τ) is
supported by the vertex s1 and λ = 1.

4.3 Implementation

Before discussing in details the implementation of the Signed
Volumes method, we wish to emphasise the difference between
accuracy of the GJK algorithm and accuracy of distance sub-
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(a)

(b)

Fig. 14: Results for the gear teeth benchmark using two different dis-
tance sub-algorithms. detA and detM are the determinants of the coeffi-
cient matrices associated to Johnson sub-algorithm (a) and Signed Volumes
method (b), respectively.

algorithm. The former has an arbitrary accuracy εtol specified
by the user. Regardless of the value εtol, the GJK algorithm
will achieve optimal convergence rates only if the distance sub-
algorithm computes the barycentric coordinates as accurately as
possible (i.e. to machine precision). This will be demonstrated in
the next section for a range of values εtol, here we discuss numer-
ical aspects for a robust implementation of our method.

A crucial part of the Signed Volumes algorithm is the computa-
tion of detM, its sign in particular. The pseudo-codes in the pre-
vious section use methods which we consider good compromises
between robustness and computational effort. However, there are
alternatives that improve the accuracy of the sign of detM.

Adaptive floating-point arithmetic was exploited in [Shewchuk
1996] and [Ozaki et al. 2012] to exactly compute the sign of the
signed volume of a tetrahedron and the sign of the signed area of
a triangle. Shewchuk released the source code from which we ex-
tracted two routines orient3d and orient2d to compute the value
and the exact sign of the determinant of M and its minors. These
routines are an accurate, but slightly more computationally intense,
alternative to the approach presented in Algorithms 3 and 4. We
have tested a version which includes the functionality presented in
[Shewchuk 1996], however this brings only a modest improvement
to Algorithms 3 and 4. In fact, despite the computation of detM

is crucial, most of the numerical error comes from Step 2 when
projecting the origin. The next section presents numerical results
obtained from our implementation of Algorithms 1-5.

5. RESULTS

This section presents numerical experiments to compare speed
and accuracy of the GJK algorithm calling different distance sub-
algorithms. The tests involve both convex and non-convex par-
titioned polytopes. Throughout this section four distance sub-
algorithms will be considered:

• Johnson algorithm and Backup procedure (JB)
• Johnson algorithm only (JH)
• Backup procedure only (BK)
• Signed Volumes (SV)

All tests are carried out on a double precision Linux machine
with Intel R© Xeon R© E5-2630 and 32 GB RAM. The source code
is compiled with the GNU compiler. Our implementation of the
Signed Volumes method and GJK algorithm is written in ANSI
C and is inspired from the source code provided by van der Ber-
gen [van den Bergen 2003]. In this framework the CompareSigns
function is implemented as macro.

5.1 Accuracy

The numerical accuracy is a measure of the level of detail achieved
when computing the distance between two objects. A requisite
to ensure accuracy is robustness. Herein we repeat the gear teeth
benchmark introduced in Section 3.3 to compare the performance
of two distance sub-algorithms.

The first test investigates the robustness of JH and SV sub-
algorithms, with particular attention paid to the algebraic system
solved for computing the barycentric coordinates. The determinant
of the coefficient matrix is an indicator of the conditioning of the
system itself. If the absolute value of the determinant is in the order
or the rounding error, the system results ill-conditioned.

Our test considers the gear teeth in Section 3.3 and monitors the
values of d(P,Q), |detA| and |detM|, respectively: the distance
between the objects, the determinant of A in Eq. (14) and the de-
terminant of M in Eq. (20). The results obtained from the GJK al-
gorithm using the JH sub-algorithm are shown in Figure 14a, whilst
Figure 14b shows the results for the SV sub-algorithm. The col-
oured bands include the upper and lower limits of the determinant
of the matrices. The values of |detM| span a range well above the
machine precision, instead |detA| reaches ε several times. Finally,
JH sub-algorithm underestimates d(P,Q) at the last step, i.e. be-
fore collision.

The test terminates when the approaching objects are found in
contact, that is, when d(P,Q) reduces its magnitude below ε. This
is the case for SV but not for the JH sub-algorithm. The large dif-
ference between the minimum value of d(P,Q) in Figure 14a and
14b prove that, regardless of the value εtol, the accuracy of the GJK
algorithm is influenced by the distance sub-algorithm.

This test confirms that, unlike the Johnson algorithm, the Signed
Volumes method cannot possibly generate systems of linearly
dependent equations. In fact, degenerate simplices are naturally
handled as described in Section 4.

By repeating the same test with different meshes we verify that
the accuracy achieved by the GJK algorithm is limited when using
JH. Figure 15 shows the different levels of accuracy achieved by
the two sub-algorithms. The distance measured at the last solution
step using JH is in the order of ε1/2, whereas SV reaches values
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Fig. 15: Comparison of maximum accuracy achieved by the GJK algorithm
using Johnson (JH) and Signed Volumes (SV) procedure for the gear teeth
benchmark.

very close to ε. This is due to the fact that at the last iteration the
GJK algorithm generates a flat simplex that is close to the origin.

In some sense, degenerate simplices are intrinsic to the way the
GJK algorithm solves distance queries. We observed that nearly-flat
objects are more likely to originate extremely deformed simplices.
The reason is because a simplex takes the shape of the CSO, if
the faces of the CSO closer to the origin are nearly flat, so will
be the last simplex of the GJK procedure. However, the graph in
Figure 15 proves that the SV sub-algorithm is not compromised by
such pathological cases.

5.2 Computing time

The elapsed time from the call to the termination of the GJK al-
gorithm is the most important measure of performance for real ap-
plications. The accuracy of the distance sub-algorithm does affect
the convergence rate of the GJK procedure, hence our aim is to as-
sess the impact that the accuracy of a sub-algorithm has on the CPU
time required by the GJK procedure. Herein we look at the differ-
ent sub-algorithms: JB, BK and SV to compare their CPU time and
the CPU time required by the GJK algorithm.

The geometries used for the following tests are simple polygonal
spheres. Each query is repeated one million times and the CPU
time, for both the GJK algorithm and the various sub-algorithms,
is the average between all runs. The reason for choosing simple
spheres is purely numerical; this geometry reduces the changes of
having to deal with degenerate simplices.

The CPU time is measured for values of the tolerance 10−8 ≤
εtol ≤ 10−14, with and without hill-climbing. The source code
provided by Cameron [Cameron 1997b] offers the basic capabil-
ities to perform these tests. The code allows to switch from JB to
BK by defining the variable TEST_BACKUP_PROCEDURE and to ad-
just εtol by varying the variable EPSILON. Little coding is required
to implement the exit conditions in Eqs. (9)-(10) and the SV sub-
algorithm.

Firstly, we measure the total CPU time required by the distance
sub-algorithm per GJK call. Figure 16 compares the total CPU time
of JB, BK and SV sub-algorithms for colliding, touching and dis-
tant spheres. These results are obtained disabling hill-climbing and
setting εtol = 10−8. The same tests are repeated enabling hill-
climbing and the measurements are shown in Figure 17. Apart from
few exceptions, all configurations have similar trends. As expected

the BK is the most computationally intense sub-algorithm, whilst
SV performs remarkably well. In fact, SV results always faster or as
fast as JB. The least improvement is measured for touching spheres,
5% on average; whilst the speed-up achieved by SV over JB is
between 10% and 25% for distant and overlapping spheres.

Figures 16 and 17 show that there are cases in which the ac-
curacy of the sub-distance algorithm plays a key role on the CPU
time. For instance, Figure 17a reports an astonishing case1 in which
JB requires more CPU time than BK. Surprisingly, the CPU time
is reduced by deactivating the Johnson algorithm and relying en-
tirely on the Backup procedure, rather than using the usual com-
bination of both algorithms. This is because the accuracy of John-
son algorithm, as demonstrated in Section 5.1, is ε1/2 and not ε.
An inaccurate computation of the search direction v leads the GJK
algorithm to a path which is not optimal. Instead, SV and BK are
accurate methods that compute v to machine precision and guide
the GJK algorithm toward the shortest search path.

By repeating the same tests for εtol = 10−14 we target applic-
ations that require solutions of distance queries accurate to ma-
chine precision. The CPU time required by different sub-distance
algorithms is presented in Figure 18 and Figure 19, the latter re-
gards tests exploiting frame coherence with hill-climbing. On av-
erage the SV outperforms all the other sub-algorithms. Only for
touching spheres its performance is comparable to the one of JB.
The speed-up achieved by SV over JB is between 10% and 25% for
distant spheres and between 15% and 30% for overlapping spheres.

On average, our distance sub-algorithm reduces by 10% the total
CPU time of the GJK algorithm. The CPU time for the previous
tests is illustrated in Figure 20 and Figure 21 for distant and over-
lapping spheres, respectively. Both figures show results using hill-
climbing. The contour plots express the GJK CPU time as function
of two independent variables: accuracy εtol and number of vertices
for each sphere. The graphs on the left use JB sub-algorithm, whilst
the right ones use SV. All plots are in logarithmic scale and use the
same colormap. From Figure 20 emerges a common pattern. As
expected, the CPU time increases regularly as the mesh size in-
creases. Moreover, εtol = 10−10 appears to be a threshold value
that identifies a region below which the CPU time increases. By
comparing the two plots in that region we can observe a reduction
of CPU time achieved by SV. Also, regardless of εtol, for 700 and
above vertices in the mesh, GJK search conducted using JB results
more expensive.

The difference in CPU time is even more pronounced when the
objects are found in contact (Figure 21). Under these circumstances
the SV sub-algorithm improves the performance of the GJK al-
gorithm by reducing its CPU time from a minimum of 5% to a
maximum of 25%.

Let us now discuss the reasons behind the different performances
of JB and SV. For overlapping objects the Signed Volumes is faster
because it finds the solution at the very first inspected Voronoi re-
gion (see the diagrams in Figures 6 and 10). For distant config-
urations we argue that SV is faster, or as fast as JH, because of
geometrical and numerical reasons. Firstly, the CSO is given by
the Minkowski difference P − Q (Eq.(3)) and its morphology is
dictated by the mutual orientation of P and Q. It exists a relation-
ship between the face of the CSO supporting ν (CSO) and the
faces supporting the witness points zP ∈ P and zQ ∈ Q. Table
I considers all possible combinations of faces (vertices, edges and

1The reader can verify this result by downloading the source code pub-
lished by Cameron from http://www.cs.ox.ac.uk/stephen.cameron/distances
and providing as input the following arguments: -H -s577ccb17 1 400.
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(a) (b) (c)

Fig. 16: Comparison of sub-algorithms CPUtime(ns) for εtol = 1e−8 without hill-climbing and for three configurations: (a) distant, (b)
close and (c) overlapping spheres.

(a) (b) (c)

Fig. 17: Comparison of sub-algorithms CPUtime(ns) for εtol = 1e−8 exploiting hill-climbing and for three configurations: (a) distant, (b)
close and (c) overlapping spheres.

triangle) supporting a pair of witness points in physical space and
uses the Minkowski difference to recast this face in configuration
space. As a result, the chances that the ν (CSO) lays on a triangle
of the CSO are four times higher than for any other face. The like-
lihood of finding ν (CSO) on a triangle of a simplex suggests that
the top-down search of the Signed Volumes method will return an
answer in fewer operations. Secondly, the accuracy of the distance
sub-algorithm makes a bigger impact on meshes with large number
of vertices. This is because on finer meshes a suboptimal search dir-
ection is more likely to compromise the evaluation of the support
function. As a result, the support function provides the GJK with a
simplex which is not directed toward the origin in the best possible
way. Moreover, despite hill-climbing, larger meshes require more
CPU time for evaluating the support function and thus, to min-
imise the GJK CPU time, is more important to optimise the GJK
convergence rate by increasing the accuracy of the sub-algorithm,
rather than minimise the number of operations with the risk of com-

Table I. : All combinations of faces supporting the witness points zP and
zQ, and resulting supporting faces of ν (CSO) = ν (τ).

zP ∈ zQ ∈ ν (τ) ∈
Vertex Vertex Vertex
Vertex Edge Edge
Vertex Polygon Triangle
Edge Edge Triangle
Edge Polygon Triangle
Polygon Polygon Triangle

promising the search path. Because the Signed Volumes method is
more accurate than Johnson algorithm, it reduces the CPU time by
providing the GJK algorithm with an optimal search path.

A more elaborate implementation of the Signed Volumes method
can improve the performance for the configuration of touching
spheres. This paper presents an implementation that is simple and
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(a) (b) (c)

Fig. 18: Comparison of distance sub-algorithms CPUtime(ns) for εtol = 1e−14 without hill-climbing and for three configurations: (a)
distant, (b) close and (c) overlapping spheres.

(a) (b) (c)

Fig. 19: Comparison for distance sub-algorithm CPUtime(ns) for εtol = 1e−14 exploiting hill-climbing and for three configurations: (a)
distant, (b) close and (c) overlapping spheres.

efficient in the sense that it inspects the least number of Voro-
noi regions. However, some of these regions might be inspected
twice. This explains the modest speed-up for touching configura-
tions (Figures 16b, 17b, 18b and 19b). In fact, by looking at the
tuple diagram in Figure 10 there are two arrows pointing at the re-
gion V(1), indicating that this region may be inspected twice. This
phenomenon is even more pronounced for 3-simplices in R3. By
enriching the cached data structure it is possible to enforce the min-
imum number of inspections and save CPU time. Such a detailed
implementation is however beyond the scope of this paper and in
the next section we present results for the same implementation ad-
opted thus far.

5.3 Multiple object application

We now present the results of a finite element simulation involving
non-convex objects. A Stanford bunny model sits on top of a large
rigid plane and eight knots fall from above. The bunny and the

knots are deformable and discretised by solid tetrahedral finite ele-
ments. We use a leap-frog time integration scheme with a time step
in the order of 10−7s to comply with the stability requirements
[Cundall and Strack 1979]. In this simulation the GJK algorithm is
used to perform a brute-force detect collision between the objects
(each convex object is tested again every other object), whereas the
computation of contact forces and internal stresses are carried out
by the finite element solver.

The simulation is repeated for two levels of mesh refinement and
using three different distance sub-algorithm: BK, JB and SV. The
kinetic energy of the system is monitored during the simulations
in order to verify that all experiments return the same values. A
counter NSUB is incremented every time the distance sub-algorithm
in invoked. Similarly,NBACKUP is incremented every time the Backup
procedure in invoked. The overall CPU time required by the sub-
algorithm is also measured.
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(a) (b)

Fig. 20: Measurements of GJK CPUtime (ns) for distant polygonal spheres using Johnson algorithm with Backup procedure (a) and Signed
Measures method (b).

(a) (b)

Fig. 21: Measurements of GJK CPUtime (ns) for overlapping polygonal spheres using Johnson algorithm with Backup procedure (a) and
Signed Measures method (b).

Figure 22 shows a sequence of frames of the coarsest meshes,
the model has approximately 4.5k outer facets. From the frame in
Figure 22a to the frame in Figure 22d the simulation requires ap-
proximately 18 hours of CPU time, but the whole simulation lasts
for about 31 hours. The results are presented in Table II. The CPU
time required by the BK sub-algorithm amounts to 63.7 minutes,
however the implementation using JB invokes the sub-algorithm
more often, around 322 M times. Nearly 10% of the times the John-
son algorithms fails and the Backup procedure is invoked (30 M
times). When employing the SV sub-algorithm, the GJK invokes
DistanceSubalgorithm 299 M times. Reducing the number of
calls by 7.4% compared to the JB. The overall the CPU time spent
by the JB sub-algorithm is 59.2 minutes, while for SV this is re-
duced to by 18%.

The same simulation is repeated using finer meshes which in-
volve a total of 17.9k facets. For this scenario the improvement
brought by the SV sub-algorithm is even more significant. The
measurements reported in Table III indicate that the CPU time spent
by the distance sub-algorithm is reduced by 20% when compared
SV to JB. This is a consequence of the fact that, for the same num-
ber of GJK calls, JB is invoked about 444 M times, whilst SV only
380 M.

6. CONCLUSIONS

This work shows counterexamples for the GJK algorithm that can
lead to incorrect collision detection and addresses the shortcomings
introduced by degenerate simplices.

Our study on the original sub-algorithm concludes that the nu-
merical instabilities are intrinsic to the algebraic system in the sub-
algorithm itself. The operators embedded in the algebraic system
amplify the rounding error and compromise both barycentric co-
ordinates and convergence rate.

Wary of this drawback, we replace the original Johnson sub-
algorithm and the Backup procedure with the novel Signed
Volumes method. This is a recursive procedure designed to handle
naturally degenerate simplices which relies on the sign of the
volume form (e.g. length, area, volume) of the simplices to select
the vertices supporting the point of minimum norm. The vertices
thus selected are affinely independent and form a well-conditioned
algebraic system from which we compute the barycentric coordin-
ates.

The main difference between Johnson and Signed Volumes sub-
algorithms is where the condition of minimum distance is imposed.
The former embeds it into the linear system, the latter transfers
it to a phase that does not affect the computation of the point of
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(a) (b)

(c) (d)

Fig. 22: Snapshots of the finite element simulation involving Stanford
bunny and eight knots falling under gravitational load.

minimum norm. The resulting algebraic system is simpler and less
sensitive to rounding errors.

Numerical tests demonstrate that the Signed Volumes method
effectively is a more robust procedure that reduces the computa-
tional time of the GJK algorithm. Our method does not require a
Backup procedure, and yet it guides the GJK algorithm toward the
shortest search path that results in fewer GJK iterations. Moreover,
our tests show that the Signed Volumes method outperforms the ori-
ginal sub-algorithms when the objects are found in contact. In such
a configuration the GJK runs 5% to 25% times faster, whereas for
other configuration it runs at least as fast as the original one or even
15% faster (depending on the prescribed tolerance and particularly
on the regularity of the objects).

The improvements brought by this research are readily applic-
able to all existing implementations of the GJK algorithm. The
Signed Volumes method can also be tailored to serve as general-
purpose algorithm for computing the distance between a point and
a tetrahedron; moreover, it opens new possibilities for adopting the
GJK algorithm in scientific computing. We illustrate an applica-
tion for the finite elements method (FEM). For other numerical
frameworks such as, meshless methods, discrete elements method
(DEM) and isogeometric analysis (IGA), the GJK algorithm could
solve efficiently distance queries for solid, shell, truss elements as
well as rigid particles, spheres, ellipsoids and NURBS.
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