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ABSTRACT
We propose compilation methods for supporting set terms 1n Horn clause programs, without using general-
purpose set matching algorithms, which tend to run 1n times exponential in the s1ze of the participating sets
Instead, we take the approach of formulating speciahized computation plans that, by taking advantage of
information available in the given rules, imit the number of alternatives explored Our strategy is to employ
compile time rewniting techmques and to transform the problem into an ”ordinary” Horn clause compilation
problem, with minimal additional overhead The execution cost of the rewritten rules is substantially lower
than that of the original rules and the additional cost of compilation can thus be amortized over many execu-

tions
1. Overview

We propose compilation methods for support-
ng set terms in Horn clause programs, without
using general-purpose set matching algonithms
Instead we take the approach of formulating special-
1zed computation plans that, by taking advantage of
information available mn the given rules, hmit the
number of alternatives explored Our strategy 1s to
employ rewriting techniques at compie time to
transform the problem mto an ”ordinary” Horn
clause compilation problem The execution cost of
the rewritten rules 1s often substantially lower than
that of the original rules and the additional cost of
compilation 1s thus amortized over many query exe-
cutions

LDL 1s a Horn clause logic programming
language (HCLPL) mtended for data intensive
knowledge-based applications [TZ86, BNRST87]
The language can handle complex data as treated
[AB87, KV84, KRS84, O083] and 1t supports van-
ous extensions to pure HCLPLs such as negation,
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arithmetic, schema facility and sets Set-objects are
internally represented as terms whose main functor
1s set_of For example, the set {1,3,2} may be inter-
nally represented as set_of{3,1,2) (actually, 1t will be
represented as set_of(1,2,8)) The charactenstics of
sets, 1n the mathematical sense, are captured by
extending the notion of equahty of such terms to
account for the properties of commutativsty and
tdempotence

Example 1: Consider the rule
john_friend(X) «
friends(set_of(X,Y,john)), X s£)ohn, nice(X)

Assume that the database! contains the following
facts

friends(set_of{john, Jim,
nice(jack)

The derived facts are
john_friend(jack)

jack)) nice()1m)

john_friend(ym) and

The first answer comes from a={ X/jm,

Y/jack}, and the fact that the set consisting of jim,
jack, and john 1s the same as the set consisting of
john, nm, and jack The second answer comes from
B={ X/jack, Y/jm}, and the fact that the set con-
sisting of jack, nm, and john 1s the same as the set
consisting of John, ym, and jack |[]
While this paper deals with E-unification
[FAGESS87, RS79, STICKS1, LS78, LC87] our stated
goal here, which emphasizes compile-time transfor-
mations motivated by a large fact database, sets 1t

1 For notational convemence 1n defining the semantics, for-
mally, the database 15 considered a part of the program Our
results hold for the case where the database 13 a separate entity
provided the facts n the database are standardized (see section
3)
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apart from most research in this area. Moreover, we
do not assume associativity, since we are interested
m arbitranly deep nesting and thus assume that,
say, {a,{b}} 15 different from {a, b} It should be
noted that deep nesting can be handled in the con-
text of associative-commutative umfication by intro-
ducing extraneous functions that are neither associa-
tive nor commutative; e g {a,f({b})}

The basic mechanism used 1n the implementa-
tion of LDL is matching, ie the umfication of a
term with a ground term In this paper, we concen-
trate on the mathematical pnnciples underlying the
efficient 1mplementation of set matching Versions
of these methods tuned for maximum performance
are employed n the actual implementation

We assume that the reader 15 famhar with the
basic notation of Logic Programming as presented,
eg, m [LLOY84] For the purpose of this paper
one can safely think of LDL as a pure HCLPL (with
a distinguished functor - set_of) whose semantics 1s
given by applying the immediate consequence opera-
tor Tp [LLOY84] until fixpomnt — ie a "bottom-
up” repeated "finng” The only difference between
our Tp and the one in [LLOY84] 1s that mnstead of
matching we use crmatching as defined below

The set_of functors are used for the represen-
tation of traditional mathematical sets As such,
the order of arguments mn a set_of term is 1mma-
terial, this i1s captured by the concept of permuta-
tion Term t 18 a permutation of term s f ¢t 18
obtained from s by a sequence of zero or more
mterchanges of arguments 1n set_of subterms of s
Likewise, repetitions of equal arguments should be
ignored, this 1s captured by the concept of elemen-
tary compaction Term t 18 an elementary compac-
tton of term s 1f 1t 18 obtained from s by (i) locat-
ing a subterm A of s which has two 1dentical argu-
ments, say at positions t,5 such that £ <z, and (n)
deleting the j’th argument from A Terms ¢t and
s are ct-equal, denoted t=, s, if there 15 a
sequence ¢=t,,. ,f#;=s8 such that for
t =1, , k-1, t, 4, is a permutation of ¢, or ¢, 4
15 an elementary compaction of £, or ¢, 18 an ele-
mentary compaction of ¢, Term t ct—un:fses
with term s 1f there exists a substitution o« such
that t o=, s @ In case s 1s ground and ¢ ci-umfies
with s, we say that ¢ ct—matches s

Example 2: Consider again the rule

john_friend(X) «~
friends(set_of(X,Y,john)), X 5£john, nice(X)
Assume that the database contamns the following
facts
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friends(set_of(jum, john)) nice(jim)
The only derived fact 1s john_friend(jim)

There are three substitutions that map set_of(X, Y,
john) to set_of{jim, john)

One 18 a= {X/jum, Y/pm} since set_of(jim, jim,

john) =,  set_of(im, john), 1t derves
john_friend(jym) The second 158 A= {X/jm,
Y/john} since set_of(ym, john, john) =,

set_of(jim, john), 1t derives john_friend(jim)

The third 18 y= {X/john, Y/jim} since set_of{john,
nm, john) =, set_of(jim, john), however, no fact 1s
denived because of X57£john ||

If we modify the database in the above exam-
ple to contamm only the facts friends(set_of(john))
and nice(john), then the only applicable substitution
18 o= { X/john, Y/john } and set_of(john, john,
john) =,, set_of(john) So, 1t is possible to specify
a set containing three elements which 1s instantiated
Into a set containing (mathematically) one element
Again, no fact 1s derived because of X5£john

The following 1s an example of the usefulness
of 1-matching Suppose a team needs up to three
persons The predicate team locates two member
teams such that the two have been a team before
(recorded 1n old_team ) and the two members have
the capabilities of an engineer, a scientist and a
medical doctor

team(set_of(X,Y)) «

ok_team(set_of(X)Y)), X #Y
ok_team(set_of(X,Y,Z)) «
old_team(set_of(X,Y,Z)), engimneer(X),
scientist(Y), medical_doctor(Z)

The semantics of a program P with set terms
is defined using ci-matching Thus, two programs
are equivalent when they produce the same set of
answer tuples modulo ci-equality Then, the compr-
lation of P transforms 1t into an equivalent pro-
gram that employs only ordinary matchimng Thus,
the set_of terms 1n the transformed program can be
treated as ordinary terms, modulo a compaction and
ordering operation which, when appled to newly
denved facts, ehmmates components of set_of terms
so that no two subterms are cr-equal

To transform a program P requiring ci-
matching 1nto one which requires ordinary match-
ing, we expand the rules of P The result for the
rule in Example 1 is shown in Example 3 below

We introduce new rules called ”funnel-up” rules?,

2The term "funnel-up rule” stems from the role that these
rules fulfill they funnel data from one format (stored or already
denived results) into another format, required by the structure of



and use a short hand notation called multi-head-
multi-body (MHMB) rules In a MHMB rule,
comma 1s to be read as "and”, and a semicolon as
or” So, a rule with m bodies and n heads
represents m X n ordinary rules, one for each body-

head combination

E,xample 3: Consider rule r, The rewntten rule 1s
r

r John_friend(X) «—
friends(set_of(X,Y,john)),
X 5£john, nice(X)

r' john_friend(X) «
funnel_up_friends(set_of(X,Y,john)),
X 5£j0hn, nice(X)

funnel_up_friends(set_of(Y,X,john}),
funnel_up_friends(set_of(X,Y,john)) «—
friends(set_of(john,Y X)),
friends(set_of(Y,john X)),
friends(set_of(Y,X,john))
funnel_up_friends(set_of(X,X,john)) +
friends(set_of(john X)),
friends(set_of(X,john))
funnel_up_friends(set_of(john,john,john)) —
friends(set_of(john)) []

In the case of Example 3, we have three MHMB
rules, each supporting the ci-matching of the ong-
nal term with instantiated sef_of terms of cardi-
nality three, two and one The body of a rule
checks for "generic” appearances of terms with a
certain cardinahty in the database For example, 1n
the second rule, friends(set_of (john X)) and
friends (set_of (X ,john)) check for possible
matches with a cardinality 2 instance The heads of
a MHMB rule ”transmit” the found bindings to the
original term 1n the onginal rule In the second
rule, bound values for

funnel_up_friends (set_of (X ,X,john)),
funnel_up_friends (set_of (X ,john ,john))

and, funnel_up_f riends (set_of (john X ,j0hn))

need to be transmitted A closer 1mspection reveals
that (1) and (2) will generate the same head tuples
mn r and that (3) will violate X 5430hn 1n the on-
ginal rule and hence (2) and (3) can be discarded

The transformation result may seem bulky
However as a result, run-time ci-matching on a per
tuple basis 1s replaced with an optimized compile-
time ”unfolding” of the matching process Our
compile-time analysis eliminates blhind alleys n ¢1-

the original term 1n the body of a rule
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matching as well as redundant derivations, it also
optimizes the ci-matching process in the context of
the particular program

There are eight sections Section 2 discusses
technical aspects of augmenting a HCLPL with the
set_of predicate Section 3 presents two theorems
The first allows ci-matching to be substituted by 1-
matching, the second allows »-matching to be subst-
tuted for by ordinary matching The rewnting
transformation 1s presented in section 4 Optimiza-
tion techniques are discussed i1n section 5 The mer-
its of a prehminary rewnting, in which original pro-
gram rules are made multihead” 18 discussed 1n sec-
tion 6 Section 7 presents some elementary observa-
tions concerning compilation of the rewntten pro-
gram Section 8 concludes and mentions possibihi-
ties for future work

2. Augmenting Logic Programming with CI-
Matching

2.1. Horn clauses

A term t 138 defined mnductavely as (1) a con-
stant, (1) a vanable, (m) a formula of the form
f(ay, , ay) where f 1s an n-ary function
symbol and, for : =1, , n, a 18 aterm which 1s
called the argument of t of mdez s+ f 1s an n-ary
function symbol unless f =set_of which 1s a dis-
tinguished function symbol that does not have a
fixed anty A term 18 ground if 1t contains no van-
ables A term t defined according to (1) or (n) will
be called stmple, and complez otherwise

A rule 1s a formula of the form
A<B; , , DBa
where A and each B,, 1<:1<n, are literals (or
predicates), 1e, a predicate symbol apphed to as
many terms as indicated by 1ts arity Let arsty(¢)
denote the anty of literal or term ¢ In the rest of
the paper we will loosely use the the word "term” to
refer to both actual terms or hterals, since hterals,
syntactically, have the same form as terms

A subststutton 15 a set of pars f=
{X./ty, , Xo /ta} where X, , X, are dis-
tinct variables and ¢,, , t, are terms Then ¢4,
the tnstance of term t by 0, 1s the expression
obtaimned from ¢ by by simultaneously replacing

each occurrence of the vanable X, , 1n ¢ by the term

t, The composttion 0o of two substitutions
0={X1/t1, )Xm /tm } a.nd
a={Y,/s,, ,Y,/84} 15 the substitution
obtamned from the set

{Xl/tlar ;Xm/tma; Yl/el; ’ Yu/’u }; by

deleting every binding X, /s, o for which X, =s, 0
and each bindmg Y, /s, for  which



Y, € {X,, X }-

A substitution 0={X,/¢t,, , Xa /ta } where
ty, , iy are all ground, ie, contam no van-
ables, 15 called a binding A term ¢, is said to be
more general than (or a generalization of) of a term
t; when there exists a substitution ¢ such that
t 0=t 1n that case t5 18 a restriction of ¢,; if ty1s
ground then £, 1s an instantiation of t; If two
terms are each a generahzation of the other, then
they differ only by variable renaming and they are
said to be varsants of each other.

A substitution @ is said to unsfy (or, to be @
untfier for) two terms ¢, and o 1f ¢,0=t,0, then we
also say that the unmification equation ¢;=t; 1s
satisfiable and 0 18 a solution for that equation A
set S of umification equations 1s salssfiable if there
exists a substitution # such that @ 1s a solution for
each equation 1n § From the existence of the most
gederal umfier of two terms [LLOYS84], 1t follows
that

Proposition 2.1: Given a satisfiable finite set of
unification equations U, there is some solution @
which 18 a generalization of every solution for U |]

The most general solution for U will be called
the most general unsfier (mgu) for U It also fol-
lows that the most general solution for U 1s unique
modulo variable renaming So far, our concepts of
equality and unification are the standard ones where
two terms are equal 1ff they are (syntactically)
1dentical and are unifiable iff the unification equa-
tion for them 1s satisfiable

2.2. CI-matching

Let set_of be a distingwshed function symbol
It 15 intended to model mathematical sets, as such 1t
does not have a fixed arity With zero anty, i.e
set_of (), it represents the empty set With non-
zero anty, 1e set of (ay, ..., a,), 1t represents
the set whose elements are a,, , 45 (not neces-
sanly distinct) These intuitive notions are cap-
tured formally as follows.

Term t derives term s modulo idempotence,
denoted ¢ ==> , s, 1f either (1) t=s5 or(n) s 1s ¢t
with the exception that a subterm ¢; of ¢,
ti=set_of (21, ...,%, +%-1,%),%, 41, -»%s ), Such
that z, =z, , is modified by deleting z, to obtan

8,=sct_of (zll ' %, « 3 Ty 1%y 415 - ’ 3-)

m s s 18 obtained from ¢ by an elementary com-
paction step fromt tos Observe that § —=> (&
does not 1mply 8 =—=> , t.

Term ¢ derswves term s modulo commutativsty,
denoted ¢ ==> s, 1f either t=s, or s 18 ¢t with
the exception that a subterm ¢, of ¢,
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.t1=6¢f__0f (zll » 4y, s Z3-1>%5 %5 41, s Tn )v
is modified by exchanging arguments z, and z, to
obtain

s,=set_of (z,, ) 2, ) Ty 1% 2y 41 1Ze) IN
8 8 18 obtained from ¢ by a permutation step from

t tos Observethat t ==> , 8 1ff s =—=> ¢

Term t derwes term s modulo commutalinty and
tdempotence, denoted t ==> , s, 1f ether (1)
t ==>,8,0r (u) t ==>,8 Let =%=>,,
=%=> _, and =%> _ be the transitive closure
of ==2>,, ==>_ and ==> ,, respectively

If t =%> ,s then s 1s obtamned from ¢ by ele-
mentary compaction from ¢t to s, f t =%=> s
then s 1s obtained from ¢ by permutation from t to
s Let =,,=, and =, be the symmetric and
transitive closure of =——=>,,==>_, and
==> ., respectively

Next, we extend equality based unification and
matching A substitution 8 t-unsfies, c-unifies, ci-
untfies terms ¢, and ty, of ;0= ¢,0, t,0=_1t.0,
t,0=,, to0, respectively When t, 15 ground the
word untfication 13 replaced by matching, we then
speak of t-matching, c-matching and ct-matching

Term ¢t 1s compact if it contains no set_of
subterm with two syntactically 1dentical arguments
Equvalently, ¢ 1s compact f ¢ ==> , s 1mphes
t=s For example,

J (22,8¢et_of (1,2,3),22)
18 compact, while

J (22,8et_of (1,2,1,3),22)
15 not compact Term ¢t 1s strongly compact of for
all terms s such that ¢ =2=> _s, s 15 compact,
mtuitively, one cannot permute the arguments of
sct_of subterms of ¢t and produce two 1identical
ones For example,

set_of (set_of (X,a),8et_of (a,X))

is compact but not strongly compact since
sct_of (set_of (X ,a),8et of (a X)) ==>,

sct_of (set_of (a,X),set_of (a,X))

A substitution, {X,/t,, , Xo /ta } 15 called
compact, or strongly compact, when each ¢,
1<1<n, 1s compact or strongly compact, respec-
tively

Given a term ¢, the compact form of t denoted
com(t), 15 a compact term obtamned from ¢
com (t) can be computed by repeating the following
until there are no more changes

Find a set_of subterm s of ¢ such that all of

s’s arguments are compact and s has two

identical arguments, delete the argument with

the highest index



It can be shown that com (¢} 1s umque Clearly,
,com(t) and the sequence of elementary
compaction steps 18 such that a subterm A 1s han-
dled, 1 e being made compact, only after all of its
arguments have been handled and are com-
pact. Such an elementary compaction step 1s called
a bottom-up compaction step and a sequence of
bottom-up compaction steps 1s called a bottom-up
compaction

Given a term ¢, a strong compact form of t1s
a strongly compact term obtained from ¢ as follows
(1t 15 not umque 1n general)

Consider S={s |s=,t} It can be shown
that S 1s fimite If all s € S are compact
then t 1s strongly compact Otherwise, 1if
s €S 1s a non-compact term, then let
t =com (s ) and repeat this step

It can be shown that if ¢; and t, are strong compact
forms of ¢ then t,=,t,

The following Lemma states that if [ 1s
strongly compact then ¢ =%> ,I imphes that
there 1s a sequence of standard compaction steps
leading from ¢ to I Intwitively, duplicates are
being thrown from subterms of ¢ 1n such a way that
a set_of subterm 1s considered for duplicate elim-
nation only after all of its set_of subterms have
been considered We need a technical defimition
The height of a term ¢, denoted hetght(t), 1s
defined inductively thus, the height of a constant 1s
zero, the height of f (¢, , ) 18
1+max{height (¢t,), ,hesght(t,)}

Lemma 2.1:3 If I 1s strongly compact and
t ==> ,[ then I can be obtained from ¢ via a
standard compaction

The following Lemma states that if ¢ =, ] and
I 1s strongly compact then there 18 a sequence of
duplicate elimination operations on sef_of sub-
terms of ¢ that leads from ¢ to I Note that this s
not always the case 1f I 1s not strongly compact

Lemma 2.2: Let I be strongly compact t=,I 1ff

==> 1

Next, we show that if I 1s strongly compact
and t=, I then I can be obtained from ¢t by first
permuting some arguments of some set_of sub-
terms of ¢ and then performing a sequence of dupl-
cate elimination operations from set_of subterms

3Because of space limitations, all of the proofs of the Lem-
mas and Theorems stated in this paper have been omitted A full
version of this paper which includes the proofs appears in
[STZ87|

Lemma 2.3: Let I be strongly compact ¢ =, I 1ff
*

there exists w such that t =%=> ,w =%> ]
2.3. The standard representation of facts

A factis a ground term We start by defining
a total order on facts

(1)

There 1s a total order on constants and func-
tion symbols (e g , ASCII order)

(2) Xet=f(t;, ,t)and s=g(s;, ,on)
and f precedes g, then ¢ precedes s
(8) Ket=f(t;, ,t)andas=f(s;, ,0m)

then ¢ precedes s 1if they are equal on all posi-
tions up to some position ¢+ for which either ¢,
precedes s, or there 1s no position ¢ n ¢

A fact 1s 1n sorted form if 1n each set_of subterm
of the fact, the arguments are in sorted order
according to the order defined above on facts

We make the following assumptions concern-
ng stored facts First, facts are always sn strongly
compact form Second, facts are always in sorted
Jorm (see above) These two assumptions together
are the standard representation assumption A fact
obeymg this assumption is said to be standard A
binding 0={X,/T,, , X3 /Ty } 18 standard if for
1=1, ,k, T, 1s standard

Given a fact ¢, the standard form of ¢,
denoted standard (t), 18 obtamned from ¢ by sorting
each set_of subterm of ¢ and ehmnating duph-
cates 1n such a way that a subterms 1s handled only
after all its set_of subterms have been handled It
can be shown that standard(t) 18 umque and that
o standard (t) which 1mphes
t=,, standard (t)

To 1ilustrate the importance of the standard
representation assumption, let us assume that, by
contradiction, we admit 1n the database the pair of
facts pfsct_of(1,2)) and q(sct_of(2,1)) which violates
this assumption Then, by the semantics of sets,
the conjunct p(X),¢(X) must succeed, but that can-
not be accomphshed with ordinary matching —a
direct contradiction to our basic tenets For-
tunately, this problem can be solved by assuming
that database facts obey the standard representation
as defined above

t_—..:i.:

2.4. Semantics

The semantics of LDL 1s defined formally 1n
[BNRST87] Here we hmit attention to a subset of
LDL that 1s compnsed of Horn clauses, the dis-
tinguished function symbol set_of , and two built-in
predicate symbols = and 7 of anty two which are
written 1n infix notation For simpheity, we view
the database as part of the program Substitution



satisfies the body of arule b « ¢,, , ty 10 & set
of facts S, iof for 1=1, , n, either (1) ¢ has
form s,=s, and 019-— 850, or (n) ¢ has form
817482 and s 054, 8,0, or (m) there exists 8, € S
such that t, 0=, s,

Definstron of M (P)

The model of a program P, denoted M(P) 1s
defined thus Let My=@ For s+ >0,

M,=M,_; U { k8| binding 0 satisfies the body of a
rule r € P m M,_;, with A the head of r}

o0
M(P)=uU _M,

In the sequel we shall refine components 1n both the
model and rule satisfaction definitions Our goal
will be to show that each modification ”preserves”
the model Preservation 1s captured formally as fol-
lows Two sets of facts S and T are ct-equsvalent,
denoted S=, T, if for all s €5 there exists
t € T such that s =,, t and vice versa

We show that 1if ¢ 18 restricted to be standard,
the resulting set of facts 18 =,, to M(P)

Lemma 2.4: Let M' (P) be defined hke M(P)
except that M, 1s defined as
M,' =M, U
{ 40| standard binding @ satisfies the body of a
rule r € P m M, , with & the body of r }
Then, M (P)=,M(P)
The set of facts obtained when in addition

each derived fact 18 standardized before being added
to the model, 18 also =,, to M(P)

Lemma 2.5: Let M ' (P) be defined like M(P)
except that M, ' is defined as

M' [} 'I_ll U
{atandard (k 6)| standard binding ¢ satisfies the body
of arule r € P in M,"; , with h the head of r}
Then, M ' (P)=, M (P)

Let P be a program and ¢ a hteral A
correct result for query ¢ agawnst P is

{g0 | there exist §, s € M(P) such thatq b=, s}
It can be shown that if M(P) above 1s replaced
with S such that S=, M (P ) the same set of result
facts 13 obtained This indicates that we deal with
mathematically 1dentical sets of complex objects In
practice, a set of answers 1s most probably imnfinite,
eg if 0={ X,/set_of (1)} then

0={ X,/set_of (1,1)} will do as well as

f={ X,/set_of (1,1,1)} and so on So, n practice,
one might be satisfied with any set that 1s =, to
the answer set defined herein

Using Lemma 2 4 and Lemma 2 5 we obtain
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Theorem 1: Suppose 1n the defimtion of M(P)
each added fact is standardized, and all standard
substitutions are considered (and perhaps some

non-standard ones are considered as well), let
M(P) be the resulting model Then,
MI(P)=<::M(P) []

Intwitively, the Theorem states that if gen-
erated facts are standardized, all standard substitu-
tions are considered, and some additional substitu-
tions are considered as well, the result 1s still =,, to
M(P)

3. The Decomposition Theorems
3.1. The C-decomposition Theorem

The following Theorem 1s the basis of the first
step I1n program rewriting, replacing ci-matching
with 1-matching by considering all permutations of a
term for 1-matching This depends on being able to
commute substitution and permutation

Theorem 2: Let I be a standard fact and 4 a stan-
dard substitution, tf=_,I ff there exist t; such
that t=c tl and t10=, I

8.2. The I-decomposition Theorem

The second main step 1 the rewnting
presented 1n this paper 1s replacing i-matching with
ordinary matching This 1s done by determuning a
prionn the possible 1dentification of subterms that
could be made by run-time substitutions Essen-
tially, this 1s tantamount to considering each possi-
ble standard compaction and solving a set of (ordi-
nary) unification equations implied by the standard
compaction We need some machinery to carry out
this task

We need a mechanism to refer to subterm
positions 1ndependent of their ”current” content,
this 1s analogous to the distinction between an
address and 1its content Any subterm of a term ¢
can umiquely be identified by its term address,
defined as follows

()
(u)

~1s a term address whose content 1s the whole
term ¢,

if A 1s the term address 1n ¢ whose content 1s

the subterm f (¢, ,t) then Ay,
1<7;<n, 1s a term address in ¢ whose con-
tent s ¢,

We use t A to denote the subterm of t whose
address 1s A (eg, t v=t) For example, 1f
t=f (g(8,,82),h(X)) then ¢ y2=h(X) and
t y1=g(s1,82)and t y12=s51m ¢.

An E-entry on term t 1s of the form
A1=A ) where A 15 the address of a set_of sub-
term of ¢, 1<y and A+ and A j are addresses of



arguments of tA For  example, let
t=f (set_of (a,X),set_of (b,Y,0),X)) then
¥21=+23 15 an E-entry on t Intuitively, an E-
entry means that during a standard compaction on
t 6 for some 6 the subterms at these addresses will
be equal In the last example, 1ndeed
b=t 721=t 42 3=>b and a standard compaction
could delete the second b As another example con-
sider the E~entry ¥ 11=+412 This E-entry means
that during standard compaction on ¢ @ for some 6
the subterms ongmating with ¢ and X will be
equal This imphes a umfication equation, namely
a=X

An E-sequence E on t 1s a sequence of E-
entries on ¢ such that for all A =B appearing n
the sequence no address of the form A « or of the
form B o appears later on 1n the sequence Intul-
tively, an E-sequence depicts a standard compaction
on t# for some 4 Continumng the example,
E=(y21=v23, v11=v12)1s an E-sequence on
t Observe that an E-sequence defines a sequence
of unification equations and also a ”final result” and
an mgu In our example, the final compacted result
15 [ (set_of (a),set_of (6,Y),a)) and the mgu 1s
{X/a}

In general, an E-sequence E=E,, , En,
defines a set Q@ (E) of unification equations and a
term obtamned from ¢ denoted E(t), which are
obtained using the algorithm below

begin
Q =01
8 =t¢,
for k =1 to n do
begin
let By be A1=A ),
if At or A 18 not an address 1n
then abort,
add to @ the equation s A 1=8A ),
/* this 15 an equation between real
terms not addresses */
update s by deleting subterm s A 3
end,
let E(t) be s,
let Q(E)be Q

end

An E-sequence 1s valtd in ¢ 1if the above algorithm
does not abort on nput ¢ and £ Intuitively, if an
E-sequence 1s not valid 1t defimtely does not
describe a standard compaction Even if an E-
sequence 1s vahid it does not necessarlly describe a
standard compaction since the umfication equations
may not be satisfiable Furthermore, even 1f a stan-
dard compaction 1s described 1t does not necessarly
end up 1n a strongly compact term, and hence
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cannot depict a binding followed by a standard
compaction ending up with a standard fact

An E-sequence E 1s satisfiable in ¢t 1if 1t 1s
vald in ¢ and Q(E) 18 satisfiable If E 1s
satisfiable 1n ¢ with w an mgu for Q(E), and
E (t)w 18 strongly compact, then E (¢t )w 1s called a
genersc term for t defined by E and w If E defines
a generic term for ¢ then this term 18 a vanant of
any other generic term defined by E for ¢

Claim: Let ¢ be a generic term for ¢ defined by an
E-sequence £ with mgu w Then, tw=, ¢

Theorem 3: Let I be a standard fact There exists
a standard substitution # such that ¢ #=, I 1ff there
exist a substitution § and an E-sequence E, induc-
ing a satisfiable Q(£) via mgu w and a generic
g=E(t)w, such that t w=, g, g =1 and §=wé 1s
standard

4, The Rewriting Transformation

By considenng all possible valid E-sequences
on t, the set of all pairs where each pair 18 of the
form (g ,w) of generic terms of ¢t and the mgus gen-
erating them, denoted G (t), may be obtamned
There are better ways for obtaimng G (), but still
exponential in the size of ¢t This 18 not surprnsing
as set matching 18 NP-hard [KN86] We leave this
subject for a subsequent paper

4.1. The first step

We now explain the transformation A rule r
of the form

head «—t,, , ty where, wlog, t; contains
set _of subterms is transformed nto a rule r of the
form

head — funnel_up_t,,t,, , e

and a set of permutation rules
funnel_up_t —permute_1_t,

funnel_up_t,—permute_m_t,.
where permute_1_t,, , permute_m_t, are all
the permutations of term ¢; Each such permuta-
tion 15 obtamned from ¢ by exchanging positions of
arguments of some set_of subterms of ¢ The
number of such permutations 1s obviously fimte

For the rule in Example 2 we get

john_friend(X) «
funnel_up_friends(set_of(X,Y,john)),
X s£j0hn, mce(X)

funnel_up_friends(set_of(X,Y,john)) «
friends(set_of(X,Y,john))
funnel_up_fnends(set_of(X,Y,john)) «



friends(set_of(X,john,Y))
funnel_up_friends(set_of(X,Y,john)) «
friends(set_of(Y,X,john))
funnel_up_friends(set_of(X,Y,john)) «
friends(set_of(Y,john X))
funnel_up_friends(set_of(X,Y,john)) «
friends(set_of(john,X,Y))
funnel_up_friends(set_of(X,Y,john))
friends(set_of(john,Y X))

Let P+ funnel be the program resulting by
;ansforming rule r 1n P as above For a set of
facts S, let S/P be the subset of facts m $ whose
wredicate symbol appears n P Let us refine the
wtion of satisfaction of a rule body as follows

substitution 6  satisfies the body of a rule
1=ty ;8 m a set of facts S, if for
=1, ,n, there exists s, € S such that (1)

. §=2¢, 1f t, 18 a funnel_up hteral, (n) ¢, 0=, o, 1f ¢
> a permute_1 hteral, (m) if ¢ 18 of the form a =b
ren 6 0=, b0, (1iv) 1f ¢ is of the form a£b then
5., b 8, and otherwise ¢, f=,, o,

Lemma 4.1: Assume that mn the defimtion of
M(P) (1) only standard substitutions are con-
sidered, (2) the refined notion of rule body satisfac-
tion 1s used, and (3) each added fact, which 1s not
with predicate name prefix funnel_up_, 1s stand-
ardized Let M(P) be the resulting set Then,
M(P+funnel)/P=,M(P)

4.2. The second step

" the next step of the transformation, each permu-
tation rule funnel up_t,—permute_s_t, 15 deleted
ind replaced with, usually many, genersc rules
sbtained from G (permute_s_t,) For each par
g w) m G (permute_s_t,) the rule
funnel_up_t,weg 13 added, g 18 called a generic
literal

Continuing the previous example, let us con-
centrate on one particular permutation rule, say
funnel_up_friends (set_of (X,Y ,j0hn))

«—friends (set_of (X ,john ,Y))

For the sumple set_of terms in this example, each
w can be represented by indicating which arguments
were 1dentified as equal by w Once this 18 done, a
standard compaction gets ¢ The possibilities can
be represented symbolically as patterns (#,#,#),
(#,8,#), (Q#,#), (##8), (#84&) Each such
possibility has implications on the values assigned to
variables 1n the rule The first possibiity (#,#,#)
imphes that ¢ must assign john to both X and Y
Thus we generate a rule

(2) funnel_up_friends(set_of{john,john,john))
+ friends(set_of(john))
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The second possibility (#,@,#) 1mphes that § must
assign the same values to X and Y Thus we gen-
erate a rule

(b) funnel_up_friends(set_of(X,X,)ohn))
+ friends(set_of(X,john))
For the other possibilities we generate, respectively

(¢) funnel_up_friends(set_of(X,john,john))
« friends(set_of(X,john))
(@ #, #)
(d) funnel_up_friends(set_of(john,Y,john))
« friends(set_of(john,Y))
(#, #
(e) funnel_up_friends(set_of(X,Y,john))
« friends(set_of(X,)ohn,Y))
(#, @, &)
After we do the above for each permutation rule we
end up with a large set of new generic rules and no
permutation rules

’@)

Define P +generic as the resulting program
following the transformation Let us further refine
the notion of rule body satisfaction by adding ”(v)
t,0=s, 1if t, 18 a generic hiteral,” to the defimtion
in the previous section

Lemma 4.2: Suppose that in the defimtion of
M(P) (1) only standard substitutions are con-
sidered, (2) the newly refined notion of rule body
satisfaction 1s used, and (3) each added fact, which
1s not with predicate name prefix funnel_up_, 1s
standardized Let M(P) be the resulting set
Then, M (P +genersc )/P =, M(P)

4.3. The third step

In the previous step each permutation rule was
replaced with some generic rules We now descnbe
the next stage i the transformation which we call
body homogenszing Recall that terms s, ¢t sharing
no vanables are variants if there exists a substitu-
tion @ which 1s a 1-1 renaming of variables such that
s 0=t It may happen that in the collection of gen-
eric rules produced above, we may locate two rules,
r, head,—body, and rjheadye—body,, such that
body, and body, are varants Since the meaning of
a program 1s not altered when the varables in a rule
are consistently renamed, we can rewrite r; as
head,0—body, (since body,0=body;)  Conse-
quently, we can rewrite the collection of rules in
such a way that all bodies which are vanants of
each other become now syntactically identical As
an 1illustration consider the pattern (@ ,# ,% ) and
the permutation rule with the body
friends (set_of (john,Y , X)) Note that this 1s a
different permutation rule than the one we con-
sidered before, with body



friends (set_of (X ,s0hn ,Y)), that induced rules
(a)-(e) The rule that we get 1s

(f) funnel_up_friends(set_of(X, X,
friends(set_of(john, X))

The body of rule (d), friends(set_of (john ,Y)), 1s
a vanant of the body of rule (f) viz § = {Y/X}
Thus, we rewrite (d) as

(d’) funnel_up_friends(set_of(john, X, john}) «
friends(set_of(john, X))

Once rule-bodies are homogemzed we can
rewrite them in MHSB format (S stands for Single),
by associating with each body all of the heads
appearing 1n rules 1n conjunction with this body Of
course, iIf two heads grouped for a body are equal,
only one 1s retained

-

John))

Example 4: The final result for our example are
the following MHSB rules

(1) funnel_up_friends(set_of(X,Y,john)}),
funnel_up_friends(set_of(Y,X,john})
+— friends(set_of(X,john,Y))

(2) funnel_up_friends(set_of(X,Y,john)),
funnel_up_friends(set_of(Y,X,)ohn))
« friends(set_of(X,Y,john))

(3) funnel_up_friends(set_of(X,Y,john)),
funnel_up_friends(set_of(Y,X,john))
+~ friends{set_of(john,X,Y))

(4) funnel_up_friends(set_of(X,X,john)),
funnel_up_friends(set_of(john,X,john)),
funnel_up_friends(set_of(X,john,john))

+ friends(set_of(X,john))

(5) funnel_up_friends(set_of(X,X,)ohn)),
funnel_up_friends(set_of(john,X,john)),
funnel_up_friends(set_of(X,john,john))

+ friends(set_of(john,X))

(6) funnel_up_friends(set_of(john,john,john))
+— friends(set_of(john))
0

4.4. Summary of the transformations on a
rule

(1)
(2)

replace the hiteral ¢ 1n the original rule body
with a funnel_up_t literal

For each permutation of ¢ generate a permu-
tation rule whose head 1s funnel _up_t and
whose body 1s the permutation of ¢

Replace each permutation rule with a set of
generic rules Intwtively, a generic rule
represents a possible compaction which may

(3)
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be applicable at run-time

(4) Perform body homogemzing by making van-
ant bodies syntactically 1dentical
(3) Group rules into MHSB format by associating

with each body form all of the distinct heads
1t derives

(6)

Possible optimizations, see next section

The transformation above 1s applied to a sin-
gle literal 1n a single rule Clearly, 1t can be apphed
to all literals in a rule which contain set_of sub-
terms until they are all "converted” into funnel_up
hterals  Similarly, each program rule can be
separately rewntten (Of course, care must be
taken to avold naming conflicts, e g 1f ¢ appears in
rule r; and 1in rule r2 then we may use
funnel_r1_up_t in rewntting ry and
Junnel_r2_up_t in rewntting r 2 ) Call the result
the transformed P, denoted P° ) One would lhike to
argue, based on Lemma 4 2, that assuming that
denived facts, other than those derived for generic
rules, are standardized i computing M (P'),
M (P )} may be computed by only considering ordi-
nary matching Tlns argument seems to follow from
the fact that once P’ 1s formed, all literals contain-
ng set_of subterms are either funnel_up hterals or
generic Literals

However, there 1s one dehcate point to con-
sider It 1s still possible that a genenc rule will
match 1ts generic hteral to a standard fact I via §
such that #=wé 1s not standard! In that case we
may end up considering non-standard §’s 1n comput-
mg M(P') But, if such a 6 15 used to match
funnel_up_t, 1 the body of some r'  with
funnel_upt w6 generated by some generic rule, we
still have &,w=, permute_s_t ,w== g which imples
tyw=,, ¢ which imphes {wé=,, t#==, g 6= So,
even If such a non-standard # ”satisfies” the body of
a rule, the derived standard (h ) would have been 1n

l(P_)_ and _so the "extra” facts we generate result
m M =M(P)U extra facts, such that
M=,M (P) Hence, correct query results are
obtained by conSIdermg the ”ordinary” logic pro-
gramming model for P’ with the provision that
facts generated by non-generic rules are standard-
1zed

5. Optimization

The following techniques apply at step 6 of
the rule transformation summary of the previous

section  We 'cons1der onginal rule r, s
modification r , and 1its funnel-up literal
funnel_up_t Let GR be the set of MHSB rules

generated by the rewriting We shall use m to
denote 2 MHSB rule m GR Let P be the



resulting program.
5.1. Using equalities and inequalities

In some cases it may be determined that cer-
tamn funnel-up heads in a MHSB rule cannot supply
any bindings for which the whole (modified) rule
body can succeed in matching all hterals, in such
cases these heads are disposed of in advance Such
cases often mvolve anthmetic predicates and the
predicates = and For example, the head
funnel_up_friends(sct_of(yohn, X, john)), can be dis-
carded from the MHSB rule (4) in Example 4, as 1t
will force X = john m the onginal rule and thus
violating X 7£john . Thus, rule (4) can be replaced
by (4’) below

(4’) funnel_up_friends(set_of(X,X,john)),
funnel_up_friends(set_of(X,john,john))

+ friends(set_of(X,john))

At compile-time some certain violations can be
checked for as follows. Rename varables so that
each rule has a set of vanables disjoint from the set
of vanables in any other rule. Unify funnel up_t
m the body of the modified rule r with &, the
head of the checked MHSB rule; let @ be the mgu
Now consider an equality constraint ¢ —s in r' . If
g9 and s 0 are not ci-unifiable, then A can be dis-
carded Checking this can be done by using a ci-
unification procedure; the description of such a pro-
cedure 18 outside the scope of this paper, Next con-
sider an nequahity constraint g 34s in r We con-
sider 1t violated at compile-time only if ¢f= s 48
which can easily be checked.

5.2. Using the standard
assumption

representation

In other cases it may be determined that a
body of a MHSB rule will never match a standard
fact For example, if friends(set_of(john, cric, X))
happens to be a body in a MHSB rule then it cannot
match any standard fact because eric precedes john
1n the sorted order. A term is unmatchable if it can-
not match any standard fact / The decision prob-
lem as to whether a given term is unmatchable 1s
still open However, we make the following observa-
tions

We say that a given term ¢ 18 anttordereded if
it contamns a set_of subterm s such that for all
substitutions @ such that ¢ 6 1s ground, & j @ precedes
s 10 1 the total order on terms where s 5 (s¢) 1s
the 7 'th (1 ’th) argument of s, + <j. For nstance,
f (g (1),set_of (male (X ),male (Y ),female (Z))) 15
antiordered since female precedes male Observe
that a term may be unmatchable and yet not be
antiordered, e g , 1n

t = f (set_of (1,X),set_of (X,1)),
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each set_of subterm of ¢ by itself can match with
a standard fact, yet ¢ cannot We have the follow-
g

Observation 5.1: An antiordered term 1s unmatch-
able ]

So, If a generic hteral 1s antiordered, and hence
unmatchable, the ,eneric rule for this genenc hteral
will never be satisfied and therefore can be dis-
carded.

We now present a method that detects many
cases, but not all, in which a term ¢ 1s antiordered
For term ¢, 1f ¢ 15 a constant then f[0] denotes ¢
and otherwise ¢[0] denotes the mamn functor of ¢
We need the following procedure which determines
a total order on terms which when restnicted to
ground terms reduces to the total order on ground
terms defined previously It basically assumes that
any order 1s possible when one of the terms 1s a
variable

procedure precedes (t,5) boolean ;
/* vanables are magically ok, we
” approximate” here */
if ¢ or s 15 a vanable then return true,
if ¢ [0] precedes s [0] 1n the total order on terms
then return true,
if ¢ [0] follows & [0] 1n the total order on terms
then return false,
if ¢ [0]=s [0] and ¢ [0] 1s a constant
then return true,
if ¢ [0]=s [0] then
begin /* need to compare arguments
if same functor */
conlinue =true,
1t =1,
while
s <arsty(t) A s <arty(s) A continue do
in

beg
if ¢ [s]7£s [1] then
/* determine 1if ¢ [¢] precedes
s [1] and exat loop */
begin
continue =false,
if precedes(t[t},s[t])
then comp =true
else comp =false
end,
t =141,
/* compare next arguments
mt and s */
end,
/#* check 1if loop exited with all checked
pairs equal, 1e continue =true */
if continue then



comp = arsty(t)<artty(s),
return comp
end,

We state without proof that if precedes (t,s)
returns false then for all substitutions 6, s 8 pre-
cedes tf Thus, to determine whether ¢ 1s antior-
dered we can use the following method Apply pre-
cedes to each pair of arguments at positions s,3,
t <y, mn each set_of subterm of ¢ If any such
application returns false then ¢ 1s antiordered

We now consider the computational complex-
1ty of detecting antiordered terms usmg the above
method First, in precedes the hne ”if ¢[t]5£s 1]
then” takes time O (size of 8 [t] + size of t[+]) So,
precedes (s,t ) 15 O ((s1ze of t +size of 8 )?) Second,
given ¢ we need to apply precedes to each pair of
arguments 1n a set_of subterm of ¢ The number
of such pairs1s O ( (size of ¢ )2) Thus our method 1s
O ((s1ze of t}*) The 4 in the exponent can easily be
reduced to 3 by locating the first point of " disagree-
ment” 1n checking "if ¢[t]7£s (1] and calling pre-
cedes recursively on the corresponding subterms

More stringent cniteria could also be con-
sidered For instance, on set_of(X, Y, f(Y), f(X))
procedure precedes returns true Observe that no
matching 1s possible since, once X an Y are instan-
tiated, we cannot have both X precedes ¥ and Y
precedes X 1n the total order on terms However,
the above procedure 1s computationally feasible and
detects many cases 1n which ¢ 1s antiordered

5.3. Using Synonyms

Other cases involve optimization techniques
stmilar to tableaux minmmzation [ASU79] A dis-
tinguished substitution wrt ¢ 1s a substitution 6
which assigns to each vanable X appearng in ¢ a
umque distinct constant which does not appear in ¢
or in the program P For our purposes we can
think about this substitution as unique, assigning
unique constant z to variable X The distingusshed
binding form of ¢, t,, 15 obtamned by applymng to ¢
the distinguished substitution wrt ¢t An expres-
ston 1s a term, a predicate (literal) or a rule Given
a set of expressions S, a binding §1s reducsngwrt
S if 1t transforms each element of S into 1ts dis-
tingwished binding form, 1 e converting S nto a set
of ground terms win which S’s vanables are uni-
formly renamed into distinct constants

Rule bodies body1=8,, , B, and
body 2=0C,, , Cn ~are isomorphic, denoted
body 1 = = body 21f set_of (B, , By )=

set_of (Cy,
—(set_of (s,1))
H#(set_of (s,t))

, Cp) Here, we represent $=t as
and we represent sz£t as
Consider a funnel-up heads h,

25

ax}d hon a MHSB rule m for literal ¢ Recall that
P’ 1s the result of the rewntting of P Funnel-up
heads hy, ho1n m are synonyms if deleting from m
mn P’ ether the head h or the head Aj, results in
an equivalent program P, 1e one that generates
correct results for queries against P {and P ) We
define the following synonym test Let h,, be the
distinguished binding version of Ak, , 1=1,2 pro-
duced by reducing binding S wrt k; and hy For
=1, 2, suppose that @, matches funnel_up_t in
r thh hy Let
r, =(r—t )8, =head, «body,’

where (r-t)1s r after deleting the ¢ hteral from 1its
body Then, the synonym test succeeds of
body, = =body, and head; =, head,

Theorem 4: If the synonym test apphed to 4; and
h, succeeds, then &, and Ak, are synonyms

The above imphies that if the synonym test
succeeds on kAo then only one of &,,A, need be
retained 1n m  An obvious optimization procedure
18 to repeatedly test for synonyms and remove heads
accordingly For example, consider the rule

john_friend(X) « friends(set_of(X,Y,)ohn)),

X #john, nice(X)
We now examine a MHSB rule, for example rule (4’)
above We see that after applying the distingumished
substitution @ = {X / z } to the two heads in rule
4’ we obtan h,, =
[ unnel_up_friends (set_of (z,z,70hn)) and hy, =
Junnel_up_friends (set_of (z ,j0hn ,john)) Thus,
we get )= { X /z,Y /z } and 0,
= { X /z,Y /john } Consequently,

head, =john_friend (z) =,, john_f riend (z )=head,

and

body, =set_of (z 7 john ,nice (z)) =
set_of (z 7 john ,nice (z ))—-bo s
Junnel_up_friends (set_of (X ,X,j0hn))
funnel_up_friends (set_of (X ,s0hn ,john)) are
synonyms and ether may be ehminated, for
mstance, the latter Similar optimzation steps can
be applied to rule (5) of Example 4, thus yielding
the rules of Example 3

8. Multihead Rules

In many cases more than a single conclusion,
1e head tuple, may be drawn from a single match
of the body literals with facts Notationally, we
indicate this by rewnting the rule in a MHSB for-
mat
Example 5: Consider

r john_friend(X) « friends(set_of(X,Y,john)),
nice(X), nice(Y)

Therefore,
and



Its transformed version according to the previous
section 1s

r'  john_friend(X) «—
funnel_up_frends(set_of(X,Y,john)),
nice(X), nice

Suppose the body 1s matched with data items
S riends (set_of (al ,33m , john )),nice (al) and
nice (y1m) The deduced head tuple 1s
john_friend(al). Intwmtively, as al and jsm play a
totally symmetnc role, john_friend(j1m) may be
deduced as well Hence, the rule 1s rewritten as ¥:

7  john_friend(X), john_friend(Y) «
funnel_up_friends(set_of(X,Y,john)),

nice(X), nice(Y)

The main advantage of 1dentifying multiheads
for a rule 1s that 1t enables further eliminations of
funnel-up heads

Example 8: Consider a MHSB rule m generated
for Example 5, for generic literal

friends(set_of(john,X))-
funnel_up_friends(set_of(john,X,john)),
funnel_up_friends(set_of(X,john,john)),
funnel_up_friends(set_of(X,X,john)) «

friends(set_of(john X))

If the origmal rule is kept as 18, 1e. r , then the

three heads 1 n m must be reta_i,ned. However, 1if

the rule 13 modified to the form ¥ then one of the

heads m m may be elimnated, resulting n-

funnel_up_friends{set_of(X,john,john)),
funnel_up_friends(set_of(X,X,john)) «
friends{set_of(john X)) |]

The deletion of heads 1n m implies that fewer
matchings are performed in the body of ¥ with
funnel-up heads as compared to the matchings per-
formed m '  This saves on checking for matchings
in the rest of the body literals in ¥ We should
note that 1n some cases the above transformation
may result in a slight cost increase

Example 7: Consider the MHSB rule w for the
genenc literal friends(set_of(john))

funnel_up_frends(set_of(john,john,john)) «
friends(set_of(john))

Here, for a single match with this rule w, 7 will,
wastefully , produce two 1dentical heads of the form
john_f riend (gohn). []

This apparent waste is marginal as 1t involves sim-
ple value permutations at run-time to produce
deduced tuples for the multiple heads n ¥ as
opposed to matching with possibly numerous tuples

{
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The first problem n forming a rule hke ¥ 1s
how to obtain additional head tuples based on a sin-
gle binding to body varnables Some additional
notation 1s needed A variable to variable mapping
(vemap) 13 a substitution {X,/Y,, y Xa/Ya}
where X, , X, are distinct variables and
{X4, , Xa }={Yy, , Y} Let E be an
expression and # a vvmap, 0 15 preserving with
respect to E if Ef0=,E For example, if
E—set_of (¢(X,Y)q (Y, X),p (set_of (X,Y,2))
then 0={X/Y ,Y/X } 1s preserving while
0={X/Z ,Z/X } 1s not preserving If r 1s a rule,
with body B, , By, then 6 1s a vvmap (respec-
tively, preserving vvmap) wrt r 1if # 1s a vvmap
(respectively, preserving vvmap) wrt
3“_0! (Bl: ) Bn)

We would like to obtain all solutions derivable
from a body under all different preserving vvmaps
This is because of the following key observation
Observation 8.1: Let # be a preserving vvmap
wrt head —body For any matching o of body
with standard facts deriving head tuple head a,
there 1s another matching, wsth the same standard
facts, such that the head tuple head o 1s derved

We can extend the defimtion of M(P)
((respectively, M(P)) to the case where ongmal
rules are in MHSB format, ssmply by stating that
h 6 (respectively, standard (h6)) are added during
model forming for all heads A 1n rule ¥ We use ¥
to denote ¥ once ¢ 1s replaced with funnel _up_t 1n
the transformation

Corollary: If 0 1s a preserving vvmap for rule r

head <—body , then replacing n P r_with 7 result
m the same M (P) ( respectively, M(P) for 7 ),
where ¥ 1s head, head 8 «— body

Thus, to each ongmal rule body we may
attach many heads, one per each preserving vvmap
0 Clearly, this results in an equvalent program
Of course, if a number of heads thus generated are
ci-equal, only one need be retained

The redundancy ehmination of the previous
section 1mphed by Theorem 4, may be easily
adapted to the situation where ongmnal rules are
transformed mto MHSB equivalent representation
Head head, m m 1s dommated |f deleting head,
results 1n an equivalent program

We now define a domination test to take into
account the fact that ¥
18 MH Intwitively, head; 158 dominated because of
head if, for the genenc literal match 1n m’s body,
the multiheads after umfying with a head, gen-
erated tuple, form a superset, modulo commuta-
tivity and 1dempo tence, of the multiheads after



un:fying w1th a head, generated tuple Define
§ C+*CS 1if both S and S’ are sets and for
each A €5 there exists B €S such that
A=_,B

The domination test, on funnel-up heads h ko
1s as follows Let ¥ be a MH rule with set of heads
H and body body Let t' be a hiteral n ¥ Let
hy be the distingmshed binding version of
h,,+=12 For 1=1,2, let 6, match h, with t' m
¥ Let 7 =(F- t)0 =f, 4—body,, +=1,2, where
(F-t) 1s obtamned from ¥ by deleting htera.l t
Then, the dommation test_ determines that h, dom-
mnates k;1f body = =body,and H, C * C H,

The domination test 1s 1n fact a generalization
of the synonym test of the previous section, special-
1ZIng 1t to the case where onginal rules may have a
number of heads While synonym 1s a symmetnc
relation, dominated 1s a one place relation In a
way stmilar to that in Theorem 4, 1t can be shown
that when the domination test determines that A,
dominates h,, where both &; and A, are heads in a
MHSB rule m, then A, 1s dominated 1n m and thus
may be deleted without altering the model of the
program

It might be possible to remove additional m
heads Intultlvely, the 1dea 1s that the heads pro-
duced 1n ¥ due to some head 1n m are, collec-
tively, also produced by those heads in m that give
rise to an 1somorphic body when unified with t

7. Compiling MHMB rules

In this section we sketch some 1deas concern-
ing the compilation of the rewritten program mto a
target language (eg C, or Prolog) MHSB rules
having the same set S of multiheads can be grouped
into MHMB rules, where the multi-body part 1s the
collection of distinct bodies and the multihead part
1s S Thus, a MHMB represents many rules, each
formed by a head from the MH part and a body
from the MB part This notation presents an oppor-
tunity for compiling all these many rules as a single
unit The general problem 1s given a set of bodies,
determine an inexpensive sequence of steps to deter-
mine all satisfiable bodies and the satisfying substi-
tutions The sequence produced 1s simlar to
Prolog-like backtracking which always uses as much
information as possible each time a new matching 1s
tried out The same general 1dea apphes to gen-
erated tuples in the multihead part Thes e tuples
introduce certain variations of each other, thus the
"next” tuple to be generated may be obtained by a
minor permutation on a previously generated one
By examiing the heads an "imexpensive” sequence
may be obtamned Furthermore, some vanables n
t!' are used m r’ only m t' Intuitively, such
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variables check “existence” The terms 1n
corresponding positions in funnel-up heads need not
be formed at all!

8. Conclusions

The approach presented for supporting sets 1n
a HCLPL represents a clear advancement of the
state of the art First of all, 1t eliminates the need to
use E-matching 1n supporting sets, instead we com-
pile the onginal program 1nto one that only requires
ordinary matching Second, 1t leads to more efficient
implementations since the rewritten program 1s
optimized using information available in the given
rule, thus ehminating many of the bhnd alleys
explored by the blind search of E-matching In par-
ticular we take advantage of the standard represen-
tation of facts, the inequahity constraints and
synonyms

Some of the techmiques described, e g multi-
heads, are still in the experimental stage and we
expect to further report on them in the future
Other aspects are nLow being explored, among these
are the support for the standard set operations, e g
member, equality, mnequality, union The problem
of whether given a term ¢, ¢t 18 unmatchable, 1¢
cannot match with any standard fact, 1s still open
Additional optimization techniques also seem feasi-
ble

Lastly, we should note that the rewritting 1s
expensive and may take exponential time in the size
of the rewntten term Thus, for sets with more
than ten items or so 1t’s not very practical For
large sets we can resort to using other techmques
which rely on set membership tests, this techmque 1s
outside the scope of this paper

In many such large sets, many of the set_of
arguments are variables that appear there and
nowhere else 1n the rule, these are ”placeholders”
used to indicate cardinality It will be interesting to
”grow” the rewnitten rule from a version produced
by first 1gnoring these ”place-holders” and then
adding them one at a time
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