
Domain Modeling for Development Process Simulation
Ian J. De Silva

Dept. of Comp. Sci. and Engr.
University of Minnesota, USA

desilva@cs.umn.edu

Sanjai Rayadurgam
Dept. of Comp. Sci. and Engr.
University of Minnesota, USA

rsanjai@cs.umn.edu

Mats P. E. Heimdahl
Dept. of Comp. Sci. and Engr.
University of Minnesota, USA

heimdahl@cs.umn.edu

ABSTRACT
Simulating agile processes prior to adoption can reduce the risk
of enacting an ill-�tting process. Agent-based simulation is well-
suited to capture the individual decision-making valued in agile. Yet,
agile’s lightweight nature creates simulation di�culties as agents
must �ll-in gaps within the speci�ed process. Deliberative agents
can do this given a suitable planning domain model. However, no
such model, nor guidance for creating one, currently exists.

In this work, we propose a means for constructing an agile
planning domain model suitable for agent-based simulation. As
such, the domain model must ensure that all activity sequences
derived from the model are executable by a software agent. We
prescribe iterative elaboration and decomposition of an existing
process to generate successive internally-complete and -consistent
domain models, thereby ensuring plans derived from the model are
valid. We then demonstrate how to generate a domain model and
exemplify its use in planning the actions of a single agent.

CCS CONCEPTS
•Computingmethodologies→Modelingmethodologies;Agent
/ discrete models; Planning and scheduling; •Software and its en-
gineering→ Agile software development;

KEYWORDS
Domain Modeling, Software Development Process Evaluation

ACM Reference format:
Ian J. De Silva, Sanjai Rayadurgam, and Mats P. E. Heimdahl. 2017. Domain
Modeling for Development Process Simulation. In Proceedings of 2017 Inter-
national Conference on Software and Systems Process, Paris, France, July 2017
(ICSSP’17), 5 pages.
DOI: 10.1145/3084100.3084111

1 INTRODUCTION
Software development processes do not ensure project success,
yet adopting an ill-�tting process may hinder the team’s ability
to complete the project on-time, on-budget, and with the required
functionality. Prior to adoption, we want to evaluate candidate pro-
cesses, particularly agile processes, to ensure they satisfy the project
goals. Agent-based simulation is well-suited to such evaluation [3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ICSSP’17, Paris, France
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5270-3/17/07. . . $15.00
DOI: 10.1145/3084100.3084111

Because of their people-focused, lightweight nature, agile pro-
cesses present unique di�culties for simulation. Rather than spec-
ifying all actions, lightweight processes specify some actions or
quality criteria and allow individuals to supplement the process
(choosing additional steps that both satisfy the criteria and reach
the goal). Existing simulations cannot replicate this behavior, and,
instead, rely on full process speci�cation [3]. We desire a simulation
that can model lightweight processes and capture the impact of
individual decisions on a project and its outcomes.

Deliberative software agents1 can model process supplementa-
tion by composing plans (sequences of process activities) expected
to reach a goal state, then selecting and executing the most desir-
able (and process compliant) plan. Execution stops when the agent
reaches the goal state or the plan becomes impracticable—wherein
it forms a new plan. A planner module within the agent forms
these plans over a domain model (the set of activities the agent can
perform and their sequencing constraints). Unfortunately, there
are no existing planning domain models nor guidance for creating
them in the literature. The objective of this paper, is to provide
guidance for creating a planning domain model for agent-based
simulation.

What are the properties of a suitable planning domain model?
For agents, planning is performed in situ, and planning failure
results in simulation failure, thereby wasting valuable analysis
time. These failures occur if no valid plan can be constructed
in the planning domain. To prevent this, we desire a planning
domain model where we cannot construct an invalid plan if the
planner cooperates in proactively ensuring plan validity. A plan,
which is essentially a narrowly-de�ned process, is valid if it is both
internally-complete (all activity dependencies are present in the
plan) and -consistent (for each plan activity, all activities it depends
on precede it in the plan).2 Thus, with a cooperative planner, invalid
plans are only generated when the domain model contains internal
incompleteness or inconsistency. We, therefore, desire a planning
domain model that is both internally-complete and -consistent.

As a step towards multi-agent, agile-process simulation, we
prescribe a method for constructing an internally-complete and
-consistent (ICC), single-agent3 planning domain model using it-
erative elaboration. We show that, given an initial ICC domain
model and ICC process fragments, each elaboration produces an
ICC domain model. Further, we demonstrate this approach by con-
structing an example planning domain model and use it to generate
goal-reaching plans without a speci�ed process.

1A deliberative agent has an “explicitly represented, symbolic model of the world,
and in which decisions (for example, about which actions to perform) are made via
[logical] reasoning, based on pattern matching and symbolic manipulation” [14].
2There are other situation-independent process quality criteria [6, 7]. However, they
address process desirability rather than validity, and are unrelated to plan formation.
3We assume the agent has perfect knowledge (full world observability).

ICSSP’17, July 2017, Paris, France Ian J. De Silva, Sanjai Rayadurgam, and Mats P. E. Heimdahl

2 RELATEDWORK
Constructing Processes. Situational method engineering is a means

for constructing situation-speci�c, fully-speci�ed processes (meth-
ods) from process fragments stored in a repository. A process
may be generated using method assembly, method con�guration,
or paradigm-based approaches [7]. Method assembly composes
fragments from a repository according to the requirements/goals
they satisfy [10]. Method con�guration, including process tailoring,
transforms an existing process speci�cation by adding, removing, or
elaborating it, according to guides/patterns, using fragments from
a repository [7]. Paradigm-based construction generates/uses a
meta-model that it transforms to meet the situational requirements
then instantiates with fragments from a repository [10]. While all
of these approaches generate situation-speci�c processes, they rely
on the repository data’s quality. If needed fragments are missing, it
may not be possible to construct a valid process.

Situational method engineering aims to generate good processes
for human actors to follow. While useful as guidance, this is in-
su�cient for approximating human behaviors as humans are not
well-behaved [9]. Humans, due to external factors, perform redun-
dant activities or compose activities in unusual ways. We want to
capture realistic behavior as we expect it will improve a simula-
tion’s predictive qualities. Rather than describing all acceptable
ways in which an agent may deviate from the ideal, which may
miss realistic behaviors, we want to permit all valid behaviors and
allow the agent to reason over them.

Structured Process Transformation. Supporting process construc-
tion, Chroust introduces a model calculus to express process trans-
formations [2], yet he does not show that these operations result in
valid process models. Lee and Wyner de�ne formal semantics for
extending (specializing and re�ning) existing processes captured as
data �ow diagrams [8]. However, their approach is �ow-preserving.
Rather than adhering to �xed, idealized �ows, we want agents to
use any valid, process-constraint-complying activity sequencing to
achieve the goal.

3 PLANNING DOMAIN MODEL CREATION
We describe an approach for generating a planning domain model
and show that following this method ensures the result is ICC. We
also provide guidance for specifying achievable intermediate goals
despite possible activity output non-determinism within the model.

3.1 Constructing the Domain Model
A process (or fragment) is a sequence of activities (data transforms)
executed by an actor to some end. These activities consume and
produce data objects (artifacts and resources), which make up the
agent’s world model at a given point. Data objects may be related to
each other (e.g., by composition). Further, processes contain initial
and goal states that are satis�ed by one or more worlds.

Software development can be expressed as a process with a
single activity: transforming a problem statement into software
that addresses the problem. However, this lacks an operational
description. We wish to iteratively elaborate this, our initial domain
model, until we have enough detail to express all processes under
consideration and provide alternative actions to the agent. Existing
process repositories—literature and fragment repositories (e.g., [1,

12])—contain a wealth of method information that can aid our
elaboration. Using these as fragment sources, we have summarized
our method in Listing 1.

Listing 1: Our approach expressed algorithmically.

while(not shouldStop(domainModel)):

(activity, fragment) = locateReplacement(domainModel)

fragment = generalize(fragment)

domainModel = replace(domainModel, activity, fragment)

We begin by selecting an activity to replace within the domain
model and identifying a fragment from the repository that pre-
serves the dependencies in the domain model; speci�cally, a frag-
ment whose initial state is a subset of the activity’s inputs and
whose goal state is a superset of the activity’s outputs. Further, the
fragment must not contain an activity that removes data as part of
its transformation.4

Next, we transform the fragment; generalizing it by removing all
constraints (e.g., control �ow constraints) except those inherent to
its constituent activities (their data dependencies). As we will show,
this allows agents to combine activities in ways that are valid,
but may not have been captured in the process repository. We
then replace the previously selected activity with the generalized
fragment; resulting in a new ICC domain model.

We repeat this process until we have a model that can express
all of the processes that we wish to evaluate using simulation and
we have enough detail to provide alternative actions to the agent
that are not speci�ed in the process.

3.2 Ensuring Domain Model Suitability
We wish to construct a domain model such that, given an initial ICC
domain model and a set of ICC process speci�cations, the iterative
elaboration of the domain model will also be ICC. We will show
that the generalize and replace transforms preserve the process
speci�cations’ and domain model’s ICC properties.

3.2.1 Definitions. A process (or fragment) speci�cation is a set of
activities and sequencing constraints. Similarly, a domain model is a
collection of activities, sequenced according to their dependencies,
with initial and goal states to de�ne/limit its scope. For model
simplicity, we assume activities non-destructively consume data
objects. Further, we omit input/output object cardinality from the
planning domain model and leave it to activity execution.

In the planning domain, an execution is a non-empty sequence
of activities. An execution is valid if it is ICC. A valid execution
is goal-reaching (or domain-model-goal-reaching) if it connects the
initial and goal states.

A domain model is internally complete if, for each activity in the
domain model, its inputs are generated by another activity within
the model. A domain model is internally consistent if, for a given
activity, there is a sequence of activities from the initial state that
provide the inputs required by the activity. Thus, a domain model
(or, correspondingly, a process speci�cation) is ICC if it is composed
of a set of activities and sequencing rules such that the sequencing
4Rather than removing data objects, we model removal of artifacts as changes to scope
information kept by the agent.

Domain Modeling for Development Process Simulation ICSSP’17, July 2017, Paris, France

rules together with the activities make up a non-empty set of goal-
reaching executions and every activity within the model lies on at
least one execution.

To simplify our discussion, assume the domain model includes
an activity with no inputs to produce the initial state (vstar t) and
another that consumes the goal state with no outputs (vend). If
more than one goal state exists, de�ne v(end,1), ...,v(end,m) such
that these nodes generate a token artifact (indicating the goal state
has been reached) that is consumed by vend . Do a similar thing if
there are multiple initial states. Thus, without loss of generality,
assume there is one vstar t and one vend .

3.2.2 Generalization. For a given ICC process fragment speci�-
cation, P , with a set of activities VP , we generalize P (call it G(P))
by removing all constraints except the innate dependencies of its
constituent activities (the data dependencies). Here, we show that
the result of this transform is an ICC generalized fragment.

Let P(VP) be the set of all executions (valid or not) over the
activities in P and including vstar t and vend where each of the
sequences begins at vstar t and terminates at vend . We produce
K(VP) by removing all executions from P(VP) where the depen-
dencies of an activity do not precede it. Thus K(VP) ⊆ P(VP) is the
set of all executions within G(P).

To show that G(P) is ICC, we must show that K(VP) is non-
empty; K(VP) contains only valid, goal-reaching executions; and
every activity in VP is in some execution in K(VP).

Let e(P) be the set of all goal-reaching executions in P . Because P
is ICC and by the construction of K(P), we know that e(P) ⊆ K(VP),
e(P) is non-empty, and e(P) contains all activities in VP . Further,
because K(VP) ⊆ P(VP), K(VP) contains no activities besides those
inVP . Thus, K(VP) is non-empty and every activity inVP is in some
execution in K(VP).

In the construction of K(VP), we removed all executions from
P(VP) where any activity’s dependencies do not precede it in the
execution. Thus, each execution in K(VP) is ICC. Further, since
each execution in P(VP) begins and terminates at vstar t and vend
respectively, each execution is a valid, goal-reaching execution.

SinceK(VP) is a non-empty set containing all valid, goal-reaching
executions within the generalized fragment, G(P), and every activ-
ity is contained in at least one execution, we know G(P) is ICC.

3.2.3 Replacement. Generalization leaves us with both an ICC
domain model, D, and a generalized, ICC process fragment, G(P).
We wish to compose them into a new domain model.

Previously, we selected a process fragment, P , such that, for some
activity a ∈ D, the fragment’s initial state is a subset of the inputs of
a and the fragment’s goal state is a superset of the outputs of a. By
the construction of G(P), P and G(P) have the same initial and goal
states. As G(P) is ICC, its inputs are provided by a’s dependencies,
and its outputs satisfy a’s dependents, G(P) can replace a ∈ D and
the result is a new ICC domain model, D ′.

3.3 Additional Properties for Simulation
Simply being able to generate plans from an ICC domain model is
not enough for simulation. In this section, we show both that agents
can replan on-the-�y using this model, and that, with guidance,
modelers can specify other achievable goals.

3.3.1 Replannability. Thus far, we have ignored output non-
determinism: an activity may produce one of multiple output sets
upon execution (e.g., a test-run may emit a success message or fail,
providing an error report). This has no bearing on the ICC of the
model; however, it does trigger replanning. We want to ensure that
the agent can still generate a valid plan when starting from the
current world (replannability).

Assume that we have an execution, e , beginning at vstar t , that
led us to the current, non-goal world. Because artifacts are never
removed from the world, once we execute an activity, all of its
outputs are available from that point on. Thus, we must supplement
e so that it reachesvend . Because the domain model is ICC, there is
at least one goal-reaching execution, ϵ , in the model. By removing
all completed activities in e from ϵ (call it f) and appending f to e ,
we know the result will be a goal-reaching execution as it complies
with the dependency constraints and connects vstar t and vend .
The sequence, f , is the agent’s new plan to reach the goal.

Thus, from any world reached by performing a valid sequence
of activities, we can create a plan from that world to the goal state.

3.3.2 Intermediate Goal Planning. By replannability, we can
reach the domain model goal state from any reachable world, How-
ever, not all teams want to reach that goal. We’d like to de�ne other,
intermediate goals and plan to them.

Intermediate goals (IGs) are worlds in which desired data objects
exist. When all activities are deterministic, an IG is expressible as
a non-unique set of activities that produce the IG state. Using the
same technique used to show replannability, we can generate a plan
to reach each activity comprising the IG. Since activity output may
be non-deterministic during plan generation, we can express IGs
only over those data objects we could arrive at deterministically.
This severely limits our model. Is there a way for us to treat non-
deterministic activities as deterministic for planning purposes?

Activities that produce both expected and exceptional output sets
result in output non-determinism. Exceptional activity output in
the planning model stem from expected exceptions during activity
execution (e.g., a defect in compiled code), or imperfect world
knowledge (e.g., an artifact that is unexpectedly missing).5 By
our earlier assumptions—that we are simulating a single agent
with perfect knowledge—the latter cannot be true, thus exceptional
output must stem from errors.

To ensure IG reachability, we want to prevent our IG state from
including any artifact that can only be reached through an unex-
pected output of a non-deterministic activity. As illustrated by the
run tests activities of test-driven development (TDD; Figure 1),
the expected output depends on the world’s state (e.g, tests pass
if the increment’s code is present). To deal with this sort of non-
determinism, some planners specify policies (over a control-�ow-
based planning domain) directing the planner to select a speci�c
action when in a given state [5]. We could similarly guide the
planner by specifying expected output based on the current state.
In the TDD example, such a policy would expect test failure if the
implementation is not present and test success if it is. This makes
planning deterministic, and allows us to include additional data
objects in our de�nition of an IG state.

5Several forms of work�ow faults exists [11]; however, in terms of expected activity
output, only these apply.

ICSSP’17, July 2017, Paris, France Ian J. De Silva, Sanjai Rayadurgam, and Mats P. E. Heimdahl

4 THEORY IN PRACTICE: SIMULATING TDD
Having presented and supported an approach for constructing a
domain model, we use our proposed approach to generate a domain
model and show, in a simple simulation, that

(1) the domain model can be used to generate valid plans and
(2) agents can reach the goal even with a lightweight process

speci�cation.

4.1 Constructing a Planning Domain Model
Having de�ned an approach for generating a domain model, we
want to put it into practice, applying it to create a domain model
suitable for expressing test-driven development (TDD; Figure 1).

Figure 1: TDD – Detailed Control Flow [12]

Initial Domain Model. In order to simulate, we require a domain
model. Here, we outline the steps needed to create one suitable for
representing TDD.

Begin with an initial domain model: software development. Of
the numerous possible elaborations, we select the V-model [13]
since TDD is focused on testing. We expand implementation using
IEEE Standard 1074 [1] and introduce activities for declaring, im-
plementing, and integrating interfaces as prescribed by TDD for
testing [12]. Spillner et al. [13] provides a general testing process
that elaborates each of the testing activities. To support TDD’s
test automation, we replace test coding with the implementation
process from earlier and test execution with TDD’s de�nition [12].
Finally, we introduce refactoring according to Fields et al.’s descrip-
tion [4]. Listing 2 shows a subset of our domain model.

Model Validation. Before simulating, we want to verify the gener-
ated model can express TDD. To check this, we mapped the di�erent
portions of TDD to our generated model (Table 1).

One bene�t of our approach is that we can generate activity
sequences that were not considered during the construction of the
domain model. For example, the activities in the generated domain
model can be easily used to specify test last development (TLD).

Listing 2: Domain Model Subset – Activities are de�ned as
<activityName>: <preconditions> -> <postconditions>,
where capitalized terms are variables to unify. Activities
starting with trans split data objects to constituent parts.

technicalSysDesign: artifact(requirement) -> artifact(sysArch)

trans_ArchToComp: artifact(sysArch) -> artifact(componentDefinition),

artifact(componentIntegrationModel)

testPlanning: artifact(requirement) -> artifact(testDesign)

specifyComponent: artifact(componentDefinition) -> artifact(

componentDesign), artifact(incrementRequirement)

declareInterface: artifact(incrementRequirement), artifact(

componentDesign) -> artifact(incrementInterface)

implIncrement: artifact(incrementRequirement), artifact(

incrementInterface) -> artifact(incrementImpl)

integrateIncrements: artifact(incrementImpl), artifact(

componentDesign) -> artifact(componentImpl)

integrateComponents: artifact(componentImpl), artifact(

componentDesign) -> artifact(sysImpl)

compileSys: artifact(Impl), isA(Impl, impl), artifact(compilationSys)

-> artifact(compiledSys)

specifyUnitTests: artifact(Type), isA(Type, testBasis), artifact(

incrementInterface), artifact(testDesign) -> artifact(

logicalUnitTest)

genConcreteUnitTests: artifact(logicalUnitTest) -> artifact(

concreteUnitTest)

implUnitTest: artifact(incrementInterface), artifact(

concreteUnitTest), artifact(testingTool) -> artifact(

automatedUnitTestScript)

integrateTest: artifact(automatedUnitTestScript), artifact(

testDesign) -> artifact(testSuiteImpl)

compileTests: artifact(testSuiteImpl), artifact(testCompilationSys)

-> artifact(compiledTestSuite)

executeTests: artifact(compiledTestSuite), artifact(compiledSys)->

artifact(testExecutionResult)

isA(incrementRequirement, testBasis)

isA(sysImpl, impl)

isA(incrementInterface, impl)

Table 1: Mapping from TDD to the Domain Model Subset

TDD Activity Domain Model Activity

De�ne Behavior,
specifyComponentDivide into Increments

De�ne Test Case specifyUnitTests, genConcreteUnitTests
Design & Declare Interfaces declareInterface
Code Unit Test implUnitTest
Run Tests executeTests
Implement Code implIncrement

4.2 Simulating
Having constructed an ICC domain model, we demonstrate its use
with a simple simulation.

4.2.1 Simulator Set-up. To model an actor working to develop
and unit-test a feature, we wrote a single-agent simulator. In it
the agent deliberates—forming a plan—and executes the planned
activities, simply producing the plan-predicted activity output.

Deliberation. Our planner generates all possible plans from the
data model by forward-chaining activities to a �xed depth (here,
three). Plans are rank-sorted according to a utility function and
the plan in the �rst position (the highest utility) is selected, even if

Domain Modeling for Development Process Simulation ICSSP’17, July 2017, Paris, France

there is a tie. On plan completion, the agent replans. This repeats
until the agent reaches the goal state.

Further simplifying the planner, we omitted rework and non-
deterministic activity outputs from the domain model. We will
address them in future work.

Utility. Utility functions help the agent determine plan desir-
ability. To capture process adherence, we biased behavior towards
quickly completing orderings (pairs that represent activity partial
orderings; i.e., succession) with the following utility function:

U (a) = 2
3
W (a) + 1

3
max(0,U (successor (a)))

wherea is the current activity in the plan, successor (a) is the current
activity’s immediate successor in the plan, andW (a) is the activity’s
weight based on initiating or completing an ordering (arriving at a
node on the left or right side of a pair, respectively); de�ned as:

W (a) =


1, if a completes an ordering
0.5 if a initiates an ordering but does not complete one
0 if a does not initiate or complete an ordering

To evaluate that an agent can reach the goal without full process
speci�cation, we de�ned a constant utility function and ran the
agent with no speci�ed process. Under these conditions, the agent
should choose plans at random until it reaches the goal.

4.2.2 Results. We ran the simulation three times with the same
goal: once each for no process (constant utility), fully-speci�ed
TDD, and fully-speci�ed TLD. The resultant executions (Listing 3)
indeed show that the agent was able to use the domain model to
plan and execute TDD and TLD. Further, it generated a valid plan
to reach the goal even without a speci�ed process.

Listing 3: Simulations by Utility Function

(a) Constant-value

de�neRequirements
technicalSysDesign
testPlanning
trans_ArchToComp
specifyComponent
declareInterface
compileSys
implIncrement
specifyUnitTests
integrateIncrements
integrateComponents
genConcreteUnitTests
implUnitTest
integrateTest
compileTests
compileSys
executeTests

(b) Weighted: TDD

de�neRequirements
testPlanning
technicalSysDesign
trans_ArchToComp
specifyComponent
declareInterface
compileSys
specifyUnitTests
genConcreteUnitTests
implUnitTest
integrateTest
compileTests
executeTests
implIncrement
integrateIncrements
integrateComponents
compileSys
executeTests

(c) Weighted: TLD

de�neRequirements
technicalSysDesign
trans_ArchToComp
specifyComponent
declareInterface
implIncrement
integrateIncrements
integrateComponents
compileSys
testPlanning
specifyUnitTests
genConcreteUnitTests
implUnitTest
integrateTest
compileTests
executeTests

Threats to Validity. Even though we were able to demonstrate our
method’s use in planning and simulation, this controlled experiment
was done with a simple example, leaving out much of the complexity
discussed earlier (speci�cally the non-determinism and rework).

As this is part of ongoing work, we are laboring towards a larger
example that incorporates these concerns and extends to multi-
agent simulations.

5 CONCLUSION AND FUTUREWORK
In this work, we presented a means for constructing a planning do-
main model; an important step towards simulating agile processes
for a priori evaluation. We showed that iteratively elaborating a do-
main model preserves its internal-completeness and -consistency,
ensuring plan validity when plans are generated by a cooperative
planner. We then used the prescribed approach to construct an
example domain model able to express test-driven development,
and showed an agent can use the model to both adhere to a fully-
speci�ed process and achieve a goal absent a speci�ed process.

Our approach generates domain models for an agent with perfect
knowledge. As part of our on-going work, we expect to enhance the
domain model to support multi-agent planning, paying particular
attention to di�culties introduced by scaling (both in number of
agents and domain model size) and partial world observability
(imperfect knowledge). To this end, we are exploring a means to
scale using intermediate goals to support hierarchical planning.

Our domain modeling approach lays the foundation for agent
deliberation of software processes; providing a means for both gen-
erating plans without full process speci�cation and for simulating
agile processes.

REFERENCES
[1] 2006. IEEE Standard for Developing a Software Project Life Cycle Process. IEEE

Std 1074-2006 (July 2006), 1–110. DOI:http://dx.doi.org/10.1109/IEEESTD.2006.
219190

[2] Gerhard Chroust. 2000. Software Process Models: Structure and Challenges. In
Proceedings of the Conference on Software: Theory and Practice, Yulin Feng, David
Notkin, and Marie-Claude Gaudel (Eds.). PHEI, Beijing, China, 279 – 286.

[3] Ian J. De Silva, Sanjai Rayadurgam, and Mats P. E. Heimdahl. 2015. A Reference
Model for Simulating Agile Processes. In Proceedings of the 2015 International
Conference on Software and System Process (ICSSP 2015). ACM, Tallinn, Estonia,
82–91. DOI:http://dx.doi.org/10.1145/2785592.2785615

[4] Jay Fields, Shane Harvie, Martin Fowler, and Kent Beck. 2009. Refactoring: Ruby
Edition (1 ed.). Addison-Wesley Professional, Upper Saddle River, NJ.

[5] Malik Ghallab, Dana Nau, and Paolo Traverso. 2004. Automated planning: theory
& practice. Elsevier.

[6] Anton Frank Harmsen. 1997. Situational method engineering. (1997). http:
//eprints.eemcs.utwente.nl/17266/

[7] Brian Henderson-Sellers and Jolita Ralyté. 2010. Situational Method Engineering:
State-of-the-Art Review. J. UCS 16, 3 (2010), 424–478. DOI:http://dx.doi.org/10.
3217/jucs-016-03-0424

[8] Jintae Lee and George M. Wyner. 2003. De�ning specialization for data�ow
diagrams. Information Systems 28, 6 (Sept. 2003), 651–671. DOI:http://dx.doi.
org/10.1016/S0306-4379(02)00044-3

[9] Nesi Outmazgin and Pnina So�er. 2016. A process mining-based analysis of
business process work-arounds. Softw Syst Model 15, 2 (May 2016), 309–323.
DOI:http://dx.doi.org/10.1007/s10270-014-0420-6

[10] Jolita Ralyté, Rébecca Deneckère, and Colette Rolland. 2003. Towards a Generic
Model for Situational Method Engineering. In Advanced Information Systems
Engineering. Springer, Berlin, Heidelberg, 95–110. DOI:http://dx.doi.org/10.1007/
3-540-45017-3_9

[11] Nick Russell, Wil van der Aalst, and Arthur ter Hofstede. 2006. Work�ow Ex-
ception Patterns. In Advanced Information Systems Engineering. Springer, Berlin,
Heidelberg, 288–302. DOI:http://dx.doi.org/10.1007/11767138_20

[12] James Shore and Shane Warden. 2008. The Art of Agile Development (1 ed.).
O’Reilly Media, Sebastopol, CA.

[13] Andreas Spillner, Tilo Linz, and Hans Schaefer. 2014. Fundamentals of Testing.
In Software Testing Foundations (4 ed.). Rocky Nook Inc., Santa Barbra, CA.

[14] Michael Wooldridge and Nicholas R. Jennings. 1995. Intelligent agents: Theory
and practice. The knowledge engineering review 10, 02 (1995), 115–152. DOI:
http://dx.doi.org/10.1017/S0269888900008122

http://dx.doi.org/10.1109/IEEESTD.2006.219190
http://dx.doi.org/10.1109/IEEESTD.2006.219190
http://dx.doi.org/10.1145/2785592.2785615
http://eprints.eemcs.utwente.nl/17266/
http://eprints.eemcs.utwente.nl/17266/
http://dx.doi.org/10.3217/jucs-016-03-0424
http://dx.doi.org/10.3217/jucs-016-03-0424
http://dx.doi.org/10.1016/S0306-4379(02)00044-3
http://dx.doi.org/10.1016/S0306-4379(02)00044-3
http://dx.doi.org/10.1007/s10270-014-0420-6
http://dx.doi.org/10.1007/3-540-45017-3_9
http://dx.doi.org/10.1007/3-540-45017-3_9
http://dx.doi.org/10.1007/11767138_20
http://dx.doi.org/10.1017/S0269888900008122

	Abstract
	1 Introduction
	2 Related Work
	3 Planning Domain Model Creation
	3.1 Constructing the Domain Model
	3.2 Ensuring Domain Model Suitability
	3.3 Additional Properties for Simulation

	4 Theory In Practice: Simulating TDD
	4.1 Constructing a Planning Domain Model
	4.2 Simulating

	5 Conclusion and Future Work
	References

