
REWRITING OF RULES CONTAINING SET TERMS 

IN A LOGIC DATA LANGUAGE (LDL) 

Oded Shmueh’ , Shalom Tsur, Carlo Zamolo 

MCC, Austm, Texas 

ABSTRACT 
We propose compllatlon methods for supportmg set terms m Horn clause programs, without usmg general- 
purpose set matchmg algorithms, which tend to run m times exponential m the size of the partlclpatmg sets 
Instead, we take the approach of formulatmg specmhzed computation plans that, by taking advantage of 
mformatlon available m the given rules, hmlt the number of alternatives explored Our strategy is to employ 
comptle trme rewriting techniques and to transform the problem mto an “ordmary” Horn clause compllatlon 
problem, with mmlmal addltlonal overhead The execution cost of the rewntten rules m substantmlly lower 
than that of the original rules and the additional cost of compllatlon can thus be amortlred over many execu- 
tions 
1. Overview 

We propose compllatlon methods for support- 
mg set terms m Horn clause programs, without 
using general-purpose set matching algorithms 
Instead we take the approach of formulatmg speclal- 
lzed computation plans that, by taking advantage of 
mformatlon avalable m the gven rules, hmlt the 
number of alternatives explored Our strategy IS to 
employ rewriting techniques at compde trme to 
transform the problem mto an “ordmary” Horn 
clause compllatlon problem The execution cost of 
the rewritten rules 1s often substantmlly lower than 
that of the orlgmal rules and the addltlonal cost of 
compllatlon 1s thus amortized over many query exe- 
cut10ns 

LDL 1s a Horn clause logic programmmg 
language (HCLPL) mtended for data mtenslve 
knowledge-based apphcatlons [TZ86, BNRST87] 
The language can handle complex data as treated m 
[AB87, KV84, KRS84, 00831 and it supports vary- 
ous extensions to pure HCLPLs such as negation, 

* Current address Department of Computer Science, 
Techmon, Hufa, Israel 32000 

PermIssion to copy wIthout fee all or part of thrs material IS granted 
provided that the copies are not made or dlstnbuted for chrect com- 
merclal advantage, the ACM copyright notrce and the title of the 
pubhcatlon and its date appear, and notIce IS given that copymg IS by 
permissIon of the Association for Computmg Maclunery To copy 
otherwIse, or to republish, requues a fee and /or specific permIssIon 

0 1988 ACM 0-89791-263-2/88/0003/0015 $1 50 

arlthmetlc, schema facihty and sets Set-objects are 
internally represented as terms whose mam functor 
1s set-of For example, the set {1,3,2} may be mt,e+ 
nally represented as aet-of(g,l,2) (actually, It will be 
represented as set-of(l,#J)) The charactemtlcs of 
sets, m the mathematical sense, are captured by 
extending the notion of equahty of such terms to 
account for the properties of commutakwty and 
rdempotence 

Example 1: Consider the rule 
John-friend(X) t 

fnends(set-of(X,Y,John)), X #John, nice(X) 

Assume that the database’ contams the following 
facts 
fnends(set-of()ohn, 
nice(Jack) 

Jim, Jack)) mce(jim) 

The denved facts are John-fnend(Jim) and 
John,friend(Jack) 

The first answer comes from cr={ X/Jim, 
Y/Jack}, and the fact that the set conslstmg of Jim, 
jack, and John 1s the same as the set conslstmg of 
John, Jim, and Jack The second answer comes from 
a={ x/J=k, Y/w+, and the fact that the set con- 
sisting of lack, Jim, and John 1s the same as the set 
consisting of John, Jim, and Jack [] 
While this paper deals mth Eumficatlon 
[FAGESS’I, RS79, STICK81, LS76, LC87] our stated 
goal here, which emphasizes comple-time transfor- 
mations motivated by a large fact database, sets It 

1 For notatIonal convemence III definmg the semmtica, for- 
mally, the database IS considered a part of the Program Our 
results hold for the case where the database 1s a separate entltr 
provided the facts m the database are standardized (see section 
3) 

15 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F308386.308400&domain=pdf&date_stamp=1988-03-01


apart from most research in this area Moreover, we 
do not assume sssociatrvrty, smce we are interested 
m arbitrarily deep nestmg and thus assume that, 
say, (a,(b)} is different from {a, b} It should be 
noted that deep nesting can be handled in the con- 
text of associative-commutatrve umflcation by intro 
ducmg extraneous functmns that are neither associa- 
tive nor commutative; e g {a,f({b})} 

The basic mechamsm used m the rmplementa- 
tron of LDL is maM:tag, i e the umficatlon of a 
term with a ground term In this paper, we concen- 
t,rate on the mathematical pnuciples underlymg the 
efficreut implementation of set matching Versrons 
of these methods tuned for maxrmum performance 
ae employed m the actual implementation 

We assume that the reader IS fanuhar with the 
basic notation of Logrc Programrmng ss presented, 
e g , m [LLOY84] For the purpose of this paper 
one can safely thmk of LDL as a pure HCLPL (with 
a drstmgmshed functor - set-of) whose semantics IS 
given by applying the lmmedlate consequence opera 
tor Tp (LLOY84] until fixpomt - i e a “bottom- 
up” repeated “firmg” The only dilIerence between 
our Tp and the one in [LLOYSI] rs that mstead of 
matchmg we use cl-matchmg as defined below 

The eef-of functors are used for the represen- 
tatron of traditional mathematical sets As such, 
the order of arguments m a setof term rs imma- 
terial, this IS captured by the concept of permute 
tlon Term t IS a permutation of term u d t UJ 
obtamed from 6 by a sequence of zero or more 
interchanges of arguments m #et-of subterms of 8 
LAkewise, repetrtions of equal arguments should be 
ignored, this is captured by the concept of elemen- 
tary compaction Term t rs an cfementotg compoe- 
tton of term 8 If it is obtained from 8 by (i) locatr 
mg a subterm A of 8 which has two rdentrcal argu- 
ments, say at posrtions : , j such that i <I , and (11) 
deleting the J ‘th argument from A Terms t and 
8 are a-equal, denoted t =e, 8, If there 1s a 
sequence t=tl, . t =8 such that for 
8- -1, k -1, t( +1 is’ a’permutat~on of t, , or t, +I 
is an elem&ary compaction of f, , or t, is an ele- 
mentary compaction of t, +i Term t et -unr j res 
with term 8 if there exrsts a substrtution a such 
that t (Y=~, 8 a In case 8 rs ground and t cl-unifies 
with 8 , we say that t cr -mot&es 8 

Example 2: Consider agam the rule 

John&end(X) t 
fnends(set-of(X,Y,John)), X #John, nice(X) 

Assume that the database contams the following 
facts 

friends(set-of(Jlm, John)) nice(Jim) 
The only derived fact IS John,fnend(Jlm) 
There are three substrtutions that map set-of(X, Y, 
John) to set-of(Jim, John) 
One 18 a= {X/Jim, Y/Jim} smce set-of(Jim, Jim, 
John) =c1 set-of(Jim, JOhI’$ If derrves 
John-fnend(Jim) The second is /9= {X/Jim, 
Y/John} since set-of(Jim, John, John) =c, 
set-of(jlm, John), it derives John,friend(Jim) 
The third IS r= {X/John, Y/Jim} since set-of(Johu, 
Jim, John) =el set-of(Jim, John), however, no fact IS 
derived because of X+John [] 

If we modify the database m the above exam- 
ple to contain only the facts frlends(set-of(John)) 
and mce(John), then the only applicable substltutlon 
is CY= { X/John, Y/~ohn } and set-of(John, John, 
John) =,., set-of(John) So, it is possible to specify 
a set contammg three elements which IS instantiated 
mto a set contammg (mathematically) one element 
Agam, no fact 1s derived because of X#John 

The followmg IS an example of the usefulness 
of l-matchmg Suppose a team needs up to three 
persons The predicate team locates two member 
teams such that the two have been a team before 
(recorded m old-team ) and the two members have 
the capablhties of an engineer, a scientist and a 
medical doctor 

team(set-of(X,Y)) + 
ok-team(set-of(X,Y)), X# Y 

ok-team(set-of(X,Y,Z)) t 
old-team(set-of(X,Y,Z)), engineer(X), 

scientist(Y), medical-doctor(Z) 
The semantics of a program P with set terms 

is defined using cl-matching Thus, two programs 
are eqmvalent when they produce the same set of 
answer tuples modulo cl-equality Then, the compr- 
latron of P transforms it into an equivalent pro 
gram that employs only ordinary matchmg Thus, 
the setof terms m the transformed program can be 
treated ss ordmary terms, modulo a compaction and 
ordermg operation which, when apphed to newly 
derived facts, ehmmates components of set-of terms 
so that no two subterms are cl-equal 

To transform a program P requlrmg cl- 
matchmg mto one which requires ordinary match- 
mg, we expand the rules of P The result for the 
rule m Example 1 1s shown m Example 3 below 
We introduce new rules called “funnel-up” rules2, 

*he term “funnel-up rule” stems from the role that these 
rules fu1811 they funnel data from one format (stored or already 
derived results) Into another format, required by the structure of 

16 



and use a short hand notation called multl-head- 
multi-body (MHMB) rules In a MHMB rule, 
comma 1s to be read as “and”, and a semicolon ss 
” 09 So, a rule with m bodies and n heads 
represents m X n ordinary rules, one for each body- 
head combmatlon 
E,xample 3: Consider rule r , The rewritten rule IS 
r 
r John-friend(X) + 

fnends(setpf(X,Y,John)), 
X #John, nice(x) 

f’ John-friend(X) + 
funnel-up-friends(set-of(X,Y,John)), 
X #John, nice(x) 
funnel-up-friends(set-of(YJ(,Iohn)), 
funnel~up~friends(set~of(X,Y,John)) t 

friends(set-of(John,Y,X)), 
fnends(set-of(Y,John,X)), 
friends(set-of(Y&ohn)) 

funnel-up-fnends(set-of(X&ohn)) t 
fnends(set-of(John,X)), 
friends(set-of(X,John)) 

funnel-up-friends(set-of(John,John,John)) + 
friends(set-of(John)) [] 

In the case of Example 3, we have three MHMB 
rules, each supporting the cl-matching of the ongl- 
nal term with instantiated eeto j terms of cardi- 
nahty three, two and one The body of a rule 
checks for “gene&’ appearances of terms with a 
certain cardmahty m the database For example, m 
the second rule, j raende (act-o j (JO/HI ,X)) and 
jrrends (set-o j (X,~ohn )) check for possible 
matches with a cardmahty 2 instance The heads of 
a MHMB rule “transmit” the found bmdmgs to the 
original term m the ongmal rule In the second 
rule, bound values for 

funnel-up-jrtende (set-0 j (X,X,John )), 

funnel-up-jrrends (set-0 j (X,~ohn ,fohn )) 

and, j unnel-up- j rrends (set-o j (John ,X,~ohn )) 

need to be transmitted A closer mspectlon reveals 
that (1) and (2) will generate the same head tuples 
m r’ and that (3) ~11 violate X#john m the ori- 
gmal rule and hence (2) and (3) can be discarded 

The trsnsformatlon result may seem bulky 
However as a result, run-time cl-matchmg on a per 
tuple basis 1s replaced with an optlmlzed complle- 
time “unfoldmg” of the matching process Our 
complle-time analysis ehmmates blind alleys m cl- 

the orlgmal term In the body of a rule 

matching ss well ss redundant delrvatlons, it also 
optlmlzes the cl-matching process m the context of 
the particular program 

There are eight sections Sectlon 2 discusses 
technical aspects of augmenting a HCLPL with the 
eef-o j predicate Section 3 presents two theorems 
The first allows cl-matching to be substituted by I- 
matching, the second allows I-matchmg to be substl- 
tuted for by ordmary matchmg The rewntmg 
transformation LS presented m section 4 Optlmlza- 
tlon techniques are discussed m section 5 The mer- 
its of a prehmmary rewntmg, m which ongmal pre 
gram rules are made “multlhead” 18 discussed m sec- 
tion 6 Section 7 presents some elementary observa- 
tlons concerning compllatlon of the rewntten pr+ 
gram Section 8 concludes and mentions posslblh- 
ties for future work 
2. Augmenting Logic Programming with CI- 
Matching 

2.1. Horn clauses 

A term t IS defined mductlvely ss (1) a con- 
stant, (11) a variable, (111) a formula of the form 

~y~~of and ;ora:i;here ‘, “, a: ;;tz ;;;y; -9 
called the kgument of t o; tn)de(z 1 j 1s an n-ary 
function symbol unless j =aef-o j which LS a dls- 
tmgulshed function symbol that does not have a 
fixed arlty A term IS ground lf It contains no van- 
ables A term t defined accordmg to (1) or (11) ~111 
be called sample, and complex otherwise 

A rule 1s a formula of the form 
A+-Bl , 48 

where A and each I?, , 1115 n , are frterafa (or 
predreatee), i e , a predicate symbol applied to ss 
many terms as indicated by its srity Let arrty (t ) 
denote the arlty of hteral or term t In the rest of 
the paper we will loosely use the the word “term” to 
refer to both actual terms or hterals, since hterals, 
syntactically, have the same form sa terms 

A aubstrtut:on 1s a set of pours 8= 
cw~ 1, , X,, lt,, ) where XI, , X,, are dls- 
tmct variables and tl, , tn are terms Then t 8, 
the rnatance of term t by 0, 1s the expresslon 
obtamed from t by by simultaneously replacmg 
each occurrence of the varrable X, , m t by the term 

The composhon Ba of two substltutlons 
;+x,,t,, A&l) and 
a={ h/8 I, Y, /a,, } IS the substltutlon 
obtamed from th)e set 
vvt 9, &I /ha “9 Y&3 1, r,/G 1, by 
deleting eve; bmdmg X, /s, ~7 for Ghlch x =8, u 

and each bmdmg Y, /a, for which 

17 



A substitution fl={X,/t i, . , X, /t, } where 
$1, , t. are all ground, i e , contam no van- 
ables, is called a bind:ng A term ti is said to be 
more general than (or a generulization of) of a term 
t2 when there exists a substitution 6 such that 
tle=tz, m that case t2 IS a restnction of tl; If tz lg 
ground then ta IS a~ instantratron of t1 If two 
terms are each a generalization of the other, then 
they differ only by variable renaming and they are 
said to be vatrants of each other. 

A substitution 8 is said to rnrjg (or, to be a 
untfier for) two terms t I and t z If t ,8=t z8, then we 
also say that the umlication equation t *=t z 1s 
sataajiable and t9 is a solutron for that equation A 
set S of umfication equations IS satrefiable if there 
exists a substitution B such that 8 IS a solutron for 
each equation 111 S From the exrstence of the most 
general umfier of two terms (LLOY84], it follows 
that 

Proposition 2.1: Given a sat&able 6mte set of 
umfication equations U, there is some solution 0 
which IS a generahzatron of every solution for U 0 

The most general solution for U will be called 
the most general unrjier (mgu) for U It also fol- 
lows that the most general solution for U 1% unique 
modulo variable renaming So far, our concepts of 
equahty and unilication are the standard ones where 
two terms are equal 181 they are (syntactically) 
identical and are unifiable off the unificatron equa- 
tion for them is satkdlable 
2.2. CI-mat&q 

Let set-of be a distingmshed function symbol 
It is mtended to model mathematical sets, as such rt 
does not have a l&d arity With zero arrty, i.e 
set-o j 0, it represents the empty set With non- 
zero anty, i e set-0 j (a 1, . . . , a, ), it represents 
the set whose elements are a i, . , u, (not neces- 
sarily distinct) These intmtrve notrons are cap- 
tured formally as follows. 

Term t deriucs term 8 module idempotenee, 
denoted t ==> $8, if either (1) t =8 or (n) 8 IS t 

with the exception that a subterm t 1 of t , 
t l=seto j (z 1, . . . , 2, , .,+I,z, ,zt +I, -.,G 1, such 
that z, =z, , is modilied by deletmg z, to obtam 
8 ,==tOf (21, , 21, - 9 2, -1*=j +19 * % 1 
m 8 8 IS obtained from t by an clemcntar; com- 
pacfton step from t to 8 Observe that t => ,8 
does not imply 8 -> , C . 

Term t denacs term 8 module commutatruity, 
denoted t => ,r,rferther t=a,orc 1s t with 
the exception that a subterm t 1 of t , 

t 1=8et-O j (21, > =* 9 t *j-b=1 ‘23 i-1, 4, 
is modified by exchangmg arguments z, and zJ’ to 
obtam 
“l==tOf (21, , zl, f =,-19% .=I t1, ,2,) *n 
8 8 18 obtained from t by a permutatron step from 
t to8 Observethatt ==>r8 iffs ==Bct 

Term t dertves term 8 module eommutatcvrty and 
rdempotenee, denoted t ==> C, 8, if either (1) 
t => (8, or (11) t => ,8 Let =L=> , , 
E&Z >C and =L> c, be the transltlve closure 

of =F=> *, =>c and => c, , respectively 
If t =L> (8 then 8 1s obtamed from t by ele- 
mentary eompoetron from t to 8 , if t =C= > c 6 
then 8 IS obtamed from t by permutatton .from t to 
8 Let =, ,=c and =c, be the symmetric and 
transitive closure of ==> -- I , --- >C and 
=> C‘ 9 respectively 

Next, we extend equality based umficatlon and 
matchmg A substitution 8 ;-unrfies, c-untfies, ca- 
unafies terms t I and t z If t +, t#, tle=c t2B, 
t lf&o t2e, respectrvely When t2 IS ground the 
word un:jicotion IS replaced by motehang, we then 
speak of r-matchmg, c-matchmg and cr-matchtng 

Term t is compact if it contams no eet-of 
subterm with two syntactrcally identical arguments 
Equivalently, t is compact if t ==> ,8 lmphes 
t =8 For example, 

f (22,8uf (1,2,3),22) 
rs compact, while 

f (22,8of (1,2,1,3),22) 
IS not compact Term t IS strongfy compact lf for 
all terms 8 such that t =k> c 8, 8 IS COlIlpZLCt, 

mtuitlvely, one cannot permute the arguments of 
set-o j subterms of t and produce two identical 
ones For example, 

8&Of (8e:-of (X4 )#kOf (a Jo) 
is compact but not strongly compact smce 
eet-of (set-of (X,r ),set-0 j (u ,X)) ==> c 

set~o j (set-0 j (a ,X),bCLO j (a ,X)) 

A 8Ub8tlt?it:On, {x,/t 1, , X, /t,, } IS called 
compact, or etrongly eompaet, when each t, , 
l<l <n , is compact or strongly compact, respec- 
t&& 

Given a term t , the compact form of t denoted 
corn (t ), is a compact term obtamed from t 
corn (t ) can be computed by repeatmg the followmg 
until there are no more changes 

Find a set-of subterm 8 of t such that all of 
e’s arguments are compact and 8 has two 
identical arguments, delete the argument with 
the highest mdex 

18 



It can be shown that con (t ) 1s umque Clearly, 
t ==L > , corn (t ) and the sequence of elementary 
compaction steps 1s such that a subterm A 1s han- 
dled, 1 e bemg made compact, only after all of its 
arguments have been handled and are com- 
pact. Such an elementary compaction step IS called 
a bottom-up compaetton etep and a sequence of 
bottom-up compaction steps 1s called a bottom-up 
compaction 

Given a term t , a strong compact form of t B 
a strongly compact term obtamed from t as follows 
(it is not umque in general) 

Consider S ={a 18 =e t } It can be shown 
that S 1s finite If all 6 E S are compact 
then t 1s strongly compact Otherwise, If 
8 E S is a non-compact term, then let 
t =com (u ) and repeat this step 

It can be shown that If t 1 and t 2 are strong compact 
forms of t then t l=c t 2 

The followmg Lemma states that if Z I 
strongly compact then t =h> , Z lmphes that 
there 1s a sequence of standard compaction steps 
leading from t to Z Intultlvely, duplicates are 
bemg thrown from subterms of t m such a way that 
a set-of subterm 15 considered for duplicate ehml- 
nation only after all of its act-of subterms have 
been consldered We need a technical defimtlon 
The height of a term t , denoted Aecght (t ), LS 
defined mductlvely thus, the height of a constant 18 
zero, the height of rtt1, *t,) 19 
l+max{ herght (t J, ,heaght (t, )} 

Lemma 2.1:’ If Z 18 strongly compact and 
t =h> , Z then Z can be obtamed from t via a 
standard compaction 

The followmg Lemma states that If t =, Z and 
Z 1s strongly compact then there 1s a sequence of 
duphcate ehmmatlon operations on set-o/ sub- 
terms of t that leads from t to Z Note that this LS 
not always the case d Z IS not strongly compact 
Lemma 2.2: Let Z be strongly compact t =, Z lff 
t =&>,I 

Next, we show that If Z IS strongly compact 
and t =c, Z then Z can be obtamed from t by first 
permuting some arguments of some set-of sub- 
terms of t and then performmg a sequence of duph- 
cate ehmmatlon operations from set-of subterms 

because of space ImutatIons, all of the proofs of the Lem- 
mas and Theorems stated In this paper have been omitted A full 
version of tlus paper which mcludes the proofs appears m 
jSTZ871 

Lemma 2.3: Let Z be strongly compact t xc, Z lff 
there exists w such that t =L > c w =k > , Z 

2.3. The standard representation of facts 

A fact 1s a ground term We start by defimng 
a total order on facts 
(1) There 18 a total order on constanta and func- 

tion symbols (e g , ASCII order) 

(2) If t=f 01, , ta) and 8=h, ,s,) 
and j precedes g , then t precedes 8 

(3) If t=f h , k) and s=f (81, urn) 
then t precedes 6 if they are equal on all ‘posl- 
tlons up to some position 8 for wluch either t, 
precedes 6, or there 1s no posltlon t m t 

A fact 18 m sorted form d m each set-of subterm 
of the fact, the arguments are m sorted order 
accordmg to the order defined above on factg 

We make the followmg assumptions concern- 
mg stored facts First, facts are alwut(s rn strongfg 
compact form Second, fact8 are always In sorted 
form (see above) These two assumptions together 
me the standard representahon assumption A fact 
obeymg this assumption is sad to be standard A 
bmclmg 0=(X,/ T1, , Xk / Tk } I standard If for 
1 =l, ,k, T, 18 standard 

Given a fact t, the standard form of t , 
denoted etondwd (t ), 1s obtamed from t by sortmg 
each set-of subterm of t and ehmmatmg duph- 
cates m such a way that a subterms ld handled only 
after all &s set-of subterms have been handled It 
can be shown that standard (t ) m unique and that 
t =L> e, standard (t ) wluch implies 
t =a standard (t ) 

To illustrate the importance of the standard 
representation assumption, let us assume that, by 
contradlctlon, we admit m the database the pair of 
facts p(se t-of(l, ,??)) and q(ee t-of(a,I)) which violates 
this assumption Then, by the semantics of sets, 
the conJunct p(X),q(X) must succeed, but that can- 
not be accomphshed wth ordmary matchmg -a 
direct contradlctlon to our basrc tenets For- 
tunately, this problem can be solved by assummg 
that database facts obey the standard representation 
as defined above 
2.4. Semantics 

The semantics of LDL IS defined formally m 
[BNRST87] H ere we limit attention to a subset of 
LDL that 1s comprised of Horn clauses, the dls- 
tmgulshed function symbol set-of , and two built-m 
predicate symbols = and # of anty two which are 
written m infix notation For amphclty, we view 
the database as part of the program Substltutlon B 

19 



sat:sfieu the body of a rule h c tl, , ta in a set 
of facts S, if for 8 =l, , n , either (1) t, has 
fOrIll S 1=82 and 8 ,e=, use, or (ii) t, has form 
s r#sz and 8 &+$* 829, or (ill) there exrsts 8, E S 
such that t, B=,, 8, 

Dejinrtton ofM(P) 

The model of a program P , denoted M(P ) IS 
defined thus Let M,=$ For $ >O, 

M, =M,-, u { h 8 1 bmdmg 8 sat&es the body of a 
ruler EP mM,-,, with A the head of r } 

MU’ I= u, IoN 
In the sequel we shall refine components m both the 
model and rule satrsfactron delhutrons our goal 
wrll be to show that each modr6catron “preserves” 
the model Preservation IS captured formally as fol- 
lows Two sets of facts S and T are er-equruulent, 
denoted S =,, T, if for all u E S there exists 
t E T such that u ==c, t and vice versa 

We show that rf 8 ls restncted to be standard, 
the resulting set of facts 18 =c, to M(P) 

Lemma 2.4: ,Let M’ (P) be defined hke M(P) 
exc,ept thpt M, 1s defined as 
M =M,-1 u 
{ h 0 1 standard bmdmg 0 s&u&es the body of a 

ruler EP mM,Lr, with 1 the body of r } 
Then, M’ (P)=c, M(P) 

The set of facts obtamed when m addition 
each denved fact ls standardized before bemg added 
tothemodel,rsalso=, toM(P) 

Lemma 2.6: Let M’ ’ (P ) be defined like M(P) 
except that M,’ ’ ie defined M 
M,’ ’ =M,‘_; u 
{standard (h e)l standard bmding 8 satrsfies the body 
of a rule r E P in M,‘_i , with A the head of r } 
Then, M’ ’ (P)=e, M(P) 

Let P be a program and q a hteral A 
correct result for query q agarnut P is 
{q B 1 there exist 8, 8 E M (P ) such thatq 8=,, 8 } 
It can be shown that If M(P) above 1s replaced 
with S such that S =c, M (P ) the same set of result 
facts 1s obtamed This mdlcates that we deal with 
mathematrcally identical sets of complex obJects In 
practrce, a set of answers 1s most probably mfimte, 
e g rf O={ Xl/aetBof (1)) then 
e={ Xl/a&of (l,l)} ~111 do aa well as 
t9={ Xl/set-of (l,l,l)) and so on So, m practrce, 
one mrght be satisfied wrth any set that 1s =c, to 
the answer set defined herem 
Using Lemma 2 4 and Lemma 2 5 we obtam 

Theorem 1: Suppose m the defimtron of M (P ) 
each added fact 1s standardized, and all standard 
substrtutrons are considered (and perhaps some 
non-standard ones are considered as well), let 
M,(P) be the resultmg model Then, 
WP )=er W’ ) [I 

Inturtrvely, the Theorem states that rf gen- 
erated facts are standardized, all standard substltu- 
tlons are considered, and some additional substltu- 
trons are considered as well, the result IS still =c, to 
M(P) 
3. The Decomposition Theorems 

3.1. The C-decomposition Theorem 

The followmg Theorem 1s the basis of the first 
step m program rewrrtmg, replacing cl-matching 
with r-matching by consrdermg all permntatrons of a 
term for r-matching This depends on bemg able to 
commute substrtutron and permutation 
Theorem 2: Let Z be a standard fact and e a stan- 
dard substrtutron, t B=C, Z lff there exist t 1 such 
that t=, t, and tle=,Z 

3.2. The I-decomposition Theorem 

The second main step m the rewrrtmg 
presented m thus paper IS replacing r-matching with 
ordmary matchmg This IS done by determmmg a 
plron the possible rdentrficatron of subterms that 
could be made by run-time substrtutrons Essex+ 
t&y, this rs tantamount to consrdermg each possr- 
ble standard compactron and solving a set of (ordl- 
nary) umficatron equations rmphed by the standard 
compaction We need some machinery to carry out 
thur task 

We need a mechamsm to refer to subterm 
posrtrons independent of therr ‘current,’ content, 
this 1s analogous to the dlstmctron between an 
address and Its content Any subterm of a term t 
can umquely be identified by Its term addreuu, 
defined as follows 

(1) 

(4 

We 

7 IS a term address whose content IS the whole 
term t , 
rf A IS the term address m t whose content 1s 
the subterm 101, , t ) then A 3, 
199, IS a term address m t whose con- 
tent is tr 

use t A to denote the subterm of t whose 
address IS A (eg, t 7==t) For example, rf 
t =f (9 (8 1,s d,h (X)) then t 7 2=h (X) and 
t 7 l=g (8 1,82) and t 7 1 2=S2 in t . 

An E-entry on term t IS of the form 
A I =A 3 where A 15 the address of a se t-of sub- 
term of t , a <J and A t and A 3 are addresses of 

20 



arguments of t A For example, let 
t =f (set-of (a ,XbeLof (b ,Y,b ),X)) then 
7 2 1=7 2 3 1s an Eentry on t Intultlvely, an E 
entry means that during a standard compaction on 
t 0 for some B the subterms at these addresses will 
be equal In the last example, Indeed 
b =t 7 2 l=t 7 2 3=b and a standard compaction 
could delete the second b As another example con- 
sider the Eentry 7 1 1=7 12 This Eentry means 
that dunng standard compaction on t B for some 8 
the subterms ongnatmg mth (I and X wdl be 
equal This lmphes a umficatlon equation, namely 
U- -X 

An E-sequence E on t UJ a sequence of E 
entnes on t such that for all A =B appearing m 
the sequence no address of the form A tx or of the 
form B Q appears later on m the sequence Intm- 
tlvely, an Esequence depicts a standard compaction 
on t e for some e Contmumg the example, 
i?=(y21=723, 7 1 l=y 12 ) 1s an Esequence on 
t Observe that an Esequence defines a sequence 
of umficatlon equations and also a “final result” and 
an mgu In our example, the final compacted result 
1s f (set-of (a),set-of (b ,Y),u)) and the mgu IS 
Wl~ 1 

In general, an Esequence E =El, , E,, , 
defines a set Q (E) of umficatlon equations and a 
term obtamed from t denoted E (t ), which are 
obtamed usmg the algorithm below 

begin 
Q =0, 

--t 
io;k ‘=I to n do 

begin 
let Ek beAi=Aj, 
if A I or A f is not an address in 8 

then abort, 
add to Q the equation 8 A I =u A f , 
/* this 1s an equation between real 

terms not addresses */ 
update u by deleting subterm 8 A f 

end, 
let E(t) be 8, 
let Q(E) be Q 

end 
An Esequence 1s u&d m t If the above algonthm 
does not abort on input t and E Intmtlvely, If an 
Esequence 1s not vahd It defimtely does not 
describe a standard compaction Even If an E 
sequence IS vahd it does not necessanly descnbe a 
standard compactlon smce the umficatlon equations 
may not be satisfiable Furthermore, even if a stan- 
dard compaction IS described it does not necessanly 
end up m a strongly compact term, and hence 

cannot depict a bmdmg followed by a standard 
compaction ending up with a standard fact 

iin Esequence E 19 sat~ufiobfe in t if It IS 
valid m t and Q (E ) 1s satisfiable If E 1s 
sat&able m t with w an mgu for Q (E ), and 
E (t )w 1s strongly compact, then E (t )w 1s called a 
genene term for t defined by E and w If E defines 
a generic term for t then this term IS a vanant of 
any other genenc term defined by E for t 

Claim: Let g be a generic term for t defined by an 
Esequence E with mgu w Then, t w=, g 

Theorem 3: Let Z be a standard fact There exists 
a standard substltutlon 8 such that t 6, Z lff there 
exist a substitution 6 and an Esequence E, mduc- 
mg a satisfiable Q (E) via mgu w and a genenc 
g=E(t)w, such that fw=,g, g&Z and 8=w6ls 
standard 
4. The Rewriting Tr8nsform8tion 

By consldenng all possible valid Esequences 
on t , the set of all pours where each plur 1% of the 
form (g ,w) of generic terms of t and the mgus gen- 
erating them, denoted G (t ), may be obtamed 
There 8re better ways for obtammg G (t ), but still 
exponential 111 the Size of t This US not surpnsmg 
as set matchmg ls NP-hard [KN86] We leave this 
subJect for a subsequent paper 
4.1. The firat s&p 

We now explam the transformation A rule r 
of the form 

head tt 1, , t,, where, w 1 o.g , t l yont8ms 
set -of subterms is transformed mto 8 rule r of the 
form 

head +funnef,up,t l,t2, , tl 

and a set of permutatcon rulee 

f unnel,up-t ltpermute- 1-t 1 

j unnel-up-t ltpermuteWm-t 1. 

where permute- 1-t 1, , permute-m-t 1 are all 
the permutations of term t 1 Each such permuta- 
tion IS obtamed from t by exchanging positions of 
arguments of some act-of subterms of t The 
number of such permutations 1s obviously finite 

For the rule m Example 2 we get 
John-friend(X) + 

funnel-up-fnends(set-of(X,Y,John)), 
X #John, nice(X) 

funnel-up-fnends(set-of(X,Y,John)) + 
fnends(set-of(X,Y,John)) 

funnel-up-fnends(set,of(X,Y,John)) + 

21 



frrends(set-of(X,John,Y)) 
funnel~up~fnends(set~of(X,Y,John)) c 

frrends(set-of(Y,X,John)) 
funnel~up~fnends(set~of~,Y,John)) t 

fnends(set-of(Y,John,X)) 
funnel~up~fnends(set~of(X,Y,John)) c 

frrends(set-of(john,X,Y)) 
funnel~up~fnends(set~of(X,Y,~ohn)) + 

fnends(set-of(john,YX)) 
Let P +f unnef be the program resulting by 
1 i ansformmg rule t m P as above For a set of 
facts S , let S/P be the subset of facts m S whose 
predicate symbol appears m P Let us refine the 
rctlon of satrsfactron of a rule body as follows 
k&~tution 6 sot88fies the body of a rule 
’ +t1, t m a set of facts S, if for 
“1, , )n ,n there exrsts 8, E S such that (1) 
.8=s, if t, rs a funnel-up hteral, (n) t, B=-, 8, if t, 
, a permute-r literal, (in) if t rs of the form a =b 
hen a I?=,, b 8, (iv) rf t is of the form a #b then 
f)#,, b 8, and othenvrse t, 0=,, u, 

Lemma 4.1: Assume that m the defimtron of 
M [P ) (1) only standard substrtutions are con- 
sidered, (2) the refined notion of rule body satrsfac- 
tron is used, and (3) each added fact, which rs not 
with predicate-name preiix funnef-up-, IS stand- 
ardrzed Let M(P) be the resultmg set Then, 
M(P + f unncl)/P =e‘ M(P) 

4.2. The second step 

:n the next step of the transformatron, each permu- 
:.itron rule funnel-up-t I+pcrmute,c,t 1 IS deleted 
md replaced with, usually many, gcncrtc rules 
jbtamed from G (permute_t_t 1) For each pan 
,9 4 In G (permute-:-t 1) the rule 
f unncl-up-t lw+-g IS added, g rs called a gcncrrc 
lateral 

Contmumg the prevrous example, let us con- 
centrate on one particular permutatron rule, say 
f unnci-up-f mend8 (d-of (X,Y, john )) 

+f nCtld8 (e&Of (XJOh ,Y)) 

For the ample set-of terms in this example, each 
w can be represented by mdlcatmg wluch arguments 
were rdentrfied as equal by w Once this 1s done, a 
standard compactron gets g The possrbihtres can 
be represented symbolically as patterns (#,#,#), 
(#,@,#), (@,#,#), (#,#,Qh ww) Each such 
possibrhty has rmphcatrons on the values assrgned to 
variables m the rule The first posmbrhty (#,#,#) 
imphes that 19 must assrgn JoAn to both X and Y 
Thus we generate a rule 

(a) funnel-up-fnends(set-of(John,John,John)) 
+ fnends(set-of(John)) 

The second posslbihty (#,@,#) imphes that 8 must 
assign the same values to X and Y Thus we gen- 
erate a rule 

(b) funnel-up-friends(set-of(X,X,John)) 
+ fnends(set-of(X,john)) 

For the other possrbrhtres we generate, respectively 
(c) funnel-up-fnands(set-of(X,John,John)) 

+ fnends(set-of(X,)ohn)) 
(@I #, #) 

(d) funnel-up-fnends(set-of(John,Y,John)) 
+ fnends(set-of(John,Y)) 

(#, #, Q) 
(e) funnel-up-fnends(set-of(X,Y,John)) 

+ fnends(set-of(X,John,Y)) 
(#t Q? 84 

After we do the above for each permutation rule we 
end up with a large set of new generic rules and no 
permutation rules 

Define P+genmc as the resultmg program 
followmg the transformation Let us further refine 
the notion of rule body satrsfactron by adding “(v) 
t, 8=8, if t, rs a generic literal,” to the defimtion 
m the prevrous section 
Lemma 4.2: Suppose that m the defimtion of 
M(P ) (1) only standard substltutrons are con- 
sidered, (2) the newly refined notron of rule body 
satrsfaction 1s used, and (3) each added fact, which 
IS not with predicate name prefix funnel-up_, 1s 
standardized Let M(P ) be the resultmg set 
Then, &!(P +generrc )/P =c, M(P) 

4.3. The third step 

In the previous step each permutation rule was 
replaced wrth some generic rules We now describe 
the next stage m the transformatron which we call 
body homogcnrzmg Recall that terms 8, t sharmg 
no vanables are vanants rf there exists a substitu- 
tion 19 which 1s a l-l renaming of variables such that 
8 B=t It may happen that m the collection of gen- 
enc rules produced above, we may locate two rules, 
rl heodl+-body1 and r2 head2+body2, such that 
body1 and body, are vanants Smce the meaning of 
a program 1s not altered when the vanables m a rule 
are consistently renamed, we can rewrite r 1 as 
head lO+body2 (since body #=body2) Conse- 
quently, we can rewrite the collection of rules m 
such a way that all bodies which are vanants of 
each other become now syntactrcally rdentrcal As 
an rllustratron consider the pat$; (@ ,# ,# ) and 
the permutation rule the body 
f rrenda (set-of (John , Y ,X)) Note that this IS a 
different permutatron rule than the one we con- 
sidered before, with body 

22 



frtends (set-of (X,john ,Y)), that induced rules 
(a)-(e) The rule that we get is 

(f) funnel-up-fnends(set-of(X, X, John)) t 
frrends(set-of(John, X)) 
The body of rule (d), f rrcnde (bet-of (lohn ,Y)), LS 
a varrant of the body of rule (f) VIZ 19 = {Y/x) 
Thus, we rewrite (d) ss 
(d’) funnel-up-friends(set-of(John, X, John)) * 
&ends(set-of(John, X)) 

Once rule-bodies are homogemzed we can 
rewrite them m MHSB format (S stands for Smgle), 
by associatmg with each body all of the heads 
appearing m rules m conJunction with this body Of 
course, if two heads grouped for a body are equal, 
only one is retained 
Example 4: The final result for our example are 
the followmg MHSB rules 
(1) funnel-up-frrends(set-of(X,Y,John)), 

funnel-up-friends(set-of(Y,X,John)) 
+ friends(set-of(X,John,Y)) 

(2) funnel-up-fnends(set-of(X,Y,John)), 
funnel-up-fnends(set-of(Y,X,John)) 

+ fnends(set-of(X,‘ll,John)) 

(3) funnel-up-fnends(set-of(X,Y,john)), 
funnel-up-fnends(set-of(Y,X,John)) 

- frrends(set-of(John,X,Y)) 

(4) funnel-up-friends(set-of(X,X,John)), 
funnel-upfriends(set-of(John,X,John)), 
funnel-up-friends(set,of(X,John,John)) 

+ fnends(set-of(X,John)) 

(5) funnel-up-friends(set-of(X,X,John)), 
funnel-up-friends(set,of(John,X,John)), 
funnel-up-fnends(set,of&ohn,John)) 

c friends(set-of(John,X)) 

(6) funnel-up-friends(set-of(John,John,John)) 
c friends(set-of(John)) 

II 
4.4. Summary of the transformations on a 
rule 

(1) replace the literal t m the origmal rule body 
with a funnel-up-t literal 

(2) For each permutation of t generate a permu- 
tatron rule whose head 1s funnel-up-t and 
whose body 1s the permutation of t 

(3) Replace each permutation rule with a set of 
generic rules Intuitively, a generic rule 
represents a possible compaction whrch may 

be applicable at run-time 
(4) Perform body homogenirmg by making varr- 

ant bodies syntactrcally rdentrcal 
(5) Group rules mto MHSB format by associatmg 

with each body form all of the distinct heads 
It derives 

(6) Possrble optrmizatrons, see next section 
The transformatron above rs applied to a sm- 

gle literal m a smgle rule Clearly, rt can be applied 
to all hterals m a rule which contam ect-of sub- 
terms until they are all “converted” mto funnel-up 
liter& Similarly, each program rule can be 
separately rewntten (Of course, care must be 
taken to avoid naming confhcts, e g d t appears m 
rule r i and m rule r 2 then we may use 
funnel-r l-up-t m rewnttmg r i and 
f unn&r B-up-t m rewnttmg r 2 ) Call the result 
the transformed P, denoted P ) One would hke to 
argue, baaed on Lemma 4 2, that assummg that 
derived facts, other than those derived for generic 
rules, are standardreed m computmg M(P’ ), 
M(P’ ) may be computed by only consrdenng ordr- 
nary matchmg This argument seems to follow from 
the fact that once P’ 1s formed, all hterals contam- 
mg set-of subterms are either funnel-up liter& or 
genenc hterals 

However, there IS one delicate point to con- 
sider It 1s still possible that a genenc rule will 
match its genenc literal to a standard fact I via 6 
such that B=wS is not standard! In that case we 
may end up considermg non-standard B’s m comput- 
mg M(P’ ) But, rf such a 6 rs used to match 
f unnef-up-t 1 m the body of some r’ with 
f unncl-upt I~ generated by some genenc rule, we 
still have t lw=, permute-1-t lw=, g which rmphes 
t 1o=,, g which rmphes t iwS=,, t i6=, g 6=I So, 
even It such a non-standard 0 “satmfies” the body of 
a rule, the derrved standard (h 0) would have been m 
Ml(Pl,and_s(> the “extra” facts we generate result 
‘xl+ A4 =&f(P) u extra facts, such that 
M =e, M(P ) Hence, correct query results are 
obtained by consrdenng the “ordmary” logrc pro- 
gramming model for P’ with the provision that 
facts generated by non-genenc rules are standard- 
ized 

6. Optimi5ation 

The followmg techniques apply at step 6 of 
the rule transformation summary of the prevrous 
sectron We ,consider ongmal rule r , Its 
modrficatron r , and its funnel-up literal 
funnel-up-t Let GR be the set of MHSB rules 
generated by the rewntmg We shall use m to 
denote a MHSB rule m GR Let P’ be the 

23 



resultmg program. 
5.1. Using equdiifies urd ‘hequaliii~ 

In some cases it may be determined that cet- 
tam funnel-up heads m a MHSB rule cannot supply 
any bmdmgs for which the whole (modified) rule 
body can succeed m matching all hterals, m such 
cases these heads are disposed of in advance Such 
cases often mvolve anthmetic predicates and the 
predicates = and # For example, the head 
funnel-upfnenda(sct-ofbohn, X, John)), can be dm 
carded from the MHSB rule (4) in Esrample 4, as It 
~111 force X = John m the orrginal rule and thus 
vlolatmg X# john . Thus, rule (4) can be replaced 
by (4’) below 
(4’) funnel-up-frrends(set-of(X,X,john)), 

funnel~up~friends(set_or(XJohn,John)) 
+ friends&t-of(X,john)) 

At compde-time some certain violations can be 
checked for as follows. Rename varrables so that 
each rule has a set of vanables disjoint from the set 
of vanables in any other rule. Unify f unncl-up-t 
m the body of the modified rule r with h , the 
head of the checked MIBB rule; let 6 be the mgu. 
Now consider an equahty constramt q =a in r’ . If 
q 6 and 8 6 are not &unifiable, then h can be dis- 
carded Checkmg tlus can be done by using a ci- 
umfication procedure; the descnption of such a pro- 
cedure rs outside the scope of this paper. Next con- 
srder an mequahty constraint q #8 m r’ We con- 
srder rt violated at compile-time only r.f q 6=, 8 6 
whrch can easily be checked. 

5.2. Using the &andard representation 
assumption 

In other cases it may be determined that a 
body of a MHSB rule will never match a standard 
fact For example, if fricnds(sct-offiohn, chic, X)) 
happens to be a body in a MHSB rule then it cannot 
match any standard fact because chic precedes john 
m the sorted order. A term is unmatchable if it can- 
not match any standard fact I The decisron prob- 
lem as to whether a grven term IS unmatchable IS 
still open However, we make the followmg observa- 
t1ons 

We say that a given term t IS onttordercdcd II 
it contams a set-of subterm 8 such that for all 
substrtutrons 6 such that t 6 IS ground, 8 j 6 precedes 
8a6mthetotalorderontermswheresj (8i)rs 
the J ‘th (a ‘th) argument of 8 , a < 3 . For mstance, 
f (g (l),aeLof (male (x),malc (Y),f cm& (2))) Is 
antiordered smce f emalc precedes male Observe 
that a term may be unmatchable and yet not be 
antiordered, e g , m 

t = f (set-of (1,X),8&of (x,1)), 

each act-of subterm of t by Itself can match wrth 
a standard fact, yet t cannot We have the follow- 
w 
Observation 6.1: An antiordered term is unmatch- 
able fl 
So, rf a genenc literal IS antiordered, and hence 
unmatchable, the ,enenc rule for this generic literal 
~111 never be satisfied and therefore can be drs- 
carded. 

We now present a method that detects many 
cases, but not all, m which a term t IS antiordered 
For term t , rf t IS a constant then t [O] denotes t 
and otherwrse t [0] denotes the mam fun&or of t 
We need the followmg procedure which determines 
a total order on terms which when restncted to 
ground terms reduces to the total order on ground 
terms defined previously It basteally assumes that 
any order IS possible when one of the terms is a 
variable 

procedure precede8 (t ,a ) boolean ; 
/* varrables are magrcally ok, we 

n approximate” here */ 
‘ff t or 8 is a vanable then return true, 
if t [0] precedes 8 [0] m the total order on terms 

then return true, 
if t [0] follows 8 [O] m the total order on terms 

then return false, 
if t [0]=8 [O] and t [0] IS a constant 

then return true, 
if t [0]=8 [o] then 
begin /* need to compare arguments 

if same functor */ 
contmoc =true, 
i = 1; 
whlle 
I sor:ty(t) f! : ~arrty(s) A contrnue do 

besh 
ift[:]#d[t]then 

/* determine if t 1: ] precedes 
8 [t ] and exrt loop */ 

begin 
contmue =false, 
if precedes (t (:I,8 [i 1) 
then eomp =true 
else camp =false 

end, 
: =r+l, 
/* compare next arguments 

in t and 8 */ 
end, 

/* check d loop exlted with all checked 
pans equal, i e contanue =true */ 

if eontanue then 

24 



camp = artty(t)<arrty (a), 
return camp 

end, 

We state wlthout proof that II precede8 (t ,e ) 
returns false then for all substltutlons 6, 8 6 pre- 
cedes t 8 Thus, to determme whether t IS antior 
dered we can use the followmg method Apply pre- 
cede8 to each pair of arguments at posltlons 1 J , 
I <I, in each set-o j subterm of t If any such 
apphcatlon returns false then t 1s antiordered 

We now consider the computational complex- 
ity of detecting antiordered terms usmg the above 
method First, m precede8 the hne “if t (, ]#s [t ] 
then” takes time 0 (size of 8 [t ] + size of t [I ]) So, 
precede8 (8 ,t ) IS 0 ((size of t +size of 8 )2) Second, 
given t we need to apply precede8 to each par of 
arguments m a set-of subterm of t The number 
of such pairs 1s 0 ( (size of t )“) Thus our method 18 
0 ((size of t )‘) The 4 m the exponent can easily be 
reduced to 3 by locating the first pomt of “dlsagree- 
ment” m checking “if t [t]#8 (I ] and calling pre- 
cede8 recursively on the correspondmg subterms 

More stringent cntena could also be con- 
sidered For instance, on set-of& I’, j(Y), j(X)) 
procedure precede8 returns true Observe that no 
matching 1s possible since, once X an Y are mstan- 
tlated, we cannot have both X precedes Y and Y 
precedes X m the total order on terms However, 
the above procedure 1s computatlonally feasible and 
detects many cases m which t 1s antiordered 
5.3. Using Synonym6 

Other cases involve optlmlzatlon techmques 
similar to tableaux mmimlzatlon [ASU79] A drs- 
tznguwhed substrtubon w r t t 1s a substltutlon 8 
which assigns to each variable X appearing m t a 

unique dlstmct constant which does not appear m t 
or m the program P For our purposes we can 
thmk about this substltutlon as unique, asslgnmg 
unique constant z to variable X The dtstrngutshed 
brndtng form of t , tb , 1s obtained by applying to t 
the dlstmgulshed substltutlon w r t t An expres- 
8:on 1s a term, a predicate (hteral) or a rule Given 
a set of expressions S , a bmdmg &I IS reducrng w r t 
S d It transforms each element of S mto Its dls- 
tmgulshed bmdmg form, I e converting S mto a set 
of ground terms m which S’s vanables are unl- 
formly renamed mto dlstmct constants 

Rule bodies body l=Bl, , II, and 
body 2=Cl, , C,, are raomorphtc, denoted 
body 1 = = body 2 If set-o j (B,, > 4 )=ec 
set-of (Cl, c,, ) Here, we represent 8 =t as 

=(a-of (8 ,t ))’ and we represent 8ft 85 
#(set-o j (8 , t )) Consider a funnel-up heads h 1 

and h 2 m a MHSB rule m for literal t Recall that 
P’ 1s the result of the rewnttmg of P Funnel-up 
heads h 1, h 2 m m are synonyms if deleting from m 
m P’ either the head h Lor the head h2, results m 
an equivalent program P , 1 e one that generates 
correct results for quenes agamst P (and P’ ) We 
define the followmg synonym test Let hlb be the 
dlstmgulshed bmdmg version of h, , t =l,2 pro- 
duced by reducmg bmdmg /3 w r t h 1 and h 2 For 
( = 1,2, suppose that 8, matches funnel-up-t m 
r’ with h,b Let 

r,’ =(r -t )8, Ihead,’ +-body,’ 
where (r -t ) 1s r after deleting the t hteral from its 
body Then, the synonym test erucceeda if 
body; = =body; and head; =c, head: 

Theorem 4: If the synonym test apphed to h 1 and 
h 2 succeeds, then h 1 and h 2 are synonyms 

The above implies that If the synonym test 
succeeds on A ,,A2 then only one of A 1,h2 need be 
retamed m m An obvious optlmlzatlon procedure 
1s to repeatedly test for synonyms and remove heads 
accordmgly For example, consider the rule 

John,frlend(X) t fnends(set-of(x,Y,John)), 
X #John, nice(X) 

We now examme a MHSB rule, for example rule (4’) 
above We see that after applying the dlstmgulshed 
substltutlon cy = {X / z ) to the two heads m rule 
4’ we obtam h lb = 
funnel-up-jnende (bet-of (z ,2 ,john)) and h2b = 
funnel-up-jrtend8 (set-of (2 ,)ohn ,lohn)) Thus, 
we get t+= { X/2 ,Y/z } and e2 
= { X/2, Y /john } Consequently, 
head I =JohnJrrend (2) =c, john,jrcend(z )=headi 

and 
body; =8et-o j (2 # John ,ntce (2,)) =e, 
eet-of (2 # John ,nrce (2))=bodys Therefore, 
funnel-up, jnenda (set-of (X,X,~ohn )) and 
j unnef-up- jraende (set-of (X ,john ,john )) are 
synonyms and either may be ehmmated, for 
instance, the latter Slmllar optlmlzatlon steps can 
be applied to rule (5) of Example 4, thus yielding 
the rules of Example 3 

6. Multihead Rules 

In many cases more than a single conclusion, 
1 e head tuple, may be drawn from a smgle match 
of the body hterals with facts Notatlonally, we 
indicate this by rewntmg the rule m a MHSB for- 
mat 
Example 5: Consider 
r John-friend(X) + friends(set,of(X,Y,John)), 

nice(X), nice(Y) 

25 



Its transformed version according to the prevrous 
section IS 

r’ John-fnend(X) c 
funnel_up_fnends(set-of(X,Y,john)), 
nice(X), mcecy) 

Suppose the body IS matched with data items 
f t-send8 (det-o j ((lr ,~rm ,john)),nrcc (al) and 
nwe (pm ) The deduced head tuple IS 
John-j vend (d ). Inturtlvely, as 41 and $m play a 
totally symmetnc role, John-j nend (~sm ) may be 
deduced as well Hence, the rule rs rewritten as V: 

f John-friend(X), johpfriend(Y) c 
funnel~up_friends(set~of(X,Y,john)), 
mce(X), nice(Y) 

il 
The mam advantage of identifying m&heads 

for a rule IS that rt enables further eliminatrons of 
funnel-up heads 
Example 6: Consrder a MHSB rule m generated 
for Example 5, for genenc hteral 
friends(set-of(~ohnJ))* 

funnel,up,frrends(set-of(john&ohn)), 
funnel~up_friends(set~of&ohn,john)), 
funnel,up,tliends(set-of(X&ohn)) t 

friends(set,or(john~) 
If the ongmal rule is kept as rs, I e. r’ , then the, 
three heads 1 n m must be retained. However, If 
the rule 1s modiiied to the form f then one of the 
heads m m may be elimmated, resultmg m- 

funnel-up-friends(set-of&john,john)), 
funnel~up~friends(set~of&X,john)) 4- 

fnends(set~of(john$)) [ 
The deletion of heads m m lmphes that fewer 

matchings are performed in the body of r? wrth 
funnel-up heads as compared to the matchings pelt 
formed m r’ Thrs saves on checkm> for matchings 
m the rest of the body liter& in r We should 
note that m some cases the above transformatron 
may result m a slight cost mcrease 

Example 7: Consrder the MHSB rule w for the 
genenc literal firends(set_of(lohn)) 

funnel-up-fnends(set-of(john,John,John)) + 
fnends(set-of(john)) 

Here, for a single match with thus rule I, r? will, 
wastefully , produce two rdentrcal heads of the form 
John, jrrend (lohn ). 0 
This apparent waste is margmal as rt mvolves srm- 
ple value permutatrons at run-time to produce 
deduced tuples for the multiple heads m g BS 
opposed to matchmg wrth possrbly numerous tuples 

The first problem m forming a rule hke T is 
how to obtam additional head tuples based on a cm- 
gle bmdmg to body variables Some additronal 
notation 1s needed A uar~able to uaroable mapptng 
(wmap) IS a substltutron {X,/Y,, JJKJ 
where Xl, , X, are dlstmct vanables and 
Wl# , X, }={ Y1, Y, } Let E be an 
expression and 0 5 vvma;, 0 1s preserurng with 
respect to E rf E B=,, E For example, rf 
E=8Kof (q (x,y),q (~,X),P (8etof (X,Y,z))) 
then 0=(X/Y ,Y /X } 1s preservmg while 
8=(X/Z ,2/X } 18 not preserving If r is a rule, 
w&h body B1, B, , then t9 rs a wmap (respec- 
tively, preservmg &map) w r t r if e is a wmap 
(respectively, preserving w map) wrt 
=tof (B 1, 4.) 

We would like to obtam all solutions denvable 
from a body under all drfferent preserving vvmaps 
This is because of the followmg key observation 
Observation 6.1: Let 0 be a preservmg wmap 
w r t head +-body For any matching cr of body 
wrth standard facts denvmg head tuple head CY, 
there IS another matching, wcth the dame standard 
jactu, such that the head tuple head Ba 1s derived 

We can extend the defimtron of M(P ) 
((respectrvely, M(P)) to the case where ongmal 
rules are m MHSB format, simply by statmg that 
h 8 (respectively, standard (h 0)) are added during 
model formmg for all heads h m rule T We use T 
to denote P once t 1s replaced with funnel-up-t In 

the transformatron 

Corollary: If e rs a preserving wmap for rule r 
head <-body, then replacmg m P r-with V result 
m the same M(P ) ( respectrvely, M (P ) for $ ), 
where P IS head, head 8 + body [] 

Thus, to each ongmal rule body we may 
attach many heads, one per each preserving wmap 
e Clearly, this results in an equivalent program 
Of course, rf a number of heads thus generated are 
&equal, only one need be retamed 

The redundancy ehmmatron of the prevrous 
section lmphed by Theorem 4, may be easily 
adapted to the situation where ongmal rules are 
transformed mto MHSB equivalent representation 
Head head1 m m 1s domtnated rf deleting head 1 
results in an equrvalent program 

We now define a domrnatton teet to take into 
account the fact that P 
rs MH Inturtrvely, head1 1s dominated because of 

head2 If, for the genenc literal match m m’s body, 
the multrheads after umfymg with a head2 gen- 
erated tuple, form a superset, modulo commuta- 
trvrty and ldempo tence, of the multrheads after 

26 



umfymg wlt,h a head1 generated tuple Define 
SCAMS If both S and 5” are sets and for 
each A E S there exists B E S’ such that 
A=,,B 

The dommatlon test, on funnel-up heads hl,h2 
1s as follows Let T be a MH rule with set of heads 
H and body body Let t’ be a literal m ?’ Let 
h be the dlstmgulshed bmdmg version of 
hlb,t =1,2 For t =1,2, 1eJ 8, match hrb wrth t’ m 

Let F =(7-t )e, =H, cbq, , 8 =l,2, where 
b-t) 1s obtained from V by deleting literal t 
Then, the dommatlon test determines that h2_dom- 
mates h 1 If body I= =bx2 and 8, C * s H2 

The dommatron test IS m fact a generahzatron 
of the synonym test of the prevrous sectron, specral- 
rzmg It to the case where ongmal rules may have a 
number of heads While synonym IS a symmetnc 
relation, dominated IS a one place relation In a 
way srmllar to that m Theorem 4, rt can be shown 
that when the dommatlon test determines that A2 
dommates h 1, where both h 1 and h2 are heads m a 
MHSB rule m , then h I 1s dominated m m and thus 
may be deleted without altering the model of the 
program 

It might be possrble to remove addrtronal m 
heads Inturtlvely, the idea rs that the heads pro- 
duced m 7’ due to some head m m are, coliec- 
tlvely, also produced by those heads m m that give 
rise to an lsomorphlc body when unified with t’ 

7. Compiling MHMB rules 

In this section we sketch some ideas concern- 
mg the compllatron of the rewntten program mto a 
target language (e g C, or Prolog) MHSB rules 
having the same set S of multlheads can be grouped 
mto MHMB rules, where the multi-body part 1s the 
collectron of drstmct bodres and the multihead part 
1s S Thus, a MHMB represents many rules, each 
formed by a head from the MH part and a body 
from the MB part This notation presents an oppor- 
tunlty for compllmg all these many rules as a single 
unit The general problem 1s given a set of bodies, 
determine an mexpensrve sequence of steps to deter- 
mine all satisfiable bodies and the satlsfymg substl- 
tutions The sequence produced IS slmrlar to 
Prolog-hke backtracking which always uses as much 
mformatlon as possrble each time a new matching 1s 
tried out The same general idea applies to gen- 
erated tuples m the multihead part Thes e tuples 
mtroduce certain vanatlons of each other, thus the 
“next” tuple to be generated may be obtained by a 
mmor permutation on a previously generated one 
By exammmg the heads an “mexpenave” sequence 
may be obtained Furthermore, some variables m 
t’ are used m r ’ only in t ’ Intultlvely, such 

variables check “exrstence” The terms in 
correspondmg posltlons m funnel-up heads need not 
be formed at all! 

8. Conclusions 
The approach presented for supporting sets m 

a HCLPL represents a clear advancement of the 
state of the art First of all, rt ehmmates the need to 
use E-matching m supportmg sets, mstead we com- 
prle the ongmal program mto one that only requires 
ordmary matchmg Second, It leads to more efficient 
implementations smce the rewntten program IS 
optrmrzed usmg mformatlon avarlable m the given 
rule, thus ehmmatmg many of the blmd alleys 
explored by the blmd search of E-matching In par- 
ticular we take advantage of the standard represen- 
tation of facts, the mequahty constramts and 
synonyms 

Some of the techniques described, e g multl- 
heads, are stall m the experimental stage and we 
expect to further report on them m the future 
Other aspects are now being explored, among these 
are the support for the standard set operations, e g 
member, equality, mequahty, union The problem 
of whether given a term t , t rs unmatchable, 1 e 
cannot match with any standard fact, rs still open 
Addrtlonal optrmlzatron techniques also seem feast- 
ble 

Lastly, we should note that the rewnttmg 1s 
expensive and may take exponential time m the size 
of the rewritten term Thus, for sets with more 
than ten items or so it’s not very practrcal For 
large sets we can resort to usmg other techmques 
whrch rely on set membership tests, this technique 1s 
outsrde the scope of this paper 

In many such large sets, many of the set-o j 
arguments are variables that appear there and 
nowhere else m the rule, these are “placeholders” 
used to mdlcate cardmahty It will be mterestmg to 
“grow” the rewntten rule from a version produced 
by first lgnonng these “place-holders” and then 
addmg them one at a time 
Acknowledgment 

The authors wish to thank C Been for the 
useful comments received upon readmg an early ver- 
sion of this paper They also would like to thank Y 
Sagrv for hrs many useful comments 
References 

P3871 Abrteboul, S and C Been On the 
Power of Language8 for the Mancpula- 
tson of Complez Terms Unpublished 
Manuscnpt 

27 



[AsU79] 

[BNRSTS?] 

[CM841 

[FAGES87] 

[KN86] 

W-4 

W=l 

[LLOY84] 

[LS76] 

[0083] 

P-791 

Aho, A.V, Y Sagiv and JD Ullman, 
Eq&alence of Relational Expressions 
SIAM J Computing 8.2, pp 218-246. 
1976. 

Beeri, C , S Naqm, R. Ramakrishnan, 
0 Shmueh, and S. Tsur 

Sets and negation cn a Logic Databaae 
Language (LDLl) To appear m 6th 
ACM Symposium on Principles of 
Database Systems, San Diego, CA, 
1987 

Clocksin, W F , and C S Melhsh Pro- 
grammmg :n Prolog, 2n d. Edition, 
Sprmger Verlag, 1984. 
Fages F., Aseociatwc-commutative 
Unification J. Symbolic Comp., 3-3, 
257-275, June 1987. 
Kapur, D., and P. Narendran NP- 
Completeness of the Set Un$catton 
and Matchtng Problem Proc 8th 
Intematlonal Conference 
Automated Deduction (CADS; 
Oxford, England, July 1986 

Korth, H F., M.A Roth, and A Sllber- 
schata, A Theory of Non-Fmt- 
Normal-Form Relatronal Databats, 
1984. 
Kuper, G-M, and MY. Vard~ A new 
Approach to Database Logac. Proc 
Thud ACM Symp on Principles of 
Database Systems, Waterloo, Canada, 
1984 
Lincoln P , and J Christen Aduen- 
tures m Aseocratiue-Commrtattvc 
Un&ation. MCC Tech. Rept ACA- 
M-275-87, Sept 28,1987 

Lloyd, J W , Foundations of Logrc Pro- 
gramming Springer Verlag, 1984 
Lwesey, M., and A J. Slekmann, 
Unifieatron of A + C -Terms (Baga) 
and A+C+I-Terms (Seta) Univemtat 
Karlsruhe, Fakultat fur Informatlk 
Techmcal Report S/76,1976. 
Oszoyoglu, G. and Z. Oszoyoglu An 
Eztenaion of Relatronal Algebra for 
Summaq Tabfee Proc 2nd. Intema- 
tlonal (LBL) Conference on Stat&i& 
Database Management, 1983 

RauIefs, AP , A J. Slekmann, P 
Szabo, and E Unvencht A Short Sur- 
ueg on the State of the Art in Matchmg 

[STZ87] 

[STICK81] 

[SZ87] 

[TZSS] 

and Unification Problems ACM Slg- 
sam Bulletm 13,2, pp 1420, May 
1979 
Shmueh, O., Tsur S , and C Zamolo 
Comprlatron of Rules Contaontng Set 
Terma m a Logic Data Language 
(LDL) MCC Tech Rept DB-222-87, 
b-4 
Stlckel, ME , A Untfieat,on Algorrthm 
for Assoclattuc-Commutatrue Func- 
tions J. of the ACM 28,3, pp 423- 
434, July 1981 
Sacca‘, D , and C Zamolo Implemcn- 
tatron of Recuratue querres for a Data 
Language Based on Pure Horn Clauses 
Fourth Intematlonal Conference on 
Loge Pmgrammmg, Melbourne, Aus- 
tralia, 1987 

Tsur, S, and C Zamolo LDL A 
LogwBascd Data-Language PXX 
12th Int Conf on very Large Data- 
bases, Kyoto, Japan, 1986 

28 


