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ABSTRACT
Static source code analysis is an increasingly important activity
to manage software project quality, and is often found as a part
of the development process. A widely adopted way of checking
code quality is through the detection of violations to speci�c sets
of rules addressing good programming practices. SonarQube is a
platform able to detect these violations, called Issues. In this pa-
per we described an empirical study performend on two industrial
projects, where we used Issues extracted on di�erent versions of the
projects to predict changes in code through a set of machine learn-
ing models. We achieved good detection performances, especially
when predicting changes in the next version. This result paves the
way for future investigations of the interest in an industrial setting
towards the prioritization of Issues management according to their
impact on change-proneness.
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1 INTRODUCTION
The assessment of software quality is an important aspect of the life-
cycle of software projects. To support automatic and semi-automatic
software quality assessment, a large amount of code metrics can be
extracted, and many other indicators useful to assess quality can
be detected.

This work describes the result of a collaboration between the Lab-
oratory of Software Evolution and Reverse Engineering1 and the Al-
ten company in Milano (Alten is an international company2 leader
1http://essere.disco.unimib.it
2http://www.alten.it/
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in engineering and technology consulting). The goal of this col-
laboration has been to relate quality measures extracted by means
of static analysis to the change-proneness of projects’ elements.
Speci�cally, we employed machine learning techniques to predict
changes in the projects using the quality measures extracted over
time onthem. The study involves software quality analysis, consid-
ering both static code analysis and version control system analysis.

To perform the experiments, di�erent tools and platforms have
been used. The study has been applied to two industrial projects
developed by Alten, two web applications that use C# for the back-
end and JavaScript for the front-end. The �rst project (called Project
A in the following) has a life time of 7 months and has been created
to monitor inbound and outbound call center performances; the
second one (Project B) has a life time of 14 months and has been
created to report results about customer satisfaction. Both projects
are developed in close collaboration with the customers, following
their continuous feedback, by 4 developers in a team composed
by 8 people. The code of both projects is maintained in a Team
Foundation Server (TFS) version control repository, and is analyzed
through SonarQube (SQ), to extract Issues, i.e., violations to coding
rules and/or metric thresholds associated with bad quality.

In this paper, we focus in particular on this Research Question
(RQ): To what extent can Issues extracted with SQ be used to predict
changes? The answer to this RQ will help us to understand if the
Issues are actually linked to properties of the code that make it
more change-prone and in particular, give a quantitative estimation
of the practical relevance of the considered Issues.

We started this collaboration between University and Industry,
since SonarQube is largely used worldwide by software develop-
ment companies. We were interested in starting to analyze if the
identi�ed issues by SQ are really worth of attention/improvement,
i.e., if SQ really identi�es problems that are urgent for the devel-
opers to �x in the near future. We choose this analysis strategy
exploiting machine learning techniques for two reasons. First, we
deal with many di�erent quality indicators (SQ issues) at once, mak-
ing dependency analysis through hypothesis testing or correlation
coe�cients very ine�cient. Second, machine learning models are
actionable, e.g., to understand if prediction performances are stable
across di�erent projects or not.

2 RELATEDWORK
We brie�y introduce some work in the area of change prediction.
Code Churn is a popular measure when dealing with change pre-
diction. It is also used, e.g., as a predictor of post-release failures [8].
More recently, changes have been related with static code quality
analysis, e.g., Romano et al. [11] use antipatterns to predict source
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Table 1: Issues Severities

Severity Description

Blocker Code must be �xed immediately
Critical Code must be immediately reviewed
Major Quality �aw which can highly impact the developer

productivity
Minor Quality �aw which can slightly impact the developer

productivity
Info Neither a bug nor a quality �aw, just a �nding

code changes �nding that classes a�ected by antipatterns change
more frequently; Malhotra and Khanna [6] use search-based tech-
niques and software metrics to predict changes in object-oriented
software. The importance of identifying change-prone components
also led to the analysis of change-proneness in Service-Oriented
Architectures [10]. In this paper, we do not use or predict churn
(number of added or changed lines of code), but we more coarsely
rely on �le change information, for both learning and prediction.

3 BACKGROUND
In the following, we de�ne basic terms and concepts used in the
paper regarding our main source of information, i.e., SonarQube.

SonarQube3 is an open source platform for continuous inspec-
tion of code quality [3]. It supports more than 20 languages4 through
di�erent plugins, the computation of many code metrics, and the
possibility to check the conformance to a large number of cod-
ing rules. Violations to coding rules are called Issues. These Issues
will be exploited as input data to predict changes in the analyzed
projects. To conduct this experiment, we adopted the default set
of Issues managed by SonarQube. Issues extracted from SQ are
divided in 5 importance levels, known as severities, spanning from
Blocker to Info5. Table 1 reports severities and their de�nition. Is-
sues are also coarsely classi�ed in three categories: Bugs are bad
programming practices known to represent mistakes in most cases,
Vulnerabilities are bad programming practices that can lead to a
security Issue or unwanted behaviour, while Code smells generally
refers to Issues leading to bad code comprehension, e.g., high size,
high complexity (this category is only weakly related to the known
code smells of Fowler [4]).

4 EXPERIMENT SETUP
We extracted SQ Issues and churn metrics on di�erent project ver-
sions, and subsequently integrated the two sources of information.
The analyzed versions have been selected as follows: For Project
A, which started in January 2016, we selected a version for every
week, while for Project B we selected a version every two weeks.

4.1 Issues Extraction
Issues have been extracted using SQ v5.5, through the available
plugins supporting C# and JavaScript. Since we analyzed SQ results
outside the platform, we exported all data in external tables through
3http://www.sonarqube.org/
4http://docs.sonarqube.org/display/PLUG/Plugin+Library
5http://docs.sonarqube.org/display/SONAR/Issues

Table 2: CodeMaat data excerpt for "Project A"

Entity Added Deleted N. Commits
BundleCon�g.cs 5 1 2
�lterManager.js 45 5 1
site.js 15 1 2
adminManager.js 13 4 3
dataTableManager.js 1 0 1
SmsService.cs 138 5 3
DashboardContextService.cs 4 11 1
WarRoomService.asmx.cs 24 0 1

SQ’s APIs (there are no export facilities in the platform). SQ keeps
a full record of all extracted data only for the last version of an ana-
lyzed project. For this reason, we analyzed all projects versions as
di�erent projects (using the version number as a su�x for project’s
name). Each project version has been prepared before the analysis,
by setting di�erent analysis parameters6, i.e., the name and key of
the project (necessary to distinguish between versions), the base
directory of the project, source encoding, paths to be excluded from
the analysis (the projects’ folders contained third party libraries),
programming languages used in the project.

Given the particular nature of C# projects, the property �les
also contained speci�c references to the project “solution” .sln
�le, containing the build data used by MSBuild in the project. This
ensured the use of the recommended scanner for MSBuild projects7.

After the analysis, we exported all Issues found by SQ in Excel
�les. The exported �les report, for each detected Issue (each Issue
is on a di�erent row):

• Project Key: string distinguishing the project versions;
• File in which the Issue has been detected;
• Line of the �le in which the Issue exists;
• Severity of the Issue;
• ID of the Issue (represent the rules violated by this Issue).

4.2 Change Extraction
The second source of information are the changes between the an-
alyzed versions. In particular, we extracted churn measures. Since
the projects are maintained on TFS, but most freely available tools
for software repository analysis are available for Git, we �rst trans-
formed the two TFS repositories in Git repositories through a tool
called git-tfs8. Then we applied another tool, called CodeMaat 9, to
extract code churn metrics between each subsequent pair of ver-
sions of the two projects. The metrics extracted by CodeMaat are:
the number of Added lines, of Deleted lines and of Commits made
on each �le. The results of this process is a set of .txt �les equal to
the number of versions of the projects analyzed. An example of the
output (simpli�ed) is reported in Table 2: for each �le, the metric
values are reported in the respective columns.

6http://docs.sonarqube.org/display/SONAR/Analysis+Parameters
7http://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+
for+MSBuild
8https://github.com/git-tfs/git-tfs
9https://github.com/adamtornhill/code-maat
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Table 3: Issues - Code Churn join from Project A v18

Prj File Version Add Del NoC Line Issue Severity
A DataService.cs 18 5 2 1 490 S2360 MAJOR
A WSmsService.cs 18 3 3 1 37 S3457 MINOR
A adminManager.js 18 2 2 1 135 S1854 MAJOR
A Dashboard.aspx.cs18 25 5 1 48 S1854 MAJOR
Add=Added, Del=Deleted, NoC=Number of Commits

4.3 Data Preparation
After extracting our data describing Issues and Churn, we needed to
integrate them before starting the machine learning experiment. In
this phase, we relied on Knime, the Analytics Platform [12] which
provides a large set of data manipulation and analysis features.
For each version of each project, we had a .xls �le containing
Issue information and a .txt �le containing Churn information.
We obtained for each project a single dataset listing all Issues in
all �les of all versions of the projects, and the Churn measures
associated to each �le at the speci�c version. During the process,
we also cleaned the data coming from CodeMaat, excluding the
�les that were not subject of analysis in SQ, i.e., external libraries
included in the projects. An excerpt of the output dataset is shown
in Table 3, which refers to the 18th version of Project A.

4.4 Experimental method and performance
measures

We de�ne our experiment as a supervised classi�cation task. It is
the task of learning a target function f that maps each attribute
set x to one of the prede�ned class labels y. Among the techniques
used to calculate a classi�er’s accuracy, we selected 10-fold cross-
validation [9]. Every cross-validation experiment produces a confu-
sion matrix that is used to describe the performance of a classi�er
model on a set of (unseen) test data for which the true values are
known. In the matrix, the actual values can be either True or False
(T/F) and predictions can be Positive or Negative (P/N), generating
four possible combinations: TP, TN, FP, FN. We consider the stan-
dard performance measures, derived from the confusion matrix:
Accuracy, Recall, Precision and F-measure.

We selected di�erent classi�ers to be used in our experiment: De-
cision Trees [7], Naive Bayes Networks [5] and Random Forests [5].

5 CHANGE PREDICTION RESULTS
We performed our learning experiment using two di�erent setups,
called timelines in the following, and two di�erent representation
for the Issues.

The �rst timeline uses the information about the presence of
Issues in the past 4 versions to predict any change in the next 2
versions (we refer to this as Prediction Model in the following). In
the training phase we need to provide to the classi�ers both the
features (the Issues) and the labels (changes). Therefore, the data
points used to train the classi�ers contain, for each version of the
project, change information about the 2 previous versions and Issue
information about the 4 versions preceding the latter. If we number
the current version with 0, each data point contains changes for
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Figure 1: Timeline 1

Table 4: Classi�cation using binary Issue representation

Model Prj TP FP Recall Prec. F-meas. Acc.

Ti
m

el
in

e
1

Decision
Tree

A 111 59 0.163 0.653 0.261 0.609
B 1787 485 1 0.787 0.881 0.787

Random
Forest

A 374 116 0.549 0.763 0.639 0.737
B 271 0 0.559 1 0.717 0.906

Naive
Bayes

A 439 271 0.645 0.618 0.631 0.681
B 285 0 0.588 1 0.74 0.912

Ti
m

el
in

e
2

Decision
Tree

A 80 35 0.169 0.696 0.272 0.734
B 320 0 0.66 1 0.795 0.927

Random
Forest

A 186 65 0.392 0.741 0.513 0.781
B 364 0 0.751 1 0.857 0.947

Naive
Bayes

A 280 339 0.591 0.452 0.512 0.669
B 376 0 0.775 1 0.873 0.952

versions {-1,0} and Issues for versions {-5, -4, -3, -2} (we refer to this
as the Training Model in the following). The training dataset is built
by shifting these six-version window over all the available versions
of the project.

All features have been modeled as binary features, represented
using integer values 0 (false) and 1 (true). On each data point, Issues
are represented as di�erent features, each one named using the
Issue ID and its relative position in the window, e.g., “Issue01 (-2)”.
Each feature is true if detected on the �le in the respective version,
false otherwise. To model changes, instead, we �rst represent the
changes in the two versions as binary features (true if �le has
changed, false otherwise), and then we compose the two features
in a single one through an OR operation. In this way, the Change
label is true if the �le received at least a change in one of the
two versions. The representations of the Prediction Model and the
Training Model for the �rst timeline are outlined in Figure 1. The
performances obtained by the selected training models by means
of cross-validation are reported in Table 4.

Classi�cation accuracy is very high on Project B, with maximum
precision. This is a good result, since with high precision (while
recall is not high) the amount of false positives is low (or zero in this
case). This is important, given the tendency of static analysis tools
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to provide false positives or not-useful results. Moreover, since we
are also interested in the long term in understanding which Issues
are mostly related to change-proneness, these trained models can be
analyzed more easily to extract that kind of relations. On Project A,
performances are lower, and in particular precision is signi�cantly
lower than in Project B. As for the models, Random Forests and
Naive Bayes have similar performances, while the ones for Decision
Trees are lower.

The second timeline uses Issue information of the past 3 versions
to predict changes in the next version. Therefore, the Training
Model used Issues in versions {-3, -2, -1}, and Changes in version
0. The modeling of Issues is the same as the �rst timeline, while
Changes simply consider a single version, and do not need the OR
composition used in the �rst timeline. The performance obtained for
this timeline are also reported in Table 4. In this case, performances
distribution between the two projects and the three models is similar
to the �rst timeline, but performances are generally higher, and in
particular with better recall. Overall, we can notice the existence
of a locality principle, i.e., Issues in the near past better explain
changes in the near future.

6 THREATS TO VALIDITY
Threats to internal validity of our experiment are concerned with
the data preparation and extraction. In our experiment, we use
SQ to extract Issues from source code, that could have accuracy
problems. This is highly improbable, since the de�nition of Issues
is precise, leading to a deterministic Issue extraction, that can be
subjected only to implementation bugs. Another source of possible
problems in Issue data is the setup of projects. We payed atten-
tion in setup of SQ analysis, to con�gure only the project’s source
code and excluding code imported from libraries or not used. As
for change information, we rely on an external tool, which parses
git change logs, and after di�erent tests, proved to be reliable. An-
other threat to the validity of our results can be seen in the dataset
balance. In fact, each combination of projects and timeline has a
di�erent balance: Project A is more balanced, with 40% of positive
instances in Timeline 1 and 30% in Timeline 2, while in Project B
balances are 20% and 35% respectively. While the imbalance is not
extreme, in future work we plan to introduce resampling techniques
to further improve prediction performances. Threats to external
validity are related to the generalization of results. The scope of
our experiment is tied to industrial projects, implemented in C#
and JavaScript, developed by the same company. The two projects
have di�erent goals but are structurally similar, being both web
applications. For these reasons, our results may not be transferable
to projects in other domains, developed by other companies or in
other technologies.

7 CONCLUSIONS AND FUTUREWORK
This work is a result of an empirical study carried out on 2 projects
developed by Alten. The study relates information extracted through
static analysis, i.e., SQ Issues, to information about changes in the
code. In particular, we applied machine learning to predict changes
in �les using Issues and their evolution as input information. We ex-
ploited classi�cation models to predict changes, and experimented
with di�erent settings w.r.t. the way we use historical information.

After performing our experiments, the answer to our RQ (To
what extent can Issues extracted with SQ be used to predict changes?)
is: Issues are a good predictor for changes in �les in our dataset;
in particular, the use of recent Issues (the ones contained in the
past three versions) to predict near-future changes (the ones in next
version) give the best results. We obtained high accuracy (≥0.9) and
precision (=1) in particular for Project B, while in Project A perfor-
mances are not so good, but yet lead to useful results (accuracy ∼
0.78, precision ∼ 0.74). Given the good prediction performances, we
can argue that code quality retrieved through static analysis and its
evolution is actually tied to change-proneness. This makes quality
analysis useful when trying to manage changes in the project and
to obtain a better overall maintainability.

In future work, we plan to extend this kind of study to assess
which Issues, and in which evolution patterns, are more tied to
changes in the code. This information can be highly useful in the
context of prioritizing [1] the most important Issues to be addressed
in a system, and to �lter out completely the Issues that do not pro-
vide objective bene�ts to the projects when they are removed. We
would like to extend this study to larger projects using di�erent
technologies and belonging to di�erent domains. As for the method-
ological aspects, we also plan to operationalize the experiment to
make the data extraction and analysis automatic and scalable to
larger data sets. This will also allow us to optimize the learning mod-
els’ parameters according to the prediction performances. Moreover,
we are interested to extend our study on change prediction, by con-
sidering also architectural issues or smells detected in a system [2].
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