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Abstract

An essential step for achieving multiplexing gain in MIMO downlink systems is to collect accurate

channel state information (CSI) from the users. Traditionally, CSIs have to be collected before any data

can be transmitted. Such a sequential scheme incurs a large feedback overhead, which substantially limits

the multiplexing gain especially in a network with a large number of users. In this paper, we propose

a novel approach to mitigate the feedback overhead by leveraging the recently developed Full-duplex

radios. Our approach is based on the key observation that using Full-duplex radios, when the base-

station (BS) is collecting CSI of one user through the uplink channel, it can use the downlink channel

to simultaneously transmit data to other (non-interfering) users for which CSIs are already known. By

allowing concurrent channel probing and data transmission, our scheme can potentially achieve a higher

throughput compared to traditional schemes using Half-duplex radios. The new flexibility introduced by

our scheme, however, also leads to fundamental challenges in achieving throughout optimal scheduling.

In this paper, we make an initial effort to this important problem by considering a simplified group

interference model. We develop a throughput optimal scheduling policy with complexity O((N/I)I),

where N is the number of users and I is the number of user groups. To further reduce the complexity, we

propose a greedy policy with complexity O(N logN) that not only achieves at least 2/3 of the optimal

throughput region, but also outperforms any feasible Half-duplex solutions. We derive the throughput

gain offered by Full-duplex under different system parameters and show the advantage of our algorithms

through numerical studies.
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I. INTRODUCTION

Mobile data traffic is expected to increase at rate of 53% per year by 2020 [1]. Multi-user

MIMO (MU-MIMO), which can potentially increase the network capacity linearly with the

number of users, has been considered as an important technique to confront this data traffic

challenge. Theoretically, in a system with M transmit and receive antennas, the throughput

using MU-MIMO can be M times of the throughput using a single transmit and receive antenna

pair [2], where M is commonly referred as the spatial multiplexing gain.

In this paper, we consider one important application of MU-MIMO, i.e., the downlink wireless

cellular network consisting of one Base Station (BS) equipped with many antennas and many

users each equipped with one antenna. In such systems, the BS could utilize MU-MIMO

to transmit multiple data streams to multiple users simultaneously. Nevertheless, to take the

advantage of MU-MIMO in practice, it is prerequisite for the transmitter to learn the accurate

channel state information (CSI) of the users [3]. Note that in traditional wireless networks, radios

can only operate in Half-duplex (HD) mode, i.e., a radio cannot transmit and receive packets on

the same frequency at the same time. As a result, traditional schemes to harness the multiplexing

gain of MU-MIMO, e.g., [4, 5], requrie that the channel state information (CSI) of the users

have to be learned first before any data can be transmitted. Such a sequential channel learning

scheme incurs a large overhead when there are a large number of users, which would in turn

substantially limit the multiplexing gains of MU-MIMO, especially if the channel coherence

time is relatively short [4, 5], The large channel learning overhead has been a long-standing

open problem which limits the achievable throughput of MU-MIMO in practice.

Recently, Full-duplex (FD) radios [6–8] have been developed, which allow simultaneous

transmission and reception on the same frequency. The availability of Full-duplex provides

significant flexibility in designing wireless resource allocation algorithms. For example, it has

been shown that in some cases [9], Full-duplex can almost double the throughput and effectively

improve spectrum efficiency. This leads to the following natural and important question: Is it

possible to leverage Full-duplex to address the feedback overhead challenge in Multi-user MIMO

downlink systems?

In this paper, we answer this question in the affirmative. By using a Full-duplex BS, we are

able to break the boundary between the channel learning phase and the data transmission phase.



3

As shown in Fig. 1, the BS receives the channel probing signal from Alice in round 1 and

measures the downlink channel to Alice assuming channel is reciprocal1. Then in round 2, the

BS uses Full-duplex capability to send data to Alice and receive the probing signal from Bob

simultaneously, assuming Bob does not interfere with Alice. After the BS measures all downlink

channels, the BS operates in MU-MIMO mode in round 3. Compared to Half-duplex systems,

once the BS knows the downlink channel to Alice, it can start transmission immediately rather

than waiting until the end of the channel learning phase. Henceforth, we will refer to this concept

as concurrent channel probing and data transmission.
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Fig. 1. Concurrent channel probing and data transmission.

Due to the interference between users, the performance of concurrent channel probing and

data transmission scheme depends highly on the set of users selected to send probing signals and

the ordering of these users. Therefore, the following important question remains: How do we

design a low-complexity scheduling policy that achieves provably good throughput performance

under the concurrent channel probing and data transmission?

While the design of high performance scheduling policies have been extensively studied in

traditional wireless systems [10], relatively few efforts [11] have focused on the scheduling

problem in Full-duplex systems. In particular, it is much more challenging to consider this

problem under concurrent channel probing and data transmission. The reason is that: 1) The

ordering of users sending probing signal matters. A user that sends a probing signal earlier

also starts transmission earlier. 2) Within one channel coherence time, the scheduling decisions

are coupled in terms of time and interference relations. The rate received by a certain user

depends on what time it transmits the probing signal as well as the interference relations with

1Measuring downlink channel to a user through channel probing from the user is standard in a time division duplex (TDD)

system [4, 5].
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the users scheduled to send probing signals later. These two facts make the scheduling problem

more complicated and classical scheduling policies do not apply here. In this paper, we aim to

develop a throughput near-optimal scheduling policy and investigate the Full-duplex gain for a

various of network settings.

The key contributions of this paper are summarized as follows:

• We develop a scheduling policy that achieves the optimal throughput region under concurrent

channel probing and data transmission. Compared to Brute-Force search, the complexity has

been decreased from O(N !) to O((N/I)I).

• To further reduce the scheduling complexity in large systems, we design a greedy policy

with complexity O(N logN) that not only achieves at least 2/3 of the optimal throughput

region but also outperforms any feasible Half-duplex solutions. We conjecture that the real

performance of the greedy policy is very close to the optimal, which is confirmed by

simulations.

• We derive the Full-duplex gain under different system parameters and use simulations to

validate our theoretical results.

The rest of the paper is organized as follows. We discuss related works in Section II. In

Section III, we describe the system model and problem formulation. In Section IV, we develop

a throughput optimal policy which stabilizes the system under any feasible arrival rates. In Section

V, we design a low-complexity greedy policy and provide provable performance guarantees. In

Section VI, we derive the Full-duplex gain of different network settings and system parameters.

We conduct simulations to validate our theoretical results in Section VII and make concluding

remarks in Section VIII.

II. RELATED WORK

In-band Full-duplex, as an emerging technology in wireless communication, was implemented

by combining RF and baseband interference cancellation [6–8], enabling simultaneous bi-directional

transmission between a pair of nodes. Full-duplex has now been widely studied in a number of

wireless communication scenarios. Full-duplex WiFi-PHY based MIMO radios was first imple-

mented in [12], and experiments showed that the theoretical doubling of throughput is practically

achieved. While it is hard to make Full-duplex MIMO radios fit in small personal devices, it

is feasible to build a Full-duplex MIMO Base Station due to bigger size and more powerful



5

computational ability [13]. In [14, 15], the authors proposed the continuous feedback channel,

which enables sequential beamforming that update weights while also performing downlink

transmission. The authors showed that the system outperforms its Half-duplex counterpart and

reduced the control overhead at the same time. This work can be viewed as an preliminary

attempt of the idea of concurrent channel probing and data transmission. However, the authors

assumed that users are symmetric and did not consider the scheduling problem, which is the

focus of our study here.

In addition to the research efforts focused on implementation and experiments, there have

also been several theoretical works on Full-duplex systems. Although Full-duplex is expected to

double the capacity in single pair of nodes, [16] showed that the inter-link interference and spatial

reuse substantially reduces network-level Full-duplex gain, making it less than 2 in typical cases.

In order to deal with the increasing inter-link interference, [17] presented a new interference

management strategy to achieve a larger rate gain over Half-duplex systems. The capacity region

of multi-channel Full-duplex links was characterized in [18] and rate gain is illustrated for various

channel and cancellation scenarios. The authors in [9] also investigated the achievable throughput

performance of MIMO, Full-duplex and their variants that allow simultaneous activation of two

RF chains. The scheduling problem in Full-duplex cut-through transmission was considered in

[11], where the authors characterized the interference relationship between links in the network

with cut-through transmission and designed a Q-CSMA type of scheduling algorithm to leverage

the flexibility of Full-duplex cut-through transmission. In contrast to the aforementioned works,

this is the first work that considers the scheduling problem under concurrent channel probing

and data transmission and provides analytical framework to characterize the network-level Full-

duplex gain.

III. SYSTEM MODEL

We consider the downlink phase of a single-cell Full-duplex MIMO system. There are N

users in this system and each of them is equipped with only one antenna. The Base Station (BS)

has multiple antennas and Full-duplex capability. In addition, we assume time is slotted and we

consider a discrete-time system. We use N denote the set of all users in the system.



6

A. Channel Model

We consider a block fading channel, where the channel state remains the same within each

time-slot, but may vary from time-slot to time-slot. We assume channel state information (CSI)

is only available at the user side at the beginning of each time-slot. In order to fully achieve the

multiplexing gain of MU-MIMO, the BS needs to collect CSI via feedback through the uplink

channel. We assume that channels are reciprocal, in which case a user could send a probing

signal on its single antenna and the BS, by measuring on its antennas, learns the downlink

CSI. Any CSI expires by the end of the current time-slot, and it has to be learned again in the

next time-slot. In practice, collecting CSI from multiple users takes time and its overhead is

linear with respect to the number of the corresponding users. We assume that in one time-slot,

the transmitter can collect CSI from at most K users. Therefore, each time-slot can be further

divided into K mini-slots and it takes one mini-slot to learn each CSI. The BS can only transmit

one packet per mini-slot to each user whose channel information is already known.

In traditional Half-duplex systems, CSI collection and data transmission must be separated in

time to avoid interference. Data transmission phase starts only if all desired CSIs are collected.

Full-duplex systems, on the other hand, allows data transmission immediately after each CSI is

collected.

B. User Groups

Full-duplex capability does not always offer “free lunch”, its performance suffers from complex

interference patterns. One way to characterize interference is using user groups which guarantee

no inter-group interference. Thus, we can break the scheduling problem into two steps: 1) Given

N users, how to divide them into different user groups. 2) Given group information, how to find

a scheduling policy that achieves good throughput performance. Dividing users into groups is

not easy due to the conflict between interference constraints and the desire to have more groups

and less users in each group. We focus on the second step in this work and leave the joint

problem as the future work. The problem is still challenging even when the group information

is already given.

Assume N users are split into I user groups, which guarantees no inter-group interference. For

example, suppose user ui and uj are from different groups, the uplink stream of user ui does not

interfere with the downlink stream of user uj . Based on each user’s geographical statistics, the
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group information will be determined once over a much larger time scale. The group information

is assumed to be static and remains the same from time-slot to time-slot. Fig. 2 is an illustration

of a downlink system with 2 user groups. We use g(u) to denote the group index of user u, and

let Gg(u) denote the set of users in group g(u).
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Fig. 2. A downlink system with 2 user groups, the BS receives probing signal from Alice and transmits data packets to Bob

(channel is already known) simultaneously.

C. Traffic Model

The BS maintains a queue Qu to store packets requested by each user u. The arrival process

to each queue is assumed to be stationary and ergodic. We assume packet arrival and departure

both occur at the beginning of each time-slot. Let Au[t] denote the number of packet arrivals

to queue Qu in time-slot t. Let Ru[t] denote the downlink rate to queue Qu in time-slot t. The

queue-length Qu[t] evolves as:

Qu[t + 1] = max {Qu[t] + Au[t]−Ru[t], 0} . (1)

D. Scheduling Policy

In each time-slot t, a scheduling policy P determines the schedule based on the system

state, e.g., queue-length and delay. Such schedule can be described as a scheduling vector f =

(u1, · · · , uK), which indicates that user ui sends a probing signal in the ith mini-slot. ui = 0

implies that the BS is only transmitting, not learning any channel in the ith mini-slot. “0”

element is also considered as a dummy user from a dummy group with zero queue-length.

Due to interference constraints, once the BS chooses to learn user u’s channel during the ith
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mini-slot, it will block all other users in Gg(u) from receiving any packet. However, the BS can

transmit data packets to users from other groups since there is no interference between these

groups. We use Rf

ui
to denote the downlink rate to user ui under scheduling vector f . For all

i = 1, . . . , K, Rui
[t] = Rf

ui
if scheduling vector f is adopted in time-slot t. From now on, we

omit the subscript [t] when looking into the schedule made in a certain time-slot t. Note that Rf

ui

is the number of mini-slots from i+1 to K such that the group of the scheduled user is different

from group g(ui), i.e., Rf

ui
=
∑K

j=i+1 1{g(ui)6=g(uj)}. For example, if f = (ua, ub, uc, 0, · · · , 0) and

g(ua) = g(ub) 6= g(uc). From the second mini-slot to the Kth mini-slot, there are K−2 users in

f such that its group is other than g(ua). Thus, Rf

ua
= K − 2. Similarly, we have Rf

ub
= K − 2

and Rf

uc
= K − 3. Denote the set of feasible scheduling policies as Π.

In this paper, we mainly focus on the throughput performance of the system. First we define

the optimal throughput region for any given system parameters N and K. As in [19, 20], a

stochastic queueing network is said to be stable if behaves as a discrete-time countable Markov

chain and the Markov chain is stable in the following sense: 1) The set of positive recurrent

states is non-empty. 2) It contains a finite subset such that with probability one, this subset is

reached within finite time from any initial state. When all the states communicate, stability is

equivalent to the Markov chain being positive recurrent [21]. The throughput region ΛP of a

scheduling policy P is defined as the set of arrival rate vectors for which the network remains

stable under this policy.

Definition 1: (Optimal throughput region) The optimal throughput region is defined as the

union of the throughput regions of all possible scheduling policies, which is denoted by Λ∗, i.e.,

Λ∗ =
⋃

P∈Π

ΛP . (2)

Definition 2: (Throughput optimal policy) A scheduling policy is throughput-optimal if it can

stabilize any arrival rate vector strictly inside Λ∗.

IV. OPTIMAL SCHEDULING POLICY

In this section, we propose a throughput-optimal scheduling policy to the concurrent probing

and transmission problem. We first observe that the following classic result applies to our setting

as well.
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Theorem 1: Any policy that maximizes the weight w(f) =
∑
u∈N

QuR
f

u in each time-slot, a.k.a.,

the MaxWeight scheduling policy, is throughput-optimal.

Proof: Please refer to the proof in [22].

From the theorem, it suffices to find a scheduling vector f∗ such that the weight w(f) is

maximized in each time-slot, i.e.,

f∗ = argmax
f

∑

u∈N

QuR
f

u. (3)

However, it is not trivial to find a MaxWeight schedule with low complexity. We note that for

traditional wireless scheduling under 1-hop interference, MaxWeight scheduling boils down to

finding a maximum weighted matching in each time-slot, which can be done in O(N3) where N

is the number of nodes. This result does not apply to our setting, however, since the ordering of

users sending probing signal matters. A Brute-Force search enumerates all possible permutations

of users, leading to a high complexity of O(N !), which is infeasible when N is large. Thus, an

interesting question is how to find a MaxWeight schedule in our setting in a more efficient way.

To this end, we propose the following algorithm with complexity O((N/I)I) (polynomial when

I is a constant regardless of N). In the algorithm, mi indicates the number of users to be chosen

from group i, 1 ≤ i ≤ I , and m = (m1, · · · , mI) is the user-selection vector. Algorithm 1 will

be applied to each time-slot to generate the MaxWeight schedule.

Algorithm 1 Search algorithm for MaxWeight Schedule

Input: For all u ∈ N , group g(u) and queue-length Qu.

Output: Scheduling vector f̂

1: Initialization: User-selection vector m = (0, 0, · · · , 0),
ŵ = 0, f̂ = (0, 0, · · · , 0).

2: for all m such that
∑

i mi ≤ K do

3: Set scheduling vector f = (0, 0, · · · , 0).
4: Set scheduled user set U = ∅
5: for i=1, 2, · · · , I do

6: Add mi users with longest queue-length from group i to U .

7: Fill in scheduling vector f with users in U ,

following the Longest Queue-length First order.

8: if w(f) > ŵ then

9: ŵ = w(f)
10: f̂ = f

11: return f̂



10

For a given user-selection vector m, Algorithm 1 picks mi users from group i with longest

queue-length, for all i = 1, 2, · · · , I . It then generates a candidate scheduling vector f by filling

in users following the Longest Queue-length First (LQF) order. The weight w(f) is evaluated

for all possible user-selection vectors m and its resulting scheduling vector, Algorithm 1 returns

the scheduling vector f̂ that has the maximum weight.

Theorem 2: The schedule f̂ returned by Algorithm 1 maximizes weight w(f).

Proof: We divided the proof into two steps. For the first step, we show that the LQF

maximizes the weight for a given scheduled user set. Then for the user-selection part, we show

that it is sufficient to evaluate all possible user-selection vectors m and its resulting scheduled

user set by adding mi users with longest queue-length from each group i. We first present several

properties of MaxWeight schedule that will be used later.

Lemma 1: For any scheduling vector with “0” element(s) between two adjacent non-zero

elements, the total weight will not decrease by shifting the “0” element to the end, i.e., there is

no “idle” (not learning any user’s channel) mini-slot in between two “busy” mini-slots.

Proof: Please see APPENDIX A.

Corollary 1: The optimal scheduling vector must take the form f∗ = (u1, u2, · · · , uΩ, 0, 0, · · · , 0),

where u1, · · · , uΩ are non-zero and Ω < min{K,N}.

Remark 2.1: It is also challenging to determine the optimal value of Ω, which depends on

group settings as well as instantaneous queue-length.

Lemma 2: For any scheduling vector f = (u1, · · · , uΩ, 0, · · · , 0), the total weight w(f) will not

decrease by reordering the users following queue-length descending order (longest queue-length

first, LQF).

Proof: Please see APPENDIX B.

From Lemma 1 and Lemma 2, we know that for a fixed scheduled user set {u1, u2, u3, · · · , uΩ}

with Qu1 ≥ Qu2 ≥ · · · ≥ QuΩ
, the optimal schedule f∗ takes the form (u1, · · · , uΩ, 0, · · · , 0).

From now on, for a given scheduled user set, we only need to focus on the LQF schedule.

Remark 2.2: Lemma 2 holds only for a given scheduled user set, applying LQF to the set

of all users does not guarantee the maximum. Since LQF is a myopic rule, it always gives

higher priority to users with longer queue-length regardless of their interference relations. In

fact, queue-length and interference relations both play a key role in this problem, and we need

to do user-selection to get a good balance between these two factors.
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For the second step, we will focus on the user-selection part. For a given user-selection vector

m, we want to show that choosing mi users with the longest queue-length from each group i

is the best option to maximize weight. Denote Pm

i to be the set of users from group i with mi

longest queue-length, U f

i to be the set of users from group i that are selected by schedule f , we

have the following lemma.

Lemma 3: Consider a given user-selection vector m, and choose an arbitrary LQF schedule

f . Pick user us with the longest queue-length in the set U f

i / Pm

i (if it is not empty), and replace

it by user ul that has the longest queue-length in the set Pm

i / U f

i . Denote the new LQF schedule

as f ′, we have w(f ′) ≥ w(f).

Proof: Please see APPENDIX C.

Remark 2.3: The equality in Lemma 3 holds if and only if the queue-lengths of us and ul

are the same.

Lemma 4: Given any user-selection vector m, any LQF schedule f maximizes weight w(f)

must pick mi users with longest queue-length in each group i for any i = 1, 2, · · · , I .

Proof: Please see APPENDIX D.

From Lemma 4 we know, given user-selection vector m, the best schedule will always pick mi

users with longest queue-length from each group i for any i = 1, 2, · · · , I . In addition, the best

ordering of these users will be the LQF order. Therefore, given m, the schedule yields maximum

weight is determined by: (1) For each group i, add mi users with longest queue-length into the

scheduled user set U(m). (2) Schedule the users from U(m) following the LQF order. Thus,

traversing all possible m will return the MaxWeight schedule. And this proves the optimality of

Algorithm 1.

V. A LOW-COMPLEXITY GREEDY POLICY

Although Algorithm 1 returns throughput optimal policy in polynomial time, the complexity

O((N/I)I) grows very high when the number of groups I is large. It is interesting to see whether

there is any low-complexity policy that achieves provably good throughput. In this section, we

propose a greedy algorithm which incrementally adds users to the schedule and prove that it

achieves at least 2/3 of the optimal throughput region. In addition, our proposed greedy policy

always achieves a larger throughput region than any scheduling policies under Half-duplex.
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A. Greedy Algorithm Description

Definition 3: (Marginal Gain) Given a schedule f = (u1, · · · , uΩ, 0, · · · , 0) and a user u that

is a candidate user to be considered in jth mini-slot (when evaluating user u, the first j − 1

scheduled users have already been determined in f), the marginal gain ∆f ,j
u is defined to be the

weight difference caused by adding user u as the jth element of f , assuming there are no future

scheduled users, i.e., ∆f ,j
u = w ((u1, · · · , uj−1, u, 0, · · · , 0))− w ((u1, · · · , uj−1, 0, · · · , 0)).

To evaluate the marginal gain of adding user u to the schedule f , we must consider the benefit

as well as the cost. The benefit is obvious, we have one more user and it keeps transmitting

packets until the end of the current time-slot, i.e., receives a rate of K − j. Hence its weight

contribution is Qu(K − j). On the other hand, if we schedule user u in jth mini-slot, it will

block the transmission of the previously scheduled users that are from the same group g(u).

Thus, the weight loss is
∑j−1

i=1 Qui
1{g(ui)=g(u)}. Therefore, we have:

∆f ,j
u = Qu(K − j)−

j−1∑

i=1

Qui
1{g(ui)=g(u)}. (4)

A positive marginal gain means that by adding a new user, the weight will not be decreased.

Marginal gain considers queue-length as well as the group information and is able to discriminate

different cases (e.g., long queue-length & strong interference v.s. short queue-length & weak

interference). Although the marginal gain is not the actual gain of user uj since we do not know

the future scheduled users, it is still a good metric to evaluate the potential gain of adding one

candidate user to the current schedule. Moreover, as we will soon see, the Marginal Gain-based

Greedy (MGG) Algorithm achieves good throughput performance.

The MGG Algorithm, inspired by Section IV, we first sort users according to their queue-

lengths, and then start from the user that has the longest queue-length in the system, the MGG

Algorithm iteratively evaluates the user u with next longest queue-length. The MGG Algorithm

will add user u if its marginal gain is positive, otherwise skip user u and continue to evaluate

the user with the next longest queue-length until K users have been scheduled or all N users

are all evaluated.

The complexity of Algorithm 2 is at most O(N logN) (comes from the sorting operation),

regardless of the value I takes. Compared to Algorithm 1, Algorithm 2 uses LQF and marginal

gain to efficiently select valuable users. Again, applying LQF only would work poorly, since
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Algorithm 2 Marginal Gain-based Greedy Algorithm

Input: ∀ user u ∈ N , group g(u) and queue-length Qu.

Output: Scheduling vector fG

1: Initialization: fG = (0, · · · , 0)
2: Initialization: index = 1
3: Sort queue-length, assume Qu1 ≥ Qu2 ≥ · · ·QuN

4: for all i from 1 to N do

5: if index ≤ K then

6: if ∆f
G,index
ui

≥ 0 then

7: Add user ui to fG as the indexth element

8: index = index+ 1
9: return fG

it only gives higher priority to those users with longer queue-length rather than large marginal

gain. In fact, the inter-user interference is very important and should not be ignored.

B. Performance Analysis

The MGG Algorithm is simple, however it sacrifices some throughput performance. In this

section, we aim to provide a theoretical worst-case lower bound on its throughput performance.

Theorem 3: The Greedy Algorithm 2 stabilizes at least 2/3-fraction of the arrival vector on

the optimal throughput region. (Achieves 2/3 of the optimal throughput region).

Proof: From [23], we know that it suffices to show that w(fG) ≥ 2/3w(f∗), where f∗ is the

MaxWeight schedule. Consider the users selected by fG and f∗. Let A denote the set of users

shared by both schedules, let B denote the set of users only scheduled in f∗ and let C denote

the set of users only scheduled in fG.

Remark 3.1: The MaxWeight schedule is not necessarily unique, but these schedules have the

same weight. We can choose any of these schedules to be schedule f∗ here.

Remark 3.2: In practice, users in B could interfere with users in A. Here in this proof, we

aim to show a stronger claim which assumes that in the MaxWeight schedule, users from B do

not interfere with users in A and B itself.

Definition 4: (Extra weight) Extra weight ǫ is defined to be the weight loss in the MGG

schedule caused by interference from users in C. That is to say, the total weight w(fG) + ǫ is

calculated as if there is no interference caused by users in C, adding each user in C does not

block the downlink transmission of all the scheduled users which are from the same group.
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We divide the proof into two parts, for the first part, we show that w(fG)+ǫ ≥ w(f∗). Then we

show that ǫ ≤ 1/2w(fG). Combining both parts, we know w(fG) ≥ 2/3w(f∗), which concludes

the proof.

Part 1 In this part, we want to show that w(fG) + ǫ ≥ w(f∗), which means the weight of

the MGG schedule by ignoring the interference caused by users in C is greater than the weight

of MaxWeight schedule. The following lemmas illustrate the relationship between the MGG

schedule and MaxWeight schedule, and these results will be used later.

Lemma 5: Consider the MaxWeight schedule f∗ = (u∗
1, · · · , u

∗
Ω, 0 · · · , 0). For each i =

1, · · · ,Ω, the marginal gain ∆f∗,i
u∗

i
is always non-negative.

Proof: Please see APPENDIX E.

Remark 3.3: Similar to the MGG schedule generated by Algorithm 2, the MaxWeight schedule

adds a user only if the marginal gain is non-negative. The only difference is that the MGG

schedule will give higher priority to users with longer queue-length, whereas the MaxWeight

schedule may skip some users with long queue lengths and choose other users with large marginal

gain.

In the MaxWeight schedule, for each user u ∈ A ∪ B, we use t1(u) to denote the mini-slot

that user u is scheduled. In the MGG schedule, for each user u ∈ N we define t2(u) to be the

mini-slot that its marginal gain is evaluated (either schedule u or skip u in t2(u)
th mini-slot), if

u has never been considered as a candidate, t2(u) = K.

Lemma 6: In the MaxWeight schedule, for each b ∈ B, consider user d which has the longest

queue-length among all users in group g(b) that are not scheduled in the MGG schedule. We

have: t1(b) < t2(d), i.e., b is scheduled earlier in the MaxWeight schedule than the time that d

is skipped in the MGG schedule.

Proof: Please see APPENDIX F.

Define NB(t) and NC(t) to be the number of users in B and C scheduled in the MaxWeight

and MGG schedule from the first mini-slot to tth mini-slot. We have the following lemma:

Lemma 7: For each b ∈ B, which is scheduled in t1(b)
th mini-slot, we have NB(t1(b)) ≤

NC(t1(b)).

Proof: Please see APPENDIX G.

From Lemma 7, we can find a mapping h : B → C , ith user bi in B corresponds to ith user

ci in C, such that ci is always scheduled earlier than bi, i.e., t1(bi) ≥ t2(ci). For each user bi,
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consider user di which has the longest queue-length among all users in group g(bi) that are not

scheduled in the MGG schedule. Note that users from group g(bi) only belongs to A or B, user

di has the longest queue-length among all users in B ∩ Gg(bi), thus Qdi ≥ Qbi . From Lemma

6, we know t1(bi) < t2(di) and thus t2(ci) < t2(di). Then Qci ≥ Qdi due to the LQF order of

evaluating users in the MGG policy. Therefore, Qci ≥ Qbi .

Lemma 8: The MGG schedule will schedule more users than the MaxWeight schedule, i.e.,

|B| ≤ |C|.

Proof: Please see APPENDIX H.

Now we are ready to prove the result of part 1. Compare w(fG) + ǫ with w(f∗), we have two

kinds of losses.

A loss: For each user a ∈ A, a will be scheduled no earlier in the MGG schedule than that in

the MaxWeight schedule, i.e., t1(a) ≤ t2(a) (corollary of Lemma 7). Each user a in the MGG

schedule will receive lower or equal rate than that in the MaxWeight schedule.

B loss: In the MGG schedule, there is no weight contributed by users in B.

If the total weight of the users in C can be used to cover A and B losses, then w(fG)+ǫ ≥ w(f∗)

holds. First, we consider A loss: let Lossai denote the weight loss on user ai.

Lossai = Qai(K − t1(ai)− |{a ∈ A|a is scheduled after ai in the MaxWeight schedule}|)

−Qai(K − t2(ai)− |{a ∈ A|a is scheduled after ai in the MGG schedule}|)

= Qai(t2(ai)− t1(ai)) ≥ 0. (5)

Similarly, we use Lossbi to denote the weight loss on user bi:

Lossbi = Qbi(K − t1(bi)) ≥ 0. (6)
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The weight difference w(fG) + ǫ− w(f∗) is the total weight of C minus A loss and B loss:

w(fG) + ǫ− w(f∗)

=

|C|∑

i=1

Qci(K − t2(ci))−

|A|∑

i=1

Lossai −

|B|∑

i=1

Lossbi

=

|C|∑

i=1

Qci(K − t2(ci))−

|A|∑

i=1

Qai(t2(ai)− t1(ai))−

|B|∑

i=1

Qbi(K − t1(bi)).

(d)

≥

|B|∑

i=1

Qci(t1(bi)− t2(ci)) +

|C|∑

i=|B|+1

Qci(K − t2(ci))−

|A|∑

i=1

Qai(t2(ai)− t1(ai))

(e)
=

|C|∑

i=1

Qci(t1(bi)− t2(ci))−

|A|∑

i=1

Qai(t2(ai)− t1(ai)). (7)

where inequality (d) comes from the property of mapping h and equation (e) is derived by setting

t1(bi) = K for any dummy user bi, |B| < i ≤ |C|. Note that for each i, t1(bi)− t2(ci) ≥ 0 and

t2(ai)− t1(ai) ≥ 0.

Lemma 9: The R. H. S. of (7) is non-negative.

Proof: Please see APPENDIX I.

The result of Lemma 9 concludes the proof of part 1.

Part 2 In this part, we want to show that ǫ ≤ 1/2w(fG), i.e., the extra weight is upper bounded

by one half of the weight of the MGG schedule. We use ǫi and wi(f
G) to denote the extra and

actual weight from group i. It suffices to show a stronger (per-group) claim: For each group i,

we have ǫi ≤ 1/2wi(f
G).

For each group i, note that we only need to consider the worst case where all the users from

group i are in C. Otherwise, assume there are some users in A, then wi(f
G) remains the same

while ǫi is smaller.

Lemma 10: Assume in the MGG schedule, we have m users (u1, · · · , um, with queue-length

Qu1 ≥ · · · ≥ Qum
) from group i, define Tm to be the smallest rate of the last scheduled user

such that the MGG schedule is feasible (marginal gain is always non-negative). Consider the

case K = Km , Tm + t2(um), we have ǫKm

i ≤ 1/2wi

(
fGKm

)
, where ǫKm

i and wi

(
fGKm

)
are extra

weight and actual weight of fG from group i under Km.

Proof: Please see APPENDIX J.
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Note that Km is the smallest value of K such that the MGG schedule is feasible, for any

K ≥ Km, extra weight ǫi will be the same since it is only related to u1, · · · , um, however,

wi(f
G) will increase with K.

ǫKi
wi(fGK)

≤
ǫKm

i

wi(fGKm
)
≤ 1/2. (8)

Therefore, we know for every feasible MGG schedule, ǫi/wi(f
G) is less than one half for any

group i = 1, · · · , I . We finish the proof of part 2 and now we are able to show w(fG) ≥ 2/3w(f∗).

Proposition 1: The 2/3 worst-case lower bound is tight in terms of weight.

Proof: Assume K = 2r for some positive integer r > 0. All the users have the same queue-

length, and there are K − 1 groups where each group has enough users. Then the MaxWeight

schedule will serve K − 1 users, one for each group, which gives a total rate of K(K − 1)/2,

while the MGG Algorithm serves K/2 users from group 1, K/4 users from group 2, · · · and

1 user from group r, which gives a total rate of (K2 − 1)/3. As K → ∞, the efficiency ratio

becomes arbitrarily close to 2/3.

Theorem 4: The throughput region of the proposed MGG policy is no smaller than the optimal

throughput region under Half-duplex.

Proof: We first prove the following lemma, which shows that the weight of MGG policy

dominates the weight of any Half-duplex policy.

Lemma 11: The weight of the MGG policy is no smaller than the maximum weight under

Half-duplex, i.e., w(fG) ≥ w∗
HD, where wHD(·) is the total weight calculated under Half-duplex.

Proof: Please see APPENDIX K.

Now we need to show that the MGG policy stabilizes any arrival vector λ = (λ1, · · · , λn)

within the optimal throughput region under Half-duplex Λ∗
HD. The following lemma can be used

to prove this claim.

Lemma 12: Consider the capacity region ΛHD under Half-duplex, w∗
HD is the maximum

weight among all feasible scheduling policies under Half-duplex. If there exists a Full-duplex

scheduling policy fG, such that w(fG) ≥ w∗
HD(f) for any queue-length vector, then policy fG

can stabilize any arrival vector within Λ∗
HD.

Proof: Please see APPENDIX L.

Applying Lemma 11 and 12, Theorem 4 follows.
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Remark 4.1: Other promising low-complexity algorithms, such as greedily select users with

the largest marginal gain or simply adopt certain amount of users from each group cannot work

well either in the comparison with traditional Half-duplex schemes or under heterogeneous traffic

arrivals.

VI. CAPACITY GAIN OF FULL-DUPLEX OVER HALF-DUPLEX

In this section, we will discuss the capacity gain of Full-duplex over Half-duplex. Let ΛFD

and ΛHD denote the capacity region under Full-duplex and Half-duplex mode, respectively. To

simplify, we only evaluate the capacity magnitude νFD and νHD along the (1, · · · , 1) vector

(e.g., (νFD, · · · , νFD) is the largest arrival vector such that all users have the same arrival rate

and the queuing system can be stabilized under Full-duplex mode). In addition, we assume all

groups have the same size, i.e., N1 = · · · = NI = N/I .

For half-duplex, if the sum-rate is upper bounded by BHD, then the lowest service rate is upper

bounded by BHD/N . According to the basic queuing theory, νHD ≤ BHD/N . The sum-rate is

calculated by:

N∑

i=1

RHD
i =

(
K −

I∑

j=1

mj

)
I∑

j=1

mj . (9)

where mj is the jth element in the user-selection vector. If N ≥ K/2, the maximum of the sum-

rate is achieved by taking
∑I

j=1mj = K/2, thus the upper bound BHD = K2

4
. Otherwise, if K

is larger, the maximum is achieved by scheduling all users in the system, BHD = (K −N)N .

To sum up,

νHD =





K2

4N
, N ≥ K/2

K −N, otherwise.

(10)

Next, we will look at the Full-duplex case, consider a randomized policy P which uses random

schedules from time-slot to time-slot, denote its sum-rate as BFD. Since the optimal throughput

region is the union of the throuutghput regions of all possible scheduling policies, we have

νFD ≥ BFD/N . The sum-rate under f is calculated by:

N∑

i=1

Rf

i =

I∑

j=1

∑

k<j

mjmk +

(
K −

I∑

j=1

mj

)
I∑

j=1

mj . (11)
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where mj is the jth element in the user-selection vector m.

The first term of the R. H. S. of (11) calculates the total rate from the first mini-slot to
∑I

j=1m
th
j mini-slot, we only need to count the number of user pairs (ui, uj) such that g(ui) 6=

g(uj) and ui is scheduled before uj . After
∑I

j=1m
th
j mini-slot, all scheduled user will have K−

∑I

j=1mj additional rate. The total rate from the remaining mini-slot is just
(
K −

∑I

j=1mj

)∑I

j=1mj .

To get the upper bound of the sum-rate, we need to solve the following maximization problem.

maximize
m

I∑

j=1

∑

k<j

mjmk +

(
K −

I∑

j=1

mj

)
I∑

j=1

mj

subject to mi ≤ N/I,mi ∈ N,

for all i = 1, 2, · · · , I.

If N/I ≥ K
I+1

for all i = 1, 2, · · · , I , then the maximum is achieved by taking mi =
K
I+1

for

all i = 1, 2, · · · , I . In this case, BFD = IK2

2(I+1)
. Otherwise, the maximum is achieved by taking

mi = N/I for all i. BFD = N(2IK−N−IN)
2I

. In a word,

νFD =





IK2

2N(I+1)
, N ≥ IK

I+1

2IK−N−IN
2I

, otherwise.

. (12)

Define Full-duplex gain GFD = νFD

νHD
, α = K/N . We have:

GFD =





2I
I+1

, α ≤ I+1
I

2(2Iα−1−I)
Iα2 , I+1

I
≤ α ≤ 2

1 + I−1
2I(α−1)

, α ≥ 2

. (13)

Fix group number I = 10, Fig. 3 shows the Full-duplex gain GFD for different α. As we

can see in the figure, if α is smaller than 1.1, Full-duplex gain GFD remains larger than 1.8.

In this regime, the number of users N is larger than (or comparable to) K, which means the

learning phase takes as long as nearly K/2 mini-slots. Note that the Full-duplex gain comes from

concurrent channel probing and data transmission, the longer learning phase takes, the larger

GFD will be observed. On the other hand, when α becomes larger, GFD decreases from 1.82 to

1.18. This is because the learning phase is negligible compared to K, thus we don’t have much

gain compared to the traditional schemes. In general, when I becomes larger, the upper bound
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Fig. 3. Full-duplex gain versus α, when the group number I = 10.

of the GFD becomes closer to 2, which matches the expected potential of the Full-duplex gain.

Fix α to be 1.0, 1.5 and 3, Fig. 4 shows how does the Full-duplex gain GFD change with

different group number I . From Fig. 4, we can observe that the Full-duplex gain GFD keeps
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Fig. 4. Full-duplex gain versus group number I , when the K/N ratio (α) is fixed.

increasing as I becomes larger. The scheduler has more flexibility when given more groups, thus

a larger Full-duplex gain should be expected. Moreover, in many user regime (green and blue

curve), GFD has improved by 40% and 30% when I increases from 2 to 15. However, GFD

does not improve much in small user regime (red curve). The learning phase only takes a small

fraction of time, thus GFD is always a little larger than 1.1, regardless of what value I takes.
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VII. NUMERICAL RESULTS

In this section, we use simulations to evaluate our proposed greedy policy and compare

its performance with traditional Half-duplex and Full-duplex MaxWeght Scheduling (MWS)

schemes.

A. Simulation Settings

We consider the downlink system of a single-cell Full-duplex MIMO system. There are N

users in this system and each user is equipped with only one antenna. The BS is assumed to

have sufficiently large number of antennas. Suppose all users are divided into I user groups

such that users from different group does not interfere with each other. Unlike the assumption

we make in Section VI, each user group now could have different group size. In addition, we

assume that each time-slot has 15 mini-slots, i.e., K = 15. We consider i.i.d. arrival, i.e.,

Au[t] =




K, w.p. λ

0, otherwise

where λ is the scaled arrival rate of queue u, u ∈ N .

B. Performance of Greedy Policy under Different Regimes

Fix group number I = 4, we then evaluate the performance of the proposed greedy policy

in three regimes which represent three conditions of (13). Define regime 1 as the many-user

regime such that α ≤ 1.25. In regime 1, we take N1 = 8, N2 = 5, N3 = 6, N4 = 1, with sum

N = 20 and α = 0.75. Regime 2 denotes the moderate regime, where N is comparable with

K such that 1.25 ≤ α ≤ 2. In regime 2, N1 = 3, N2 = 2, N3 = 2, N4 = 3, with sum N = 10

and α = 1.5. Regime 3 represents the small-user regime such that α ≥ 2. In regime 3, we take

N1 = 1, N2 = 1, N3 = 1, N4 = 1, with sum N = 4 and α = 3.75. For all these three scenarios,

we plot the average queue-length under different arrival rate λ in Fig. 5.

In all three regimes, the performance of the MGG policy is very close to the Full-duplex

MaxWeight policy. Thus, the throughput performance of the MGG policy is also very close to

optimal. The Full-duplex gain is larger if α is small, meaning K is smaller compared to N . In this

case, the control overhead of sending probing signals becomes the system bottleneck. Introducing
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Fig. 5. Average queue-length under different arrival rate.

Full-duplex reduces the control overhead and thus the throughput is improved substantially. As

α becomes larger, the control overhead no longer limits the throughput, since it only takes a

small fraction of time to send probing signals. As a result, Full-duplex gain decreases from 1.5

to 1.13 from as α increases from 0.75 to 3.75.

C. Performance of Greedy Policy under Random Group Assignments

Given N users, the way of assigning users to different groups affects the Full-duplex gain. In

this section, we would like to evaluate throughput performance under random group assignments.

Fix group number I = 4, number of users N = 10 and K = 15. Assume that each user has

equal probability to be assigned to each group, the following figure shows the empirical CDF

of the Full-duplex gain for 10000 samples of random group assignments.
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Fig. 6. The empirical CDF for Full-duplex gain compared to Half-duplex throughput optimal policy

From Fig. 6, we can observe that the Full-duplex gain of the MGG policy and MaxWeight

policy have similar distributions. Although in theory there may exist scenarios in which the MGG

policy is suboptimal, in typical scenarios it achieves near-optimal throughput performance. The
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median Full-duplex gain under the MaxWeight scheduling and the MGG policy is around 1.48.

Although the lowest Full-duplex gain is around 1.3, in typical scenarios (90% of all samples),

the Full-duplex gain is larger than 1.44 (44% improvement).

VIII. CONCLUSION

In this paper, we develop a throughput optimal scheduling policy for concurrent channel

probing and data transmission scheme. To further reduce the complexity when there are a

large number of groups, we propose a greedy policy with complexity O(N logN) that not only

achieves at least 2/3 of the optimal throughput region but also outperforms any feasible Half-

duplex solutions. Furthermore, we derive the Full-duplex gain under different system parameters.

Finally, we use numerical simulations to validate our theoretical results.

REFERENCES

[1] “White paper: Cisco VNI forecast and methodology, 2015-2020.” http://www.cisco.com.

[2] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005.

[3] J. Liu, A. Eryilmaz, N. B. Shroff, and E. S. Bentley, “Understanding the impact of limited channel state information on massive mimo

network performances,” in ACM MOBIHOC, pp. 251–260, July 2016.

[4] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Communications

Magazine, vol. 42, no. 10, pp. 60–67, 2004.

[5] A. Zhou, T. Wei, X. Zhang, M. Liu, and Z. Li, “Signpost: Scalable MU-MIMO signaling with zero csi feedback,” in ACM MOBIHOC,

pp. 327–336, ACM, 2015.

[6] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel, full duplex wireless communication,” in ACM

MOBICOM, pp. 1–12, ACM, 2010.

[7] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characterization of full-duplex wireless systems,” IEEE Transactions on

Wireless Communications, vol. 11, no. 12, pp. 4296–4307, 2012.

[8] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 375–

386, 2013.

[9] Y. Yang, B. Chen, K. Srinivasan, and N. B. Shroff, “Characterizing the achievable throughput in wireless networks with two active RF

chains,” in IEEE INFOCOM, pp. 262–270, 2014.

[10] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in wireless networks,” IEEE Journal on Selected areas in

Communications, vol. 24, no. 8, pp. 1452–1463, 2006.

[11] Y. Yang and N. B. Shroff, “Scheduling in wireless networks with full-duplex cut-through transmission,” in IEEE INFOCOM, pp. 2164–2172,

2015.

[12] D. Bharadia and S. Katti, “Full duplex MIMO radios,” in USENIX NSDI, pp. 359–372, 2014.

[13] E. Everett and A. Sabharwal, “Spatial degrees-of-freedom in large-array full-duplex: the impact of backscattering,” EURASIP Journal on

Wireless Communications and Networking, vol. 2016, no. 1, p. 286, 2016.

[14] X. Du, J. Tadrous, C. Dick, and A. Sabharwal, “MIMO broadcast channel with continuous feedback using full-duplex radios,” in Asilomar

Conference on Signals, Systems and Computers, pp. 1701–1705, IEEE, 2014.

[15] X. Du, J. Tadrous, C. Dick, and A. Sabharwal, “MU-MIMO beamforming with full-duplex open-loop training,” in International Workshop

on Signal Processing Advances in Wireless Communications (SPAWC), pp. 301–305, IEEE, 2015.

[16] X. Xie and X. Zhang, “Does full-duplex double the capacity of wireless networks?,” in IEEE INFOCOM, pp. 253–261, 2014.

http://www.cisco.com


24

[17] A. Sahai, S. Diggavi, and A. Sabharwal, “On uplink/downlink full-duplex networks,” in Asilomar Conference on Signals, Systems and

Computers, pp. 14–18, IEEE, 2013.
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APPENDIX A

PROOF OF LEMMA 1

Assume we have a scheduling vector f = (u1, · · · , ui, 0, ui+2, · · · , uK) and the shifted version

f ′ = (u1, · · · , ui, ui+2, · · · , uK , 0). We have:

w(f ′)− w(f) =
K∑

j=1

Quj
Rf ′

uj
−

K∑

j=1

Quj
Rf

uj

=

(
i∑

j=1

Quj
Rf ′

uj
+

K∑

j=i+2

Quj
Rf ′

uj

)
−

(
i∑

j=1

Quj
Rf

uj
+

K∑

j=i+2

Quj
Rf

uj

)
. (14)

Note that for any j ≤ i, we have Rf
′

uj
= Rf

uj
and

Rf

uj
=





i∑
t=j+1

1{g(uj)6=g(ut)} +
K∑

t=i+2

1{g(uj)6=g(ut)}, j < i

K∑
t=i+2

1{g(uj)6=g(ut)}, j = i

. (15)

For any j ≥ i+ 2, we have:

Rf ′

uj
=

K∑

t=j+1

1{g(uj)6=g(ut)} + 1 = Rf

uj
+ 1. (16)

Substituting (15) and (16) into (14), we have:

w(f ′)− w(f) =
K∑

j=i+2

Quj
≥ 0. (17)
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APPENDIX B

PROOF OF LEMMA 2

We will prove the Lemma by showing that for fixed K and any fixed user set of Ω users

{u1, . . . , uΩ}, among all scheduling vectors LQF -type of scheduling vector maximizes the weight

w(f). We use mathematical induction to prove this claim.

Base case: Ω = 2, i.e., there are only two users in the network, user u1 and user u2. Without

loss of generality, we assume Qu1 ≥ Qu2 . According to Lemma 1, we only need to consider

two strategies f1 = (u1, u2, 0, · · · , 0) and f2 = (u2, u1, 0, · · · , 0). Note that f1 is the scheduling

vector generated by LQF.

Case 1: user u1 and user u2 are from different groups, i.e., g(u1) 6= g(u2).

We can compute w(f1) and w(f2) as follows:

w(f1) = (K − 1)Qu1 + (K − 2)Qu2. (18)

w(f2) = (K − 1)Qu2 + (K − 2)Qu1. (19)

Since Qu1 ≥ Qu2 , we have w(f1) ≥ w(f2).

Case 2: user u1 and user u2 come from the same group, i.e., g(u1) = g(u2).

Both strategies f1 and f2 end up with the same weight (K − 2)(Qu1 +Qu2).

Combining both cases, we can show that w(f1) ≥ w(f2), which implies scheduling vector f1

maximizes the total weight w(f).

Inductive hypothesis: Assume the LQF-type of scheduling vector maximizes the weight w(f)

for any fixed scheduled user set with Ω− 1 users.

Inductive step: We need to show that the scheduling vector generated by LQF maximizes

weight w(f) for any fixed scheduled user set {u1, · · · , uΩ}. Without loss of generality, we

assume Qu1 ≥ · · · ≥ QuΩ
. Let (uσ1, · · · , uσΩ

) denote an arbitrary permutation of (u1, · · · , uΩ),

and its resulting scheduling vector fσ = (uσ1, · · · , uσΩ
, 0, · · · , 0). Let f1 = (u1, · · · , uΩ, 0, · · · , 0)

denote the scheduling vector generated by LQF. It is equivalent to show w(f1) ≥ w(fσ).

Start from an arbitrary scheduling vector fσ = (uσ1 , · · · , uσΩ
, 0, · · · , 0). Let’s fix the first

element in fσ, say uσ1 = uc. What is the resulting optimal schedule? Recall that our goal

is to find a permutation {uσ2, · · · , uσΩ
} of {u1, · · · , uΩ} \ {uc}, such that

∑Ω
i=1Quσi

Rf

uσi
is
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maximized.

max
uσ2 ,··· ,uσΩ

Ω∑

i=1

Quσi
Rf

uσi

= max
uσ2 ,··· ,uσΩ

Ω∑

i=1

Quσi

K∑

j=i+1

1{g(uσi
)6=g(uσj

)}

= max
uσ2 ,··· ,uσΩ

(
Quc

K∑

j=2

1{g(uc)6=g(uσj
)} +

Ω∑

i=2

Quσi

K∑

j=i+1

1{g(uσi
)6=g(uσj

)}

)
. (20)

The first term of R. H. S. of (20) is the same for any schedules (permutations), hence we

only need to focus on the second term. The optimal value of uσ2 , · · · , uσΩ
solves the following

optimization problem (P1):

max
uσ2 ,··· ,uσΩ

Ω∑

i=2

Quσi

K∑

j=i+1

1{g(uσi
)6=g(uσj

)}. (21)

Let u′
σj

= uσj+1
for any j = 1, 2, · · · ,Ω− 1, we can rewrite P1 as:

max
u′

σ1
,··· ,u′

σΩ−1

Ω−1∑

i=1

Qu′

σi

K−1∑

j=i+1

1{g(u′

σi
)6=g(u′

σj
)}. (22)

The optimal scheduling vector f ′
∗

of P1 satisfies:

f ′
∗
= argmax

Ω−1∑

i=1

Qu′

σi

K−1∑

j=i+1

1{g(u′

σi
)6=g(u′

σj
)}

(a)
= argmax




Ω−1∑

i=1

Qu′

σi

K−1∑

j=i+1

1{g(u′

σi
)6=g(u′

σj
)} +

∑

u⊂{u1,··· ,uΩ}\{uc}

Qu




(b)
= argmax

Ω−1∑

i=1

Qu′

σi

(
K−1∑

j=i+1

1{g(u′

σi
)6=g(u′

σj
)} + 1

)
. (23)

(a) holds since
∑

u⊂{u1,··· ,uΩ}\{uc}
Qu is a constant for any possible schedule using users {u1, · · · , uΩ}.

(b) holds since u′
σ1
, · · · , u′

σΩ−1
is a permutation of {u1, · · · , uσΩ

} \ {uc}.

Equation (23) implies that the optimal scheduling vector f ′
∗

also solves the MaxWeight

problem for scheduled set with Ω − 1 users {u′
σ1
, · · · , u′

σΩ−1
}, equivalently, {uσ2, · · · , uσΩ

}.
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From inductive hypothesis, we know:

f ′
∗
=




(u1, · · · , uc−1, uc+1, · · · , uΩ, 0, · · · , 0), c 6= 1

(u2, · · · , uΩ, 0, · · · , 0), c = 1
. (24)

Hence, after fixing the first element uσ1 = uc, the resulting optimal scheduling vector will

take the following form:

fc =




(uc, u1, · · · , uc−1, uc+1, · · · , uΩ, 0, · · · , 0), c 6= 1

(u1, u2, · · · , uΩ, 0, · · · , 0), c = 1
. (25)

Next, we only need to prove w(f1) ≥ w(fc) for any c 6= 1. Note that f1 and fc agree on the

scheduled users from c+1th mini-slot to the end, hence Rf1
ui
= Rfc

ui
for any i ∈ {c+1, · · · ,Ω}.

The weight difference only comes from user set {u1, · · · , uc}.

w(f1)− w(fc)

=

Ω∑

i=1

Qui

K∑

j=i+1

1{g(ui)6=g(uj)}

−

(
Quc

K∑

j=1,j 6=c

1{g(uc)6=g(uj)} +

Ω∑

i=1,i 6=c

Qui

K∑

j=i+1,j 6=c

1{g(ui)6=g(uj)}

)

=
c−1∑

i=1

Qui
1{g(ui)6=g(uc)} −Quc

c−1∑

j=1

1{g(uc)6=g(uj)}

=

c−1∑

i=1

(Qui
−Quc

)1{g(ui)6=g(uc)} ≥ 0. (26)

The last inequality of (26) comes form the assumption Qu1 ≥ Qu2 ≥ · · · ≥ QuΩ
.

APPENDIX C

PROOF OF LEMMA 3

If the set U f

i / Pm

i is non-empty, that means there is a user ul whose queue-length is among

the mi longest queues, but is not selected by f . The schedule f , instead, chooses another user

us, whose queue-length is not among the mi longest queue in group i. Thus, we know g(ul) =

g(us) = i and Qul
≥ Qus

. By replacing us by ul, ul may be scheduled earlier than us due to

its larger queue-length, which means some users with queue-lengths in between Qus
and Qul
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may have to be scheduled one mini-slot later. This action will only affect those users that are

not from group i, since users from the same group are not able to transmit any packet anyway.

Denote Y to be the set of such users that its rate is affected by replacing us with ul.

w(f ′)− w(f) = Qul
Rf ′

ul
−Qus

Rf

us
−
∑

y∈Y

Qy

= Qul
(Rf

′

ul
− Rf

us
) + (Qul

−Qus
)Rf

us
+
∑

y∈Y

Qy

≥ Qul
(Rf ′

ul
−Rf

us
)−

∑

y∈Y

Qy

(c)
=
∑

y∈Y

(Qul
−Qy) ≥ 0. (27)

equality (c) holds since |Y| = Rf ′

ul
− Rf

us
, which are equivalent ways to count the number of

users whose rate are affected.

APPENDIX D

PROOF OF LEMMA 4

Suppose there exists a schedule f which maximizes weight w(f) but it does not pick users

with longest queue-length in a certain group i. In this case, U f

i / Pm

i is not empty and we can find

us ∈ U f

i / Pm

i and ul ∈ Pm

i / U f

i , such that Qus
< Qul

. From Lemma 3, we know by replacing

Qus
by Qul

, we can maintain the same m while the total weight can be strictly increased. This

fact contradicts with the assumption that f maximizes the weight w(f).

APPENDIX E

PROOF OF LEMMA 5

Assume there exists τ1 < · · · < τs, such that ∆f ,τ1
u∗

τ1
< 0, · · · ,∆f ,τs

u∗

τs
< 0. Start with τs, we can

show that the weight will strictly increase by skipping this user uτs and continue service with
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the remaining users in f∗. Use w(f ′) to denote the weight of the schedule without user urs .

w(f ′)− w(f∗) =
τs−1∑

j=1

Qu∗

j
1{g(u∗

j )=g(u∗

τs
)}

︸ ︷︷ ︸
No longer block early scheduled users

+
Ω∑

j=τs+1

Qu∗

j

︸ ︷︷ ︸
Late users scheduled one mini-slot earlier

−Qu∗

τs

K∑

j=τs+1

1{g(u∗

j )6=g(u∗

τs
)}

︸ ︷︷ ︸
No weight contributed by user u∗

τs

=

τs−1∑

j=1

Qu∗

j
1{g(u∗

j )=g(u∗

τs
)} +

Ω∑

j=τs+1

Qu∗

j
−Qu∗

τs

(
K − τs −

K∑

j=τs+1

1{g(u∗

j )=g(u∗

τs
)}

)

≥
τs−1∑

j=1

Qu∗

j
1{g(u∗

j )=g(u∗

τs
)} −Qu∗

τs
(K − τs)

= −∆f ,τs
u∗

τs
> 0. (28)

Continuing with the same procedure for τs−1, · · · , τ1, the total weight will keep increasing,

then we can come up with a new schedule such that the marginal gain is always non-negative,

and its weight is strictly larger than the MaxWeight schedule, which contradicts the optimality

of the original schedule. Therefore, Lemma 5 holds.

APPENDIX F

PROOF OF LEMMA 6

We prove the lemma by contradiction, suppose there exists user b0 and d0, such that t1(b0) ≥

t2(d0) and g(b0) = g(d0). From Lemma 4 we know, both MaxWeight and MGG schedule will

always schedule users with longest queue-length in each group, but they may schedule different

number of users in each group since they may have different user-selection vectors. If the

MaxWeight schedule picks more users in group i, then there will be some users in group i that

is in B and no user in group i will be in C. Otherwise, there will be some users in group i

that is in C and no user in group i will be in B. Consider group g(b0), no user in group g(b0)

is in C because the MaxWeight schedule picks more users in group i. Since user d0 is skipped

in t2(d0)
th mini-slot, which means the marginal gain ∆

fG,t2(d0)
d0

< 0 (guaranteed by the MGG
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policy):

∆
fG,t2(d0)
d0

= Qd0 (K − t2(d0))−

t2(d0)−1∑

i=1

Qui
1{g(ui)=g(d0)}

︸ ︷︷ ︸
Sum of queue-lengths in A ∩ Gg(d0)

< 0. (29)

Consider the marginal gain of user b0:

∆
fG,t1(b0)
b0

= Qb0 (K − t1(b0))−

t1(b0)−1∑

i=1

Qui
1{g(ui)=g(b0)}

︸ ︷︷ ︸
Sum of queue-lengths in A ∩ Gg(b0)

≤ Qb0(K − t2(d0))−

t2(d0)−1∑

i=0

Qui
1{g(ui)=g(d0)}

= ∆
f
G,t2(d0)
d0

< 0. (30)

which contradicts the result of Lemma 5, hence Lemma 6 holds.

APPENDIX G

PROOF OF LEMMA 7

Note that for a given schedule, if we have several users with the same queue-length, the

ordering of these users does not affect the weight. Therefore, given MaxWeight and MGG

schedules, we can reorder the schedule such that users with the same queue-length will follow

“A first, B/C second” order. Given b ∈ B, we can find user d, such that d has the longest

queue-length among all users in group g(b) that are not scheduled in the MGG schedule. From

Lemma 6, we have t1(b) < t2(d). Furthermore, Qb ≤ Qd from the definition of user d. Let

N∗
A(t) and NG

A (t) denote the total number of users in A from 1 to t mini-slot in the MaxWeight

and MGG schedule. We have:

NG
A (t1(b)) ≤ NG

A (t2(d)) ≤ |{a ∈ A|Qa ≥ Qd}|

≤ |{a ∈ A|Qa ≥ Qb}| = N∗
A(t1(b)). (31)

By definition, NB(t1(b)) = t1(b)−N∗
A(t1(b)) and NC(t1(b)) = t1(b)−NG

A (t1(b)). Combining

with (31), we have NB(t1(b)) ≤ NC(t1(b)).
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APPENDIX H

PROOF OF LEMMA 8

Let bL denote the last scheduled user in the MaxWeight schedule that belongs to B.

Case 1: bL is the last scheduled user in f∗.

Consider user dL, which has the longest queue-length among all users in group g(bL) that are

not scheduled in the MGG schedule, From Lemma 6, t2(dL) > t1(bL). Note that t1(bL) is the

total number of users f∗ schedules, fG schedules at least t2(dL)− 1(≥ t1(bL)) users.

Case 2: bL is not the last scheduled user in f∗.

After t1(bL)
th mini-slot, f∗ schedules users in A only. Total number of users scheduled in f∗

is t1(bL) + |A| −N∗
A(t1(bL)). From Lemma 7, we know

NG
A (t1(bL)) ≤ N∗

A(t1(bL)). (32)

After t1(bL)
th mini-slot, the MGG schedule must schedule the remaining users in A. The total

number of users scheduled in fG is at least t1(bL)+|A|−NG
A (t1(bL)) ≥ t1(bL)+|A|−N∗

A(t1(bL)).

APPENDIX I

PROOF OF LEMMA 9

Definition 5: (Available rate) Let S(t) denote the “available rate” in tth mini-slot:

S(t+ 1) = S(t) +




t1(bj)− t2(cj) if uG

t = cj ,

−(t2(aj)− t1(aj)) if uG
t = aj .

where the initial value S(0) = 0 and uG
t is the tth element in the MGG schedule fG.

Start with the first scheduled user in fG, if we encounter with a user from C, then the “available

rate” will be added t1(bj) − t2(cj) more rates offered by users in C. Otherwise, the “available

rate” will be deducted by “A loss rate” t2(aj) − t1(aj). In general, S(t + 1) is the sum of

available rate of queue-length no smaller than QuG
t

. The definition of S(t) allows us to decouple

the queue-length from its rate, and to evaluate (7), we only need to compare the “available rate"

and “A loss rate". If for any 1 ≤ t ≤ K, S(t) is always non-negative, then the R. H. S. of (7) is

also non-negative. Consider each t such that uG
t ∈ A, S(t+ 1) ≥ 0 means the sum of available

rate received by users with queue-length higher than QuG
t

is larger than the “A loss rate” on
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user uG
t . That is to say, for each ai, there will be sufficiently many rate offered by users in C

which have longer queue-length than Qai . It is sufficient to show that the R. H. S. of (7) is

non-negative.

On the other hand, we can rewrite the recursion formula of S(t) as:

S(t+ 1) = S(t) +




t1(bj)− t2(cj) if uG

t = cj,

t1(aj)− t2(aj) if uG
t = aj.

Start from t = 1, for each user uG
t , S(t) increments by the time difference of scheduling the

same user or the corresponding user under mapping h. Thus, S(t) is actually the difference

between the sum of t different timestamps in MaxWeight schedule and the sum of t consecutive

timestamps from 1, 2, · · · up to t. The later sum is the minimum of the sum of t different

timestamps, hence S(t) ≥ 0 holds for any 1 ≤ t ≤ K.

APPENDIX J

PROOF OF LEMMA 10

We use mathematical induction to prove this lemma.

Base Case: If m = 1, it is the trivial case, since ǫK1
i = 0.

If m = 2, we have:

ǫK2
i

wi(fGK2
)
=

Qu1

Qu1(T2 + t2(u2)− t2(u1)− 1) +Qu2T2

. (33)

We know that Qu2T2 ≥ Qu1 and T2 ≥ 1, t2(u2) − t2(u1) ≥ 1. Hence Qu1(T2 + t2(u2) −

t2(u1)− 1) +Qu2T2 ≥ 2Qu1 and
ǫ
K2
i

wi(fGK2
)
≤ 1/2.

Inductive hypothesis: Assume the lemma holds for m users from group i, i.e.,
ǫ
Km
i

wi(fGKm
)
≤ 1/2.

Inductive step: consider the case where we have m+1 users from group i (Qu1 ≥ Qu2 · · · ≥

Qum+1). Tm+1 must satisfy:





Qum+1Tm+1 ≥
m∑

j=1

Quj
. (34)

Qum+1(Tm+1 − 1) <

m∑

j=1

Quj
. (35)
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User u1, u2, · · · , um will determine Tm:





Qum
Tm ≥

m−1∑

j=1

Quj
. (36)

Qum
(Tm − 1) <

m−1∑

j=1

Quj
.. (37)

We then evaluate ǫ
Km+1

i /wi(f
G
Km+1

):

ǫ
Km+1

i

wi

(
fGKm+1

) =

ǫKm

i +

Additional extra weight by adding um+1︷ ︸︸ ︷
m∑

j=1

Quj

wi

(
fGKm

)
+ Qum+1Tm+1︸ ︷︷ ︸

Additional actual weight on um+1

+
m∑

j=1

Quj
(Km+1 −Km − 1)

︸ ︷︷ ︸
Additional actual weight on u1, · · · , um

. (38)

Given the inductive hypothesis, it suffices to show

2
m∑

j=1

Quj
≤ Qum+1Tm+1 +

m∑

j=1

Quj
(Km+1 −Km − 1) . (39)

From (34), we already know
∑m

j=1Quj
≤ Qum+1Tm+1. We only need to show

∑m

j=1Quj
≤

∑m

j=1Quj
(Km+1 −Km − 1), equivalently, Km+1−Km−1 ≥ 1. By definition, Km+1 = t2(um+1)+

Tm+1 ≥ t2(um) + 1+ Tm+1, Km = t2(um) + Tm. The only thing left is to show Tm+1 − Tm ≥ 1

(Tm+1 > Tm). Suppose Tm ≥ Tm+1, from (37), we know:

Qum
Tm <

m−1∑

j=1

Quj
+Qum

=
m∑

j=1

Quj
. (40)

Then,

Qum+1Tm+1 ≤ Qum
Tm <

m∑

j=1

Quj
. (41)

(41) contradicts (34), therefore, Tm+1 > Tm, Tm+1 − Tm ≥ 1, Lemma 10 holds.
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APPENDIX K

PROOF OF LEMMA 11

Assume a scheduling policy f under Half-duplex will schedule m users u1, · · · , um. The

transmission starts at m+ 1th mini-slot, and each user will receive a rate of K −m. The total

weight wHD(f) can be calculated as:

wHD(f) =
m∑

i=1

Qui
(K −m) (42)

To maximize wHD(f), we know that given m, the scheduler must choose m users with the

longest queue-length. We only need to decide the optimal value for m. Start from m = 1, we

can evaluate the weight wHD(f) for each m, the MaxWeight policy chooses the smallest m∗

such that adding one more user to the schedule decreases the total weight (negative “marginal

gain"). Assume Qu1 ≥ Qu2 · · · ≥ QuN
, define m∗ as follows:

m∗ , min{m : Qum+1(K −m− 1) <

m∑

i=1

Qui
}. (43)

Consider the MGG schedule fG = (ug
1, · · · , u

g
Ω, 0, · · · , 0). Let m′ denote the largest integer

such that for any i ≤ m′, ug
i = ui holds. That means the MGG schedule also chooses m′ users

with longest queue-length for the first m′ mini-slots. Since m′ is the largest integer, it must

satisfy

∆fG,m′+1
um′+1

= Qum′+1
(K −m′ − 1)−

m′∑

i=1

Qui
1{g(ui)=g(u′

m)} < 0. (44)

which means um′+1 cannot be added into the MGG schedule after u1, u2, · · · , um′ .

Suppose m′ < m∗, then we have:

Qum′+1
(K −m′ − 1) <

m′∑

i=1

Qui
1{g(ui)=g(u′

m)} ≤
m′∑

i=1

Qui
. (45)

(45) implies that there exists m′ < m∗, such that the inequality in (43) still holds. This contradicts

the definition of m∗. Thus, m′ ≥ m∗.

Let f̃ = (u1, u2, · · · , um∗ , 0, · · · , 0) and f̃ ′ = (u1, u2, · · · , um′, 0, · · · , 0), f̃ and f̃ ′ are inter-

mediate schedules produced by the MGG Algorithm after m∗ and m′ iterations. Hence, we
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have:

w(f̃ ′)− w(f̃) =
m′∑

i=m∗+1

∆f
G,i

u
g
i

≥ 0 (46)

The weight difference is just the sum of marginal gain for adding each user of ug
m∗+1, u

g
m∗+2, · · · , u

g
m′ .

For the same scheduling vector f̃ , we have w(f̃) ≥ wHD(f̃). Combining with (46), we have

w(fG) ≥ w(f̃ ′) ≥ w(f̃) ≥ wHD(f̃) = w∗
HD, which concludes the proof of Lemma 11.

APPENDIX L

PROOF OF LEMMA 12

Since λ ∈ int Λ∗
HD, there exists a δ > 0 and a mean service rate vector µprob ∈ Λ∗

HD that is

achievable by a probabilistic policy P prob such that:

µprob
i ≥ λi + δ, for all i. (47)

Define the quadratic Lyapunov function V (·) as:

V (Q) =
1

2

N∑

i=1

Q2
i . (48)

Let ∆tV (q) denote the mean drift of V (·) for any Q[t] = q:

∆tV (q) = E[V (Q[t+ 1])− V (Q[t])|Q[t] = q]. (49)

∆tV (q) can be upper bounded by:

∆tV (q) ≤
N∑

i=1

qiE
[
Ai −Rf

G

i |Q[t] = q
]
+

1

2

N∑

i=1

E

[(
Ai − Rf

G

i

)2
|Q[t] = q

]
.

≤
N∑

i=1

qi

(
λi − E

[(
RfG

i

)2
|Q[t] = q

])
+B. (50)

as long as E[A2
i ] < ∞ and E

[(
Rf

G

i

)2]
< ∞, the second expectation is bounded by a constant

B < ∞.
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Let f∗HD[t] denote the MaxWeight scheduling vector in time-slot t under Half-duplex, we have:

f∗HD[t] = argmin
f∈FHD

(
−

N∑

i=1

Qi[t]R
f

i [t]

)
= argmax

f∈FHD

(
N∑

i=1

Qi[t]R
f

i [t]

)
. (51)

Due to its minimizing nature, we have

−
N∑

i=1

qiE[R
f
∗

HD

i |Q[t] = q] ≤ −
N∑

i=1

qiE[R
prob
i |Q[t] = q]

≤ −
N∑

i=1

qiE[R
prob
i ] = −

N∑

i=1

qiµ
prob
i ≤

N∑

i=1

qi(λi + δ). (52)

On the other hand, from Lemma 11, we know the weight w(fG) dominates w∗
HD under any

queue-length vector q. Therefore,

−
N∑

i=1

qiE[R
fG

i |Q[t] = q] ≤ −
N∑

i=1

qiE[R
f∗
HD

i |Q[t] = q]. (53)

Combining (52) and (53), we have:

−
N∑

i=1

qiE[R
fG

i |Q[t] = q] ≤
N∑

i=1

qi(λi + δ). (54)

Use this bound in the Lyapunov drift upper bound:

∆tV (q) ≤
N∑

i=1

qi(λi − E[RfG

i |Q[t] = q]) +B ≤
N∑

i=1

qi(λi − (λi + δ)) +B

≤ −δ

N∑

i=1

qi +B. (55)

Applying Foster-Lyapunov Theorem, we know the queueing network is stable.
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