
Optimal Posted Prices for Online Cloud Resource Allocation
Zijun Zhang

Dept. of Computer Science

University of Calgary

zijun.zhang@ucalgary.ca

Zongpeng Li

Dept. of Computer Science

University of Calgary

zongpeng@ucalgary.ca

Chuan Wu

Dept. of Computer Science

�e University of Hongkong

cwu@cs.hku.hk

ABSTRACT
We study online resource allocation in a cloud computing platform,

through a posted pricing mechanism: �e cloud provider publishes

a unit price for each resource type, which may vary over time; upon

arrival at the cloud system, a cloud user either takes the current

prices, renting resources to execute its job, or refuses the prices

without running its job there. We design pricing functions based on

the current resource utilization ratios, in a wide array of demand-

supply relationships and resource occupation durations, and prove

worst-case competitive ratios of the pricing functions in terms of

social welfare. In the basic case of a single-type, non-recycled

resource (i.e., allocated resources are not later released for reuse),

we prove that our pricing function design is optimal, in that any

other pricing function can only lead to a worse competitive ratio.

Insights obtained from the basic cases are then used to generalize

the pricing functions to more realistic cloud systems with multiple

types of resources, where a job occupies allocated resources for a

number of time slots till completion, upon which time the resources

are returned back to the cloud resource pool.

KEYWORDS
Cloud Computing; Posted Pricing; Resource Allocation; Online

Algorithms; Competitive Analysis

ACM Reference format:
Zijun Zhang, Zongpeng Li, and Chuan Wu. 2017. Optimal Posted Prices

for Online Cloud Resource Allocation. In Proceedings of SIGMETRICS ’17,
Urbana-Champaign, IL, USA, June 5–9, 2017, 15 pages.
DOI: h�p://dx.doi.org/10.1145/3078505.3078529

1 INTRODUCTION
Over the past decade, cloud computing has proliferated as the new

computing paradigm that provides �exible, on-demand comput-

ing services in a pay-as-you-go fashion. Various applications and

systems today are built upon cloud computing models, including

big data analytics, cloud radio access networks (C-RAN), network

function virtualization (NFV), to name a few. Despite the common

illusion that a cloud consists of an unlimited ‘sea’ of resources,

real-world clouds are constrained by �nite system capacity bounds

[17, 24] (e.g., physical capacity of a cloud data center), which may

become tight in periods of peak demands [9, 12]. A fundamental

problem in cloud computing is cloud resource allocation, i.e., to

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMETRICS ’17, Urbana-Champaign, IL, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5032-7/17/06.

DOI: h�p://dx.doi.org/10.1145/3078505.3078529

determine which user demands to satisfy at each time point. A com-

mon goal is to maximize the social welfare of the cloud eco-system,

which represents the aggregated ‘happiness’ of the cloud provider

and the cloud users [5].

Cloud resource allocation in practice exhibits a nature of online
decision making: cloud users with job requests arrive at the cloud

system at arbitrary time points, and the cloud provider decides

resource allocation upon each job request. A natural, de facto
standard of cloud resource allocation, is through a posted pricing
mechanism: the cloud provider publishes resource prices; cloud

users act as price takers who will decide to utilize the resources

if the prices are acceptable (i.e., its valuation of the job exceeds

the cost of resource renting), and will otherwise give up the cloud

service.

Major cloud providers today, such as Amazon Web Services,

Microso� Azure, and Google Cloud, typically adopt �xed prices,

i.e., resource usage is charged at �xed unit prices posted on their

websites. However, a dynamic pricing strategy based on realtime

demand-supply is more e�cient in many scenarios [4], to fully

exploit the resource capacity of a cloud system, and to be�er satisfy

user demands. For practical cloud computing systems that employ

dynamic pricing strategies, e.g., Amazon EC2 Spot Instances [1],

the short-term prices may not be driven by realtime demand-supply

[3]; however, the price di�erences across di�erent service regions

and over di�erent time periods are still relevant to demand and

supply. Inspired by the Spot Instances model, various dynamic

pricing strategies have been proposed in recent literature, including

auction mechanisms [13, 15, 23, 25, 27, 29, 30], and other dynamic

pricing strategies for revenue maximization and e�cient cloud

resource utilization [14, 19, 26].

�is work studies e�ective pricing functions for a cloud provider

to employ, for computing unit resource prices at each time point.

�e computed prices are posted as ‘take it or leave it’ prices for

cloud users to decide whether to rent the cloud resources (user

values not revealed to the cloud provider). Such prices can also

serve in a posted-price auction mechanism for cloud job admission

and charging. With meticulously designed online prices, our goal is

to maximize the social welfare of the cloud, which equals the overall

valuation of executed user jobs, minus a possible operational cost,

over the entire system span.

While maximizing social welfare does not lead directly to max-

imizing provider revenue (a natural goal for a cloud provider to

pursue), the former is also a very meaningful goal [16, 20]. Social

welfare represents the aggregate gain of the cloud provider and

cloud users, indicating overall system e�ciency. Compared to max-

imizing provider revenue, maximizing social welfare ensures good

user experience, which is critical for sustainability of the system

in the long run: long-term competitiveness in the market relies on

customer happiness, which is instrumental to long-term revenue

ar
X

iv
:1

70
4.

05
51

1v
1

 [
cs

.N
I]

 1
8

A
pr

 2
01

7

SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA Zijun Zhang, Zongpeng Li, and Chuan Wu

sustainability of the provider [28]. In addition, for public clouds

operated by nonpro�t organizations, and private clouds for serving

internal jobs, maximizing social welfare is more relevant than max-

imizing revenue [18]. In these cases, the pricing schemes studied in

this paper can be used as mechanisms for allocating cloud resources

to users based on their urgency and priorities. Furthermore, in the

auction design literature, there exist techniques that can relate

social welfare maximizing mechanisms with revenue maximizing

mechanisms [10].

Our study of the pricing functions has been partly inspired by

dual price design in competitive online algorithms based on the clas-

sic primal-dual framework [6, 8]. In primal-dual online algorithm

design, a key idea is to update dual prices using exponential func-

tions for making primal resource allocation decisions, leading to

provable competitive ratios. Nonetheless, no explicit justi�cations

were provided in the literature on the choice of using exponential

dual price functions.

In this work, we borrow the exponential form of the price func-

tion from the literature on primal-dual online algorithms, and pro-

pose the optimal form of the exponential pricing functions for a

fundamental cloud resource allocation problem. We then provide

an intuitive explanation of the optimality of the exponential pricing

function. In addition, for the �rst time in the literature, we general-

ize the pricing function to scenarios with bounded total demand,

where the optimal form is no longer necessarily an exponential

function. Interestingly, this result also contributes to the literature

on knapsack problems, in that our problem is closely related to a

variant of the online knapsack problem [11], where the total weight

of items is upper bounded.

We start by investigating the basic case of a single type of cloud

resource without resource recycling, and design resource pricing

functions based on the current resource utilization levels that cap-

ture realtime demand-supply of cloud resources. We prove the

optimality of our pricing function design. We then investigate the

cases of multiple resource types, and limited resource occupation

durations. Our detailed contributions are summarized below.

First, we justify the use of exponential pricing functions in the

literature of both cloud computing [13, 21, 22, 29, 30] and online

algorithms [6, 8], both from a theoretical point of view and with

intuitive interpretation. We prove the optimality of the pricing

function under mild system assumptions that are standard in recent

literature.

Second, we derive the optimal pricing functions for more real-

istic cloud resource allocation scenarios, where the potential total

demand for resources is bounded.

�ird, we extend the pricing functions to take into account mul-

tiple resource types. We propose a joint pricing and scheduling

strategy when the cloud system runs over multiple time slots. We

prove tight competitive ratios for these scenarios, which were not

properly proven in previous literature. We make no assumptions

on the arrival process and the distribution of user valuations.

In addition, we further verify e�ectiveness of our price design

in realistic cloud computing scenarios using simulation studies, re-

laxing assumptions made in the theoretical analysis. We show that

the parameters involved in our pricing functions can be practically

optimized in di�erent scenarios, to achieve consistently good per-

formance ratios, as compared to the o�ine optimal social welfare.

Finally, we note that our pricing models and algorithms are gen-

erally applicable to posted pricingmechanism design in other online

resource allocation systems, which share similar characteristics as

a cloud computing system.

In the rest of the paper, we review related literature in Sec. 2.

�e basic and general models of cloud resource pricing are studied

in Sec. 3 and Sec. 4, respectively. Sec. 5 presents simulation studies,

and Sec. 6 concludes the paper.

2 RELATEDWORK
Recently, auction mechanisms have been extensively studied for

online cloud resource allocation and pricing. Zhang et al. [29]

design an online auction mechanism for IaaS clouds, aiming to

maximize both social welfare and provider pro�t. Zhou et al. [30]

extend the auctionmechanism to deal with computing jobs with so�

deadlines. Shi et al. [22] propose an online mechanism for virtual

cluster allocation and pricing. �ese studies exploit the primal-

dual framework for online mechanism design, and use exponential

pricing functions to compute dual prices, which decide resource

allocation and user payments. Competitive ratios of the online

mechanisms are proven, but the rational of adopting exponential

pricing functions is lacking, and the optimality of such exponential

functions are not studied. Indeed, a wide spectrum of increasing

functions are conceivable for cloud resource pricing. Our pricing

functions are applicable to both posted pricing mechanisms and

online auctions. �e analysis of optimality of our pricing functions

is independent from the primal-dual framework.

Apart from auction mechanisms, a wide range of resource pric-

ing schemes have been studied in the literature. While static pricing

schemes are prevalent in today’s cloud computing market, dynamic

pricing schemes based on realtime demand-supply are shown to

be more e�cient in many scenarios [4]. Li et al. [14] design a pric-

ing algorithm for cloud resources, which analyses the historical

utilization ratio of the resource, and updates current prices accord-

ingly. �eir experiment demonstrates the advantage of the pricing

algorithm in terms of cost reduction and e�cient resource alloca-

tion. Mihailescu and Teo [19] propose a dynamic pricing scheme for

federated clouds, where di�erent cloud providers share and trade re-

sources for enhanced scalability and reliability. �ey show that user

welfare and the percentage of successful requests are increased by

dynamic pricing, as compared to �xed pricing. �e pricing schemes

developed in this work are both dynamic and usage-based, i.e., the
unit price of cloud resource is driven by demand-supply dynamics,

and the total price is proportional to the amount and service time

of requested resources.

�e online social welfare maximization problem studied in this

work related to a variant of the online knapsack problem [11]. Two

assumptions are made in this literature: the weight of each item is

much smaller than the capacity of the knapsack, and the density

(value to weight ratio) of every item falls in a known range [L,U].
Under these assumptions, Buchbinder and Naor [6, 7] design an

algorithm achieving a competitive ratio of O (log (U /L)), as well
as an Ω (log (U /L)) lower bound on the competitive ratio of any

algorithm. In the context of advertising auctions, Zhou et al. [31]

design a (log (U /L) + 1)-competitive algorithm for an online knap-

sack problem under the above assumptions. Interestingly, their

Optimal Posted Prices for Online Cloud Resource Allocation SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA

Table 1: Notation and de�nition

U set of users

R set of resource types

T set of all time slots

Ti set of time slots required by user i

di,r amount of resource r demanded by user i

di total amount of resource demanded by user i

vi value of successfully �nishing user i’s job

p unit resource price at the time of user arrival

p/p lower/upper bound of vi/di
γ ratio between p and p

ρ resource utilization level

ρr *
�nal resource utilization level as de�ned by De�-

nition 3.3

β scarcity level as de�ned by De�nition 3.1

Vol (ρ*)
total value obtained by an online solution, given a

�nal utilization level ρ*

Vopt (ρ*)
total value obtained by an optimal o�ine solution,

given a �nal utilization level ρ*

algorithm is equivalent to our proposed pricing strategy for the

most basic case, as will be discussed in Sec. 3.2.1. Nevertheless, our

proof of optimality is di�erent from that given by Zhou et al. [31],

and leads to an intuitive interpretation on the choice of exponential

pricing functions. More importantly, the total weight of items is

assumed to be unbounded in the previous work, which is hardly

the case for any real-world applications. In this work, we develop

a more general pricing strategy that achieves be�er competitive

ratios for bounded total weight, and we prove the optimality of the

proposed strategy.

3 PRICING FOR CLOUD RESOURCE
ALLOCATION: THE BASIC CASE

In this section, we start by designing pricing functions for a basic,

yet fundamental version of the online resource allocation problem,

following the posted pricing framework as described in Algorithm

1.

Algorithm 1: Online pricing and resource allocation

Input: di ,vi ,∀i ∈ U
Output: xi ,∀i ∈ U

1 ρ = 0 ; // Initialize the resource utilization

2 for i ∈ U do
/* Upon the arrival of each user i */

3 if vi ≥ diP (ρ) and ρ + di ≤ 1 then
/* User i accepts the posted price */

4 xi = 1;

5 ρ = ρ + di ; // Allocate resource to user i

6 else
/* User i rejects the posted price */

7 xi = 0;

3.1 �e Basic Resource Allocation Problem
Consider a cloud provider whose data center is for now assumed to

provision a single type of resource. �e resource is to be allocated

to a large number of cloud users. �e users in a set U come in

an arbitrary sequence. Upon arrival, a user decides immediately

whether to rent some of the cloud resources, by comparing the

valuation of its job with the overall price of required resources for

executing the job. Let di denote the amount of resource demanded

by a user i ∈ U, and vi be the value of successfully �nishing i’s
job. A user may decidevi according to di�erent factors, such as the

purpose and priority of the job, and how the user can gain from

the job completion. Without loss of generality, we normalize user

resource demands, assuming the total amount of resource in the

cloud is 1, so that di can be considered as the proportion of the

entire resource pool demanded by user i . Let p be the unit price of

the resource posted by the cloud provider, which may vary over

time. A user i accepts the price and rents resource at quantity di ,
if and only if vi ≥ dip, where p is the current unit resource price

at the time of user arrival. To put it another way, vi can be simply

seen as a threshold for whether a price is acceptable to user i . In this
section, we assume that each unit of the resource, once allocated,

will not be returned to the resource pool.

�e utility of the cloud provider is the total payment received.

�e utility of a served user is the valuation of its job minus its

payment. �e utility of an unserved user is zero. Since payments

cancel themselves in the summation, the social welfare of the entire

cloud system, including utilities of both the cloud provider and

the cloud users, is equivalent to the total valuation of jobs that are

served, assuming no operational cost of the cloud.

Let xi indicate whether user i rents resource (at quantity di) or
not upon its arrival. �e social welfare maximization problem can

be formulated as an integer linear program (ILP):

maximize

∑
i ∈U

vixi (1)

s.t.: ∑
i ∈U

dixi ≤ 1 (1a)

xi ∈ {0, 1} ,∀i ∈ U (1b)
�is is a 0-1 knapsack problem, and can be solved exactly using dy-

namic programming in the o�ine se�ing. However, for the online

problem we are investigating, the columns of the coe�cient matrix

of constraint (1a), corresponding to di�erent online-arriving users,

are revealed one-by-one, while the value of xi is to be determined

immediately when a user comes to the cloud. We apply an online

resource allocation algorithm, as shown in Algorithm 1, to decide

resource allocation given resource prices.

�e performance of the posted pricing mechanisms in the on-

line resource allocation algorithm clearly depends on the pricing

function. Practically, we do not assume that users reveal their job

valuations to the cloud provider. Consequently, the pricing strategy

depends only on the demand-supply relationship of cloud resources.

We will use the standard notion of competitive ratio to evaluate the

quality of our online resource allocation solution, which is de�ned

as the ratio between the optimal objective value of the o�ine prob-

lem (1) and that of the online solution. �e smaller (closer to 1) the

SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA Zijun Zhang, Zongpeng Li, and Chuan Wu

competitive ratio is, the be�er the online resource allocation solu-

tion. More speci�cally, we will focus on the worst-case competitive

ratio (as opposed to average-case competitive ratio). We �rst make

the following two mild assumptions:

assumption 1. �e variability of users’ valuations is constrained,
i.e., p ≤ vi/di ≤ p,∀i ∈ U, where p and p are lower bound and upper
bound of the per-unit-resource job valuation of all users, respectively.

assumption 2. �e resource demand of each user is much smaller
than the total resource capacity, i.e., di � 1,∀i ∈ U.

Assumption 2 is reasonable when considering large-scale data

centers, where the total resource capacity refers to that of the en-

tire data center. We make this assumption mainly to facilitate our

theoretical analysis, such that techniques from calculus (di�erenti-

ation) can be used, and very extreme cases can be eliminated that

are rare in practice. For example, if a high-valued bid demanding

almost all the resource from a cloud provider is rejected, because

a small fraction of the resource is occupied by other users, then

the worst-case competitive ratio can be in�nitely large. In addition,

such an assumption is standard in the literature of online resource

allocation [29, 30] and online knapsack problems [6, 7, 11, 31].

Nonetheless, it is also possible to relax Assumption 2 to specify-

ing an upper bound on di instead, without signi�cantly a�ecting

our theoretical result. Speci�cally, we can use di�erence equation

and summation, instead of di�erential equation and integration, to

derive similar results. In addition, we will relax this assumption

completely in our empirical studies.

3.2 Pricing Function Design
We design pricing functions that adjust resource prices based on

realtime demand-supply. To this end, it is helpful to have some prior

knowledge about the total resource demand. In practice, unlimited

total resource demand is rare; an estimated upper bound on the

overall resource demand can o�en be obtained. �is is re�ected

through the following de�nition.

De�nition 3.1. Suppose the total resource demand of all users

is upper bounded by 1 + β times the total resource supply, i.e.,∑
i ∈U di ≤ 1 + β , with β > −1. We refer to β as the scarcity level

of the resource.

It is possible to have a known lower bound on the overall resource

demand as well, but our algorithm design and analysis do not rely

on such a lower bound.

We next present the optimal pricing function for β → ∞, and
then derive the optimal pricing functions for �nite β , based on

the insight we gain from the analysis of the �rst case. We then

further show that the results can be extended to the case that linear

operational costs of cloud resources are considered in Sec. 3.3.

3.2.1 Pricing Function for Large Total Demand. We begin with

the case that the total demand for resource is much larger than the

capacity of the cloud resource pool. We propose an optimal pricing

function for the case that β →∞, and then show the same pricing

function is in fact optimal as long as β ≥ 1 (i.e., the upper bound
on the overall resource demand is at least twice of the resource

capacity).

De�nition 3.2. In Algorithm 1, oblivious of true valuations of

users, a pricing function is optimal if it achieves the smallest possible

worst-case competitive ratio in social welfare under Assumptions 1

and 2.

Let ρ be the resource utilization level, i.e., the amount of the

resource already allocated. Note that ρ is a function of time, but

this dependency is omi�ed for notational simplicity. �e unit price

of the resource at the respective resource utilization level is denoted

by P1 (ρ), designed as follows:

P1 (ρ) =

p, ρ ∈ [0, 1/(logγ + 1)]
pe(logγ+1)ρ−1, ρ ∈ (1/(logγ + 1) , 1)
+∞, ρ = 1

, (2)

where γ = p/p. An illustration of the pricing function for p = 1,

p = 10 is given in Fig. 1 (blue lines in both sub�gures). Intuitively,

when ρ is quite small, it is desirable to keep the price at the lowest

level (p), to allow all potential users to rent the resource. As ρ

increases, the amount of satis�ed demand increases, as well as the

obtained social welfare, and hence it is reasonable to raise the price

to �lter out users with low valuations. When ρ = 1, the resource is

exhausted, so we use an in�nitely high price to reject all subsequent

users. Note that even if we need the lower bound and upper bound

of the per-unit-resource valuation in (2), when applying this pricing

function in online resource allocation, we can use estimates of the

bounds, which can be further calibrated over time when more users

have arrived and more user price taking decisions are learned.

We next prove the worst-case competitive ratio of Algorithm 1

achieved when using the pricing function in (2), as well as the opti-

mality of the pricing function when β →∞ (this default condition

omi�ed in all lemmas, claim and theorems before�eorem 3.8), and

then generalize the conclusion to the case β ≥ 1 in �eorem 3.8.

De�nition 3.3. ρ* ∈ [0, 1] denotes the �nal utilization level of

the resource a�er all users have decided whether to rent the cloud

resource to execute their jobs.

�e following lemma implies when the �nal resource utilization

level is low, the total demand of potential users also tends to be low,

thus it is possible to satisfy all user demand online.

Lemma 3.4. If ρ* ∈ [0, 1/(logγ + 1)], the worst-case competitive
ratio achieved by Algorithm 1 using the pricing function in (2) is
α1,1 = 1.

Proof. According to the pricing function in (2), for ρ ∈ [0,
1/(logγ + 1)], the unit price is a constant, p, which by Assump-

tion 1 is acceptable to any potential user, thus ρ* ∈ [0, 1/(logγ + 1)]
implies that the total demand of all users is exactly ρ*. �e social

welfare achieved by the pricing function in (2) is the total value

of all users, which is also the maximum possible social welfare

achieved by solving the o�ine problem (1). �erefore, the worst-

case competitive ratio is 1. �

For a �nal utilization level ρ*, we let Vol (ρ*) be the total value
obtained by an online solution, and Vopt (ρ*) be that obtained by

an optimal o�ine solution. �us, in any worst case, the ratio

Vopt (ρ*)/Vol (ρ*) is maximized.

Optimal Posted Prices for Online Cloud Resource Allocation SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resource utilization

0

2

4

6

8

10

U
n

it
 p

ri
c
e

0

2

4

6

8

10

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

(a) �e pricing function and competitive ratio.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resource utilization

0

2

4

6

8

10

U
n

it
 p

ri
c
e

Online

Offline

(b) �e worst-case Vol (ρ*) and Vopt (ρ*) for ρ* = 0.7 visualized by AUCs.
Each AUC indicates the total value obtained by an online or o�line solu-
tion.

Figure 1: An illustration of pricing function (2) for p = 1,
p = 10.

Lemma 3.5. If ρ* ∈ (1/(logγ + 1) , 1], the worst-case competitive
ratio achieved by Algorithm 1 using the pricing function in (2) is
α1,2 = logγ + 1.

Proof. For any ρ* ∈ (1/(logγ + 1) , 1], the worst case of the

online solution is that the valuations of satis�ed users are the same

as the prices they accept. By Assumption 2, the minimum total

value of an online solution is

Vol (ρ*) =
∫ ρ*

0

P1 (ρ)dρ =
p

logγ + 1
e(logγ+1)ρ*−1, (3)

as shown by the blue area under the curve (AUC) in Fig. 1b. At the

same time, any unsatis�ed user has a unit value smaller than P1 (ρ*),
because otherwise ρ* cannot be the �nal resource utilization. Hence
in the worst case, there can be a set of unsatis�ed users with a total

demand of 1 (i.e.,
∑
i ∈Uopt di = 1,∀r ∈ R, whereUopt is the set of

user chosen by the optimal o�ine solution), and each with a unit

value of P1 (ρ*)−ϵi , where ϵi is an arbitrarily small positive number,

such that the optimal o�ine solution is to satisfy their demands

with all available resource. �is yields the maximum optimal o�ine

total value given Eq. (3):

Vopt (ρ*) =
∑

i ∈Uopt

di (p (ρ*) − ϵi) = p (ρ*) − ϵ

= pe(logγ+1)ρ*−1 − ϵ,
(4)

as shown by the red AUC (partially covered by the blue one) in

Fig. 1b. Here, ϵ =
∑
i ∈Uopt ϵi , and hence can also be arbitrarily

small. Note that, there can be a case which leads to a larger optimal

o�ine total value, by increasing the online value corresponding

to ρ ∈ [0, ρ*] (i.e., the blue AUC in Fig. 1b) until it is large enough

and becomes part of the optimal o�ine value. However, the online

value will increase more than the optimal o�ine value does in this

case, making it impossible to be a worst case. �erefore, the worst-

case competitive ratio α1,2 = supϵ>0
Vopt (ρ*)
Vol (ρ*) = logγ + 1,∀ρ* ∈

(1/(logγ + 1) , 1]. �

An illustration of the worst-case competitive ratio at di�erent

�nal resource utilization levels is shown in Fig. 1a (red line).

Theorem 3.6. �e worst-case competitive ratio of Algorithm 1
using the pricing function in (2) is

α1 = logγ + 1. (5)

Proof. �e worst-case competitive ratio of the pricing function

in (2) is the maximum possible competitive ratio for all ρ* ∈ [0, 1].
Hence following Lemma 3.4 and 3.5, α1 = max

{
α1,1,α1,2

}
= logγ+

1. �

We next show the optimality of the pricing function based on

the observation that, to achieve a �nite worst-case competitive

ratio, any pricing function should contain a constant (p) part at the

beginning of the function.

Claim 3.1. If a pricing function P (ρ) achieves a �nite worst-case
competitive ratio of α , then P (ρ) = p,∀ρ ∈ [0, 1/α].

Proof. If the claim does not hold and P (0) > p, there can be

a case where ρ* = 0, such that the online total value V ′ol (ρ*) = 0,

while the optimal o�ine total value V ′opt (ρ*) = P (0) − ϵ > 0,

where ϵ is an arbitrarily small positive number. �us the worst-case

competitive ratio α ≥ supϵ>0
V ′opt (ρ*)
V ′ol (ρ*)

= +∞, which contradicts

the assumption that α is �nite.

If the claim does not hold and P (0) = p, there must be a ρ0 ∈
(0, 1/α] such that P (ρ0) > P (ρ) ,∀ρ ∈ [0, ρ0). �ere can be a case

where ρ* = ρ0, such that the online total value

V ′ol (ρ*) =
∫ ρ0

0

P (ρ)dρ < ρ0P (ρ0) ,

while the optimal o�ine total valueV ′opt (ρ*) = P (ρ0)−ϵ . �us the

worst-case competitive ratio α ≥ supϵ>0
V ′opt (ρ*)
V ′ol (ρ*)

> 1/ρ0, which
contradicts ρ0 ≤ 1/α . �

Theorem 3.7. the pricing function in (2) is optimal according to
De�nition 3.2, i.e., using it Algorithm 1 achieves the smallest worst-
case competitive ratio.

Proof. We prove this theorem by way of contradiction. As-

sume that there exists a pricing function, P ′
1
(ρ), which achieves a

SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA Zijun Zhang, Zongpeng Li, and Chuan Wu

worst-case competitive ratio α ′
1
< α1. According to Claim 3.1 and

�eorem 3.6, we have P ′
1
(ρ) = p,∀ρ ∈ [

0, 1/α ′
1

]
, and hence∫

1/α ′
1

0

P ′
1
(ρ)dρ <

∫
1/α ′

1

0

P1 (ρ)dρ,

where P1 (ρ) is the pricing function in (2).

If there exists some ρ ∈
(
1/α ′

1
, 1

)
such that P ′

1
(ρ) ≥ P1 (ρ) we

�nd the smallest one, and denote it by ρ1. �en there can be a case

where ρ* = ρ1, such that the online total value

V ′ol (ρ*) =
∫ ρ1

0

P ′
1
(ρ)dρ <

∫ ρ1

0

P1 (ρ)dρ = Vol (ρ*) ,

while the optimal o�ine total value V ′opt (ρ*) = P ′
1
(ρ1) − ϵ ≥

P1 (ρ1)−ϵ = Vopt (ρ*), where ϵ is an arbitrarily small positive num-

ber. �us the worst-case competitive ratio α ′
1
≥ supϵ>0

V ′opt (ρ*)
V ′ol (ρ*)

>

supϵ>0
Vopt (ρ*)
Vol (ρ*) = α1, contradicting the assumption α ′

1
< α1.

�erefore, P ′
1
(ρ) < P1 (ρ) ,∀ρ ∈ (

1/α ′
1
, 1

)
.

For ρ* = 1, since P ′
1
(1) ≤ p (a unit price higher than p will have

all potential users rejected) is �nite, we now have

V ′ol (ρ*) =
∫

1

0

P ′
1
(ρ)dρ <

∫
1

0

P1 (ρ)dρ = Vol (ρ*) .

However, as the resource is exhausted, subsequent users will not

be served, regardless of their valuations. �ere can be a case where

the optimal o�ine total value V ′opt (ρ*) = p = Vopt (ρ*). �us

the worst-case competitive ratio α ′
1
≥

V ′opt (ρ*)
V ′ol (ρ*)

>
Vopt (ρ*)
Vol (ρ*) = α1,

contradicting the assumption that α ′
1
< α1. �

We next generalize the optimality result for all β ≥ 1.

Theorem 3.8. For β ≥ 1, the pricing function in (2) is optimal
according to De�nition 3.2, and the corresponding worst-case compet-
itive ratio is α1.

Proof. For any possible input set of users, we can prune the

users that can neither be satis�ed by the online solution, nor by the

optimal o�ine solution, without a�ecting the online or o�ine social

welfare, given a certain pricing function. Clearly, the resulting set of

users has a total demand no greater than 2, which can also happen

given any β ≥ 1. Consequently, all the discussions above can be

generalized to β ≥ 1. �

�e following property (which holds for all β ≥ 1) is useful

for guiding the design of pricing functions in more realistic cloud

computing scenarios.

Property 1. For the pricing function in (2), and any ρ* ∈ (1/α1, 1],
i.e., the monotonically increasing part of P1 (ρ), we have

sup

ϵ>0
Vopt (ρ*) = α1Vol (ρ*) , (6)

and hence
d supϵ>0Vopt (ρ*)

dρ*
= α1

dVol (ρ*)
dρ*

, (7)

and a constant (w.r.t. ρ*) worst-case competitive ratio, α1.

Proof. �e proof is a corollary that follows from Eq. (3), (4),

Lemma 3.5 and �eorem 3.5. �

Property 1 is illustrated in Fig. 1b, where the light red area corre-

sponds to

dVopt (ρ*)
dρ*

���
ρ*=0.7

, and the light blue area corresponds to

dVol (ρ*)
dρ*

���
ρ*=0.7

. Intuitively, this property implies the best trade-o�

between the worst-case competitive ratios corresponding to di�er-

ent ρ* values. �at is, any changes to the pricing function in (2) that

may decrease the competitive ratio for some ρ*, will unavoidably
increase the competitive ratio for some other ρ*, and thus can only

lead to a worse competitive ratio over all possible values of ρ*.

3.2.2 Pricing Function for Small Total Demand. In the case that

β ∈ (−1, 0], the total resource demand is no larger than the total

resource supply. �e optimal strategy is simply serving all user

demands by se�ing a unit resource price below the smallest per-

unit-resource valuation of cloud users.

Theorem 3.9. For β ∈ (−1, 0], pricing function

P4 (ρ) = p (8)

is optimal according to De�nition 3.2, and the corresponding worst-
case competitive ratio achieved by Algorithm 1 is 1.

�e proof is straightforward and hence omi�ed.

3.2.3 Pricing Function for Total Demand Up to Twice of Supply.
In the case that β ∈ (0, 1), we �rst derive pricing functions that

have Property 1, and then prove the optimality of the functions.

In the following derivation of the pricing functions, we assume

that all pricing functions are continuous and non-decreasing, for

the solution existence of our di�erential equations. However, the

assumptions are not required by the proof of optimality. �e fol-

lowing claim will be useful for the derivation.

Claim 3.2. For any β > −1, if a pricing function P (ρ) leads to a
�nite worst-case competitive ratio of α , then P (ρ) = p,∀ρ ∈ [0, 1/α].

Proof. For β > 0, the proof is similar to that of Claim 3.1 and

is omi�ed. For β ∈ (−1, 0], the claim follows immediately from

�eorem 3.9. �

Our derivation of the pricing function is further divided into two

cases.

Case 1: β ∈ (β0, 1) where β0 ∈ (0, 1), such that β > 1/α2 and α2 is
the worst-case competitive ratio achieved using the optimal pricing

function for β ∈ (β0, 1). According to Claim 3.2, the pricing function

P2 (ρ) = p,∀ρ ∈ [0, 1/α2]. When ρ* ∈ (1/α2, 1), as discussed for

Eq. (3), the minimum total value of an online solution is

Vol (ρ*) =
∫ ρ*

0

P2 (ρ)dρ, (9)

and hence

dVol (ρ*)
dρ*

=

d

(∫ ρ*
0

P2 (ρ)dρ
)

dρ*
= P2 (ρ*) , (10)

which is illustrated by the light blue area in Fig. 2a. Since P2 (ρ)
is non-decreasing, when ρ* ∈ (1/α2, β], we still have Vopt (ρ*) =

Optimal Posted Prices for Online Cloud Resource Allocation SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA

P2 (ρ*) − ϵ as discussed for Eq. (4), where ϵ is an arbitrarily small

positive value. �us

d supϵ>0Vopt (ρ*)
dρ*

=
dP2 (ρ*)
dρ*

. (11)

It follows from Eq. (7), (10) and (11) that

dP2 (ρ)
dρ

− α2P2 (ρ) = 0. (12)

Solving the di�erential equation above gives P2 (ρ) = Ceα2ρ , where
C is a constant to be determined. Since we assumed the continuity

of P2 (ρ), we let limρ→1/α2+ P2 (ρ) = P2 (1/α2) = p, and then we

obtain C = p/e , and P2 (ρ) = peα2ρ−1,∀ρ ∈ (1/α2, β].
When ρ* ∈ (β , 1), having a set of users with a unit value of

P2 (ρ*) − ϵ to consume all resource is no longer possible in the

worst case. Instead, there can be a set of unsatis�ed users with a

total demand of 1 + β − ρ*, and with a unit value of P2 (ρ*) − ϵ ,
such that the optimal o�ine solution yields the maximum optimal

o�ine total value given Eq. (9):

Vopt (ρ*) = (1 + β − ρ*) (P2 (ρ*) − ϵ) +
∫ ρ*

β
P2 (ρ)dρ, (13)

as shown by the red and yellow AUCs (partially covered by the

blue one) in Fig. 2a. We have

d supϵ>0Vopt (ρ*)
dρ*

= (1 + β − ρ*) dP2 (ρ*)
dρ*

, (14)

which is illustrated by the light red areas in Fig. 2a. Note that, there

can be a case which leads to a larger optimal o�ine total value, by

increasing the value corresponding to ρ ∈ [β , ρ*] (i.e., the yellow
AUC in Fig. 2a). Suppose the increased optimal o�ine total value is

Vopt (ρ*)+∆ (∆ > 0), the online total value will also be increased to

Vol (ρ*) + ∆. However, since the competitive ratio now changes to

supϵ>0
Vopt (ρ*)+∆
Vol (ρ*)+∆ < supϵ>0

Vopt (ρ*)
Vol (ρ*) , it cannot be the worst case.

It follows from Eq. (7), (10) and (14) that

(1 + β − ρ) dP2 (ρ)
dρ

− α2P2 (ρ) = 0. (15)

Solving the di�erential equation above gives P2 (ρ) = C(1+β−ρ)−α2 ,
whereC is a constant to be determined. Again, due to the continuity

of P2 (ρ), we let limρ→β+ P2 (ρ) = P2 (β) = peα2β−1. �en we

obtain C = peα2β−1, and P2 (ρ) = peα2β−1 (1 + β − ρ)−α2 ,∀ρ ∈
(β, 1]. To have a constant competitive ratio at ρ* = 1− and ρ* = 1,

as suggested by Property 1, we let P2 (1) = peα2β−1β−α2 = p = γp,
which leads to

α2 =
logγ + 1

β − log β . (16)

To obtain the value of β0, let β = β0 = 1/α2. By Eq. (16), we

obtain

β0 =
W (logγ)
logγ

. (17)

Here,W (·) is the LamberW -function (a.k.a. the omega function or

the product logarithm), which is the inverse function of f (W) =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resource utilization

0

2

4

6

8

10

U
n

it
 p

ri
c
e

Online

Offline

Online/Offline

(a) �e worst-case Vol (ρ*) and Vopt (ρ*) for β = 0.5, ρ* = 0.7 visualized by
AUCs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resource utilization

0

2

4

6

8

10

U
n

it
 p

ri
c
e

0

2

4

6

8

10

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

(b) Pricing functions and competitive ratios for di�erent values of β .

Figure 2: Pricing functions and competitive ratios for β ∈
(0, 1), p = 1, p = 10.

WeW . �erefore, for β ∈ (β0, 1), the pricing function is

P2 (ρ) =

p, ρ ∈ [0, 1/α2]
peα2ρ−1, ρ ∈ (1/α2, β]
peα2β−1 (1 + β − ρ)−α2 , ρ ∈ (β, 1)
+∞, ρ = 1

. (18)

An example of P2 (ρ) is shown in Fig. 2b by the dashed line cor-

responding to β = 0.5, where β0 = 0.399. In practice, β can be

estimated or optimized against competitive ratios.

Theorem 3.10. For β ∈ (β0, 1), the pricing function in (18) is
optimal according to De�nition 3.2, and the corresponding worst-case
competitive ratio is α2.

Proof. �e proof of the worst-case competitive ratio α2 follows
that of �eorem 3.6, and is omi�ed.

Suppose there exists a pricing function, P ′
2
(ρ), that achieves a

worst-case competitive ratio α ′
2
< α2. According to Claim 3.2 and

the proof of �eorem 3.7, we have∫ β

0

P ′
2
(ρ)dρ <

∫ β

0

P2 (ρ)dρ,

where P2 (ρ) is the pricing function in (18).

SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA Zijun Zhang, Zongpeng Li, and Chuan Wu

If there exists some ρ ∈ (β , 1) such that P ′
2
(ρ) ≥ P2 (ρ) we �nd

the smallest one, and denote it by ρ1. �en there can be a case

where ρ* = ρ1, such that the online total value

V ′ol (ρ*) =
∫ ρ1

0

P ′
2
(ρ)dρ <

∫ ρ1

0

P2 (ρ)dρ − ∆ = Vol (ρ*) − ∆,

where ∆ =
∫ ρ1
β

[
P2 (ρ) − P ′

2
(ρ)

]
dρ; while the optimal o�ine to-

tal value V ′opt (ρ*) ≥ Vopt (ρ*) − ∆ according to Eq. (13). �us

the worst-case competitive ratio α ′
2
≥ supϵ>0

V ′opt (ρ*)
V ′ol (ρ*)

> supϵ>0

Vopt (ρ*)−∆
Vol (ρ*)−∆ > α2, contradicting the assumption α ′

2
< α2. �erefore,

P ′
2
(ρ) < P2 (ρ) ,∀ρ ∈ (β , 1).
For ρ* = 1, since P ′

2
(1) ≤ p (a unit price higher than p will reject

all potential users) is �nite, we now have

V ′ol (ρ*) =
∫

1

0

P ′
2
(ρ)dρ <

∫
1

0

P2 (ρ)dρ − ∆ = Vol (ρ*) − ∆,

where ∆ =
∫
1

β
[
P2 (ρ) − P ′

2
(ρ)

]
dρ. However, as the resource is

exhausted, subsequent users will not be satis�ed regardless of their

valuations. �ere can be a case where the optimal o�ine total value

V ′opt (ρ*) = Vopt (ρ*) −∆ according to Eq. (13). �us the worst-case

competitive ratio α ′
2
≥

V ′opt (ρ*)
V ′ol (ρ*)

>
Vopt (ρ*)−∆
Vol (ρ*)−∆ > α2, contradicting

the assumption α ′
2
< α2. �

Case 2: β ∈ (0, β0]. From the de�nition of β0, we have β ≤ 1/α3,
where α3 is the worst-case competitive ratio of the optimal pricing

function in this case. According to Claim 3.2, the pricing function

P3 (ρ) = p,∀ρ ∈ [0, 1/α3]. When ρ* ∈ (1/α3, 1), Vol (ρ*) follows
Eq. (10) with P2 (ρ*) replaced by P3 (ρ*); Vopt (ρ*) follows Eq. (13),
(14) with P2 (ρ*) replaced by P3 (ρ*). �en, following Eq. (15), we

have P3 (ρ) = C(1 + β − ρ)−α3 . As discussed for Eq. (16), we let

limρ→1/α3+ P3 (ρ) = P3 (1/α3) = p, P3 (1) = p = γp. Solving the

resulting equations:

C

(
1 + β − 1

α3

)−α3
= p,

Cβ−α3 = γp,

we get

α3 =
logγ

(1 + β) logγ −W
(
βγ 1+β logγ

) , (19)

and the pricing function for β ∈ (0, β0] is:

P3 (ρ) =

p, ρ ∈ [0, 1/α3]
pγ βα3 (1 + β − ρ)−α3 , ρ ∈ (1/α3, 1)
+∞, ρ = 1

. (20)

An example of P3 (ρ) is shown in Fig. 2b by the dashed line corre-

sponding to β = 0.2.

Theorem 3.11. For β ∈ (0, β0], the pricing function in (20) is
optimal according to De�nition 3.2, and the corresponding worst-case
competitive ratio is α3.

Proof. �e proof is similar to that of �eorem 3.10 and is omit-

ted. �

00.10.20.30.40.50.60.70.80.91

Scarcity rate

1

1.5

2

2.5

3

3.5

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Figure 3: Competitive ratios for di�erent values of β and γ .

0

1

2

4

1

Resource utilization

6

U
n
it
 p

ri
c
e

Scarcity rate

0.8

8

0.5 0.6

10

0.4
0.2

0 0

Figure 4: 2-D pricing function P (ρ; β) for ρ ∈ [0, 1] , β ∈ [0, 1].

To provide a be�er understanding on how β ∈ (0, 1) a�ects the
competitive ratio as dictated by �eorems 3.8, 3.10 and 3.11, we

plot the competitive ratio as a function of β in Fig. 3. As shown in

the �gure, for a certain value of γ , the competitive ratio decreases

with the decrease of β , and reaches the minimum value 1 when β
drops to 0.

Pu�ing Eq. (2), (18) and (20) together, we have obtained a 2-

dimensional piecewise pricing function, P (ρ; β). An illustration of

the pricing function is given in Fig. 4.

3.3 Linear Operational Cost
Resource provisioning in real-world cloud computing systems o�en

incurs an operational cost. If such cost is proportional to the amount

of resources provisioned, then we have a linear operational cost

[29]. We can extend the proposed pricing strategy to accommodate

such linear operational cost by making two modi�cations. First, we

replace Assumption 1 by:

assumption 3. �e variability of users’ valuations is constrained,
i.e., p + c ≤ vi/di ≤ p + c .

Here, c ≥ 0 is the operational cost of using a unit of resource.

Second, we replace the pricing functions (2), (18) and (20), by

Optimal Posted Prices for Online Cloud Resource Allocation SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA

P ′
1
(ρ) = P1 (ρ) + c , P ′

2
(ρ) = P2 (ρ) + c and P ′

3
(ρ) = P3 (ρ) + c .

�en it is clear that all discussions about the proposed pricing strat-

egy remain valid, including the proof of optimality. In the rest of

this paper, we ignore operational cost for simplicity.

4 PRICING MULTIPLE RESOURCE TYPES
WITH RESOURCE RECYCLING

In this section, we extend our elementary resource allocation prob-

lem in (1) to one with multiple types of resources (Sec. 4.1), and

then further investigate the practical case that resource usage of a

user lasts for multiple time slots (Sec. 4.2). We show that, by care-

fully designing the pricing and scheduling strategy, the worst-case

competitive ratio in social welfare will not be in�uenced by the

number of resource types, or by the number of requested time slots.

4.1 Pricing Function for Multiple Types of
Resources

Now we consider a cloud system that provides multiple types of

resources in a set R, as exempli�ed by CPU, GPU, RAM, and disk

storage. Let di,r be user i’s demand for resource r , ∀r ∈ R. Again,
we assume the total amount of each type of resource is 1, so that

di,r is the proportion of the overall supply of resource r demanded

by i .
�e o�ine social welfare maximization problem is:

maximize

∑
i ∈U

vixi (21)

s.t.: ∑
i ∈U

di,rxi ≤ 1,∀r ∈ R (21a)

xi ∈ {0, 1} ,∀i ∈ U (21b)

�e online resource allocation algorithm we apply to determine xi
immediately a�er user i comes to the system, is the same as Alg. 1,

except that di and the pricing function will be rede�ned.

Given the optimal pricing functions (2) (for β ≥ 1), (18) (for

β ∈ (β0, 1)), (20) (for β ∈ (0, β0]) and (8) (for β ∈ (−1, 0]) in case of

a single resource type, we can simply price each type of resource

independently as pr , using these pricing functions, and sum them

up by

∑
r ∈R di,rpr to form a total price (a user i accepts the prices

and rents resources at quantitiesdi,r ’s, if and only ifvi is no smaller

than the total price). Before doing so, we need to rede�ne p and p.

One way is to de�ne them for each type of resource independently,

as p
r
= infi

vi
di,r

, and pr = supi
vi
di,r

, as done by Zhang et al. [29].

However, a drawback of this de�nition is that pr can be in�nite, as

we do not assume that every user demands all types of resources. A

remedy to this problem is to de�ne the same p and p for all types of

resources, as p = infi
vi
di
, and p = supi

vi
di
, where di =

∑
r ∈R di,r .

In this way, Assumption 1 or 3 remains intact. �e de�nitions of p

and p are a simple extension of Assumption 1 for the multi-resource

case. Compared to the former de�nition, they do not make any

(implicit) assumptions on the ratio of di�erent resources each user

demands, and thus are more practical. Moreover, summing up the

demand for di�erent types of resources is reasonable when each

di,r is normalized by the total supply of the corresponding resource,

such that their values are all in the range of [0, 1]. �en given the

resource utilization ρr and scarcity level βr of each type of resource

r ∈ R, we de�ne an average unit price for any resource for user i as

Pi (ρ) =
1

di

∑
r ∈R

di,r P (ρr ; βr) (22)

where ρ denotes the vector of ρr ,∀r ∈ R, and P (ρr ; βr) is de�ned
by Eq. (2), (18), (20) and (8). �erefore, diPi (ρ) is the total price
for user i . Note that we omit βr in Pi (ρ) for notational simplicity,

but di�erent βr will lead to di�erent Pi (ρ).
While it is quite straightforward to adapt the pricing strategy

for a single resource type to the case of multiple resource types,

the resulting worst-case competitive ratio of social welfare will be

di�erent. Speci�cally, we denote the �nal resource utilization level

of resource r by ρr *,∀r ∈ R, according to De�nition 3.3, and we

analyze competitive ratios in three cases: (i) ρr * ∈ [0, 1/αr] ,∀r ∈
R; (ii) there exists an r ∈ R such that ρr * ∈ (1/αr , 1), but no r ∈ R
such that ρr * = 1; (iii) there exists an r ∈ R such that ρr * = 1. Here,

αr is de�ned by Eq. (5), (16) or (19) for β = βr . We denote the three

cases by ρ* ∈ Ω1, ρ* ∈ Ω2 and ρ* ∈ Ω3, respectively, and observe

that Ω1 ∪ Ω2 ∪ Ω3 covers all possible values of ρ*. Without loss

of generality, here we assume not all βr ≤ 0, since otherwise the

worst-case competitive ratio would be 1.

Lemma 4.1. For ρ* ∈ Ω1, the worst-case competitive ratio achieved
by Alg. 1 using pricing function (22) for multiple types of resources is
α1 = 1.

Proof. For ρ* ∈ Ω1, according to the pricing function in (22),

Pi (ρ*) = p, which by Assumption 1 is acceptable to any potential

users, thus the total demand of all users for resource r is exactly ρr *.
�e social welfare achieved by the pricing function in (22) is the

total value of all users, which is also the maximum possible social

welfare achieved by solving the o�ine problem (21). �erefore, the

worst-case competitive ratio α1 = 1. �

For ρ* ∈ Ω2, we �rst present the following claim, which states

that worst cases happen when all users demand only one speci�c

type of resource, driving the average unit price to go a bit over p.

Claim 4.1. Let ρr * ∈ [0, 1/αr] for r ∈ R1, ρr * ∈ (1/αr , 1) for
r ∈ R2, where R1 ∪ R2 = R. For ρ* ∈ Ω2, there exists a worst case
that happens when ρr * = 0 for r ∈ R1, and ρr * = 1/αr + ϵ for
r ∈ R2, where |R2 | = 1. Here, ϵ is an arbitrarily small number.

�e proof can be found in the appendix.

Lemma 4.2. For ρ* ∈ Ω2, the corresponding worst-case competitive
ratio α2 = αr

∑
r ∈R min {1, 1 + βr }, where αr is de�ned by Eq. (5),

(16) or (19) for β = βr , and r = argmaxr ∈R αr .

Proof. According to Claim 4.1, we let ρr * = 0 for r ∈ R1, and
ρr * = 1/αr + ϵ for r ∈ R2, and let |R2 | = 1. �en from Eq. (31)

and (32), R2 = {r } maximizes α (ρ*), and thus is a worst case for

ρ* ∈ Ω2. �e corresponding competitive ratio

α2 = sup

ϵ>0

∑
r ∈R pmin {1, 1 + βr }

pρr *
= αr

∑
r ∈R

min {1, 1 + βr } . (23)

�

For ρ* ∈ Ω3, the following claim states that worst cases happen

when all users that are satis�ed by an online solution, demand only

one speci�c type of resource until it is exhausted.

SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA Zijun Zhang, Zongpeng Li, and Chuan Wu

Claim 4.2. Let ρr * ∈ [0, 1) for r ∈ R3, ρr * = 1 for r ∈ R4, where
R3 ∪ R4 = R. For ρ* ∈ Ω3, there exists a worst case that happens
when ρr * = 0 for r ∈ R3, and ρr * = 1 for r ∈ R4, where |R4 | = 1.

�e proof can be found in the appendix.

Lemma 4.3. For ρ* ∈ Ω3, the corresponding worst-case competitive
ratio α3 ≥ αr

∑
r ∈R min {1, 1 + βr }.

Proof. According to Claim 4.2, we let ρr * = 0 for r ∈ R3, and
ρr * = 1 for r ∈ R4, and let |R4 | = 1. �en from Eq. (33) and (34),

we have the worst-cast competitive ratio for ρ* ∈ Ω3

α3 = max

r ′∈R′

∑
r ∈R\{r ′ } pmin {1, 1 + βr } + αr ′

∫
1

0
P (ρ; βr ′)dρ∫

1

0
P (ρ; βr ′)dρ

,

(24)

where R′ = {r |βr > 0}. Since it is assumed that βr > 0, we have

min {1, 1 + βr } = 1, and hence

αr
∫
1

0
P (ρ; βr)dρ∫

1

0
P (ρ; βr)dρ

=
pmin {1, 1 + βr }

p/αr
.

And since αr
∫
1

0
P (ρ; βr)dρ ≤ pmin {1, 1 + βr }, we have

α3 ≥
∑
r ∈R\{r } pmin {1, 1 + βr } + αr

∫
1

0
P (ρ; βr)dρ∫

1

0
P (ρ; βr)dρ

≥
∑
r ∈R pmin {1, 1 + βr }

p/αr
= αr

∑
r ∈R

min {1, 1 + βr } .

�

By Lemma 4.1, 4.2 and 4.3, we have the following theorem:

Theorem 4.4. �e worst-case competitive ratio achieved by Alg. 1
using the pricing function in (15) for multiple types of resources is
given by Eq. (24).

As shown by Lemma 4.3, the worst-case competitive ratio for

multiple resource types increases roughly linearly with the number

of resource types. However, from Claim 4.1, 4.2, and the analysis

above, it is clear that the worst cases happen in very extreme sce-

narios, where all satis�ed users demand only one type of resource,

which is rather unrealistic in practical cloud computing systems. In

fact, the supply of and the demand for resources in a cloud comput-

ing system are o�en balanced to some extent, since otherwise the

supply would be adjusted to be�er meet the demand of users and

to improve the system e�ciency. Hence, we make the following

realistic assumption:

assumption 4. All types of resources share a common scarcity
level, βR > 0, and hence a common αR as de�ned by Eq. (5), (16) or
(19) for β = βR ; and the �nal utilization vector, ρ*, follows

minr ∈R ρr *
maxr ∈R ρr *

≥ η. (25)

Assumption 4 leads to an improved competitive ratio.

Theorem 4.5. Under Assumption 4, the worst-case competitive
ratio with the pricing function in (15) is upper bounded by a constant
with respect to |R |.

Proof. It is easy to prove that Claim 4.1 and 4.2 are still valid

under Assumption 4. For ρ* ∈ Ω2, any worst case gives Vol (ρ*) =
[1 + (|R| − 1)η]p/αR and Vopt (ρ*) = |R | p, and hence the corre-

sponding competitive ratio α2 = |R |
1+(|R |−1)η αR . Since η ≤ 1, we

have α2 ≤ αR/η. For ρ* ∈ Ω3, as ϵ → 0, any worst case gives

Vol (ρ*) =
∫

1

0

P (ρ; βR)dρ + (|R| − 1)
∫ η

0

P (ρ; βR)dρ,

and

Vopt (ρ*) = αRVol (ρ*)
+ (|R| − 1) (1 + βR − η)

(
p − P (η; βR)

)
,

and hence the corresponding competitive ratio

α3 = αR +
(1 + βR − η)

(
p − P (η; βR)

)∫
1

0
P (ρ; βR)dρ/(|R| − 1) +

∫ η
0
P (ρ; βR)dρ

.

Let θ =
(1 + βR − η)

(
p − P (η; βR)

)∫ η
0
P (ρ; βR)dρ

,

we have α3 < αR + θ . �erefore, the worst-cast competitive ratio

under Assumption 4 is upper bounded by max{αR/η,αR + θ }. �

�eorem 4.5 justi�es the use of the pricing function in (22), which

is a direct extension of the optimal pricing functions for the single

resource type case, but achieves a reasonably good (degraded by

a constant factor w.r.t. |R |) competitive ratio in scenarios with

multiple resource types.

4.2 Pricing Function for Multiple Time Slots
In real-world cloud systems, a user job runs over its speci�ed re-

source bundle in the cloud, across one or more time slots. Once the

job is completed, the resources that it occupies are then released

back to the cloud pool. �erefore, cloud resources can be reused

over time. Let T denote the set of all time slots that the system

spans, and Ti be the set of time slots when user i requires to use

resources. yi (t) is an indication function as follows:

yi (t) =
{
1, t ∈ Ti
0, otherwise

. (26)

�e o�ine social welfare maximization problem becomes:

maximize

∑
i ∈U

vixi (27)

s.t.: ∑
i ∈U

di,rxiyi (t) ≤ 1,∀r ∈ R, t ∈ T (27a)

xi ∈ {0, 1} ,∀i ∈ U (27b)
Since yi (t) is input (not a variable) in this optimization problem,

problem (27) is still an ILP. �e online resource allocation algorithm

we apply to determine xi upon the arrival of user i is still the same

as Alg. 1, except that di and the pricing function will be rede�ned,

and yi (t) needs to be further determined.

In fact, problem (21) and problem (27) are equivalent if we con-

sider resource r in di�erent time slots to be of di�erent resource

types. More speci�cally, let di,r (t) = di,ryi (t), where r (t) ∈ R (t),
and t ∈ T . �en problem (27) will have exactly the same form as

problem (27). �erefore, according to Lemma 4.3 and �eorem 4.4,

the worst-case competitive ratio will increase roughly linearly with

Optimal Posted Prices for Online Cloud Resource Allocation SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA

the number of time slots, |T |, if no other assumptions are made. If

the number of slots required by each user is upper bounded, then

the worst-case competitive ratio will increase roughly linearly with

the maximum number of slots required by each user, which is also

undesirable. Intuitively, this issue is caused by the fact that, if one

of the time slots required by a user is unavailable (e.g., no available

resources), then the demand of the user cannot be satis�ed as a

whole, even if other required slots are all available.

To address the aforementioned problem, we propose a strategy

that satis�es users’ demand in an elastic manner. Speci�cally, as-

suming we are allowed to satisfy user i with any |Ti | slots in a larger
set of time slots, T ′i ⊇ Ti , we can signi�cantly improve the compet-

itive ratio by choosing |Ti | slots from T ′i that yield the lowest total

price. Concretely, the corresponding online resource scheduling

strategy is that, we try to satisfy each user i with |Ti | time slots

chosen from T ′i , and
��T ′i �� = dλ |Ti |e, where λ is a constant factor.

Here T ′i can be interpreted as the allowed (loosened) time interval

for completing the user’s job. �e overall price to user i is computed

as the minimum possible total price of |Ti | time slots selected from

T ′i .
From the user perspective, the price each user receives is deter-

mined upon its arrival in the system, and does not change a�er-

wards. A user i accepts the price and leases resource at quantities

di,r ’s in the chosen |Ti | time slots, if and only if vi is no smaller

than the overall price. Once a user accepts the price, its job is guar-

anteed to be completed within λ |Ti |. If the provider tells that a job
cannot be completed within λ |Ti |, the job will receive an in�nitely

high price according to the pricing function upon arrival (i.e., the
user will reject the price and the job will not be executed).

In fact, similar non-consecutive execution schemes have been

implemented on Amazon EC2 Spot Instance [2], and have been

discussed in the literature [30]. Here, we further justify the use

of non-consecutive execution schemes from a theoretical point of

view.

Without loss of generality, we assume both Ti and T ′i are con-

secutive time slots; and if Ti = [τi ,τi + |Ti | − 1], we let T ′i =[
τi ,τi +

��T ′i �� − 1] . To formulate the o�ine version of the modi-

�ed social welfare maximization problem, we can add the following

constraints to problem (27):∑
t ∈T′i

yi (t) = |Ti | ,∀i ∈ U (27c)

yi (t) ∈ {0, 1} ,∀i ∈ U, t ∈ T (27d)

Note that yi (t) now follows Eq. (27c) and (27d), instead of Eq. (26),

and yi (t) becomes a variable. �erefore, the new problem is no

longer an ILP.

We reuse the notation Pi (·) to denote the pricing function for

user i; and we reuse the symbols, di and ρ, to taken into account

di�erent time slots, i.e., di = |Ti |
∑
r ∈R di,r , and ρ denotes the

vector of ρr (t) ,∀r ∈ R, t ∈ T . �e de�nitions ofp andp remain the

same, i.e., p = infi
vi
di

and p = supi
vi
di
. �en under Assumption 4,

our pricing strategy for online resource allocation can be described

by the following pricing function:

Pi (ρ) =
1

di
min

yi ∈Yi

∑
t ∈T′i

∑
r ∈R

di,ryi (t) P (ρr (t) ; βR)
 , (28)

where Yi is de�ned by Eq. (27c) and (27d), and P (ρr (t); βR) is
de�ned by Eq. (2), (18) and (20). Obviously, diPi (ρ) is the total
price for user i .

In general, Pi (ρ) sets di�erent unit prices for di�erent time

slots, according to the scheduled resource utilization levels. Note

that, the overall price that each user receives for its resource demand

over the requested resource usage duration is determined when

the user comes to the system and requests resources, and does not

change over the course.

Given an arbitrary set of time slots T , and the corresponding

time horizon |T |, any Ti * T can be ignored since it cannot be

satis�ed anyway. Furthermore, we ignore the marginal e�ect of

any T ′i * T , since |T | is usually signi�cantly larger than

��T ′i ��
.

�us, we assume Ti ,T ′i ⊆ T ,∀i ∈ U. As we did to analyze

competitive ratios for multiple resource types, we divide possi-

ble values of �nal resource utilization levels into three cases: (i)

ρr * (t) ∈ [0, 1/αR] ,∀r ∈ R, t ∈ T ; (ii) there exists an r ∈ R and a

t ∈ T such that ρr * (t) ∈ (1/αR , 1), but no r ∈ R or t ∈ T such

that ρr * (t) = 1; (iii) there exists an r ∈ R and a t ∈ T such that

ρr * (t) = 1. Here, αR is de�ned by Eq. (5), (16) or (19) for β = βR .
We denote the three cases by ρ* ∈ Π1, ρ* ∈ Π2 and ρ* ∈ Π3,

respectively.

Lemma 4.6. For ρ* ∈ Π1, the worst-case competitive ratio achieved
by our online resource scheduling strategy using pricing function (28)
is α1 = 1.

Proof. �e proof is similar to that of Lemma 4.1 and is omi�ed.

�

Lemma 4.7. For ρ* ∈ Π2, the corresponding worst-case competitive
ratio α2 < αR

(λ−1)η + 1, where η is de�ned as in Assumption 4.

Proof. Let T1 = {t |ρr * (t) ∈ [0, 1/αR] ,∀r ∈ R}, and T2 = {t |
ρr * (t) ∈ (1/αR , 1) ,∃r ∈ R}, and T1 ∪ T2 = T . For ρ* ∈ Π2,

following the proof of Lemma 4.1, there exists a worst case that

happens when ρr * (t) = 0 for all r ∈ R and t ∈ T1; while for t ∈ T2,
ρr * (t) = 1/αr + ϵ for some r ′ ∈ R, and ρr * (t) = η (1/αr + ϵ) for
r ∈ R\ {r ′}. Here, ϵ is an arbitrarily small number. Following the

proof of �eorem 4.5, as ϵ → 0, we have

Vol (ρ*) = |T2 | [1 + (|R| − 1)η]p/αR ,

as the minimum total value of the online solution. For any Ti ,
since

��T ′i �� = dλ |Ti |e, the demand will be satis�ed regardless of the

user’s valuation, unless

��T ′i ∩ T2�� > d λ−1λ ��T ′i ��e. In other words, if

the demand of user i is not satis�ed by the online solution, there

must be at least d λ−1λ
��T ′i ��e time slots in T ′i that also belong to

T2; or equivalently, for any S ⊆ T , and any T ′i ⊆ S that is not

satis�ed by the online solution,

��T ′i �� < b λ
λ−1 |S ∩ T2 |c, and hence

|Ti | < b 1

λ−1 |S ∩ T2 |c. Let T
′
2
be the union of all sets of consecutive

time slots that contain T2, and have a cardinality of b λ
λ−1 |T2 |c − 1.

When |Ti | < b 1

λ−1 |S ∩ T2 |c, since at least one type of resource in
at least one required time slot has a unit price above p, there can

be a set of users in a worst case, demanding all resources in

��T ′
2

��
time slots, with Pi (ρ) = p, where

��T ′
2

�� < 2b 1

λ−1 |T2 |c + |T2 |. �us

SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA Zijun Zhang, Zongpeng Li, and Chuan Wu

we have the maximum optimal o�ine total value

Vopt (ρ*) <
��T ′
2

�� |R | p < (
2b 1

λ − 1 |T2 |c + |T2 |
)
|R | p.

�erefore, for ρ* ∈ Π2, the worst-cast competitive ratio

α2 <

λ+1
λ−1 |R | |T2 | p

|T2 | [1 + (|R| − 1)η]p/αR

=
λ + 1

λ − 1
|R |

1 + (|R| − 1)ηαR

≤ (λ + 1)αR(λ − 1)η .

(29)

�

Lemma 4.8. For ρ* ∈ Π3, the corresponding worst-case competitive
ratio α3 < λ+1

(λ−1)η′ , where η
′ =

∫ η
0
P (ρ; βR)dρ/p.

Proof. Let T3 = {t |ρr * (t) ∈ [0, 1) ,∀r ∈ R}, and T4 = {t |ρr * (t)
= 1,∃r ∈ R}, and T3 ∪ T4 = T . For ρ* ∈ Π2, following the proof of

Lemma 4.2, there exists a worst case that happens when ρr * (t) = 0

for all r ∈ R and t ∈ T3; while for t ∈ T4, ρr * (t) = 1 for some

r ′ ∈ R, and ρr * (t) = η for r ∈ R\ {r ′}. Following the proof of

�eorem 4.5, we have

Vol (ρ*) = |T4 |
[∫

1

0

P (ρ; βR)dρ + (|R| − 1)
∫ η

0

P (ρ; βR)dρ
]
,

as the minimum total value of the online solution. For any Ti ,
since

��T ′i �� = dλ |Ti |e, the demand will be satis�ed regardless of the

user’s valuation, unless

��T ′i ∩ T4�� > d λ−1λ ��T ′i ��e. In other words, if

the demand of user i is not satis�ed by the online solution, there

must be at least d λ−1λ
��T ′i ��e time slots in T ′i that also belong to

T4; or equivalently, for any S ⊆ T , and any T ′i ⊆ S that is not

satis�ed by the online solution,

��T ′i �� < b λ
λ−1 |S ∩ T4 |c, and hence

|Ti | < b 1

λ−1 |S ∩ T4 |c. Let T
′
4
be the union of all sets of consecutive

time slots that contain T4, and have a cardinality of b λ
λ−1 |T4 |c − 1.

When |Ti | < b 1

λ−1 |S ∩ T4 |c, since at least one type of resource in
at least one required time slot is fully occupied, there can be a set

of users in a worst case, demanding all resources in

��T ′
4

��
time slots,

with Pi (ρ) = p, where
��T ′
4

�� < 2b 1

λ−1 |T4 |c + |T4 |. �us we have

the maximum optimal o�ine total value

Vopt (ρ*) <
��T ′
4

�� |R | p < (
2b 1

λ − 1 |T4 |c + |T4 |
)
|R | p.

�erefore, for ρ* ∈ Π2, the worst-cast competitive ratio

α3 <
λ+1
λ−1 |R | |T4 | p

|R | |T4 |
∫ η
0
P (ρ; βR)dρ

=
λ + 1

(λ − 1)η′ .
(30)

�

Theorem 4.9. �e worst-cast competitive ratio achieved by our
online resource scheduling strategy using pricing function (28) is upper
bounded by λ+1

λ−1 max{αR/η, 1/η′}, which is a constant with respect
to both |R | and |T |. Here, αR is de�ned by Eq. (5), (16) or (19) for
β = βR , and η is de�ned as in Assumption 4.

Proof. �e theorem follows immediately from Lemmas 4.6, 4.7

and 4.8. �

5 EMPIRICAL STUDIES
In this section, we evaluate the proposed pricing and scheduling

strategies through simulation studies. To simulate realistic cloud

computing scenarios, we relax all the assumptions made before, i.e.,
our parameter se�ings approximate reality rather than following

assumptions we used for theoretical analysis. We use a Poisson

process to model the arrival of users, and set the arrival rate to be

between 20 and 50 per time slot. Each user requests 5 time slots on

average and 5 di�erent types of resources at most, if not otherwise

speci�ed. Each user demands 1 to 3 percent of each type of resource

on average,
1
with di�erent standard deviation for di�erent resource

types, ranging from 0.2 percent to 2 percent. We set λ = 1.2 by

default. �e time horizon of simulations is set to 1000 time slots,

which is large enough compared to the demand of each user. �e

statistics of the random input variables are stationary in all cases

except the last one (shown in Fig. 8). �e optimal o�ine total values

are obtained by solving problem (27) with constraints (27c) and

(27d).

By relaxing the assumptions, we can now optimize the param-

eters in our pricing functions, e.g., β , p and p, to maximize the

average total social welfare. Speci�cally, we use pa�ern search for

the optimization: we repeat each experiment for multiple iterations;

in the �rst iteration, we �x the parameters to random estimates;

then we add a perturbation (decays with iterations) to each param-

eter and run the experiment again; a perturbation is retained from

one iteration to the next if the total value is improved. In practice,

similar probing of parameter values can be done through online

learning techniques such as reinforcement learning.

Our theoretical analysis suggests that, under mild assumptions,

the worst-case competitive ratio of social welfare is mainly in�u-

enced by the total demand level (see Fig. 3), but not by the number

of resource types (�eorem 4.5), nor by the number of requested

time slots (�eorem 4.9). We now investigate the impact of the

three factors on the social welfare and competitive ratio, as well as

the robustness of the theoretical results, when the assumptions are

relaxed.

To quantify di�erent demand levels, we de�ne the relative total

demand as the ratio between the total demand of all potential users

and the total resource supply Fig. 5 shows that, the optimal o�ine

total value, Vopt , increases almost linearly with a slope of 1, as

the total demand increases. At the same time, the online total

value, Vol , increases with a smaller slope, causing the competitive

ratio to increase noticeably from 1.09 to 1.78. Although the results

exhibit the average system performance (rather than worst-case

competitive ratios), it coincides with our worst-case analysis on

the scarcity level, β , where larger β leads to a larger competitive

ratio (see Fig. 3).

Next, we vary the number of resource types, |R |, from 1 to 10

to see how it a�ects the competitive ratio. As shown in Fig. 6, due

to the increase in total demand and total supply, both Vopt and

1
We note these percentages are quite large as compared to the practice that a user may

use only a very small percentage of the entire capacity of a cloud system. We set such

percentages to evaluate performance of our pricing functions in case that Assumption

2 is not true.

Optimal Posted Prices for Online Cloud Resource Allocation SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Relative total demand

0.8

1

1.2

1.4

1.6

1.8

2

R
e

la
ti
v
e

 s
o

c
ia

l
w

e
lf
a

re

1

1.5

2

2.5

3

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Figure 5: Online/o�line social welfares and competitive ra-
tios given di�erent total demands.

1 2 3 4 5 6 7 8 9 10

Number of resource types

0

2

4

6

8

10

12

R
e

la
ti
v
e

 s
o

c
ia

l
w

e
lf
a

re

1

1.5

2

2.5

3

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Figure 6: Online/o�line social welfares and competitive ra-
tios given di�erent numbers of resource types.

Vol increase linearly with the increase of |R |, while Vopt increases
slightly faster than Vol . Consequently, the competitive ratio only

increases mildly (from 1.34 to 1.57) as |R | increases. �e results

may indicate that Assumption 4 is slightly violated in practice,

since larger |R | can increase the chance of unbalanced resource

utilization.

Similarly, it is also interesting to see how the number of time slots

required by each user a�ects the competitive ratio. Di�erent from

the case of varying |R |, only the total demand will increase with the

average number of required time slots. �us we adjust the demand

of each user accordingly to eliminate the e�ect of increasing relative

total demand (see Fig. 5). As we can see in Fig. 7a, Vopt and Vol
stay almost the same as the average number of required time slots

increases, and so does the competitive ratio (varying slightly from

1.41 to 1.48). To further verify the proposed strategies, we vary the

value of λ from 1 to 1.4 as shown in Fig. 7b. We test the performance

for two di�erent demand levels, with relative total demands of 1.5

and 3, respectively. In this case, Vopt stays almost the same as λ
changes and is omi�ed from the �gure. Clearly, Vol increases more

from λ = 1 to λ = 1.2 than from λ = 1.2 to λ = 1.4, indicating

λ = 1.2 is a good trade-o� between the availability and timeliness

of service.

�e simulations conducted so far are based on stationary arrival

processes of users. In practice, however, the arrival rate may change

1 2 3 4 5 6 7 8 9 10

Average number of required time slots

0.6

0.7

0.8

0.9

1

1.1

1.2

R
e

la
ti
v
e

 s
o

c
ia

l
w

e
lf
a

re

1

1.5

2

2.5

3

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

(a) Online/o�line social welfares and competitive ratios given di�erent
numbers of required time slots.

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

0.8

0.85

0.9

0.95

1

1.05

1.1

R
e

la
ti
v
e

 s
o

c
ia

l
w

e
lf
a

re

(b) Online social welfare at di�erent values of λ.

Figure 7: Performance of the elastic scheduling strategy dis-
cussed in Sec. 4.2.

over time (e.g., �uctuating periodically). To capture this characteris-
tic, we vary the arrival rate according to a sine curve with a period

of 100 time slots. In Fig. 8, as we increase the amplitude of the sine

curve from 0 to 1 (normalized by the average arrival rate), bothVopt
and Vol decrease signi�cantly, while the competitive ratio remains

at around 1.5. �e reason behind the results is that, when the arrival

rate is very low, the resource utilization ratios stay low, so that

almost all demands can be satis�ed; while when the arrival rate is

very high, a high proportion of the demands cannot be satis�ed by

either the optimal o�ine solution or the online solution.

6 CONCLUDING REMARKS
�is paper studies online posted pricing strategies in a number

of cloud resource allocation scenarios. We start by investigating

the basic case of a single type of cloud resource without resource

recycling, and prove optimality of a set of exponential pricing func-

tions in terms of social welfare, which compute unit resource prices

based on realtime demand-supply of cloud resources. Exploiting

the insights acquired, we further derive pricing functions in prac-

tical scenarios with multiple resource types and limited resource

occupation durations, and prove tight competitive ratio bounds

achieved using these functions, without relying on any particular

user arrival process or valuation distribution. Relaxing assump-

tions made in theoretical analysis, empirical studies further reveal

good performance of our pricing functions under realistic se�ings.

SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA Zijun Zhang, Zongpeng Li, and Chuan Wu

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Level of arrival rate fluctuations

0

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 s
o

c
ia

l
w

e
lf
a

re

1

1.5

2

2.5

3

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Figure 8: Online/o�line social welfare and competitive ra-
tios given di�erent levels of arrival rate �uctuations.

�ough set up in a cloud computing environment, our models and

algorithms are also applicable to posted pricing in other related

online resource allocation problems.

REFERENCES
[1] 2017. Amazon EC2 Spot Instances Pricing. h�ps://aws.amazon.com/ec2/spot/

pricing/. (2017).

[2] 2017. Spot Instance Interruptions. h�ps://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/spot-interruptions.html. (2017).

[3] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.

2013. Deconstructing amazon ec2 spot instance pricing. ACM Transactions on
Economics and Computation 1, 3 (2013), 16.

[4] May Al-Roomi, Shaikha Al-Ebrahim, Sabika Buqrais, and Imtiaz Ahmad. 2013.

Cloud computing pricing models: a survey. International Journal of Grid and
Distributed Computing 6, 5 (2013), 93–106.

[5] Bo An, Victor Lesser, David Irwin, and Michael Zink. 2010. Automated negotia-

tion with decommitment for dynamic resource allocation in cloud computing. In

Proceedings of the 9th International Conference on Autonomous Agents and Mul-
tiagent Systems: volume 1-Volume 1. International Foundation for Autonomous

Agents and Multiagent Systems, 981–988.

[6] Niv Buchbinder and Joseph Naor. 2005. Online primal-dual algorithms for

covering and packing problems. In European Symposium on Algorithms. Springer,
689–701.

[7] Niv Buchbinder and Joseph Naor. 2006. Improved bounds for online routing and

packing via a primal-dual approach. In 2006 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06). IEEE.

[8] Niv Buchbinder and Joseph Naor. 2009. �e design of competitive online al-

gorithms via a primal: dual approach. Foundations and Trends® in �eoretical
Computer Science 3, 2–3 (2009), 93–263.

[9] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona

Brandic. 2009. Cloud computing and emerging IT platforms: Vision, hype, and

reality for delivering computing as the 5th utility. Future Generation computer
systems 25, 6 (2009), 599–616.

[10] Yang Cai, Constantinos Daskalakis, and S Ma�hew Weinberg. 2013. Reducing

revenue to welfare maximization: Approximation algorithms and other general-

izations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 578–595.

[11] Deeparnab Chakrabarty, Yunhong Zhou, and Rajan Lukose. 2008. Online knap-

sack problems. In Workshop on internet and network economics (WINE).
[12] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. 2013. A framework

for ranking of cloud computing services. Future Generation Computer Systems
29, 4 (2013), 1012–1023.

[13] Sijia Gu, Zongpeng Li, Chuan Wu, and Chuanhe Huang. 2016. An E�cient

Auction Mechanism for Service Chains in �e NFV Market. In Computer Com-
munications, IEEE INFOCOM 2016-�e 35th Annual IEEE International Conference
on. IEEE.

[14] Hao Li, Jianhui Liu, and Guo Tang. 2011. A pricing algorithm for cloud com-

puting resources. In Network Computing and Information Security (NCIS), 2011
International Conference on, Vol. 1. IEEE, 69–73.

[15] Wei-Yu Lin, Guan-Yu Lin, and Hung-Yu Wei. 2010. Dynamic auction mechanism

for cloud resource allocation. In Cluster, Cloud and Grid Computing (CCGrid),
2010 10th IEEE/ACM International Conference on. IEEE, 591–592.

[16] RTMa, DahMing Chiu, John CS Lui, Vishal Misra, and Dan Rubenstein. 2010. On

resource management for cloud users: A generalized kelly mechanism approach.

Electrical Engineering, Tech. Rep (2010).

[17] Sunilkumar S Manvi and Gopal Krishna Shyam. 2014. Resource management

for Infrastructure as a Service (IaaS) in cloud computing: A survey. Journal of
Network and Computer Applications 41 (2014), 424–440.

[18] Ishai Menache, Asuman Ozdaglar, and Nahum Shimkin. 2011. Socially optimal

pricing of cloud computing resources. In Proceedings of the 5th International ICST
Conference on Performance Evaluation Methodologies and Tools. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering),

322–331.

[19] Marian Mihailescu and Yong Meng Teo. 2010. Dynamic resource pricing on fed-

erated clouds. In Proceedings of the 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing. IEEE Computer Society, 513–517.

[20] Mahyar Movahed Nejad, Lena Mashayekhy, and Daniel Grosu. 2015. Truthful

greedy mechanisms for dynamic virtual machine provisioning and allocation in

clouds. IEEE transactions on parallel and distributed systems 26, 2 (2015), 594–603.
[21] Weijie Shi, Chuan Wu, and Zongpeng Li. 2014. RSMOA: A revenue and social

welfare maximizing online auction for dynamic cloud resource provisioning.

In 2014 IEEE 22nd International Symposium of �ality of Service (IWQoS). IEEE,
41–50.

[22] Weijie Shi, ChuanWu, and Zongpeng Li. 2016. An online mechanism for dynamic

virtual cluster provisioning in geo-distributed clouds. In Computer Communi-
cations, IEEE INFOCOM 2016-�e 35th Annual IEEE International Conference on.
IEEE.

[23] Weijie Shi, Linquan Zhang, Chuan Wu, Zongpeng Li, and Francis Lau. 2014. An

online auction framework for dynamic resource provisioning in cloud computing.

ACM SIGMETRICS Performance Evaluation Review 42, 1 (2014), 71–83.

[24] Adel Nadjaran Toosi, Rodrigo N Calheiros, and Rajkumar Buyya. 2014. Inter-

connected cloud computing environments: Challenges, taxonomy, and survey.

ACM Computing Surveys (CSUR) 47, 1 (2014), 7.
[25] Wei Wang, Ben Liang, and Baochun Li. 2013. Revenue maximization with

dynamic auctions in IaaS cloud markets. In �ality of Service (IWQoS), 2013
IEEE/ACM 21st International Symposium on. IEEE, 1–6.

[26] Hong Xu and Baochun Li. 2013. Dynamic cloud pricing for revenuemaximization.

IEEE Transactions on Cloud Computing 1, 2 (2013), 158–171.

[27] Sharrukh Zaman and Daniel Grosu. 2013. Combinatorial auction-based allocation

of virtual machine instances in clouds. J. Parallel and Distrib. Comput. 73, 4 (2013),
495–508.

[28] Qi Zhang, �anyan Zhu, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L

Hellerstein. 2013. Dynamic service placement in geographically distributed

clouds. IEEE Journal on Selected Areas in Communications 31, 12 (2013), 762–772.
[29] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis Lau. 2015.

Online auctions in IaaS clouds: welfare and pro�t maximization with server

costs. In ACM SIGMETRICS Performance Evaluation Review, Vol. 43. ACM, 3–15.

[30] Ruiting Zhou, Zongpeng Li, Chuan Wu, and Zhiyi Huang. 2016. An E�cient

Cloud Market Mechanism for Computing Jobs With So� Deadlines. IEEE/ACM
Transactions on Networking (2016).

[31] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. 2008. Budget con-

strained bidding in keyword auctions and online knapsack problems. In Interna-
tional Workshop on Internet and Network Economics. Springer, 566–576.

A PROOF OF CLAIM 4.1
Proof. �e worst case of online solution is that the valuations

of satis�ed users are the same as the prices they accept. �us by

Assumption 2, we have

Vol (ρ*) =
∑
r ∈R

∫ ρr *

0

P (ρ; βr)dρ

=
∑
r ∈R1

ρr *p +
∑
r ∈R2

∫ ρr *

0

P (ρ; βr)dρ,
(31)

as the minimum total value of the online solution. On the other

hand, any unsatis�ed user i has an average unit value less than

Pi (ρ*), because otherwise ρ* cannot be the �nal resource utiliza-
tion. We can decompose each user’s value asvi =

∑
r ∈R di,rUi,r (ρ),

and

Ui,r (ρ) =
vi

diPi (ρ)
P (ρr ; βr) ,

such that a user i’s average unite valuevi/di <Pi (ρ*) if and only
ifUi,r (ρ*) < P (ρr ; βr), for any r ∈ R. Here,Ui,r (ρ*) can be seen

as user i’s unit value of resource r given a certain ρ*.

https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html

Optimal Posted Prices for Online Cloud Resource Allocation SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA

For r ∈ R1, in the worst case, there can be a set of unsatis-

�ed users with a total demand of min {1, 1 + βr } for each type

of resource, and with a unit value Ui,r (ρ*) = p − ϵr . Note that

Ui,r (ρ*) < p does not contradict with Assumption. 1, since a small

enough ϵr can ensure vi/di ≥ p. For r ∈ R2, the discussion on

Eq. (3), (9) for a single resource type is still valid if we consider

Ui,r (ρ*) as unit value of resource; and according to Eq. (6), we have

Vopt (ρr *) = αrVol (ρr *) − ϵr = αr
∫ ρr *

0

P (ρ; βr)dρ) − ϵr .

�is yields the maximum optimal o�ine total value given Eq. (31):

Vopt (ρ*) =
∑
r ∈R1

pmin {1, 1 + βr }

+
∑
r ∈R2

αr

∫ ρr *

0

P (ρ; βr)dρ − ϵ .
(32)

For r ∈ R1, ρr * only a�ects the �rst term of Eq. (31), while the

�rst term of Eq. (32) is a constant with respect to ρr *. �us in any

worst case, the �rst term of Eq. (31) should be minimized, and hence

ρr * = 0,∀r ∈ R1. For r ∈ R2, let Vol (ρr *) =
∫ ρr *
0

P (ρ; βr)dρ, we
have

α (ρ*) =
supϵ>0Vopt (ρ*)

Vol (ρ*)
≥

∑
r ∈R2 αrVol (ρr *)∑
r ∈R2 Vol (ρr *)

≥
αr

∑
r ∈R2 Vol (ρr *)∑

r ∈R2 Vol (ρr *)
= αr ,

where r = argminr ∈R2 αr . When |R2 | ≥ 2, we can iteratively

move r from R2 to R1, and set ρr * = 0 without decreasing α (ρ*),
until |R2 | = 1, since

supϵ>0

(
Vopt (ρ*) − αrVol (ρr *) − ϵ + pmin

{
1, 1 + βr

})
Vol (ρ*) −Vol (ρr *)

≥
supϵ>0Vopt (ρ*)

Vol (ρ*)
.

Similarly, for the only r ∈ R2, we can decrease ρr * to 1/αr + ϵ
without decreasing α (ρ*). �erefore, for ρ* ∈ Ω2, there exists a

worst case that happenswhen ρr * = 0 for r ∈ R1, and ρr * = 1/αr+ϵ
for r ∈ R2, where |R2 | = 1. �

B PROOF OF CLAIM 4.2
Proof. �e worst case of online solution is that the valuations

of satis�ed users are the same as the prices they accept. �us by

Assumption 2, we have

Vol (ρ*) =
∑
r ∈R

∫ ρr *

0

P (ρ; βr)dρ

=
∑
r ∈R3

∫ ρr *

0

P (ρ; βr)dρ +
∑
r ∈R4

∫
1

0

P (ρ; βr)dρ,
(33)

as the minimum total value of the online solution. On the other

hand, since there is at least one type of resource being fully occupied,

i.e., |R4 | ≥ 1, there can be a case where all subsequent users demand

a small amount of resource r ∈ R4, making it impossible to satisfy

their demands regardless of their valuations. Hence the maximum

optimal o�ine total value

Vopt (ρ*) =
∑
r ∈R3

∫ ρ2r

ρ1r
P (ρ; βr)dρ

+
∑
r ∈R3

pmin {1, 1 + βr − ρr *}

+
∑
r ∈R4

αr

∫
1

0

P (ρ; βr)dρ,

(34)

where ρ1r = max {0, βr } and ρ2r = max {βr , ρr *}.
For r ∈ R3, Eq. (33) stays the same or increases as any ρr *

increases, while Eq. (34) stays the same or decreases. �us there

exists a worst case where ρr * = 0,∀r ∈ R3. Let r = argminr ∈R4 αr .
Due to the same reason as discussed for Eq. (31) and Eq. (32), when

|R4 | ≥ 2, we can iteratively move r from R4 to R3, and set ρr * = 0

without decreasing the competitive ratio, until |R4 | = 1. �

	Abstract
	1 Introduction
	2 Related Work
	3 Pricing for Cloud Resource Allocation: the Basic Case
	3.1 The Basic Resource Allocation Problem
	3.2 Pricing Function Design
	3.3 Linear Operational Cost

	4 Pricing Multiple Resource Types with Resource Recycling
	4.1 Pricing Function for Multiple Types of Resources
	4.2 Pricing Function for Multiple Time Slots

	5 Empirical Studies
	6 Concluding Remarks
	References
	A Proof of Claim 0
	B Proof of Claim 0

