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BFO, a trainable derivative-free Brute Force Optimizer for
nonlinear bound-constrained optimization and equilibrium
computations with continuous and discrete variables

MARGHERITA PORCELLI∗, Università degli Studi di Firenze
PHILIPPE L. TOINT, University of Namur

A direct-search derivative-free Matlab optimizer for bound-constrained problems is described, whose remark-

able features are its ability to handle a mix of continuous and discrete variables, a versatile interface as well

as a novel self-training option. Its performance compares favourably with that of NOMAD, a well-known

derivative-free optimization package. It is also applicable to multilevel equilibrium- or constrained-type

problems. Its easy-to-use interface provides a number of user-oriented features, such as checkpointing and

restart, variable scaling and early termination tools.

CCS Concepts: • Mathematics of computing�Mathematical software performance; Mixed discrete-
continuous optimization; Numerical analysis;

Additional Key Words and Phrases: Derivative-free optimization, direct-search methods, mixed integer opti-

mization, bound constraints, trainable algorithms.

1 INTRODUCTION
The efficient solution of optimization problems arising in real applications increasingly calls for

the development of efficient and easy-to-use implementations of derivative-free algorithms. In

applicative contexts such as engineering design [Conn et al. 1998; Leonetti et al. 2012], medical

image registration [Oeuvray and Bierlaire 2007] and design of algorithms [Audet and Orban 2006]

(amongst many others), optimization problems are often defined by functions computed by costly

simulation. A single simulation performed to evaluate the costly function may, for instance, require

the solution of large systems of partial differential equations or a even a costly measurement

campaign, and hence, may take from a few minutes to many hours or days depending on the

particular application. Functions have therefore to be treated as expensive black-boxes and due to

the high computational cost involved, it is important to use optimization algorithms that produce

reasonably good solutions with a limited number of function evaluations. Moreover, optimization

variables can be of different nature: continuous (e.g., geometrical parameters), integer (e.g., on/off

element of a structure) or more generally categorical variables, which are discrete variables which

identify an element of an ordered or unordered set (e.g., colors, shapes, or materials). It is also fairly

common to have restrictions on the expected size of each variable which can be formulated as bound

constraints. In some situations, the presence of bound constraints can prevent the computation of

solutions which have no physical meaning. Furthermore, it is often helpful to introduce reasonable

bounds on the variables when there is a good guess of the domain where solutions are expected.

In order to model problems encompassing that complexity, we start by considering the following

bound-constrained mixed variables nonlinear programming problem

min

𝑥 ∈Ω
𝑓 (𝑥) (1)

where 𝑓 : Ω → R is a possibly nonsmooth (or even non continuous) function and the domain Ω is

partitioned into continuous, ordinal discrete and fixed variables Ω𝑐 ,Ω𝑑
and Ω𝑓

of dimension 𝑛𝑐 , 𝑛𝑑

∗
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and 𝑛𝑓 , respectively. The domains are bound constrained, i.e., Ω𝑐 = [𝑙𝑐 , 𝑢𝑐 ], where 𝑙𝑐 , 𝑢𝑐 ∈ R𝑛𝑐 ∪
{±∞}, 𝑙𝑐 ≤ 𝑢𝑐 ,Ω𝑑 = [𝑙𝑑 , 𝑢𝑑 ], where 𝑙𝑑 , 𝑢𝑑 ∈ Z𝑛𝑑∪{±∞}, 𝑙𝑑 ≤ 𝑢𝑑 , andΩ𝑓

can be interpreted asΩ𝑓 =

[𝑙 𝑓 , 𝑢 𝑓 ], where 𝑙 𝑓 , 𝑢 𝑓 ∈ R𝑛𝑓
are equal. Specifically, discrete variables are required to have values in

an ordered and equally-spaced set. Let 𝑙, 𝑢 be 𝑛-dimensional vectors such that 𝑙𝑇 = (𝑙𝑐𝑇 , 𝑙𝑑𝑇 , 𝑙 𝑓 𝑇 )
and 𝑢𝑇 = (𝑢𝑐𝑇 , 𝑢𝑑𝑇 , 𝑢 𝑓 𝑇 ), with 𝑛 = 𝑛𝑐 + 𝑛𝑑 + 𝑛𝑓 . Let C = {𝑖 ∈ {1, . . . 𝑛} | 𝑥𝑖 is continuous } and
D = {𝑖 ∈ {1, . . . 𝑛} | 𝑥𝑖 is discrete } be index sets of the continuous and the discrete variables

(𝑛𝑐 = |C|, 𝑛𝑑 = |D|). We assume that the evaluation of the objective function is time-consuming,

and that no derivative is available. Moreover, no convexity assumption is made.

We also consider the multilevel problem of the min-max type

min

𝑥1∈Ω1

max

𝑥2∈Ω2

. . . min

𝑥𝑚 ∈Ω𝑚

𝑓 (𝑥1, . . . , 𝑥𝑚) (2)

where 𝑥1 to 𝑥𝑚 form a partition of the variables in 𝑚 “levels”, for which specific feasible sets

Ω1, . . . , Ω𝑚 are given and where the objective function may be minimized or maximized (at the

user’s choice) at each level. Furthermore, we allow that each of the set Ωℓ (1 < ℓ ≤ 𝑚) to depend

on the values of the variables in 𝑥1, . . . ,𝑥ℓ−1. This problem arises in the solution of non-smooth

mixed-integer leader-follower equilibrium problems. As an example, consider the case where a

producer of two goods optimizes the values and prices of these goods, given production costs

depending on price and limits on prices depending on values, and given a demand for the two

goods. The demand is determined by a class of consumers who, in turn, optimize at their level

the perceived values of the goods they buy under a budget constraint. The first good can only be

bought in integer quantities while the second good is bulk and can be bought in real quantities.

The very general nature of the problem(s) effectively limits the choice among algorithm’s classes

for its solution to that of “direct-search methods”, that is methods based on the (somewhat brute

force) exploration of the variables’ domain based on local sampling (for instance using pre-specified

geometric patterns) and restricted to comparing objective function values (without interpolation or

other type of modeling). A good introduction to direct-search methods may be found in Chapter

7 of the book by Conn, Scheinberg and Vicente [Conn et al. 2009]. These methods have a long

history in the optimization literature (see Nelder and Mead [Nelder and Mead 1965], Hookes and

Jeeves [Hooke and Jeeves 1961], Box and Wilson [Box and Wilson 1951]) and have proved to be

very popular among users, mostly because of their ease of use and robustness. A few direct-search

methods can be applied to problem (1) in continuous variables although they involve some elements

of objective function modeling: this is the case of NOMAD by Abramson et al. [Abramson et al.

2009, 2008], SID-PSM by Custódio and Vicente [Custódio et al. 2010; Custódio and Vicente 2007]

and NMLSR/NMDFU by Grippo and Rinaldi [Grippo and Rinaldi 2015]. On the other hand, to

our knowledge, existing literature for solving (1) where the variables are both continuous and

discrete is not very extensive. Papers by Audet and Dennis [Audet and Dennis 2001] and by Lucidi,

Piccialli and Sciandrone [Lucidi et al. 2005] as well the paper by Abramson et al. [Abramson

et al. 2009] (describing NOMAD) consider the mixed case and [Liuzzi et al. 2012, 2014] deals with

problems whose variables are mixed-integer. Other methods of interest include HOPSPACK (Hybrid

Optimization Parallel Search Package) [Gray et al. 2008, 2010], which provides a general set of tools

for pattern search exploiting parallel computing, but does not handle multilevel problems explicitly

and MAPS (Model-Assisted Pattern Search) [Siefert et al. 1997] which uses pattern search on purely

continuous problems.

We finally mention the interesting paper by Gratton et al. [Gratton et al. 2015], which provides

convergence and complexity analysis for a wide class of direct-search methods applied to smooth

problems with continuous variables. As is the case in our proposal, the methods of this class use

random choices of search directions.
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The purpose of the present paper is to present a new algorithm of the direct-search class for

finding local solutions of problems (1) or (2) which handles mixed variables and also has the

novel feature to be trainable by users to (typically application dependent) families of problems for

improved efficiency.

We discuss a Matlab code associated with this algorithm that is accessible through the web

site https://sites.google.com/site/bfocode/ together with examples of use
1
. It is important to note

that the BFO code can be used to tune general algorithms depending on a modest number of

parameters and whose performance can be measured. Moreover, the authors are not aware of

any other software package aimed at solving min-max problems (2), although bi-level min-max

problems in continuous variables have been considered in [Bard 1998; Colson et al. 2007; Conn and

Vicente 2012; Dempe 2002] and in [Gümüş and Floudas 2005] when variables are allowed to be

mixed-integer, and linear min-max problems have been studied in [Tang et al. 2015; Vicente et al.

1996].

The paper is organized as follows. Section 2 presents the algorithm itself in the context of the

optimization problem (1). Section 3 is dedicated to the numerical validation of BFO and discusses

how the algorithm can be used to optimize algorithmic parameters in itself or other numerical

methods (Subsection 3.2). It also discusses a numerical comparison with NOMAD (Subsection 3.3).

Section 4 describes how the parameter tuning feature of BFO can be used to make BFO itself

trainable by users. Section 5 then considers how the algorithm can be adapted to problems of the

form (2). Finally, some conclusions and perspectives are outlined in Section 6.

Notation. Let 𝐼𝑞 denote the Identity matrix of dimension 𝑞×𝑞. For any 𝑣 ∈ R𝑞 andK ⊂ {1, . . . , 𝑞},
we write 𝑣K for the subvector of 𝑣 having components 𝑣𝑖 , 𝑖 ∈ K . Furthermore, if𝑉 is a 𝑞 × 𝑞 matrix,

we denote by 𝑉𝑖 𝑗 the 𝑖 𝑗-th element of 𝑉 and by 𝑉:,𝑖 the 𝑖-th column. Given the matrices 𝐵 ∈ R𝑚×𝑝
and 𝐶 ∈ R𝑚×𝑞 , let [𝐵 𝐶] ∈ R𝑚×(𝑝+𝑞) denote the matrix concatenation by columns and let𝑊𝑝,𝑞

denote a 𝑝 × 𝑞 matrix of uniformly distributed random numbers on the (0,1) interval.

2 THE BFO ALGORITHM
We start by outlining the general features of the new BFO

2
algorithm for solving the optimization

problem (1). BFO generates a sequence of feasible iterates whose objective function value is

decreasing. Its underlying structure is that of a direct-algorithm: at any given iteration, the objective

function is evaluated at a finite number of points on a local
3
mesh in the neighbourhood of the

current iterate, in an attempt to find a new point with a lower objective function value, which

then becomes the next iterate. It is hoped that the sequence of such iterates approaches a local

minimizer of problem (1).

More specifically, each iteration of the algorithm is initiated with the current iterate 𝑥 and the

current function value
¯𝑓 = 𝑓 (𝑥) as well as with an enumerable set P of polling directions for

both continuous and discrete variables (there are no polling directions for fixed variables). These

directions implicitly define the current local mesh as the set of all points in Ω𝑐 × Ω𝑑
which can be

reached from 𝑥 by a move along one of the directions in P with a fixed stepsize. Note that stepsizes

and directions are fixed by the problem definition for discrete variables (for instance, the direction

must be a coordinate vector and the step size has to be integer if the variable is integer), but both

can be varied for continuous variables in the course of the numerical solution. Therefore, the set P

1
The code version used in this paper is: BFO version 1.00, 23 IX 2015.

2
For Brute Force Optimizer.

3
A local mesh is a mesh around the current iterate whose geometry may vary from iteration to iteration both in orientation

and spacing.

3

https://sites.google.com/site/bfocode/


contains the columns of the matrix

𝑃

(
𝑄 0

0 𝐼𝑛𝑑

)
𝑃𝑇 , (3)

where 𝑃 is a permutationmatrix ordering the continuous variable first and𝑄 is a matrix of dimension

𝑛𝑐 × 𝑛𝑐 whose columns are updated at each iteration. For the sake of simplicity, we assume in what

follows that 𝑃 is the identity matrix.

At the first iteration of BFO, an initial solution 𝑥 and an initial set P of polling directions is given,

as well as a vector of stepizes 𝛿 = 𝛿0 ∈ R𝑛𝑐 × Z𝑛𝑑 . The algorithm then proceeds by exploring the

local mesh specified by these elements until no further improvement is possible. The continuous

stepsizes 𝛿C are then decreased, the search directions for continuous variables are possibly updated

and the process repeated.

Exploration of a given local mesh is conducted in one or two phases. In the first phase (called the

poll step and detailed in Section 2.1), a search is performed by computing forward and backward

steps along all the current search directions from the current iterate. If 𝑛𝑐 ≠ 0, this search is

terminated prematurely if sufficient decrease in the objective function is detected after a move in a

direction corresponding to a continuous variable. If this first phase does not succeed in improving

the current point 𝑥 and𝑛𝑑 ≠ 0, a second phase is entered. In this phase, a further search is performed

by exploring the subproblems defined by fixing successively each of the discrete variables to a

value neighbouring (by a move with the proper stepsize) that present in 𝑥 . This second phase is

performed by recursively calling the algorithm itself for the solution of each such subproblem. This

phase is called the recursive step and is detailed in Section 2.2.

These (possible) two phases are followed by the termination step (see Section 2.3). If a point

with a better objective value than
¯𝑓 is found in either phase, then the iteration is declared successful,

otherwise the iteration is declared unsuccessful. In the successful case, the better point becomes the

current iterate, and a new iteration is started with a coarser local mesh in the continuous variables

(expansion substep). In the unsuccessful case, either the grid may be further refined so that a new

iteration is initiated at the same current solution, but with a finer local mesh on the continuous

variables (refinement substep), or a check is performed to declare convergence on the finest local

mesh (check-conv substep).

A general outline of BFO is given in Algorithm 1 and its steps are described in detail in the

following subsections. Each iteration of the algorithm consists in performing the three steps.

Note that it is also possible to include an additional “surrogate search step” before the termina-

tion step of this algorithm. A possibility is to exploit any available approximation of the objective

function constructed either from the available function values (see the “BFGS-finish” option in

Section 2.4) or from additional specific evaluations.

2.1 The poll step

The poll step is a standard feature of direct-search algorithms: given the current iterate and

function value (𝑥, ¯𝑓 ), the objective function is evaluated at forward and backward mesh points in

search of a better pair (𝑥𝑏𝑒𝑠𝑡 , 𝑓 𝑏𝑒𝑠𝑡 ) such that 𝑓 𝑏𝑒𝑠𝑡 < ¯𝑓 . The algorithm therefore performs a loop

on both continuous and discrete variables, moving along the current direction as follows. Consider

the 𝑖-th variable and assume first that 𝑖 ∈ C. Let 𝑄 ∈ R𝑛𝑐×𝑛𝑐 be a matrix whose columns form

an orthonormal basis in Ω𝑐
and let 𝛿𝑖 be the current stepsize. The continuous components of the

forward poll point are then given by

𝑥
𝑓 𝑤𝑑

C = 𝑥C + 𝛼 𝑓𝑄 :,𝑖
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Algorithm 1 An outline of the BFO algorithm for solving (1)

Initialization. Let 𝑥 ∈ Ω𝑐 × Ω𝑑 × Ω𝑓
and

¯𝑓 = 𝑓 (𝑥), the initial stepsize 𝛿 = 𝛿0 ∈ R𝑛𝑐 × Z𝑛𝑑
and the initial set of polling directions P whose columns are chosen according to (3). Set

the initial best value 𝑥𝑏𝑒𝑠𝑡 = 𝑥, 𝑓 𝑏𝑒𝑠𝑡 = ¯𝑓 , the initial decrease Δ𝑓 = ∞ and 𝜂 ∈ (0, 1).
Until convergence

(1) poll step. Perform a search loop on the variables, moving forward and backward

along the directions in the set P with stepsize 𝛿 . If a poll point 𝑥𝑝 constructed in this

way is found such that 𝑓 (𝑥𝑝 ) < 𝑓 𝑏𝑒𝑠𝑡 , then set 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑝 and 𝑓 𝑏𝑒𝑠𝑡 = 𝑓 (𝑥𝑝 ). Terminate

the search loop as soon as a poll point corresponding to a continuous variable satisfies

¯𝑓 − 𝑓 (𝑥𝑝 ) ≥ 𝜂 Δ𝑓 . (4)

If the loop is not terminated by (4) and 𝑓 𝑏𝑒𝑠𝑡 < ¯𝑓 , update

Δ𝑓 = ¯𝑓 − 𝑓 𝑏𝑒𝑠𝑡 . (5)

If 𝑓 𝑏𝑒𝑠𝑡 < ¯𝑓 or 𝑛𝑑 = 0, go to the termination step.

(2) recursive step. If requested, apply the BFO algorithm to solve the subproblems

defined by fixing each of the discrete variables to a value differing from that in 𝑥 by

plus or minus the corresponding stepsize. If a point 𝑥𝑟 is found such that 𝑓 (𝑥𝑟 ) < 𝑓 𝑏𝑒𝑠𝑡 ,

then set 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑟 and 𝑓 𝑏𝑒𝑠𝑡 = 𝑓 (𝑥𝑟 ).
(3) termination step. If 𝑓 𝑏𝑒𝑠𝑡 < ¯𝑓 [successful iteration], update 𝑥 = 𝑥𝑏𝑒𝑠𝑡 and ¯𝑓 = 𝑓 𝑏𝑒𝑠𝑡 ,

increase 𝛿C , update the set P for continuous variables (i.e., the columns of 𝑄) and go

to the poll step (expansion substep).

Else [unsuccessful iteration], check for convergence (check-conv substep).

If convergence is not declared, decrease 𝛿C , update the matrix 𝑄 and go to the poll

step (refinement substep).

where

𝛼 𝑓 = min

𝑖∈C
𝛼𝑖 , with 𝛼𝑖 =


min{𝑢𝑖 − 𝑥𝑖 , 𝛿𝑖 }/𝑄𝑖𝑖 if 𝑄𝑖𝑖 > 0,

min{𝑙𝑖 − 𝑥𝑖 ,−𝛿𝑖 }/𝑄𝑖𝑖 if 𝑄𝑖𝑖 < 0,

∞ else.

If 𝑖 ∈ D, then the 𝑖-th component of the forward poll point is simply given by

𝑥
𝑓 𝑤𝑑

𝑖
= min{𝑥𝑖 + 𝛿𝑖 , 𝑢𝑖 }.

The backward poll point associated with the 𝑖-th variable is computed analogously, setting

𝑥𝑏𝑤𝑑C = 𝑥C − 𝛼𝑏𝑄 :,𝑖

where

𝛼𝑏 = min

𝑖∈C
𝛼𝑖 , with 𝛼𝑖 =


min{𝑥𝑖 − 𝑙𝑖 , 𝛿𝑖 }/𝑄𝑖𝑖 if 𝑄𝑖𝑖 > 0,

min{𝑥𝑖 − 𝑢𝑖 ,−𝛿𝑖 }/𝑄𝑖𝑖 if 𝑄𝑖𝑖 < 0,

∞ else,

if 𝑖 ∈ C, and
𝑥𝑏𝑤𝑑𝑖 = max{𝑥𝑖 − 𝛿𝑖 , 𝑙𝑖 }

if 𝑖 ∈ D. The current best function value 𝑓 𝑏𝑒𝑠𝑡 is then updated if 𝑓 𝑓 𝑤𝑑 = 𝑓 (𝑥 𝑓 𝑤𝑑 ) < 𝑓 𝑏𝑒𝑠𝑡 or

𝑓 𝑏𝑤𝑑 = 𝑓 (𝑥𝑏𝑤𝑑 ) < 𝑓 𝑏𝑒𝑠𝑡 .

Condition (4) results in a greedy/opportunistic type of polling where the search terminates as

soon as significant decrease is found.
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In order to avoid unnecessary computation, BFO also keeps track of ’fixed variables’, that is

variables whose lower and upper bounds are equal. Such variables are simply skipped in the

poll-step loop.

Whenever the loop over all continuous non-fixed variables is completed, the poll step is also

exploited to compute an estimate of the projected gradient size for the continuous variables (whether

this gradient exists or not) using the formula

𝜖𝑐𝑟 = ∥max(𝑙C,min(𝑥C −𝑄𝑇𝑔𝑑𝑖 𝑓 , 𝑢C)) − 𝑥C ∥, (6)

where, for 𝑖 ∈ C,

(𝑔𝑑𝑖 𝑓 )𝑖 =
𝑓
𝑓 𝑤𝑑

𝑖
− 𝑓 𝑏𝑤𝑑

𝑖

∥𝑥 𝑓 𝑤𝑑

𝑖
− 𝑥𝑏𝑤𝑑

𝑖
∥
.

The value of 𝜖𝑐𝑟 is not used by the algorithm but is supplied as an informational output to the user.

2.2 The recursive step

BFO allows the user to require further exploration of subspaces defined by fixing discrete variables.

As is common in many techniques for exploring fixed subsets of integer variables, we model this

exploration by a tree, where a child subset (or, in our case, subspace) is obtained from its father

subset by fixing an additional variable, the root subset being that with no fixed variables at all. BFO

allows the user to choose between the “depth-first” and “breadth-first” strategies to recursively

explore the subspace tree. In the latter, all subspaces corresponding to potentially interesting

values of the discrete variables are explored before grid refinement. In contrast, grid refinement is

performed as soon as possible (before exploring other possible subspaces for the same mesh size)

when depth-first search is chosen.

More specifically, let 𝑗 be the index of a discrete variable and assume that a recursive subspace

exploration is entered starting from either 𝑥 𝑓 𝑤𝑑
or 𝑥𝑏𝑤𝑑 . Let also 𝐹 be the index of the discrete

variables which are already fixed at 𝑥 . BFO is then called to solve

𝑥𝑟 = argmin

𝑙≤𝑥≤𝑢
𝑓 (𝑥) subject to 𝑥𝑖 fixed for 𝑖 ∈ { 𝑗} ∪ 𝐹,

where we use the ’fixed variable’ feature mentioned in the previous paragraph.

In our implementation, the index 𝑗 ∈ D is selected in increasing order starting from 1, but this

choice is admittedly arbitrary. If breadth-first search is chosen, the recursion is called every time

the poll step did not produce an improved 𝑓 𝑏𝑒𝑠𝑡 (and discrete variables are present) and the mesh

size of the child subproblem is inherited from the father calling problem. On the other hand, if

depth-first search is employed, the recursion starts if both the poll step is unfruitful and the search

in the current subspace has terminated with a check-conv substep. In this case, the mesh size of

the subproblem is reset to the user-defined initial one. In both strategies, the recursive call ends

when convergence is declared in the check-conv substep.

2.3 The termination step

After the poll step and (possibly) the recursive step, the algorithm evaluates the set

S = {𝑖 ∈ C, 𝑥𝑏𝑒𝑠𝑡𝑖 − 𝑙𝑖 ≤ 𝛿𝑖 or 𝑢𝑖 − 𝑥𝑏𝑒𝑠𝑡𝑖 ≤ 𝛿𝑖 },

of nearly saturated bounds at 𝑥𝑏𝑒𝑠𝑡 , sets 𝑛𝑠 = |S| and determines the matrix 𝑁 of normals of these

nearly saturated constraints. Then, if the iteration is successful, i.e., 𝑓 𝑏𝑒𝑠𝑡 < ¯𝑓 , it performs the

expansion substep, itself consisting of three parts. Firstly, the mesh size for continuous variables
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is increased by a constant factor by setting

𝛿C ← min

[
(𝑢 − 𝑙)C, min(𝛼𝛿C, 𝛾𝛿0

C)
]
, (7)

where 𝛼 ≥ 1 and 𝛾 > 0 are grid expansion factor and maximum grid expansion factor, respectively.

Secondly, given an integer parameter inertia and the “progress direction” defined by

Δ𝑎𝑣𝑔 =

inertia∑︁
𝑗=1

Δ𝑥𝑎𝑐𝑐
:, 𝑗 (8)

where Δ𝑥𝑎𝑐𝑐 is the 𝑛𝑐 × inertia matrix whose columns contains the directions of descent 𝑥𝑏𝑒𝑠𝑡 − 𝑥
accumulated over the last inertia iterations at the same recursion level, a new set of orthonormal

directions 𝑄𝑛𝑒𝑤 ∈ R𝑛𝑐×𝑛𝑐 is computed from the QR factorization

[𝑁 Δ𝑎𝑣𝑔 𝑊𝑛𝑐 ,𝑛𝑐−𝑛𝑠−1] = 𝑄𝑛𝑒𝑤𝑅

for some upper-triangular matrix 𝑅. We recall that 𝑛𝑐 denotes the number of continuous variables

and𝑊 is a matrix of uniformly distributed random numbers over (0,1) of dimension 𝑛𝑐 ×(𝑛𝑐 −𝑛𝑠 −1)
which is generated at each iteration. This change of basis has the effect of redefining the continuous

variables, of projecting the progress direction onto the nullspace of the nearly saturated bounds

and of ensuring that the normals of the nearly saturated constraints belong to the new basis. This

latter property is ensured by the fact that the nearly active bound constraints normals are the

first columns of the above matrix, and thus that their orthonormal nature is preserved by the

QR factorization. Thirdly, the new current iterate is redefined by 𝑥 = 𝑥𝑏𝑒𝑠𝑡 , ¯𝑓 = 𝑓 𝑏𝑒𝑠𝑡 and a new

iteration started.

If, by contrast, the iteration is unsuccessful, the algorithm enters the check-conv substep and

checks for termination in the sense that convergence is (preliminarily) declared if

| (𝛿C)𝑖 | ≤ 𝜖, 𝑖 ∈ C, (9)

where 𝜖 > 0 is a mesh-size threshold. In this case, further attempts to reduce the objective

function are performed by a user-specified number of poll steps, each using a new randomly drawn

orthonormal basis 𝑄𝑛𝑒𝑤
obtained from the QR factorization

[𝑁 𝑊𝑛𝑐 ,𝑛𝑐−𝑛𝑠 ] = 𝑄𝑛𝑒𝑤𝑅. (10)

If condition (9) is met every time, final convergence of BFO is declared and 𝑥𝑏𝑒𝑠𝑡 is returned to the

user as the best approximation solution found.

If this convergence test fails, the refinement substep is then entered, where, given a grid

shrinking factor 𝛽 ∈ (0, 1), the grid for the continuous variables is refined by setting

𝛿C ← max{𝜖/2, 𝛽𝛿C} (11)

and Δ𝑓 in (5) is reduce by the factor 𝛽 . Analogously to the procedure used in the expansion substep,

the new basis 𝑄𝑛𝑒𝑤
is defined from the QR factorization (10) and a new iteration is started.

The BFO parameters are summarized in Table 1. The same parameters are used at each level of

the recursion.

Despite obvious similarities between BFO and the class of algorithms considered by Gratton at

al. [Gratton et al. 2015], convergence of the BFO algorithm for unconstrained continuous problems

is not guaranteed by their analysis. Indeed their framework requires that a decrease in objective

function value which is is not sufficient (in terms of a given forcing function) is not accepted, while

BFO accepts any decrease. However, the theory of grid-based methods (see Coope and Price [Coope

7



𝑝# Parameter Type Description

𝑝1 𝛼 𝑐 The grid expansion factor (see (7))

𝑝2 𝛽 𝑐 The grid shrinking factor (see (11))

𝑝3 𝛾 𝑐 The maximum grid expansion factor (see (7))

𝑝4 𝛿 𝑐 The initial stepsize vector (see Algorithm 1)

𝑝5 𝜂 𝑐 The sufficient decrease fraction in the poll step (see (4))

𝑝6 inertia 𝑖 The inertia for continuous step accumulation (see (8))

𝑝7 stype 𝑖 The discrete tree search strategy {BF,DF, none} (see Section 2.2)

Table 1. Table of BFO parameters.

and Price 2001]) can be invoked to deduce convergence of the BFO algorithm in this case, provided

the successive sets of polling directions P become dense in the unit sphere.

Another difference between the framework of [Gratton et al. 2015] and the present proposal

follows. The BFO strategy can be interpreted as a sequential conditional choice where a random

direction is selected first and, if this direction does not produce sufficient descent, its opposite is

most likely to provide descent. Moreover, if neither of these moves is successful, an obvious choice

it to look in their orthogonal complement. The framework of [Gratton et al. 2015] does not cover

this last option.

Finally, the BFO algorithm presents obvious opportunities for exploiting parallel computations.

One can, for instance, perform all the evaluations corresponding to the poll step in parallel (the

condition (4) becomes irrelevant in this case). This is especially useful when integer variables are

present because it allows to run the recursive steps in parallel. Parallelism can also be exploited

in the training phase, where the computation of the performance measures can be improved by

solving test problems in parallel. Although these developments are of interest, we do not discuss

them in this paper.

2.4 Additional BFO features
The BFO code also provides a few additional facilities for the user, which we briefly describe.

termination on objective function target: In some applications, the cost of complete op-

timization is simply too high, especially in the context of derivative-free methods where

asserting convergence may itself be a reasonably costly algorithmic phase. Many users are

therefore more interested in obtaining a decent decrease/increase of the objective function

from a starting value than in pursuing optimization to its conclusion. BFO allows the user

to terminate optimization before convergence specifying a “target value” for the objective

function, and the algorithm then terminates as soon as this target is attained.

cheap unsuccessful objective evaluation: Many relevant optimization problems occur in

the form where the objective function consists of a sum of positive terms (such as nonlinear

least-squares). In these cases, it is possible to save significant computational effort by deter-

mining, in the course of the evaluation of the objective function itself, if the accumulated

value for a given number of terms already results in a value too large for the evaluation to

be considered successful by the algorithm. BFO provides the necessary interface to allow

stopping evaluation by ignoring further terms.

We note that algorithm training as described in Section 4 is by nature a problem where

this feature can be applied. Indeed its use results in a 10% saving in evaluationswhen training

BFO with the AO strategy, compared to the naive version ignoring this structure. When

combined with the use of objective function targets (just described), the computational
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cost of RO training strategy typically decreases by an order of magnitude. For instance, in

the nonlinear least-squares example described in Section 4.1, the total cost (in time and

operations) of computing the RO objective function decreases by a factor 10 because of

this strategy. This situation is typical in our experience.

graceful handling of undefined function values: If the objective function value is unde-

fined at a point 𝑥 where evaluation is attempted, returning NaN to BFO will allow the code

to proceed and continue optimization, excluding 𝑥 from the set of possible solutions.

variable-dependent scaling: It may happen that variables in a problem have different scal-

ings, resulting in ill-conditioning and termination difficulties if this property is ignored.

BFO allows the user to explicitly specify variable scalings in order to avoid this type of

detrimental numerical behaviour. This is achieved by specifying a scaling vector (xscale)
whose values are used to (statically) scale the variables before problem solution is attempted.

A change in xscale yields a corresponding change in the initial stepsize 𝛿 .

user-specified discrete lattice: By default, BFO considers discrete variables as integer, but

also provides the possibility for the user to specify a discrete lattice on which optimization

must be carried on. This is done by passing to BFO a matrix whose columns corresponding

to discrete variables contain a basis of this lattice. Optimization on the 𝑖-th (discrete) variable

is then interpreted as optimization along fixed multiples of the 𝑖-th column of the given

matrix.

user-specified search-step: At the end of each poll step, BFO allows the user the possibility

to suggest a guess for a good descent point. Typically, this point is the minimizer of some

kind of model (e.g., interpolation, regression, Kriging, RBF, etc.). As an option, the user

may specify a function, that, given a set of points where the objective function as been

evaluated in the poll step, (possibly) returns a better point.

checkpointing and restart: Because optimization with costly objective function may be

time consuming, it is useful for an algorithm to provide checkpointing and restart facilities.

This is the case in BFO, where the user may specify the checkpointing frequency and the

name of the checkpointing file(s).

BFGS finish: When convergence is approached on smooth problems, the grid is refined

following iterations where no improvement can be obtained in the polling loop. However, a

complete polling loop provides enough function evaluations to allow for a central difference

estimation of the gradient at the current iterate. This in turn can be exploited at successive

iterates of this type, the associated differences in (estimated) gradient being used to build a

BFGS [Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970] variable-metric approxi-

mation of the (assumed) second derivatives, at least in the presence of positive curvature.

More specifically, let 𝑥 and 𝑥+ be two successive iterates at which the polling loop has

terminated after considering all directions in P and let 𝑔𝑑𝑖 𝑓 and 𝑔+
𝑑𝑖 𝑓

be the corresponding

gradient approximations. The quasi-Newton step may then be computed to enforce the

secant condition

𝐵(𝑥+ − 𝑥) = 𝑔+
𝑑𝑖 𝑓
− 𝑔𝑑𝑖 𝑓 ,

where B is the resulting approximate Hessian matrix. This facility is provided as an option

in BFO, and often results in significantly higher accuracy of the solution for a moderate

increase in function evaluations.

a CUTEst interface: In order to facilitate comparison with other packages, an interface to

the CUTEst testing environment [Gould et al. 2015] is also provided.
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3 NUMERICAL EXPERIMENTS
This section is devoted to the numerical validation of the Matlab implementation of BFO. This issue

is carried out through two series of experiments performed on a given set of benchmark problems:

the first series is used for fine-tuning the BFO parameters and the second for the comparison of

the practical behavior of BFO with that of a competitor solver chosen to represent the class of

derivative-free solvers.

The comparative computational analysis is carried out by using performance and data profiles

proposed in [Moré and Wild 2009] for benchmarking derivative-free optimization algorithms.

Following this reference, we compare different solvers and algorithmic versions declaring that the

problem is solved as soon as

𝑓 (𝑥0) − 𝑓 (𝑥) ≥ (1 − 𝜏) (𝑓 (𝑥0) − 𝑓∗) (12)

where 𝑥0 is the starting point for the problem, 𝑥 is the solution returned by a solver, 𝑓∗ is computed

for each problem as the smallest value of 𝑓 obtained by any solver within a given number 𝜇𝑓 of

function evaluations, 𝜏 ∈ [0, 1] is a tolerance that represents the the percentage decrease from the

starting value 𝑓 (𝑥0). In practice (12) measures the function value reduction 𝑓 (𝑥0) − 𝑓 (𝑥) achieved
by 𝑥 relative to the best possible reduction 𝑓 (𝑥0) − 𝑓∗.
Let fe𝑃,𝑆 denote the total number of function evaluations needed for the solver 𝑆 to solve

problem 𝑃 , that is to satisfy (12) for a given tolerance 𝜏 , and let fe𝑃 be the total number of function

evaluations employed by the best solver to solve problem 𝑃 .

We consider the classical performance profile function 𝜋𝑆 defined as

𝜋𝑆 (𝑡) =
number of problems s.t. fe𝑃,𝑆 ≤ 𝑡 fe𝑃

number of problems

, 𝑡 ≥ 1,

which is interpreted in [Dolan and Moré 2002] as the probability for solver 𝑆 that a performance

ratio fe𝑃,𝑆/fe𝑃 is within a factor 𝑡 of the best possible ratio.

We also consider a further performance measure, the data profile function [Moré and Wild 2009],

which computes the percentage of problems that can be solved (for a given tolerance 𝜏) within a

certain number of function evaluations 𝜈 (the “budget”). The data profile function is defined as

𝛿𝑆 (𝜈) =
number of problems s.t. fe𝑃,𝑆 ≤ 𝜈 (𝑛 + 1)

number of problems

, 𝜈 > 0.

With the scaling 𝑛 + 1, 𝛿𝑆 (𝜈) can be interpreted as the percentage of problems that can be solved

with the equivalent of 𝜈 simplex gradient estimates.

We note that the performance profile 𝜋𝑆 (𝑡) measures how well the solver 𝑆 performs relative to

the other competitive solvers on a given set of problems, while the data profile 𝛿𝑆 (𝜈) for a given
solver 𝑆 is independent of other solvers.

In our experiments, we allowed a maximum number of 10000 function evaluations and considered

two levels of accuracy 𝜏 = 10
−4
, and 10

−8
. In order guarantee the satisfaction of the condition (12)

for these values of 𝜏 , we used tight tolerances in the solver converging tests. Finally, performance

and data profiles are plotted in the following sections using an horizontal logarithmic scale and

selecting 𝑡 > 1 and 𝜈 ∈ [0, 2500], respectively. Experiments were carried out using Matlab R2012a

on Intel Core 2 Duo U7006 @1.2GHx2, 1.5 GB RAM.

3.1 The benchmark problems
We consider problems from the CUTEst test collection [Gould et al. 2015] both for testing and

training BFO. The test examples are selected using the CUTEst interactive select tool in order to
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locate the subset of bound constrained problems and picking the problems with 𝑛 ≤ 12 and those

that could be modified to reduced their dimension below 12 without losing their meaning
4
.

The resulting testing set consists of the 55 problems listed in Table 2 with their name, dimension

𝑛, number of free variables 𝑛𝑓 𝑟 , fixed variables 𝑛𝑓 , lower bounded variables 𝑛𝑙 , upper bounded

variables 𝑛𝑢 and number of variables with both lower and upper bounds 𝑛𝑙𝑢 .

We consider two versions of this set of problems: the first, denoted as Set-cont, contains
problems where variables are continuous (original problem formulation) and the second, Set-mix,
which consists of problems with mixed-integer variables. Set-mix is built modifying the CUTEst
problems imposing that some variables can only assume integer values. In particular, we imposed

that all variables with even indexes are integers and rounded accordingly the corresponding bounds,

i.e., 𝑥2𝑖 , 𝑙2𝑖 , 𝑢2𝑖 ∈ Z for all 𝑖 5
.

The Matlab interfaces provided in [Gould et al. 2015] were used to test solvers on CUTEst
problems.

Name 𝑛 𝑛𝑓 𝑟 𝑛𝑙 𝑛𝑢 𝑛𝑙𝑢 𝑛𝑓 Name 𝑛 𝑛𝑓 𝑟 𝑛𝑙 𝑛𝑢 𝑛𝑙𝑢 𝑛𝑓

ALLINIT 4 1 1 1 1 KOEBHELB 4 1 2

BDEXP 10 10 LINVERSE 9 4 5

BIGGSB1 10 1 9 LOGROS 2 2

CAMEL6 2 2 MAXLIKA 8 8

CHARDIS0 10 10 MCCORMCK 10 10

CHEBYQAD 4 4 MDHOLE 2 1 1

CVXBQP1 10 10 NCVXBQP1 10 10

EG1 3 1 2 NCVXBQP2 10 10

EXPLIN 12 12 NCVXBQP3 10 10

EXPLIN2 12 12 NONSCOMP 10 10

EXPQUAD 12 6 6 OSLBQP 8 3 5

HADAMALS 4 2 2 PALMER1A 6 4 2

HARKERP2 10 10 PALMER2B 4 2 2

HART6 6 6 PALMER3E 8 7 1

HATFLDA 4 4 PALMER4A 6 4 1

HATFLDB 4 3 1 PALMER4 4 1 3

HATFLDC 9 1 8 PENTDI 5 5

HIMMELP1 2 2 POWELLBC 6 6

HS110 10 10 PROBPENL 10 10

HS1 2 1 1 PSPDOC 4 3 1

HS25 3 3 QUDLIN 12 12

HS2 2 1 1 S368 8 8

HS38 4 4 SIMBQP 2 1 1

HS3 2 1 1 SINEALI 4 4

HS3MOD 2 1 1 SPECAN 9 9

HS45 5 5 WEEDS 3 2 1

HS4 2 2 YFIT 3 2 1

HS5 2 2

Table 2. The benchmark problem set.

4
We excluded the MINSURFO, the TORSION*, JNLBRNG* and the OBSTCLA* family because they arise from the discretized

problems and are therefore meaningless in small dimensions. Moreover, we arbitrarily chose only 5 problems within the

PALMER* family.

5
The only exceptions are problems HATFLDB, MAXLIKA, KOABHELB for which we considered variables ‘icic’, ‘cccicici’,

‘cci’, respectively, to obtain problems with meaningful bounds (‘c’and ‘i’ stand for continuous and integer variables).
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3.2 The BFO parameters self-tuning
The BFO algorithm depends on a set of algorithmic parameters whose value may influence its

numerical performance. Ideally, one would like to set these parameters to those values which gives

the best numerical performance of BFO and set them as the default ones. In practice, a default

parameter configuration can be computed by approximating the parameters which gives the best

performance of BFO on a set of test problems that is chosen to be representative enough to “ensure”

good performance of the solver on further problems.

We focus on the 7 BFO parameters reported in Table 1 together with their description and type: 5

parameters are continuous 𝑐 , one is integer 𝑖 and one (stype) is a set of labels {BF,DF, none} which
identifies the discrete tree search strategy, to which we associate the integer values {0, 1, 2} in the

range [0, 2]. Note that this parameter is not necessary if a testing problem has only continuous

variables.

The aim of this section is to estimate the best BFO parameters configuration with respect to the

benchmark problem set. To address this issue we consider two parameter optimization problems

formulated as a bound-constrained black-box optimization problem of the form (1) where the

variables are the BFO parameters, and we use the BFO itself to solve it.

The first formulation, first proposed in [Audet and Orban 2006] and used later in [Audet et al.

2010, 2014], is based on defining the number of objective function evaluations as measure of

(negative) performance of the algorithm and use a derivative-free solver to minimize it. This

technique is implemented as follows. Let T be the set of test problems described in Section 3.1 and

let 𝑝 = (𝑝1, . . . , 𝑝7) be the BFO parameters listed in Table 1. We choose reasonable default values

𝑝0 for the parameters and associated lower/upper bounds 𝑙𝑝 and 𝑢𝑝 . Then, we use BFO to solve the

“Average Objective” (AO) problem

min

𝑙𝑝 ≤𝑝≤𝑢𝑝
𝜙𝐵𝐹𝑂 (𝑝) (13)

where 𝜙𝐵𝐹𝑂 (𝑝) counts the total number of evaluations of 𝑓 to solve all the problems in T with

parameters 𝑝 . We note that this formulation falls in the class of problems where the objective

function is the sum of positive terms.

The second formulation relies on robust optimization which provides a tool for protecting against

strong local variation of performance by looking for a safe worst-case scenario [Conn and Vicente

2012]. We follow this approach by allowing perturbations of each continuous algorithmic parameter

by at most 5% around each tested value and defining the local box

B =

5∏
𝑖=1

[0.95 𝑝𝑖 , 1.05𝑝𝑖 ] ×
7∏

𝑖=6

[𝑝𝑖 , 𝑝𝑖 ] ,

and use BFO to solve the problem “Robust Objective” (RO) problem

min

𝑙𝑝 ≤𝑝≤𝑢𝑝
max

𝑝∈B
𝜙𝐵𝐹𝑂 (𝑝) (14)

where 𝜙𝐵𝐹𝑂 , 𝑙𝑝 , 𝑢𝑝 are defined as above.

In the experiments, we set the starting parameter 𝑝0 and the bounds 𝑙𝑝 , 𝑢𝑝 as given in Table 3

and the initial scaling 𝛿𝑝 = (𝑢𝑝 − 𝑙𝑝 )/10 for continuous parameters and 𝛿𝑝 = 1 for the integer ones.

Moreover, we used the value 𝜖 = 10
−13

in the convergence test (9) in the solution of a single

problem in T required to evaluate 𝜙𝐵𝐹𝑂 . On the other hand, based on our experiments, we set

𝜖 = 10
−2

in the same test when solving the outer minimization problem in both (13) and (14), and

𝜖 = 10
−1

in the solution of the inner minimization problem (14). Finally, we set an upper bound of

100 parameter configuration trials.
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𝛼 𝛽 𝛾 𝛿 𝜂 inertia stype

𝑝0 2 0.5 5 1 10
−3

10 0

𝑙𝑝 1 0.01 1 0.25 10
−5

5 0

𝑢𝑝 2 0.95 10 10 0.5 30 2

Table 3. Parameter setting for the BFO self-tuning.

In Table 4 we give the estimated parameters 𝑝𝐴𝑂 and 𝑝𝑅𝑂 computed using the AO formulation

(13) and the RO formulation (14), respectively. Values of 𝑝𝐴𝑂 and 𝑝𝑅𝑂 slightly differ and both

suggest to use the depth-first strategy (stype = 1) in the recursive step. We also report the value

of the seed of the random number generator (labeled as rseed) which we found experimentally

suitable. Figure 1 shows the corresponding performance profiles which reveals that: using 𝑝𝑅𝑂
yields the most efficient version of BFO on Set-cont; the performance of BFO with 𝑝𝑅𝑂 and 𝑝𝐴𝑂
is comparable for 𝑡 ≈ 1 on Set-mix and both outperform BFO with 𝑝0; the robustness of the three

versions of BFO is comparable (see percentage values in brackets).
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Fig. 1. Performance profiles of BFO with different algorithmic parameters on Set-cont (top) and on Set-mix
(bottom). Cutoff 𝜏 = 10

−4 (left) and 𝜏 = 10
−8 (right).

We conclude this section by the (important in our view) observation that the same approach can

be used to optimize performance of other numerical algorithms, using BFO to solve the associated

AO or RO problems.
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𝛼 𝛽 𝛾 𝛿 𝜂 inertia stype rseed
continuous 𝑝𝐴𝑂 1.6366 0.3426 4.4507 8.5744 0.1142 13 - 64

problems 𝑝𝑅𝑂 1.4248 0.1997 2.3599 1.0368 0.4528 11 - 53

mixed-integer 𝑝𝐴𝑂 2 0.0448 5 1 0.1190 10 1 91

problems 𝑝𝑅𝑂 2 0.3135 5 3.6030 10
−5

10 1 91

Table 4. Estimated optimal BFO parameters.

3.3 Comparison with NOMAD
As a competitor solver, we considered NOMAD (Release 3.6.2), a well-known solver for derivative-

free mixed variable nonlinear optimization [Abramson et al. 2008; Le Digabel 2011]. NOMAD

(Nonsmooth Optimization by Mesh Adaptive Direct Search) belongs to the class of direct-search

methods and is based on the the recent development of Mesh Adaptive Direct Search methods

[Abramson et al. 2009]. NOMAD is in fact an hybrid method that enhances the efficiency of MADS

methods by combining direct-search strategies with different types of surrogate models in a mesh

adaptive direct search filter method.

We now report on the numerical comparison between BFO and NOMAD evaluated in both “direct-

search” mode and “model-based” mode (denoted as NOMAD-DS and NOMAD-MB, respectively).

In our experiments we set 𝜇𝑓 = 10000 and considered two levels of accuracy 𝜏 = 10
−𝑖
, 𝑖 = 4, 8. In

both BFO and NOMAD, the internal stopping criterion is based on driving the mesh size below a

tolerance 𝜖 that we set as 𝜖 = 10
−13

. All other NOMAD parameters have been set as the default

ones
6
.

In Figures 2 and 3, we plot the comparison between the three versions of BFO, i.e., with parameters

𝑝0, 𝑝𝐴𝑂 and 𝑝𝑅𝑂 of Tables 3 and 4, and the two versions of NOMAD.

Figure 2 shows that BFO with 𝑝𝑅𝑂 is the most efficient in the 40% of the tests on Set-cont
while in the solution of Set-mix BFO with 𝑝𝐴𝑂 is the most efficient for 𝜏 = 10

−4
; for 𝜏 = 10

−8
the

performance of the compared solvers is similar for 𝑡 ≈ 1. It is also clear in Figure 3, that the tuned

versions of BFO are very competitive with NOMAD-MB on Set-mix since the plotted curves are

very close for 𝑡 ≥ 1.5 while, unsurprisingly, the NOMAD model based approach is more efficient

than BFO on the smooth continuous problems in Set-cont, especially for 𝜏 = 10
−8
.

Remarkably, BFO is on average more robust than NOMAD in that it solves around 10-15% more

problems then the competitor (see the percentage values in brackets).

Finally, we report the corresponding data profiles in Figure 4. From these profiles, it is clear

that when the computational budget is small, say 100 simplex gradient evaluations, the behaviour

of the competing solvers is comparable. On the other hand, for both accuracy levels 𝜏 , as the

computational budget increases, BFO solves a larger number of problems than NOMAD (both

versions) and the difference increases with the number of simplex gradients 𝜈 .

4 BFO AS A TRAINABLE ALGORITHM
If the performance of the BFO algorithm can be optimized with itself, the obvious next step is to

provide this facility within the code, allowing a user to specify a set of test problems (we used the

CUTEst test problems above) and optimizing performance on this class. As a result, we obtain what

we call a “trainable algorithm”: given a set of test problems, a trainable algorithm can be trained for

6
When NOMAD is tested in the “direct-search” mode, we disabled the options MODEL_SEARCH and MODEL_EVAL_SORT in
order not to use model based strategies.
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Fig. 2. Performance profiles of BFO against NOMAD-DS on Set-cont (top) and on Set-mix (bottom). Cutoff
𝜏 = 10

−4 (left) and 𝜏 = 10
−8 (right).

(hopefully) improved performance on this set and subsequently applied to further problems (of the

same type) using the internal configuration (algorithmic parameters) resulting from this training.

In BFO, this facility is implemented by allowing the user to specify three possible “trainingmodes”.

The first correspond to the training phase only and solves problem AO or RO on the user-supplied

set of training problems. The second mode first perform this training and then immediately uses

the resulting optimized algorithmic parameters to solve one or more new problems. The third

mode first reads previously trained parameters from a file and then uses them for the solution of a

new problem. Various options may be specified, allowing the user to choose between AO and RO,

specifying the name of the file where trained parameters are saved and restricting the training to

certain meaningful sets of parameters. We refer to the description of the BFO input parameters

for more details. Note that BFO being a descent method implies that performance is improved at

every training iteration, and therefore that accurate solution of the training problem AO or RO is

generally unnecessary (and potentially leading to overfitting).

We now illustrate the potential benefits and pitfalls of training by considering three specific

class of minimization problems.
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Fig. 3. Performance profiles of BFO against NOMAD-MB on Set-cont (top) and on Set-mix (bottom). Cutoff
𝜏 = 10

−4 (left) and 𝜏 = 10
−8 (right).

4.1 Nonlinear least-squares
The first is a class of nonlinear least-squares problems with bounds

7
where one seeks to fit a

nonlinear model of a vibrating beam (hence our name of VBEAM for this problem class) to data by

minimizing

𝑓 (𝑥1, 𝑥2, 𝑥3) =
16∑︁
𝑗=0

[
𝑥3 tan

(
𝑥1

(
1 − 𝑗

16

)
+ 𝑥2

𝑗

16

)
− 𝑦 𝑗

]
2

where 𝑥3 ≥ 0. We fixed values for the three variables
8
and generated several classes of 10 problems,

where

𝑦 𝑗 = 𝑥3 tan

(
𝑥1

(
1 − 𝑗

16

)
+ 𝑥2

𝑗

16

)
(1 + 𝜂 𝑗 ) ( 𝑗 = 0, . . . 16),

with 𝜂0 = 0 and 𝜂 𝑗 ( 𝑗 > 0) being a realisation of a Gaussian noise with zero mean and a prescribed

value of the standard deviation 𝜎 , each class of test problems corresponding to a different value of

𝜎 . For each such class, we trained BFO using both average and robust training strategies on the 10

generated test problems, and then applied the trained BFO on 20 additional validation problems

7
Derived from the YFIT problem in CUTEst and corresponding to fitting data to Doppler measures of a vibrating beam. The

original problem was proposed by L. Watson (VPI).

8𝑥∗
1
= 0.21, 𝑥∗

2
= −0.35 and 𝑥∗

3
= 1, 𝑥∗

3
= 10 or 𝑥∗

3
= 100.
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Fig. 4. Data profiles of BFO against NOMAD-DS and NOMAD-MB on Set-cont (top) and on Set-mix
(bottom). Cutoff 𝜏 = 10

−4 (left) and 𝜏 = 10
−8 (right).

generated with the same parameters and standard deviation, in order to measure effectiveness of

the training on this validation set.

We report in Tables 5 and 6 in appendix some results obtained in this setting. In these tables,

𝜖1 is the accuracy requirement of the outer minimization in the training problem formulation

(see (13) and (14)), 𝜖2 is the accuracy requirement in the inner maximization of (14), 𝜎 is the

standard deviation described in the preceding paragraph, “neval” is the total number of evaluation

of problems in the testing set, “t-set” is the gain/loss (in percentage) in the number of problem

function evaluations achieved by the training phase on the 10 training problems of each class and

“v-set” is the gain/loss of problem function evaluations obtained on the validation set consisting of

the 20 additional problems of each class which were not included in the training set.

We now attempt some tentative conclusions on this specific class of problems:

(1) The gains in performance obtained by training using either strategy, although clearly not

guaranteed, may be substantial, especially for narrowly defined problems classes (small

values of 𝜎). Reported values approach 60% in some cases, but further experimentation not

reported here indicate d that even higher gains may sometimes be possible. On average,

gains appear to be of the order of 25%.
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(2) Asking more accuracy for the outer minimization in training (𝜖1 = 0.001) is typically
9
more

costly.

(3) Unsurprisingly, a very moderate accuracy requirement for this outer minimization often

seems perfectly sufficient. Higher accuracy levels may increase the cost of training without

any guarantee of improvement in performance on the validation set. This observation

appears to hold for both training strategies, with the possible exception of the worse

conditioned problems (𝑥3 = 100) with larger standard deviation (𝜎 ≥ 0.5) when the RO

strategy is used.

(4) Again unsurprisingly, the RO training strategy is nearly always substantially more costly

that the AO one (by a factor often exceeding one order of magnitude). It may however

produce benefits in terms of training capacity for problems with relatively high values of 𝜎 ,

that is problems where deviations within the class are proportionally larger.

(5) Increasing the accuracy in the inner maximization (𝜖2) in the RO strategy again appears to

bring few benefits, with the same marginal exception of the worse conditioned problems

with larger standard deviation.

4.2 Regularized cubics
The second class of problems (RCUBIC) on which training was experimented is a class of uncon-

strained problems featuring an regularized cubic objective function of the form

𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = −𝜇 [𝑥1 (1 + 𝜈1) + 𝑥2 (1 + 𝜈2) + 𝑥3 (1 + 𝜈3) + 𝑥4 (1 + 𝜈4)]

−𝑥2

1
− 2𝑥2

2
− 3𝑥2

3
− 4𝑥2

4
+ 10(1 + 𝜈5) [𝑥2

1
+ 𝑥2

2
+ 𝑥2

3
+ 𝑥2

4
]3/2

where 𝜇 is a parameter in {0.1, 1, 10} and {𝜈𝑖 }5𝑖=1
are realizations of a Gaussian random noise with

zero mean and prescribed values of the standard deviation 𝜎 . As for the VBEAM class, 10 training

problems were generated for each value of 𝜇 and 𝜎 . BFO was then trained on this set for different

accuracy levels using both the AO and RO strategies and the resulting algorithmic parameters

were then used to solve 20 validation problems generated with the same 𝜎 . The results of these

experiments are reported in Tables 7 and 8 in appendix.

These tables suggest the following comments.

(1) The typical gains in performance are smaller on this problem class than those obtained

for the VBEAM class, but they remain non-negligible (from 10 to 30% except for the case

𝜎 = 1).

(2) For both strategies, the evolution of the gains with increasing value of the noise standard

deviation𝜎 is somewhat unpredictable, the best results being often obtained for intermediate

values of this problem parameter. However, the largest standard deviation typically leads

to worse performance.

(3) As for the VBEAM class, moderate training accuracy seems most often sufficient to extract

good performance, both for the AO and RO strategies.

(4) Again the RO strategy is considerably more costly, in this case for results comparable on

the whole to those obtained for AO.

Summarizing, the experiments reported in this section indicate that training has a non-negligible

cost but may yield significant efficiency gains when the class of problems considered is sufficiently

well-defined. Moreover, it appears that the RO training strategy, albeit clearly designed for increased

9
The nonconvexity of the training criteria nevertheless implies that different approximate minimizers can be found for

successive training runs with different accuracy requirements. Similarly, the geometry of problems may vary with 𝜎 . As a

consequence monotonicity of cost and/or performance with respect to increased accuracy requirements or decreasing noise

is not always preserved.
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robustness, does not (in these two experiments at least) deliver very convincingly on this ground in

view of its very significantly higher training cost. However it definitely should be remembered that

gains are not guaranteed, and therefore that the encouraging but tentative conclusion (especially

for the AO strategy) must be taken with due caution. If the user wishes to solve a large number of

problems within a well-defined class of interest, some experimentation with training is probably

advisable.

5 TACKLING MULTILEVEL PROBLEMS
We now turn to the description of how BFO has been adapted to solve problems of the form (2),

provided each optimization subproblem (at different levels) is well-defined. The fact that forward and

backward steps are used by the algorithm makes it easy to restrict minimization (or maximization)

to specific subspace. In particular, variable selection is trivial as it is sufficient to fix one or more

variables to define a proper subspace. Indeed, assume for simplicity that there are two levels

involving vectors of variables 𝑥1 and 𝑥2, respectively. In order to evaluate the objective function for

the outer (level 1) optimization problem, BFO recursively calls itself to optimize the objective on 𝑥2

while keeping the variables in 𝑥1 fixed.

Which variable is assigned to which level is specified by the user using an optional argument (it

is then required that every variable is assigned a level, and that every level is assigned at least one

variable). Another argument allows the specification of the choice of minimization or maximization

at each level.

As we indicated in the introduction, the variables at each level may be constrained by their own

set of bounds, and these bounds may themselves depend on the value of the variables at levels of

lower index. This is achieved by calling a user-supplied function defining these “variable bounds”

in a reasonably flexible format. This feature has the marginal effect that it allows considering

constrained problems of the form

min

𝑥
𝑓 (𝑥1, 𝑥2) subject to 𝑔(𝑥1) ≤ 𝑥2 ≤ ℎ(𝑥1)

by reformulating them as two levels problem

min

𝑥1

min

𝑥2

𝑓 (𝑥1, 𝑥2)

where the “variable bounds” on 𝑥2 are defined by 𝑔(𝑥1) ≤ 𝑥2 ≤ ℎ(𝑥1). Since the “variable bounds”
definition may itself call BFO, it is also possible to tackle problems of the form

min

𝑥1∈R𝑛
𝑓 (𝑥1, 𝑥2) subject to min

𝑥1∈R𝑛
𝑔(𝑥1) ≤ 𝑥2 ≤ min

𝑥1∈R𝑛
ℎ(𝑥1)

where 𝑥1 and/or 𝑥2 ∈ Rmay contain a mix of discrete or continuous variables and where additional

(fixed) bounds may be imposed on 𝑥1 and 𝑥2.

The multilevel facility coupled with the definition of the variable bounds technique just illustrated

therefore shows considerable flexibility, but it must be kept in mind that recursive optimization

over two or more levels may be expensive in terms of objective function evaluations, even after

training on a specific class of multilevel problems.

6 CONCLUSION
We have presented BFO, a versatile and robust Brute Force Optimizer for small-scale bound-

constrained problems based on a simple direct-search strategy, whose distinguishing features are

its ability to handle a mix of continuous and discrete variables and its innovative self-training

capacity. The fact that it can also handle multilevel problems, although possibly at higher cost, is

19



also a plus. BFO is written in Matlab. On CUTEst problems, its performance compares favourably

with that of NOMAD, a well-known direct-search package, most notably in terms of reliability.

As its name suggests and despite a favourable but limited comparison with NOMAD, BFO has no

pretense of superior efficiency, especially for multilevel problems. It is hoped that it will nevertheless

turn out to be useful because of its versatility, trainable nature and robustness. In particular, its

application for optimizing algorithmic parameters in various numerical methods, in optimization

and beyond, is of definite interest.
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𝜖1 = 0.1 𝜖1 = 0.01 𝜖1 = 0.001

𝑥∗
3

𝜎 neval t-set v-set neval t-set v-set neval t-set v-set

1.0 0.05 78016 57% 58% 84676 57% 58% 91376 57% 58%

0.10 74664 57% 57% 92144 57% 57% 99099 57% 57%

0.50 76770 55% 51% 90714 55% 51% 97697 55% 51%

1.00 118002 25% 18% 127859 25% 18% 137598 25% 18%

10.0 0.05 115103 25% 24% 117627 30% 25% 153660 31% 26%

0.10 91736 30% 27% 101330 30% 27% 116878 31% 27%

0.50 140689 29% 29% 150873 29% 29% 161938 29% 29%

1.00 371770 74% -3% 391895 74% -3% 469877 75% -3%

100.0 0.05 1528163 40% 17% 2259418 46% 35% 2409211 46% 35%

0.10 949534 74% -63% 990102 74% -63% 1028300 74% -63%

0.50 1058333 44% 37% 1311953 44% 20% 1420676 44% 20%

1.00 2246316 53% 44% 2282538 42% 28% 2428030 42% 28%

Table 5. Training performance for the VBEAM problems (average strategy).

B RESULTS FOR THE TRAINING ON THE RCUBIC PROBLEMS

22



𝜖2 = 0.1 𝜖2 = 0.01 𝜖2 = 0.001

𝑥∗
3

𝜎 𝜖1 neval t-set v-set neval t-set v-set neval t-set v-set

1.0 0.05 0.100 628646 34% 32% 1785918 26% 13% 1524726 24% 19%

0.010 696865 29% 25% 2228106 32% 14% 1861051 24% 19%

0.001 801217 30% 22% 2388132 31% 21% 2526828 27% 22%

0.10 0.100 613487 39% 34% 1206625 26% 22% 2082234 30% 35%

0.010 594036 28% 14% 1602390 30% 29% 1786235 34% 32%

0.001 832147 28% 14% 2227721 33% 29% 1814774 34% 36%

0.50 0.100 752798 34% 18% 829479 26% 0% 1291995 25% 11%

0.010 826141 26% 15% 1569947 32% 15% 1915998 27% 9%

0.001 893174 27% 3% 1576704 32% 15% 2209387 28% 10%

1.00 0.100 915320 35% 23% 1428637 34% 26% 1903385 31% 15%

0.010 1007303 35% 27% 1316097 32% 21% 3275141 33% 16%

0.001 1057979 36% 28% 1415476 33% 23% 3454439 33% 15%

10.0 0.05 0.100 550136 31% 26% 2231802 29% 25% 2154878 25% 19%

0.010 742751 33% 27% 2384730 31% 25% 3565739 30% 26%

0.001 711696 33% 27% 2384978 31% 25% 3425180 29% 29%

0.10 0.100 356406 34% 27% 1825640 33% 22% 483576 34% 27%

0.010 415057 34% 27% 1482960 29% 16% 542227 34% 27%

0.001 437556 34% 27% 1576560 29% 16% 564726 34% 27%

0.50 0.100 581248 49% 26% 960202 64% 14% 1568987 71% 25%

0.010 630377 49% 26% 971803 64% 14% 1648454 71% 25%

0.001 718977 49% 26% 1015169 64% 14% 1828169 71% 25%

1.00 0.100 1875988 72% -5% 2012749 69% 0% 4731855 64% 5%

0.010 2495629 70% 7% 2416306 69% 0% 5870814 65% 3%

0.001 2687561 70% 7% 2391194 69% 0% 6639303 64% 6%

100.0 0.05 0.100 22800147 49% 53% 23756246 46% 51% 46830361 52% 57%

0.010 13796099 49% 50% 54424183 53% 55% 41559646 45% 54%

0.001 16016353 49% 50% 54424183 53% 55% 46977030 45% 54%

0.10 0.100 12074874 51% 18% 24934693 53% 24% 28315648 50% 20%

0.010 18603805 51% 20% 26371545 53% 24% 22841398 43% 21%

0.001 17117883 46% 21% 27787326 53% 24% 27516073 43% 21%

0.50 0.100 5825325 41% 32% 14433847 34% 44% 15522908 42% 44%

0.010 5929728 41% 32% 17728327 34% 44% 18043836 42% 44%

0.001 5943597 41% 32% 19799363 35% 47% 20980871 42% 44%

1.00 0.100 15984178 39% 43% 50144474 46% 46% 49081955 54% 23%

0.010 24300473 43% 43% 69466970 49% 13% 57829751 56% 56%

0.001 26649456 43% 43% 72037240 49% 13% 61968367 56% 56%

Table 6. Training performance for the VBEAM problems (robust strategy).
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𝜖1 = 0.1 𝜖1 = 0.01 𝜖1 = 0.001

𝜇 𝜎 neval t-set v-set neval t-set v-set neval t-set v-set

0.1 0.05 171390 21% 18% 215379 21% 18% 236948 21% 18%

0.10 147549 27% 32% 163969 27% 32% 179003 27% 32%

0.50 210625 27% 22% 231710 28% 21% 353271 30% 21%

1.00 1316810 2% 2% 1669344 2% 1% 2420867 2% 1%

1.0 0.05 157465 29% 19% 251780 31% 24% 364525 35% 22%

0.10 145578 27% 21% 164747 27% 21% 209898 27% 18%

0.50 167160 33% 20% 213654 33% 20% 275630 34% 19%

1.00 884294 7% 4% 1117489 7% 4% 1325105 8% 5%

10.0 0.05 170696 24% 17% 190527 24% 17% 210716 24% 17%

0.10 250660 27% 21% 197321 21% 17% 217332 21% 17%

0.50 252651 17% 19% 292688 17% 19% 313567 17% 19%

1.00 365754 9% 6% 577169 11% 7% 621727 11% 7%

Table 7. Training performance for the RCUBIC problems (average strategy).
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𝜖2 = 0.1 𝜖2 = 0.01 𝜖2 = 0.001

𝜇 𝜎 𝜖1 neval t-set v-set neval t-set v-set neval t-set v-set

0.1 0.05 0.100 904337 25% 25% 2666451 20% 18% 1780697 17% 20%

0.010 955052 25% 25% 2816439 20% 18% 1865210 17% 19%

0.001 1051446 26% 27% 2969297 20% 18% 2656816 17% 22%

0.10 0.100 408303 25% 28% 1899920 24% 34% 1975824 22% 27%

0.010 426958 25% 28% 1910765 22% 27% 3459456 24% 33%

0.001 486780 25% 28% 2770792 25% 25% 2713023 23% 28%

0.50 0.100 929811 22% 16% 1038464 22% 20% 1262599 24% 21%

0.010 776602 22% 20% 1098088 22% 20% 1594679 23% 20%

0.001 775473 22% 20% 1774483 24% 23% 1740226 23% 20%

1.00 0.100 5435143 2% 1% 22978138 1% 2% 42813655 1% 1%

0.010 6475795 2% 1% 25992859 1% 2% 31156577 1% -1%

0.001 9047623 2% 1% 43715316 1% 2% 34462404 1% 0%

1.0 0.05 0.100 935440 19% 14% 1395242 23% 19% 1613559 19% 21%

0.010 1306734 20% 18% 1532900 21% 16% 3032890 22% 20%

0.001 1382806 20% 18% 1631930 21% 16% 2916307 22% 16%

0.10 0.100 1036208 20% 21% 723048 20% 20% 2423883 19% 19%

0.010 1262466 22% 26% 1257674 20% 23% 3574962 21% 20%

0.001 1485215 23% 21% 1420361 21% 17% 4467090 22% 22%

0.50 0.100 878268 23% 20% 980388 23% 20% 4097011 22% 20%

0.010 990193 27% 25% 1141757 26% 21% 2641673 21% 16%

0.001 1180931 27% 21% 1269361 26% 21% 2810517 21% 16%

1.00 0.100 4589589 4% 1% 6923078 4% 1% 11537196 4% 2%

0.010 5064799 4% 1% 8512039 4% 1% 24376570 4% 4%

0.001 6214429 4% 2% 8925949 4% 1% 21217312 4% 2%

10.0 0.05 0.100 797424 26% 12% 2328438 24% 17% 1578391 25% 17%

0.010 818112 26% 12% 2358203 27% 20% 1794730 25% 17%

0.001 951865 26% 12% 2498016 27% 20% 1992326 25% 17%

0.10 0.100 701318 20% 11% 2566099 20% 18% 2978151 24% 21%

0.010 1065867 18% 15% 3025223 20% 18% 3711438 23% 18%

0.001 1183465 18% 15% 3166889 21% 17% 4214931 23% 14%

0.50 0.100 1383221 19% 21% 1529375 18% 17% 1671648 18% 19%

0.010 1355317 19% 16% 2017567 19% 23% 2307945 18% 20%

0.001 1481907 19% 16% 2136717 19% 23% 4720503 19% 20%

1.00 0.100 2161854 5% 5% 7751704 6% 6% 4880611 7% 4%

0.010 2254753 5% 5% 10487409 7% 4% 9767706 8% 6%

0.001 2234031 5% 5% 10908540 7% 4% 10192074 8% 6%

Table 8. Training performance for the RCUBIC problems (robust strategy).
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