REWRITING OF RULES CONTAINING SET TERMS

IN A LOGIC DATA LANGUAGE (LDL)

Oded Shmueli* , Shalom Tsur, Carlo Zanolo

MCC, Austin, Texas

Abstract

We propose compilation methods for supporting set terms in Horn clause programs, without using generalpurpose set matching algorithms, which tend to run in times exponential in the size of the participating sets Instead, we take the approach of formulating specialized computation plans that, by taking advantage of information available in the given rules, limit the number of alternatives explored Our strategy is to employ compte time rewriting techniques and to transform the problem into an "ordinary" Horn clause compilation problem, with minimal additional overhead The execution cost of the rewritten rules is substantially lower than that of the original rules and the additional cost of compilation can thus be amortized over many executions

1. Overview

We propose complation methods for supporting set terms in Horn clause programs, without using general-purpose set matching algorithms Instead we take the approach of formulating specialized computation plans that, by taking advantage of information avalable in the given rules, himit the number of alternatives explored Our strategy is to employ rewriting techniques at comple tame to transform the problem into an "ordinary" Horn clause complation problem The execution cost of the rewritten rules is often substantially lower than that of the original rules and the additional cost of complation is thus amortized over many query executions

LDL is a Horn clause logic programming language (HCLPL) intended for data intensive knowledge-based applications [TZ86, BNRST87] The language can handle complex data as treated in [AB87, KV84, KRS84, 0083] and it supports varnous extensions to pure HCLPLs such as negation,

[^0]Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copynght notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery To copy otherwise, or to republish, requires a fee and / or specific permission
arthmetic, schema facility and sets Set-objects are internally represented as terms whose mann functor is set_of For example, the set $\{1,3,2\}$ may be internally represented as set_of $(9,1,2)$ (actually, it will be represented as set_of $(1,2,8)$) The characteristics of sets, in the mathematical sense, are captured by extending the notion of equality of such terms to account for the properties of commutativity and idempotence
Example 1: Consider the rule

```
john_friend(X) \leftarrow
    friends(set_of(X,Y,oohn)), X \not=john, nice(X)
```

Assume that the database ${ }^{1}$ contains the following facts
friends(set_of(John, Jım, Jack)) nace(Jım) mice(Jack)
The derived facts are john_friend(ım) and john_friend(jack)

The first answer comes from $\alpha=\{\mathrm{X} / \mathrm{\jmath} \mathrm{~m}$, $\mathrm{Y} / \mathrm{Jack}\}$, and the fact that the set consisting of jım, jack, and john is the same as the set consisting of john, jum, and jack The second answer comes from $\beta=\{\mathrm{X} / \mathrm{Jack}, \mathrm{Y} / \mathrm{\jmath} \mathrm{~m}\}$, and the fact that the set consisting of jack, j1m, and john is the same as the set consisting of john, jum, and jack
While this paper deals with E-unufication [FAGES87, RS79, STICK81, LS78, LC87] our stated goal here, which emphasizes comple-time transformations motivated by a large fact database, sets it

[^1]apart from most research in this area. Moreover, we do not assume associativity, since we are interested in arbitrarily deep nesting and thus assume that, say, $\{a,\{b\}\}$ is different from $\{a, b\}$ It should be noted that deep nesting can be handled in the context of associative-commutative unufication by introducing extraneous functions that are neither associative nor commutative; eg $\{\mathrm{a}, \mathrm{f}(\{\mathrm{b}\})\}$

The basic mechanism used in the implementation of LDL is matcheng, ie the unnfication of a term with a ground term In this paper, we concentrate on the mathematical principles underlying the efficient implementation of set matching Versions of these methods tuned for maximum performance are employed in the actual implementation

We assume that the reader is familiar with the basic notation of Logic Programming as presented, eg, in [LLOY84] For the purpose of this paper one can safely think of LDL as a pure HCLPL (with a distingushed functor - set_of) whose semantics is given by applying the immediate consequence operator T_{P} [LLOY84] untal fixpont-ie a "bottomup" repeated "firng" The only difference between our T_{P} and the one in [LLOY84] is that instead of matchung we use cr-matching as defined below

The set_of functors are used for the representation of traditional mathematical sets As such, the order of arguments in a set_of term is immaterial, this is captured by the concept of permutation Term t is a permutation of term 8 if t is obtained from by a sequence of zero or more interchanges of arguments in set_of subterms of s Likewise, repetitions of equal arguments should be ignored, this is captured by the concept of elementary compaction Term t is an elementary compaction of term sif it is obtained from s by (i) locating a subterm A of s which has two identical arguments, say at positions $2, j$ such that $i<\rho$, and (n) deleting the j 'th argument from A Terms t and - are ct-equal, denoted $t={ }_{c 1}{ }^{a}$, if there is a sequence $t=t_{1}, \quad, t_{k}=s$ such that for $t=1, \quad, k-1, t_{t+1}$ is a permutation of t_{1}, or t_{i+1} is an elementary compaction of t_{1}, or t_{1} is an elementary compaction of t_{1+1} Term t ct-unifies with term s if there exists a substitution α such that $t \alpha={ }_{c} \delta \alpha$ In case s is ground and t ci-unfies with 8 , we say that t ci-matches s
Example 2: Consider again the rule

```
john_friend(X) }
    friends(set_of(X,Y,john)), X = john, nice(X)
```

Assume that the database contains the following facts
friends(set_of(رum, 〕ohn)) nice(رım)
The only derived fact is john_friend(رım)
There are three substitutions that map set_of(X, Y, John) to set_of(Jım, John)
One is $\alpha=\{\mathrm{X} / \mathrm{\jmath} \mathrm{\jmath m}, \mathrm{Y} / \mathrm{\jmath ım}\}$ sınce set_of(ım, 〕ım, john) $=_{\text {al }}$ set_of(رım, john), it derives john_friend (lm) The second is $\beta=\{\mathrm{X} / \mathrm{j} \mathrm{im}$,
 set_of(jım, John), it derives john_friend(Jım)
The third is $\gamma=\{\mathrm{X} / \mathrm{John}, \mathrm{Y} / \mathrm{\jmath m}\}$ sunce set_of(John, jım, John) $={ }_{e}$, set_of(رım, John), however, no fact is derived because of $X \neq j$ ohn []

If we modify the database in the above example to contan only the facts friends(set_of(John)) and mee(John), then the only applicable substitution is $\alpha=\{\mathrm{X} /$ John, $\mathrm{Y} /$ john $\}$ and set_of(John, John, john) $={ }_{a}$ set_of(john) So, it is possible to specify a set containing three elements which is instantiated into a set containing (mathematically) one element Again, no fact is derived because of $\mathrm{X} \neq \mathrm{j}$ ohn

The following is an example of the usefulness of 1 -matching Suppose a team needs up to three persons The predicate team locates two member teams such that the two have been a team before (recorded in old_team) and the two members have the capabilities of an engineer, a scientist and a medical doctor

$$
\begin{aligned}
& \text { team(set_of(X,Y)) } \leftarrow \\
& \text { ok_team(set_of }(X, Y)), X \neq Y \\
& \text { ok_team(set_of }(X, Y, Z)) \leftarrow \\
& \text { old_team }(\text { set_of }(X, Y, Z)), \text { engıneer }(X), \\
& \text { scientist }(Y), \text { medıcal_doctor }(Z)
\end{aligned}
$$

The semantics of a program P with set terms is defined using cr-matching Thus, two programs are equivalent when they produce the same set of answer tuples modulo ci-equality Then, the compllation of P transforms it into an equivalent program that employs only ordinary matching Thus, the set_of terms in the transformed program can be treated as ordinary terms, modulo a compaction and ordering operation which, when apphed to newly derved facts, elimmates components of set_of terms so that no two subterms are ci-equal

To transform a program P requiring clmatching into one which requires ordinary matching, we expand the rules of P The result for the rule in Example 1 is shown in Example 3 below We introduce new rules called "funnel-up" rules ${ }^{2}$,

[^2]and use a short hand notation called multi-head-multi-body (MHMB) rules In a MHMB rule, comma is to be read as "and", and a semicolon as "or" So, a rule with m bodies and n heads represents $m \times n$ ordinary rules, one for each bodyhead combination
Example 3: Consider rule r, The rewritten rule is r^{\prime}

```
r john_friend(X)}
```

 friends(set_of(X,Y,John)),
 \(\mathrm{X} \neq \mathrm{john}\), nice \((\mathrm{X})\)
 $r^{\prime} \quad$ john_friend $(\mathrm{X}) \leftarrow$
funnel_up_friends(set_of(X,Y,john)),
$\mathrm{X} \neq \mathrm{john}$, nice (X)
funnel_up_friends(set_of(Y,X,john)),
funnel_up_friends(set_of(X,Y,john)) -
friends(set_of(John, $Y, X)$),
friends(set_of(Y,john,X)),
friends(set_of(Y,X,John))
funnel_up_friends(set_of(X,X,John)) \leftarrow
friends(set_of(john,X)),
friends(set_of(X,john))
funnel_up_friends(set_of(john,john,رohn)) \leftarrow
friends(set_of(John)) []

In the case of Example 3, we have three MHMB rules, each supporting the ci-matching of the original term with instantiated set_of terms of cardinality three, two and one The body of a rule checks for "generic" appearances of terms with a certain cardinality in the database For example, in the second rule, fruends (set_of (john,$X)$) and freends (set_of (X, john)) check for possible matches with a cardinality 2 instance The heads of a MHMB rule "transmit" the found bindings to the original term in the original rule In the second rule, bound values for
f unnel_up_f ruends (set_of $(X, X$, john $)$),
funnel_up_friends (set_of (X, john, john $)$)
and, funnel_up_frends (set_of (\quad ohn , $X, j o h n$))
need to be transmitted A closer inspection reveals that (1) and (2) will generate the same head tuples in r^{\prime} and that (3) will violate $X \neq \rho o h n$ in the original rule and hence (2) and (3) can be discarded

The transformation result may seem bulky However as a result, run-time ci-matching on a per tuple basis is replaced with an optimized compiletime "unfolding" of the matching process Our comple-time analysis eliminates blind alleys in ci-

[^3]matching as well as redundant derivations, it also optimizes the ci-matching process in the context of the particular program

There are eight sections Section 2 discusses technical aspects of augmenting a HCLPL with the set_of predicate Section 3 presents two theorems The first allows ci-matching to be substituted by 1 matching, the second allows 1 -matching to be substituted for by ordinary matching The rewriting transformation is presented in section 4 Optimization techniques are discussed in section 5 The merits of a prelminary rewriting, in which onginal program rules are made "multihead" is discussed in section 6 Section 7 presents some elementary observations concerning complation of the rewritten program Section 8 concludes and mentions possibilthes for future work

2. Augmenting Logic Programming with CIMatching

2.1. Horn clauses

A term t is defined inductively as (1) a constant, (il) a variable, (in) a formula of the form $f\left(a_{1}, \quad, a_{n}\right)$ where f is an n-ary function symbol and, for $t=1, \quad, n, a_{1}$ is a term which is called the argument of t of index : f is an n-ary function symbol unless $f=s e t$ _of which is a distingushed function symbol that does not have a fixed arity A term is ground if it contains no variables A term t defined accordng to (1) or (11) will be called simple, and complex otherwise

A rule is a formula of the form

$$
A \leftarrow B_{1}, \quad, \quad B_{n}
$$

where A and each $\begin{gathered}A \leftarrow B_{1}, \\ , 1 \leq i \leq n,\end{gathered} \quad \begin{gathered}B_{n} \\ \text { are literals (or }\end{gathered}$ predicates), 1 e , a predicate symbol apphed to as many terms as indicated by its arity Let artty (t) denote the arity of hiteral or term t In the rest of the paper we will loosely use the the word "term" to refer to both actual terms or literals, since hterals, syntactically, have the same form as terms

A substatution is a set of pars $\theta=$ $\left\{X_{1} / t_{1}, \quad, X_{n} / t_{n}\right\}$ where X_{1}, \quad, X_{n} are distinct variables and t_{1}, \quad, t_{n} are terms Then $t \theta$, the instance of term t by θ, is the expression obtained from t by by simultaneously replacing each occurrence of the variable X_{1}, in t by the term $t_{\text {. }}$ The composition $\theta \sigma$ of two substitutions $\theta=\left\{X_{1} / t_{1}, \quad, X_{m} / t_{m}\right\} \quad$ and $\sigma=\left\{Y_{1} / s_{1}, \quad, Y_{n} / s_{n}\right\} \quad$ is the substitution obtanned from the set
$\left\{X_{1} / t_{1} \sigma, \quad, X_{m} / t_{m} \sigma, Y_{1} / s_{1}, \quad, Y_{s} / s_{n}\right\}, \quad$ by deleting every binding $X_{i} / s_{4} \sigma$ for which $X_{1}=s_{1} \sigma$ and each binding Y_{j} / δ_{j} for which
$Y, \in\left\{X_{1}, \cdot X_{m}\right\}$.
A substitution $\theta=\left\{X_{1} / t_{1}, \quad, \quad X_{n} / t_{n}\right\}$ where t_{1}, \quad, t_{n} are all ground, ie, contain no varnables, is called a binding A term t_{1} is said to be more general than (or a generalization of) of a term t_{2} when there exists a substitution θ such that $t_{1} \theta=t_{2}$, in that case t_{2} is a restrection of t_{1}; if t_{2} is ground then t_{2} is an instantiation of t_{1} If two terms are each a generalization of the other, then they differ only by variable renaming and they are sard to be varsants of each other.

A substitution θ is said to unafy (or, to be a untifier for) two terms t_{1} and t_{2} if $t_{1} \theta=t_{2} \theta$, then we also say that the unification equation $t_{1}=t_{2}$ is satisfiable and θ is a solution for that equation A set S of unification equations is satisfiable if there exists a substitution θ such that θ is a solution for each equation in S From the existence of the most genteral unifier of two terms [LLOY84], it follows that
Proposition 2.1: Given a satısfiable finite set of unfication equations U, there is some solution θ which is a generalization of every solution for U [

The most general solution for U will be called the most general unefier (mgu) for U It also follows that the most general solution for U is unique modulo variable renaming So far, our concepts of equality and unification are the standard ones where two terms are equal iff they are (syntactically) identical and are unifiable iff the unification equation for them is satisfiable

2.2. Cl-matching

Let set_of be a distingushed function symbol It is intended to model mathematical sets, as such it does not have a fixed arity With zero anty, i.e set_of (), it represents the empty set With nonzero arity, 1 e set_of (a_{1}, \ldots, a_{n}), it represents the set whose elements are $a_{1}, ., a_{n}$ (not necessamly distinct) These inturtive notions are captured formally as follows.

Term t derives term modelo idempotence, denoted $t=\gg$, if either (1) $t=s$ or (u) s is t with the exception that a subterm t_{1} of t,
$t_{1}=$ set_of $\left(x_{1}, \ldots, x_{1}, ., x_{j-1}, x_{j}, x_{j+1}, . ., x_{n}\right)$, such that $x_{i}=x_{j}$, is modified by deleting x_{j} to obtain $s_{1}=s e t_{\ldots}$ of $\left(x_{1}, \quad, x_{1}, \quad ., x_{j-1}, x_{j+1}, . \quad, x_{n}\right)$ in s is obtanned from t by an elementary compaction step from t to s Observe that $t=>.0$ does not imply $s=>, t$.

Term t derives term s modulo commutativity, denoted $t=>_{c} s$, if either $t=s$, or s is t with the exception that a subterm t_{1} of t,
$t_{1}=s e t _o f\left(x_{1}, \quad, x_{i}, \quad, x_{j-1}, x_{j}, x_{j+1}, \quad, x_{n}\right)$, is modified by exchanging arguments x_{1} and $x_{\text {, }}$ to obtan
$s_{1}=s e t_{\text {_of }}\left(x_{1}, \quad, x_{j}, \quad, x_{j-1}, x_{i}, x_{j+1}, \quad, x_{n}\right)$ in s s obtained from t by a permutation step from t to s Observe that $t=>{ }_{c} s$ iff $s=>{ }_{e} t$
Term t derives term s modulo commutativity and sdempotence, denoted $t=>a_{i} s$, if either (1) $t=>, 8$, or (11) $t \Longrightarrow>_{c}{ }^{s}$ Let $=\stackrel{*}{=}$, $=\stackrel{*}{=}{ }_{c}$ and $=>$ a be the transitive closure of $\Longrightarrow>_{1}, \Longrightarrow c_{c}$ and $\Longrightarrow c_{c}$, respectively If $t= \pm>$, s then s is obtanned from t by elementary compaction from t to s, if $t={ }_{c}{ }^{s}$ then s is obtamed from t by permutation from t to s Let $=_{1},=_{c}$ and ${ }_{c}{ }_{c}$ be the symmetric and transitive closure of $\Longrightarrow>_{1}, \Longrightarrow \gg_{c}$ and $=>{ }_{\text {ei }}$, respectively

Next, we extend equality based unification and matching A substitution θ i-unifies, c-unifies, ctunsfies terms t_{1} and t_{2} if $t_{1} \theta={ }_{1} t_{2} \theta, t_{1} \theta={ }_{c} t_{2} \theta$, $t_{1} \theta={ }_{c i} t_{2} \theta$, respectively When t_{2} is ground the word unification is replaced by matching, we then speak of e-matcheng, c-matching and ci-matcheng

Term t is compact if it contains no set_of subterm with two syntactically identical arguments Equivalently, t is compact if $t==>, s$ implies $t=6 \quad$ For example,

$$
f(22, \text { set_of }(1,2,3), 22)
$$

is compact, while

$$
f(22, \text { set_of }(1,2,1,3), 22)
$$

is not compact Term t is strongly compact if for all terms s such that $t=>_{c}{ }^{\circ}, s$ is compact, intuitively, one cannot permute the arguments of set_of subterms of t and produce two identical ones For example,

$$
\text { set_of (set_of }(X, a), \text { set_of }(a, X))
$$

is compact but not strongly compact since

$$
\begin{gathered}
\text { set_of (set_of }(X, a), \text { set_of }(a, X))=> \\
\text { set_of }\left(\text { set_of }(a, X), s e t _o f(a, X)\right)
\end{gathered}
$$

A substitutzon, $\left\{X_{1} / t_{1}, \quad, X_{n} / t_{n}\right\}$ is called compact, or strongly compact, when each t_{1}, $1 \leq 1 \leq n$, is compact or strongly compact, respectively

Given a term t, the compact form of t denoted $\operatorname{com}(t)$, is a compact term obtained from t com (t) can be computed by repeating the following untll there are no more changes

Find a set_of subterm s of t such that all of s 's arguments are compact and s has two identical arguments, delete the argument with the highest index

It can be shown that com (t) is unique Clearly, $t==\gg, \operatorname{com}(t)$ and the sequence of elementary compaction steps is such that a subterm A is handled, 1 e being made compact, only after all of its arguments have been handled and are compact. Such an elementary compaction step is called a bottom-up compaction step and a sequence of bottom-up compaction steps is called a bottom-up compaction

Given a term t, a strong compact form of t is a strongly compact term obtained from t as follows (it is not unique in general)

Consider $S=\left\{s \mid s={ }_{e} t\right\} \quad$ It can be shown that S is finite If all $\in \in S$ are compact then t is strongly compact Otherwise, if $s \in S$ is a non-compact term, then let $t=\operatorname{com}(s)$ and repeat this step
It can be shown that if t_{1} and \boldsymbol{t}_{2} are strong compact forms of t then $t_{1}={ }_{c} t_{2}$

The following Lemma states that if I is strongly compact then $t=\stackrel{*}{=} I$ imphes that there is a sequence of standard compaction steps leading from t to I Intuitively, duplicates are being thrown from subterms of t in such a way that a set_of subterm is considered for duplicate elimınation only after all of its set_of subterms have been considered We need a technical definition The height of a term t, denoted hesght (t), is defined inductively thus, the height of a constant is zero, the height of $f\left(t_{1}, \quad, t_{n}\right)$ is $1+\max \left\{\right.$ height $\left(t_{1}\right)$, height $\left.\left(t_{n}\right)\right\}$
Lemma 2.1:3 If I is strongly compact and $t=>, I$ then I can be obtaned from t via a standard compaction

The following Lemma states that if $t=I$ and I is strongly compact then there is a sequence of duplicate elimination operations on set_of subterms of t that leads from t to I Note that this is not always the case if I is not strongly compact
Lemma 2.2: Let I be strongly compact $t=1$ iff $t=\stackrel{*}{=} \quad I$

Next, we show that if I is strongly compact and $t={ }_{c 1} I$ then I can be obtaned from t by first permuting some arguments of some set_of subterms of t and then performing a sequence of dupllcate elimination operations from set_of subterms

[^4]Lemma 2.3: Let I be strongly compact $t={ }_{a} I$ iff there exists w such that $t=\stackrel{\bullet}{=}{ }_{e} w=\stackrel{\bullet}{=}>, I$

2.3. The standard representation of facts

A fact is a ground term We start by defining a total order on facts
(1) There is a total order on constants and function symbols (eg, ASCII order)
(2) If $t=f\left(t_{1}, \quad, t_{n}\right)$ and $=g\left(s_{1}, \quad, s_{m}\right)$ and f precedes g, then t precedes s
(3) If $t=f\left(t_{1}, \quad, t_{n}\right)$ and $0=f\left(\sigma_{1}, \quad, o_{m}\right)$ then t precedes of they are equal on all positions up to some position : for which either $t_{\text {: }}$ precedes s_{1} or there is no position $:$ in t
A fact is in sorted form if in each set_of subterm of the fact, the arguments are in sorted order according to the order defined above on facts

We make the following assumptions concerning stored facts First, facts are always in strongly compact form Second, facts are always in sorted form (see above) These two assumptions together are the standard representation assumption \mathbf{A} fact obeying this assumption is said to be standard A. binding $\theta=\left\{X_{1} / T_{1}, \quad, X_{k} / T_{k}\right\}$ is standard if for $t=1, \quad, k, T$, is standard

Given a fact t, the standard form of t, denoted standard (t), is obtained from t by sorting each set_of subterm of t and eliminating duplicates in such a way that a subterms is handled only after all its set_of subterms have been handled It can be shown that standard (t) is unique and that $t=>{ }_{\text {ci }}$ standard $(t) \quad$ which \quad implies $t={ }_{c i} \operatorname{standard}(t)$

To illustrate the importance of the standard representation assumption, let us assume that, by contradiction, we admit in the database the pair of facts $p\left(s e t _o f(1,2)\right)$ and $q\left(s e t _o f(2,1)\right)$ which violates this assumption Then, by the semantics of sets, the conjunct $p(X), q(X)$ must succeed, but that cannot be accomplished with ordinary matching -a direct contradiction to our basic tenets Fortunately, this problem can be solved by assuming that database facts obey the standard representation as defined above

2.4. Semantics

The semantics of LDL is defined formally in [BNRST87] Here we limit attention to a subset of LDL that $1 s$ comprised of Horn clauses, the distinguished function symbol set_of, and two built-in predicate symbols $=$ and \neq of arity two which are written in infix notation For simplicity, we view the database as part of the program Substitution θ
satusfies the body of a rule $h \leftarrow t_{1}, \quad, t_{n}$ in a set of facts S, if for $t=1, \quad, n$, either (1) t_{1} has form $s_{1}=s_{2}$ and $s_{1} \theta={ }_{c 1} s_{2} \theta$, or (11) t_{1} has form $s_{1} \neq s_{2}$ and $s_{1} \theta_{\neq A_{i}} s_{2} \theta$, or (mi) there exasts $a_{2} \in S$ such that $t_{i} \theta={ }_{c i} s_{i}$
Definztion of $M(P)$
The model of a program P, denoted $M(P)$ is defined thus Let $M_{0}=$ For $:>0$,
$M_{1}=M_{1-1} \cup\{h \theta \mid$ binding θ satısfies the body of a
rule $r \in P$ in M_{t-1}, with h the head of $\left.r\right\}$

$$
M(P)=U_{1=0}^{\infty} M_{1}
$$

In the sequel we shall refine components in both the model and rule satisfaction definitions Our goal will be to show that each modufication "preserves" the model Preservation is captured formally as follows Two sets of facts S and T are ct-equivalent, denoted $S={ }_{c 1} T$, if for all $\boldsymbol{z} \in S$ there exists $t \in T$ such that $s={ }_{e 1} t$ and vice versa

We show that if θ is restricted to be standard, the resulting set of facts is $=_{c}$ to $M(P)$
Lemma 2.4: Let $M^{\prime}(P)$ be defined like $M(P)$ except that M_{i}^{\prime} is defined as
$M_{1}^{\prime}=M_{1-1}^{\prime} \cup$
$\{h \theta \mid$ standard binding θ satisfies the body of a rule $r \in P$ in M_{i-1}^{\prime}, with h the body of $\left.r\right\}$
Then, $M^{\prime}(P)={ }_{e t} M(P)$
The set of facts obtained when in addition each demved fact is standardized before being added to the model, is also $=e t$ to $M(P)$
Lemma 2.5: Let $M^{\prime \prime}(P)$ be defined like $M(P)$ except that $M_{:}^{\prime \prime}$ is defined as
$M_{i}{ }^{\prime \prime}=M_{i-1}^{\prime \prime} \quad U$
$\{$ standard $(h \theta) \mid$ standard binding θ satisfies the body of a rule $r \in P$ in $M_{i-1}^{\prime \prime}$, with h the head of $\left.r\right\}$
Then, $M^{\prime \prime}(P)={ }_{e} M(P)$
Let P be a program and q a literal A correct result for query q against P is
$\left\{q \theta \mid\right.$ there exist $\theta, s \in M(P)$ such that $\left.q \theta={ }_{c 1} 8\right\}$ It can be shown that if $M(P)$ above is replaced with S such that $S={ }_{c} M(P)$ the same set of result facts is obtained This indicates that we deal with mathematically identical sets of complex objects In practice, a set of answers is most probably infinite, e g if $\theta=\left\{X_{1} /\right.$ set_of $\left.(1)\right\}$ then
$\theta=\left\{X_{1} /\right.$ set_of $\left.(1,1)\right\}$ will do as well as
$\theta=\left\{X_{1} /\right.$ set_of $\left.(1,1,1)\right\}$ and so on So, in practice, one might be satisfied with any set that is $=c$ to the answer set defined herem

Using Lemma 24 and Lemma 25 we obtain

Theorem 1: Suppose in the definition of $M(P)$ each added fact is standardized, and all standard substitutions are considered (and perhaps some non-standard ones are considered as well), let $M_{1}(P)$ be the resulting model Then, $M_{1}(P)={ }_{a t} M(P) \quad[]$

Intuitively, the Theorem states that if generated facts are standardızed, all standard substitutions are considered, and some additional substitutions are considered as well, the result is still $=a$ to $M(P)$

3. The Decomposition Theorems

3.1. The C-decomposition Theorem

The following Theorem is the basis of the first step in program rewriting, replacing cl-matching with i-matching by considering all permutations of a term for 1 -matching This depends on being able to commute substitution and permutation
Theorem 2: Let I be a standard fact and θ a standard substitution, $t \theta={ }_{c t} I$ iff there exist t_{1} such that $t={ }_{e} t_{1}$ and $t_{1} \theta=I$

3.2. The I-decomposition Theorem

The second main step in the rewriting presented in this paper is replacing i-matching with ordinary matching This is done by determining a pron the possible identification of subterms that could be made by run-time substitutions Essentially, this is tantamount to considering each possible standard compaction and solving a set of (ordinary) unification equations implied by the standard compaction We need some machinery to carry out this task

We need a mechanism to refer to subterm positions independent of their "current" content, this is analogous to the distinction between an address and its content Any subterm of a term t can uniquely be identified by its term address, defined as follows
(1) $\boldsymbol{\gamma}$ is a term address whose content is the whole term t,
(il) if A is the term address in t whose content is the subterm $f\left(t_{1}, \quad, t_{n}\right)$ then $A \rho$, $1 \leq \jmath \leq n$, is a term address in t whose content is t,
We use $t A$ to denote the subterm of t whose address is A (eg, $t \gamma=t$) For example, if $t=f\left(g\left(s_{1}, s_{2}\right), h(X)\right) \quad$ then $\quad t \gamma 2=h(X) \quad$ and $t \gamma 1=g\left(s_{1}, s_{2}\right)$ and $t \gamma 12=s_{2}$ in t.

An E-entry on term t is of the form $A_{i}=A$, where A is the address of a set_of subterm of $t, i<\jmath$ and $A:$ and $A \jmath$ are addresses of
arguments of $\boldsymbol{t} \boldsymbol{A}$ For example, let $t=f($ set_of (a, X), set_of $(b, Y, b), X)) \quad$ then $\gamma 21=\gamma 23$ is an E-entry on t Intuitively, an E entry means that during a standard compaction on $t \theta$ for some θ the subterms at these addresses will be equal In the last example, indeed $b=t \gamma 21=t \gamma 23=b$ and a standard compaction could delete the second b As another example consider the E-entry $\gamma 11=\gamma 12$ This E-entry means that during standard compaction on $t \theta$ for some θ the subterms originating with a and X will be equal This implies a unification equation, namely $a=X$

An E-sequence E on t is a sequence of E entries on t such that for all $A=B$ appearing in the sequence no address of the form $A \alpha$ or of the form $B \alpha$ appears later on in the sequence Intultively, an E-sequence depicts a standard compaction on $t \theta$ for some θ Continuing the example, $E=(\gamma 21=\gamma 23, \gamma 11=\gamma 12)$ is an E-sequence on t Observe that an E-sequence defines a sequence of unification equations and also a "final result" and an mgu In our example, the final compacted result is f (set_of (a), set_of $(b, Y), a)$) and the mgu is $\{X / a\}$

In general, an E-sequence $E=E_{1}, \quad, E_{n}$, defines a set $Q(E)$ of unification equations and a term obtained from t denoted $E(t)$, which are obtanned using the algorithm below

An E-sequence is valid in t if the above algorithm does not abort on input t and E Intuitively, if an E-sequence is not valid it definitely does not describe a standard compaction Even if an Esequence is valid it does not necessarily describe a standard compaction since the umfication equations may not be satısfiable Furthermore, even if a standard compaction is described it does not necessarily end up in a strongly compact term, and hence
cannot depict a binding followed by a standard compaction ending up with a standard fact

An E-sequence E is satisfiable in t if it is valid in t and $Q(E)$ is satisfiable If E is satisfiable in t with ω an mgu for $Q(E)$, and $E(t) \omega$ is strongly compact, then $E(t) \omega$ is called a genersc term for t defined by E and ω If E defines a generic term for t then this term is a variant of any other genernc term defined by E for t
Claim: Let g be a generıc term for t defined by an E-sequence E with mgu ω Then, $t \omega=1 g$
Theorem 3: Let I be a standard fact There exists a standard substitution θ such that $t \theta=1$ iff there exist a substitution δ and an E-sequence E, inducing a satisfiable $Q(E)$ via mgu ω and a generic $g=E(t) \omega$, such that $t \omega=, g, g \delta=I$ and $\theta=\omega \delta$ is standard

4. The Rewriting Transformation

By considering all possible valid E-sequences on t, the set of all pairs where each pair 18 of the form (g, ω) of generic terms of t and the mgus generating them, denoted $G(t)$, may be obtained There are better ways for obtaining $G(t)$, but still exponential in the size of t This is not surprising as set matching is NP-hard [KN86] We leave this subject for a subsequent paper

4.1. The first step

We now explain the transformation A rule r of the form
head $\leftarrow t_{1}, \quad, t_{n}$ where, wlo.g, t_{1} contains set _of subterms is transformed into a rule r^{\prime} of the form

$$
\text { head } \leftarrow f \text { unnel_up_ } t_{1}, t_{2}, \quad, t_{n}
$$

and a set of permutation rules

$$
\begin{aligned}
& f \text { unnel_up_} t_{1} \leftarrow \text { permute_ } 1_{-} t_{1} \\
& \text { funnel_up_} t_{1} \leftarrow \text { permute_m_} t_{1} .
\end{aligned}
$$

where permute_ $1_{-} t_{1}$, , permute_m_ t_{1} are all the permutations of term t_{1} Each such permutation is obtained from t by exchanging positions of arguments of some set_of subterms of t The number of such permutations is obviously finite
For the rule in Example 2 we get

$$
\begin{aligned}
& \text { john_friend }(X) \leftarrow \\
& \text { funnel_up_friends(set_of }(X, Y, j o h n)), \\
& X \neq \text { fohn, nice }(X) \\
& \text { funnel_up_friends }(\text { set_of }(X, Y, J o h n)) \leftarrow \\
& \text { friends }(\text { set_of }(X, Y, j o h n)) \\
& \text { funnel_up_friends(set_of }(X, Y, j o h n))
\end{aligned}
$$

> friends(set_of(X,john,Y))
> funnel_up_friends(set_of $(X, Y, j o h n)) \leftarrow$ friends(set_of(Y,X,john))
> funnel_up_friends(set_of(X,Y,john)) \leftarrow friends(set_of(Y,john,X))
> funnel_up_friends(set_of(X,Y,john)) ↔ friends(set_of(john,X,Y)) funnel_up_friends(set_of(X,Y,john)) -
> friends(set_of(John, Y,X))

Let $P+f$ unnel be the program resulting by iansforming rule r in P as above For a set of facts S, let S / P be the subset of facts in S whose تredicate symbol appears in P Let us refine the ution of satisfaction of a rule body as follows ubstitution θ satrsfies the body of a rule $1 \leftarrow t_{1}, \quad, t_{n} \quad$ in a set of facts S, if for $=1, \quad, n$, there exists $o_{1} \in S$ such that (1) . $\theta=s_{1}$ if t_{1} is a funnel_up literal, (n) $t_{1} \theta=1, \theta_{1}$ if t_{1} , a permute_1 literal, (in) if t is of the form $a=b$ sen $a \theta={ }_{e t} b \theta$, (iv) if t is of the form $a \neq b$ then $A \neq c i b \theta$, and otherwise $t_{i} \theta={ }_{c i} s_{i}$
Lemma 4.1: Assume that in the definition of $M(P)$ (1) only standard substatutions are considered, (2) the refined notion of rule body satisfaction is used, and (3) each added fact, which is not with predicate name prefix funnel_up_, is standardized Let $\bar{M}(P)$ be the resulting set Then, $\bar{M}(P+f$ unnel $) / P={ }_{c} M(P)$

4.2. The second step

in the next step of the transformation, each permutution rule f unnel_up_ $t_{1} \leftarrow$ permute__ t_{1} is deleted ind replaced with, usually many, genersc rules sbtained from G (permute_z t_{1}) For each par $, g, \omega)$ in $G\left(\right.$ permute_z $\left.t_{1}\right)$ the rule f unnel_up_$t_{1} \omega+g$ is added, g is called a genersc literal

Continuing the previous example, let us concentrate on one particular permutation rule, say funnel_up_f riends (set_of (X, Y,john)) $\leftarrow f$ riends (set_of $(X, j o h n, Y))$
For the simple set_of terms in this example, each ω can be represented by indicating which arguments were identified as equal by ω Once this is done, a standard compaction gets g The possibilities can be represented symbolically as patterns (\#,\#,\#), (\#,@,\#), (@,\#,\#), (\#,\#,@), (\#,@,\&) Each such possibility has implications on the values assigned to variables in the rule The first possibility (\#,\#,\#) ımplies that θ must assign gohn to both X and Y Thus we generate a rule
$\begin{aligned} &\text { (a) funnel_up_friends(set_of(john,_John,john) }) \\ & \leftarrow \text { friends(set_of(john)) }\end{aligned}$

The second possibility (\#,@,\#) implies that θ must assign the same values to X and Y Thus we generate a rule
(b) funnel_up_friends(set_of(X,X, John))
\leftarrow friends(set_of(X,john))
For the other possibilities we generate, respectively
(c) funnel_up_friends(set_of(X,john,john))
\leftarrow friends(set_of(X,john))
(@, \#, \#)
(d) funnel_up_friends(set_of(John, Y,john))
\leftarrow friends(set_of(John,Y))
(\#, \#, @)
(e) funnel_up_friends(set_of(X,Y,john))
\leftarrow friends(set_of(X,john, Y))
(\#, @, \&)

After we do the above for each permutation rule we end up with a large set of new generic rules and no permutation rules

Define $P+g e n e r i c$ as the resulting program following the transformation Let us further refine the notion of rule body satisfaction by adding "(v) $t_{1} \theta=\delta_{1}$ if t_{i} is a generic literal," to the definition in the previous section
Lemma 4.2: Suppose that in the definition of $M(P)$ (1) only standard substitutions are considered, (2) the newly refined notion of rule body satisfaction is used, and (3) each added fact, which is not with predicate name prefix funnel_up_, is standardized Let $\bar{M}(P)$ be the resulting set Then, $\bar{M}(P+$ generac $) / P={ }_{c} M(P)$

4.3. The third step

In the previous step each permutation rule was replaced with some generic rules We now describe the next stage in the transformation which we call body homogenszing Recall that terms s, t sharing no variables are variants if there exists a substitution θ which is a 1-1 renaming of variables such that s $\theta=t$ It may happen that in the collection of genenc rules produced above, we may locate two rules, r_{1} head $_{1} \leftarrow$ body y_{1} and $r_{2} h e a d_{2} \leftarrow$ body y_{2}, such that $b_{o d y}^{1}$ and body ${ }_{2}$ are variants Since the meaning of a program is not altered when the variables in a rule are consistently renamed, we can rewrite r_{1} as $h_{\text {head }}^{1} \theta \leftarrow b o d y_{2} \quad$ (since \quad body $_{1} \theta=$ body $_{2}$) Consequently, we can rewrite the collection of rules in such a way that all bodies which are variants of each other become now syntactically identical As an illustration consider the pattern (@,\#,\#) and the permutation rule with the body f riends (set_of (john, $Y, X)$) Note that this is a different permutation rule than the one we considered before, with body
f reends (set_of $(X$, john,$Y)$), that induced rules (a)-(e) The rule that we get is
(f) funnel_up_friends(set_of(X, X, john)) \leftarrow friends(set_of(John, X))
The body of rule (d), friends (set_of (john , Y)), is a variant of the body of rule (f) viz $\theta=\{Y / X\}$ Thus, we rewrite (d) as
(d') funnel_up_friends(set_of(John, X, john)) \leftarrow friends(set_of(John, X))

Once rule-bodies are homogenzed we can rewrite them in MHSB format (S stands for Single), by associating with each body all of the heads appearing in rules in conjunction with this body Of course, if two heads grouped for a body are equal, only one is retained
Example 4: The final result for our example are the following MHSB rules
(1) funnel_up_friends(set_of(X,Y,John)), funnel_up_friends(set_of(Y,X,John)) \leftarrow friends(set_of(X,john,Y))
(2) funnel_up_friends(set_of(X,Y,John)), funnel_up_friends(set_of(Y,X,John)) \leftarrow friends(set_of(X,Y,john))
(3) funnel_up_friends(set_of(X,Y,John)), funnel_up_friends(set_of(Y,X,John))
\leftarrow friends(set_of(John, X,Y))
(4) funnel_up_friends(set_of(X,X,John)), funnel_up_friends(set_of(John,X,John)), funnel_up_friends(set_of(X,John,John))
\leftarrow friends(set_of(X,John))
(5) funnel_up_friends(set_of(X,X,John)), funnel_up_friends(set_of(John,X,John)), funnel_up_friends(set_of(X, oohn,John))
\leftarrow friends(set_of(John, X))
(6) funnel_up_friends(set_of(John, john,John))
\leftarrow friends(set_of(John))
II
4.4. Summary of the transformations on a rule
(1) replace the literal t in the original rule body with a funnel_up_t hiteral
(2) For each permutation of t generate a permutation rule whose head is funnel_up_t and whose body is the permutation of t
(3) Replace each permutation rule with a set of generic rules Inturively, a generic rule represents a possible compaction which may
be applicable at run-tıme
(4) Perform body homogenizing by making vanant bodies syntactically identical
(5) Group rules into MHSB format by associating with each body form all of the distinct heads at derives
(6) Possible optimızations, see next section

The transformation above is apphed to a single literal in a single rule Clearly, it can be apphed to all literals in a rule which contan set_of subterms untal they are all "converted" into funnel_up literals Simularly, each program rule can be separately rewritten (Of course, care must be taken to avoid naming conflicts, eg if t appears in rule r_{1} and in rule $r 2$ then we may use f unnel_r $1_{-} u p_{-} t$ in rewritting r_{1} and f unnel_r 2_up_t in rewritting r 2) Call the result the transformed P, denoted P) One would like to argue, based on Lemma 42 , that assuming that derived facts, other than those derived for generic rules, are standardized in computing $M\left(P^{\prime}\right)$, $M\left(P^{\prime}\right)$ may be computed by only considering ordinary matching This argument seems to follow from the fact that once P^{\prime} is formed, all literals containing set_of subterms are either funnel_up hiterals or generic hterals

However, there is one delicate point to consider It is still possible that a generic rule will match its generic literal to a standard fact I via δ such that $\theta=\omega \delta$ is not standard' In that case we may end up considering non-standard θ 's in computing $\bar{M}\left(P^{\prime}\right)$ But, if such a θ is used to match f unnel_up_t in the body of some r with f unnel_upt ${ }_{1} \omega \delta$ generated by some generic rule, we still have $t_{1} \omega={ }_{c}$ permute_2 $t_{1} \omega=1 g$ which imphes $t_{1} \omega={ }_{a t} g$ which imples $t_{1} \omega \delta={ }_{c t} t_{1} \theta={ }_{a t} g \delta=I$ So, even if such a non-standard θ "satisfies" the body of a rule, the derived standard ($h \theta$) would have been in $M_{1}(P)$ and so the "extra" facts we generate result ${ }^{\mathrm{nn}}, \bar{M}^{\prime}=\bar{M}(P) \cup$ extra facts, such that $\bar{M}^{\prime}={ }_{\text {et }} M(P) \quad$ Hence, correct query results are obtanned by considering the "ordinary" logic programming model for P^{\prime} with the provision that facts generated by non-generic rules are standardrzed

5. Optimization

The following techniques apply at step 6 of the rule transformation summary of the previous section We consider original rule r, its modification r^{\prime}, and its funnel-up literal f unnel_up_t Let $G R$ be the set of MHSB rules generated by the rewriting We shall use m to denote a MHSB rule in GR Let P^{\prime} be the
resulting program.

5.1. Using equalities and inequalities

In some cases it may be determined that certain funnel-up heads in a MHSB rule cannot supply any bindings for which the whole (modified) rule body can succeed in matching all literals, in such cases these heads are disposed of in advance Such cases often unvolve arithmetic predicates and the predicates $=$ and \neq For example, the head funnel_up.friends(set_of(john, X, john)), can be discarded from the MHSB rule (4) in Example 4, as it will force $X=$ gohn in the onginal rule and thus volating $X \neq j o h n$. Thus, rule (4) can be replaced by (4') below
(4') funnel_up_friends(set_of(X,X,john)), funnel_up_friends(set_of($X, j o h n, j o h n)$) \leftarrow friends(set_of(X,john))
At comple-time some certain violations can be checked for as follows. Rename variables so that each rule has a set of vanables disjoint from the set of vamables in any other rule. Unify f unnel_up_t in the body of the modified rule r with h, the head of the checked MHSB rule; let θ be the mgu. Now consider an equality constrant $q=s$ in r^{\prime}. If $q \theta$ and $s \theta$ are not ci-unifiable, then h can be discarded Checking this can be done by using a ciunnication procedure; the description of such a procedure is outside the scope of this paper. Next consider an inequality constraint $q \neq s \mathrm{in} r$ We consider it violated at compile-time only if $g \theta={ }_{c t} \boldsymbol{\theta} \theta$ which can easily be checked.

5.2. Using the standard representation assumption

In other cases it may be determined that a body of a MHSB rule will never match a standard fact For example, if friends(set_of(john, eric, X)) happens to be a body in a MHSB rule then it cannot match any standard fact because eric precedes john in the sorted order. A term is unmatchable if it cannot match any standard fact I The decision problem as to whether a given term is unmatchable is still open However, we make the following observations

We say that a given term t is antiordereded if it contains a set_of subterm such that for all substitutions θ such that $t \theta$ is ground, $\boldsymbol{j} \boldsymbol{\theta}$ precedes $s 2 \theta$ in the total order on terms where $j(s i)$ is the ρ 'th (i 'th) argument of $s, i<j$. For instance, $f(g(1)$,set_of (male (X), male $(Y), f$ emale $(Z))$) is antiordered since f emale precedes male Observe that a term may be unmatchable and yet not be antiordered, eg, in

$$
t=f(\text { set_of }(1, X), \text { set_of }(X, 1))
$$

each set_of subterm of t by itself can match with a standard fact, yet t cannot We have the following
Observation 5.1: An antiordered term is unmatchable []
So, if a generic literal is antiordered, and hence unmatchable, the oeneric rule for this generic literal will never be satisfied and therefore can be discarded.

We now present a method that detects many cases, but not all, in which a term t is antiordered For term t, if t is a constant then $t[0]$ denotes t and otherwise $t[0]$ denotes the main functor of t We need the following procedure which determines a total order on terms which when restricted to ground terms reduces to the total order on ground terms defined previously It basically assumes that any order is possible when one of the terms is a variable
procedure precedes (t, s) boolean;
/* vanables are magically ok, we
"approximate" here */
if t or s is a variable then return true, if $t[0]$ precedes $s[0]$ in the total order on terms then return true,
if $t[0]$ follows $:[0]$ in the total order on terms then return false,
if $t[0]=s[0]$ and $t[0]$ is a constant then return true,
if $t[0]=s[0]$ then
begin /* need to compare arguments if same functor */
contmue =true,
$i=1$;
while
$: \leq \operatorname{artg}(t) \mathrm{A}: \leq \operatorname{arty}(\mathrm{s}) \mathrm{A}$ continue do begin if $t[t] \neq s[t]$ then
/* determine if $t[t]$ precedes s [1] and exat loop */
begin continue =false, if precedes ($t[t], s[z]$) then comp =true else comp =false
end, $t=\mathrm{i}+1$, /* compare next arguments in t and $s * /$ end,
/* check if loop exited with all checked pars equal, 1 e contınue =true */
if continue then
$\operatorname{comp}=\operatorname{arrty}(t) \leq \operatorname{artg}(s)$, return comp end,

We state without proof that if precedes ($t, a)$ returns false then for all substitutions $\theta, \delta \theta$ precedes $t \theta$ Thus, to determine whether t is antiordered we can use the following method Apply precedes to each pair of arguments at positions $8, j$, $:<\jmath$, in each set_of subterm of t If any such application returns false then t is antiordered

We now consider the computational complexity of detecting antiordered terms using the above method First, in precedes the line "if $t[s] \neq s[s]$ then" takes time O (size of $s[t]+$ size of $t[i]$) So, precedes (s, t) is O ((size of $t+$ size of $s)^{2}$) Second, given t we need to apply precedes to each pair of arguments in a set_of subterm of t The number of such pairs is $\left.O(\text { (size of } t)^{2}\right)$ Thus our method is $O\left((\text { size of } t)^{4}\right)$ The 4 in the exponent can easily be reduced to 3 by locating the first point of "disagreement" in checking "if $t[:] \neq s[i]$ and calling precedes recursively on the corresponding subterms

More stringent criteria could also be considered For instance, on set_of $(X, Y, f(Y), f(X))$ procedure precedes returns true Observe that no matching is possible since, once X an Y are instantiated, we cannot have both X precedes Y and Y precedes X in the total order on terms However, the above procedure is computationally feasible and detects many cases in which t is antiordered

5.3. Using Synonyms

Other cases involve optimization techniques similar to tableaux minimization [ASU79] A distingurshed substitution wrt t is a substitution θ which assigns to each variable X appearing in t a unique distinct constant which does not appear in t or in the program P For our purposes we can think about this substitution as unique, assigning umque constant x to variable X The distangusshed binding form of t, t_{b}, is obtained by applying to t the distingushed substitution wrt t An expression is a term, a predicate (literal) or a rule Given a set of expressions S, a binding θ is reducing wrt S if it transforms each element of S into its distinguished binding form, i e converting S into a set of ground terms in which S 's variables are uniformly renamed into distinct constants
Rule bodies body $1=B_{1}, \quad, B_{n}$ and
body $2=C_{1}, \quad, C_{n}$ are ssomorphze, denoted
body $1=$ body 2 if set_of $\left(B_{1}, B_{n}\right)={ }_{e t}$
set_of $\left(C_{1}, \quad C_{n}\right)$ Here, we represent $s=t$ as
$=($ set_of $(s, t)) \quad$ and we represent $s \neq t$ as
$\neq($ set_of $(s, t)) \quad$ Consider a funnel-up heads h_{1}
and h_{2} in a MHSB rule m for literal t Recall that P^{\prime} is the result of the rewritting of P Funnel-up heads h_{1}, h_{2} in m are synonyms if deleting from m in P^{\prime} either the head $h_{\text {L }}$ or the head h_{2}, results in an equivalent program $\frac{\bar{P}}{}$, 1 e one that generates correct results for queries against P (and P^{\prime}) We define the following synonym test Let $h_{s b}$ be the distinguished binding version of $h_{i}, i=1,2$ produced by reducing binding β wrt h_{1} and h_{2} For $i_{1}=1,2$, suppose that θ_{3} matches $f u n n e l_{-} u p_{-} t$ in r^{\prime} with $h_{1} b$, Let

$$
{ }^{\prime 6} r_{1}^{\prime}=(r-t) \theta_{1}=\text { head, }{ }_{1}^{\prime} \leftarrow \text { body } y_{1}^{\prime}
$$

where $(r-t)$ is r after deleting the t literal from its body, Then, the synonym test succeeds if body $_{1}^{\prime}==b o d y_{2}^{\prime}$ and head ${ }_{1}^{\prime}={ }_{c t} h e a d_{2}^{\prime}$
Theorem 4: If the synonym test appled to h_{1} and h_{2} succeeds, then h_{1} and h_{2} are synonyms

The above imphes that if the synonym test succeeds on h_{1}, h_{2} then only one of h_{1}, h_{2} need be retained in m An obvious optimization procedure is to repeatedly test for synonyms and remove heads accordingly For example, consider the rule

$$
\begin{array}{r}
\text { john_friend }(X) \leftarrow \text { friends }(\text { set_of }(X, Y, \jmath o h n)), \\
X \neq \text { john, nice }(X)
\end{array}
$$

We now examine a MHSB rule, for example rule (4') above We see that after applying the distingushed substitution $\alpha=\{X / x\}$ to the two heads in rule 4' we obtain $h_{16}=$
funnel_up_friends (set_of $(x, x, j o h n))$ and $h_{2 b}=$ f unnel_up_friends (set_of (x,john, john)) Thus, we get $\theta_{1}=\{X / x, Y / \bar{x}\}$ and θ_{2} $=\{X / x, Y /$ john $\}$ Consequently,
head $1_{1}^{\prime}=$ john_frend $(x)={ }_{e}$ john_friend $(x)=$ head ${ }_{2}^{\prime}$
and
body $1_{1}^{\prime}=$ set_of $(x \neq$ john, nece $(x))=$, cu
set_of $(x \neq$ john, nice $(x))=$ body $_{2} \quad$ Therefore, f unnel_up_f reends (set_of $(X, X$, john $))$ and f unnel_up_friends (set_of ($X, j o h n, j o h n)$) are synonyms and either may be eliminated, for instance, the latter Similar optimization steps can be applied to rule (5) of Example 4, thus yielding the rules of Example 3

6. Multihead Rules

In many cases more than a single conclusion, 1 e head tuple, may be drawn from a sungle match of the body literals with facts Notationally, we indicate this by rewriting the rule in a MHSB format
Example 5: Consider
r john_friend $(X) \leftarrow$ friends $($ set_of $(X, Y, \jmath o h n))$, nice(X), nice(Y)

Its transformed version according to the previous section is

```
r' john_friend(X)}
    funnel_up_friends(set_of(X,Y,john)),
    muce(X), nice(Y)
```

Suppose the body is matched with data items friends (set_of (al, jum, john)), nece (al) and nice (3 rm) The deduced head tuple is john_f riend (al). Intuitively, as al and gim play a totally symmetric role, john_f riend ($\mathrm{\jmath zm}$) may be deduced as well Hence, the rule is rewritten as \bar{r} :

```
\mp@subsup{\overline{r}}{}{\prime}}\mathrm{ john_friend(X), john_friend(Y) }
    funnel_up_friends(set_of(X,Y,\jmathohn)),
    nuce(X), nice(Y)
[]
```

The main advantage of identifying multheads for a rule is that it enables further eliminations of funnel-up heads
Example 8: Consider a MHSB rule m generated for Example 5, for generic literal friends(set_of(John,X)).

> funnel_up_frends(set_of(fohn,X,John)), funnel_up_friends(set_of $(\mathbf{X}, \mathrm{John}, \mathrm{John}))$, funnel_up_friends(set_of(X,X,John)) friends(set_of(john,X))

If the original rule is kept as is, 1 e. r^{\prime}, then the three heads $1 \mathrm{n} m$ must be retained. However, if the rule is modified to the form \bar{r}^{\prime} then one of the heads in m may be eliminated, resulting in-

> funnel_up_friends(set_of(X,john,John)), funnel_up_friends(set_of(X,X,john)) friends_(set_of(John,X))

The deletion of heads in m implies that fewer matchngs are performed in the body of \vec{r} with funnel-up heads as compared to the matchings performed in r^{\prime} This saves on checking for matchings in the rest of the body literals in \vec{r} We should note that in some cases the above transformation may result in a slight cost increase
Example 7: Consider the MHSB rule w for the genenc literal friends(set_of(John))

$$
\begin{aligned}
& \text { funnel_up_frends(set_of(john,john,john)) } \\
& \text { friends(set_of(john)) }
\end{aligned}
$$

Here, for a single match with this rule w, \vec{r} will, wastefully, produce two identical heads of the form gohn_frtend (gohn). []
This apparent waste is marginal as it involves simple value permutations at run-time to produce deduced tuples for the multiple heads in \bar{r}^{\prime} as opposed to matching with possibly numerous tuples

The first problem in forming a rule like \bar{r} is how to obtan additional head tuples based on a single binding to body variables Some additional notation is needed A vartable to variable mapping (vomap) is a substitution $\left\{X_{1} / Y_{1}, \quad, X_{n} / Y_{n}\right\}$ where X_{1}, \ldots, X_{n} are distinct variables and $\left\{X_{1}, \quad, X_{n}\right\}=\left\{Y_{1}, \quad, Y_{n}\right\}$ Let E be an expression and θ i vvmap, θ is preserving with respect to E if $E \theta={ }_{c t} E \quad$ For example, if $E=s e t _o f(q(X, Y), q(Y, X), p($ set_of $(X, Y, Z)))$ then $\theta=\{X / Y, Y / X\}$ is preserving while $\theta=\{X / Z, Z / X\}$ is not preserving If r is a rule, with body B_{1}, \quad, B_{n}, then θ is a vvmap (respectively, preserving vvmap) wrt r if θ is a vvmap (respectively, preserving vvmap) wrt set_of $\left(B_{1}, \quad, B_{n}\right)$

We would like to obtain all solutions derivable from a body under all different preserving vvmaps This is because of the following key observation Observation 6.1: Let θ be a preserving vvmap wrt head \leftarrow body For any matching α of body with standard facts deriving head tuple head α, there is another matching, with the same standard facts, such that the head tuple head $\theta \alpha$ is derived

We can extend the definition of $M(P)$ ((respectively, $\bar{M}(P))$ to the case where oniginal rules are in MHSB format, simply by stating that $h \theta$ (respectively, standard $(h \theta)$) are added during model forming for all heads h in rule \bar{r} We use \bar{r} to denote \bar{F} once t is replaced with funnel_up_t in the transformation
Corollary: If θ is a preserving vvmap for rule r head <-body, then replacing in $P r$ with \bar{r} result in the same $M(P)$ (respectively, $\bar{M}(P)$ for \bar{r}^{\prime}), where \bar{r} is head, head $\theta \leftarrow$ body []

Thus, to each original rule body we may attach many heads, one per each preserving vvmap θ Clearly, this results in an equivalent program Of course, if a number of heads thus generated are ci-equal, only one need be retasned

The redundancy elimination of the previous section imphed by Theorem 4, may be easily adapted to the situation where original rules are transformed into MHSB equivalent representation Head head ${ }_{1}$ in m is dominated if deleting head ${ }_{1}$ results in an equivalent program

We now define a dominatoon test to take into account the fact that \bar{r}
is MH Inturtively, head ${ }_{1}$ is dominated because of head $_{2}$ if, for the generic literal match in m 's body, the multheads after unifying with a head ${ }_{2}$ generated tuple, form a superset, modulo commutativity and idempo tence, of the multiheads after
unifying with a head ${ }_{1}$ generated tuple Define $S \subseteq * \subseteq S^{\prime}$ if both S and S^{\prime} are sets and for each $A \in S$ there exists $B \in S^{\prime}$ such that $A={ }_{\mathrm{a}} B$

The domination test, on funnel-up heads h_{1}, h_{2} is as follows Let \bar{r} be a MH rule with set of heads H and body body Let t^{\prime} be a hiteral in \bar{f} Let $h_{1 b}$ be the distinguished binding version of $h_{1}, t=1,2$ For $t=1,2$, let θ_{i} match $h_{i b}$ with t^{\prime} in $\bar{r} \quad$ Let $\bar{r}_{i}=(\bar{r}-t) \theta_{i}=\bar{H}_{i} \leftarrow \overline{b o d y_{1}}, i=1,2$, where $(\bar{r}-t)$ is obtained from \bar{r} by deleting literal t Then, the dommation test determines that h_{2} dominates h_{1} if $\overline{b o d y}_{1}==\overline{b o d y}_{2}$ and $\bar{H}_{1} \subseteq * \subseteq \bar{H}_{2}$

The domination test is in fact a generalization of the synonym test of the previous section, specializing it to the case where original rules may have a number of heads While synonym is a symmetric relation, dominated is a one place relation In a way similar to that in Theorem 4, it can be shown that when the domination test determines that \boldsymbol{h}_{2} dominates h_{1}, where both h_{1} and h_{2} are heads in a MHSB rule m, then h_{1} is dominated in m and thus may be deleted without altering the model of the program

It might be possible to remove additional m heads Intuitively, the sdea is that the heads produced in \bar{r}^{\prime} due to some head in m are, collectively, also produced by those heads in m that give rise to an isomorphic body when unified with t^{\prime}

7. Compiling MHMB rules

In this section we sketch some ideas concerning the compilation of the rewritten program into a target language (eg C, or Prolog) MHSB rules having the same set S of multiheads can be grouped into MHMB rules, where the multi-body part is the collection of distinct bodies and the multihead part is S Thus, a MHMB represents many rules, each formed by a head from the MH part and a body from the MB part This notation presents an opportunity for compiling all these many rules as a single unit The general problem is given a set of bodies, determine an inexpensive sequence of steps to determine all satisfiable bodies and the satisfying substitutions The sequence produced is similar to Prolog-like backtracking which always uses as much information as possible each time a new matching is tried out The same general idea apphes to generated tuples in the multihead part Thes e tuples introduce certain variations of each other, thus the "next" tuple to be generated may be obtained by a minor permutation on a previously generated one By examining the heads an "inexpensive" sequence may be obtained Furthermore, some variables in t^{\prime} are used in r^{\prime} only in t^{\prime} Intuitively, such
variables check "existence" The terms in corresponding positions in funnel-up heads need not be formed at all'

8. Conclusions

The approach presented for supporting sets in a HCLPL represents a clear advancement of the state of the art First of all, it elıminates the need to use E-matching in supporting sets, instead we compile the original program into one that only requires ordinary matching Second, it leads to more efficient implementations since the rewritten program is optimized using information available in the given rule, thus eliminating many of the blind alleys explored by the blind search of E-matching In particular we take advantage of the standard representation of facts, the inequality constraints and synonyms

Some of the techniques described, eg multiheads, are still in the experimental stage and we expect to further report on them in the future Other aspects are now being explored, among these are the support for the standard set operations, eg member, equality, inequality, union The problem of whether given a term t, t is unmatchable, 1 e cannot match with any standard fact, is still open Additional optimization techniques also seem feasible

Lastly, we should note that the rewritting is expensive and may take exponential time in the size of the rewritten term Thus, for sets with more than ten items or so it's not very practical For large sets we can resort to using other techniques which rely on set membership tests, this technique is outside the scope of this paper

In many such large sets, many of the set_of arguments are variables that appear there and nowhere else in the rule, these are "placeholders" used to indicate cardinality It will be interesting to "grow" the rewritten rule from a version produced by first ignoring these "place-holders" and then adding them one at a time

Acknowledgment

The authors wish to thank C Beeri for the useful comments received upon reading an early version of this paper They also would like to thank Y Sagiv for his many useful comments

References

[AB87] Abiteboul, S and C Beeri On the Power of Languages for the Manıpulation of Complex Terms Unpublished Manuscript
[ASU79] Aho, A.V , Y Sagiv and J.D Ullman, Equivalence of Relational Expressions SLAM J Computing 8.2, pp 218-246. 1976.
[BNRST87] Beeri, C,S Naqvi, R. Ramakrishnan, O Shmuel, and S. Tsur
Sets and negation in a Logic Database Language (LDLL) To appear in 6th ACM Symposium on Principles of Database Systems, San Diego, CA, 1987
[CM84] Clocksin, W F , and C S Mellish Programming in Prolog, 2n d. Edition, Springer Verlag, 1984.
[FAGES87] Fages F., Associative-commutative Unificatzon J. Symbolic Comp., 3-3, 257-275, June 1987.
[KN86] Kapur, D., and P. Narendran NPCompleteness of the Set Unification and Matching Problem Proc 8th International Conference on Automated Deduction (CADE-8) Oxford, England, July 1986
[KRS84] Korth, H F., M.A Roth, and A Silberschatz, A Theory of Non-Ferst-Normal-Form Relational Databases, 1984.
[KV84] Kuper, G.M, and MY. Vardı A new Approach to Database Logic. Proc Third ACM Symp on Principles of Database Systems, Waterloo, Canada, 1984
[LC87] Lincoln P, and J Christian Adventures in Assocrative-Commutative Unafication. MCC Tech. Rept ACA-AI-275-87, Sept 28, 1987
[LLOY84] Lloyd, J W , Foundations of Logre Programming Springer Verlag, 1984
[LS76] Livesey, M., and A J. Siekmann, Unification of A + C-Terms (Bags) and $A+C+I$-Terms (Sets) Universitat Karlsruhe, Fakultat fur Informatik Technical Report 5/76, 1976.
[0083] Oszoyoglu, G. and Z. Oszoyoglu An Extension of Relational Algebra for Summary Tables Proc 2nd. Internatronal (LBL) Conference on Statistical Database Management, 1983
[RS79] Raulefs, AP, A J. Siekmann, P Szabo, and E Unvericht A Short Survey on the State of the Art in Matching
and Unification Problems ACM Sigsam Bulletin 13,2, pp 14-20, May 1979
[STZ87] Shmueh, O., Tsur S, and C Zanolo Compilation of Rules Containeng Set Terms in a Logic Data Language (LDL) MCC Tech Rept DB-222-87, (revised)
[STICK81] Stickel, ME, A Unıfication Algorthm for Assocsative-Commutative Functione J. of the ACM 28,3, pp 423434, July 1981
Sacca', D, and C Zaniolo Implementation of Recursve quertes for a Data Language Based on Pure Horn Clauses Fourth International Conference on Logic Programming, Melbourne, Australia, 1987
[TZ86] Tsur, S , and C Zaniolo $L D L$ A Logic-Based Data-Language Proc 12th Int Conf on very Large Databases, Kyoto, Japan, 1986

[^0]: *Current address Department of Computer Science, Technoon, Haifa, Israel 32000

[^1]: ${ }^{1}$ For notational convenience in defining the semantics, formally, the database is considered a part of the program Our results hold for the case where the database is a separate entity provided the facts in the database are standardized (see section 3)

[^2]: "The term "funnel-up rule" stems from the role that these rules fulfill they funnel data from one format (stored or already derived results) into another format, required by the structure of

[^3]: the original term in the body of a rule

[^4]: ${ }^{3}$ Because of space limitations, all of the proofs of the Lemmas and Theorems stated in this paper have been omitted A full version of this paper which includes the proofs appears in [STZ87]

