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ABSTRACT
UnderstandingDRAMerrors in high-performance computing (HPC)
clusters is paramount to address future HPC resilience challenges.
While there have been studies on this topic, previous work has
focused on on-node and single-rack characteristics of errors; con-
versely, few studies have presented insights into the spatial behavior
of DRAM errors across an entire cluster. Understanding spatial pe-
culiarities of DRAM errors through an entire cluster is crucial for
cluster temperature management, job allocation, and failure pre-
diction. In this paper, we study the spatial nature of DRAM errors
on data gathered in a large production HPC cluster. Our analysis
shows that nodes with high degree of errors are grouped in spatial
regions for time periods, suggesting that these “susceptible” regions
are collectively more vulnerable to errors than other regions. We
then use our observations to build a predictor, which identifies such
regions given prior neighboring regions patterns.

CCS CONCEPTS
• Computer systems organization→Reliability; •Hardware
→ Transient errors and upsets;
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1 INTRODUCTION
Dynamic Random Access Memory (DRAM) errors are a common
source of failures in High-Performance Computing (HPC) clus-
ters [5, 7–9]. With exascale machines estimated to have up to
hundreds of petabytes of main memory, typically implemented
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as DRAM, this problem will only continue to grow. We therefore
need a thorough understanding of DRAM errors in HPC systems
to address the resilience challenges of future exascale systems.

While previous studies on DRAM errors in HPC systems exist,
most of this work has been focused on on-node (e.g., chip-level) [7,
9] and single-rack error characteristics (e.g., top/bottom of the
rack) [10]. However, no previous work has provided insights into
DRAM error characteristics with respect to the physical layout
of affected nodes and DRAM chips. Understanding such spatial
characteristics of DRAM errors is of great value to HPC centers
for room temperature management, job scheduling and allocation
policies, failure prediction, and overall system resilience.

In this paper, we present a study of the spatial and temporal
behavior of DRAM errors in a production cluster at the Lawrence
Livermore National Laboratory (LLNL). The goal of this study is
to provide insights into the spatial correlation of errors in DRAM
modules and nodes across the entire cluster and across individual
racks. In particular, we employ statistical and data analytics models
that help us answer the following research questions: (a) given
a node n that experienced a large number of DRAM errors in a
given period of time t , what is the probability that another neighbor
nodem, at distance d from n, will also experience a large number
of errors? and (b) can we identify spatial groups of nodes that
experience a high degree of errors versus groups of nodes that
do not experience such behavior? Our data comprises records of
correctable DRAM errors of a 1296-node cluster at LLNL (Cab),
which was gathered for period of 14 months (May/2013–July/2014).

In summary, our main contributions are:

• We develop a spatial analysis framework to visualize the
errors as seen in the physical layout of the cluster. We
show that several nodes, which report errors in the same
time-frame, or epoch, are spatially grouped together. This
phenomenon can be seen in several epochs.

• We introduced metrics for the number of neighboring er-
roneous nodes and the minimum distance from a neighbor
erroneous node. A statistical analysis of these metrics sug-
gests that error grouping is not due to a random occurrence,
but rather due to external factors. This also reveals inter-
esting insights into the probability of a node having errors
given prior error patterns in neighboring regions.

• We design a classification model to predict whether a node
will experience errors at any given point given prior his-
tory and build a model based on the above observations
to classify data samples as to whether they would report a
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Figure 1: Snapshot of memory errors recorded between 5/20/2013 and 6/19/2013 on the Cab cluster displayed on the physical
layout of the system. Nodes without errors are shown in white, while nodes with at least one error in the current epoch are
colored. The black regions are either non-compute nodes or switches for the IB interconnect. The central horizontal gray block
represents a hot aisle separating the two rows of racks.

new error on a node or not. This model is able to achieve
a high F1-score (a metric that combines recall and preci-
sion) on a highly-unbalanced dataset (only 650 out of 251k
samples report a new error).

2 TERMINOLOGY
We first introduce some definitions and notations used in the paper.

Correctable Error (CE). Errors on a DRAMDIMM (Dual In-line
Memory Module) in a node, which are caused by transient, hard, or
intermittent faults, but which can be corrected transparently using
techniques like ECC.

Uncorrectable Error (UE). Errors on a DRAMDIMM in a node,
which cannot be corrected by the memory system and typically
lead to application aborts or node crashes.

Epoch. A parameter of our study that defines a period of time
in which errors are analyzed. For all our analysis in this paper, an
epoch is taken to be one month.

Erroneous Node. A node on which at least one correctable
error was observed during the epoch being considered. Note that if
a node had errors in a previous epoch, it will not be considered an
erroneous node in the current epoch if it does not have reported
new errors. Also note that we do not make a distinction between
two nodes, one with a single error and one with many errors in
an epoch—both would be considered erroneous nodes. The reason
for this is that DRAM errors have the characteristic that they are

latent, i.e., they are not detected until the affected cell in the DIMM
is accessed. Because of this, many accesses of an affected cell may
generate a large number of errors in a short period of time. Since we
do not havememory access data for the nodes we cannot distinguish
an erroneous node with few errors from one with many errors.

Number of errors. The total number of correctable errors ob-
served on a node for the given epoch.

Timestamp. Record of the time at which a sample was collected.
Time since last reset. Uncorrectable errors are normally fol-

lowed by a kernel panic and the node is rebooted. When this occurs,
the error counters for the node are reset and error data between
the beginning of the epoch and the hard reset is lost. This metric
measures the time elapsed since the last time a reset occurred.

3 EXPERIMENTAL SETUP
We describe the experimental setup for this work and introduce
the notations used in the following sections.

3.1 Data Gathering
As mentioned earlier, we use DRAM error data collected from the
Cab cluster at LLNL over a period of 14 months from May 2013
to July 2014. Cab has a total of 1296 nodes connected with an
InfiniBand (IB) network and each node has two Intel 8-Core Xeon
E5-2670 processors. The physical layout can be seen in the Fig. 1.
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The cluster uses the TLCC operating system, which is a derivate of
RHEL, and has x4 DDR3 1600MHz memory running in S4ECD4ED.

EDAC (Error Detection and Correction).We used EDAC [1]
to collect error data on the cluster. EDAC consists of a set of Linux
kernel modules for handling hardware-related errors. It allows users
to read ECC memory error information and, additionally, it also
detects and reports PCI bus parity errors. EDAC errors are reported
as counters stored in the Linux /proc virtual filesystem. Although
EDAC has support for CEs and UEs, in this study we focus on CEs,
as the number of UEs in the cluster are too small to make statistical
inferences that are significant at a high confidence level.

EDAC offers the error data separated by memory controller
(mc) system. Each mc controls a set of DIMM memory modules,
which are laid out in a chip-select row (csrowX) and channel table
(chX). Memory controllers have several csrows; the actual number
is dependent on the physical configuration. The information is
exported for each of mcX and csrowX directories in the form of
separate files, which contain information on different attributes.
The ones relevant to our analysis are ue_count (total uncorrectable
errors on a csrow), ce_count (total correctable errors on a csrow),
mem_type (DRAM type), chX_ce_count (total correctable errors on
a DIMM on channel X ).

User-level Jobs. To gather error data for all the above attributes,
we submit user-level 256-node jobs periodically in the cluster (about
2 jobs per day). Note that since these jobs run at user level, they
may have varying priorities and may stay in the job queues for
some time before they get an allocation and execute. This affects
our sampling rate making it not fully regular. However, to minimize
this limitation, the duration of jobs is set to be very short, increasing
the chance that jobs of being picked quickly by the job scheduler
in comparison to long jobs.

It is worthwhile noting that the job scheduler does not give
preferences to nodes (or groups of nodes) in the cluster for regular
user-level jobs. As a result, the overall load of a node (expected
value over a long period of time) is considered to be uniform.

Data Samples. In our analysis, each data sample has the follow-
ing attributes that are relevant to our analysis: nodename, timestamp,
total_correctable_errors, and time_since_last_reset. We
gather approximately 251,000 data points for the cluster over the
data gathering period.

Physical Layout. We use the physical layout with the exact
dimensions of the cluster in our analysis. The inter-node distance
between every two nodes of the cluster was measured and this dis-
tance varied between 0.2 feet to > 10 feet. We used these distances
in our experiments.

3.2 Visualization and Exploratory Analysis
We develop a data analysis and visualization toolkit to understand
the state of the cluster over time, with respect to erroneous nodes,
with different granularity of epochs. It shows the cluster accord-
ing to the layout seen by looking at the cluster from the rear. A
sample snapshot of the collected error data between one epoch
of 5/20/2013 and 6/19/2013 can be seen in Figure 1. The tool is
developed in pyplot1 and it can be configured to accommodate
different configurations for cluster layouts and epoch granularity.

1http://matplotlib.org/api/pyplot/api.html

After experimenting with different epoch time scales, we observed
the following significant behaviors.

Spatial Node Grouping. By studying the erroneous nodes in
our toolkit, we found that several of such nodes group together in
many epochs. This phenomenon is shown visually in Figure 2: in
epochs 0, 1 and 10 errors are clearly grouped (marked in light green).
Although we have not found yet the reason for this phenomenon,
we speculate that this could be due to external factors, such as
irregularities in the room temperature inwhich the cluster is located
or irregular workload distributions. Note that the DIMMs in this
cluster are overall from the same vendor, so irregularities coming
from vendor differences are unlikely.

Season-of-the-year Correlations. Further, we found a corre-
lation of the degree of errors and the season of the year. While in
some epochs, errors appear to be randomly distributed across the
physical space, we observe that during the months of May–Aug
in 2013 and Feb–Mar of 2014 the highest number of errors were
observed. In contrast, the winter months of 9/13–1/14 relatively
fewer errors were observed. The rise in number of erroneous nodes
in February could be attributed to the rise in temperatures in the
Livermore area, however, in absence of actual temperature data
of the cluster room, this assumption could not be confirmed (see
Table 1). For future work, we plan to perform time-based corre-
lation between errors and other factors, such as temperature to
possibly explain this behavior—although previous work has found
no correlation between uncorrectable errors and temperature [4],
these studies have not considered spatial relationships.

Random versus Non-random Grouping. We observe that
with more erroneous nodes in an epoch, the grouping seems to
increase, i.e., we tend to see more groups of erroneous nodes. This
is intuitive, since, as more samples are added to the analysis, more
of these samples will tend to be close to each other. In the next
section, we use rigorous statistical analysis to reject the hypothesis
that spatial grouping occurs by chance (or randomly).

4 EXPERIMENTS
We conduct a set of experiments to show that the erroneous_nodes
do herd (or group) together to some extent by studying different
metrics and statistically reject the hypothesis that these are due
to random occurrence. Finally, we build a classification model to
predict if a node would have a new error observed at the current
time instance given previous observed history. We elaborate on
these experiments in this section.

4.1 Neighbor Analysis
In this experiment, we are interested in understanding if erroneous_-
nodes do herd together in groups in an epoch. This analysis can
help us to understand the spatial correlation in the error data for
each epoch, which can be very useful in identifying regions which
are error prone during a certain period.

Because herding could occur due to more and more erroneous
nodes being sampled, our goal is to accept or reject this hypothesis.
More formally, as a null hypothesis, we assume that the observed
distribution of errors is due to random sampling (which means that
there are no actual spatial groups in the data); the alternative hy-
pothesis is assumed to be the opposite. Then, we perform statistical
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Figure 2: Snapshot of several epochs. Although we can observe herds of erroneous nodes appearing in several epochs, this
could be due a random phenomenon unless rejected by a statistical test

Distribution of erroneous_nodes across epochs
Epoch 20May 19Jun 19Jul 18Aug 17Sep 17Oct 16Nov 16Dec 15Jan 14Feb 16Mar 15Apr 15May
EN 132 28 32 23 18 22 23 12 12 52 45 20 23
AMT (C°) 26 27 31 31 32 23 18 13 13 16 18 18 22

Table 1: Epochs are represented here only by start date. Epoch size is onemonth. EN is number of erroneous nodes in an epoch.
AMT is the Average Maximum Temperature in the particular month observed in Livermore, CA [2]

testing to verify that the null hypothesis can be rejected in favor of
the alternative hypothesis.

For each epoch, we do the following:

(1) Define a neighborhood of M × N sq. units where 1 unit
= 0.2 feet, which is the minimum distance between two
nodes as calculated from the physical layout. Here, we use
M = 4,N = 2.

(2) Determine the number of erroneous_nodes in the neigh-
borhood for each node.

(3) Generate a frequency distribution of num_of_nodes versus
erroneous_neighbors.

(4) Generate a random sampling of erroneous_nodes for the
epoch using the same error rate of the epoch and generate
the expected frequency distribution (as above).

(5) Perform a chi-squared test to test the null hypothesis, using
a significance level of 5%. Chi-squared tests are used to
determine whether there is a significant difference between
the expected frequencies and the observed frequencies in
one or more categories—here, the categories are observed
data and randomly-generated data of erroneous nodes.

A histogram plot for some of the epochs are show in Figure 3.
In plot (a), we can see that there is significant difference in the
histograms for the observed and randomdistributionswith the same

error rate. Specifically, we see that there are several nodes which
have 5, 6, or 7 erroneous_neighbors whereas these numbers are
significantly smaller for a random sampling. A similar yet less
profound difference is seen in plot (d). However, we observe that in
other plots this difference cannot be easily seen.

We perform chi-squared tests only for epochs that have 25 or
more erroneous_nodes to make sure we have enough data samples
for each test. In 5 out of 7 epochs, the p-value was less than 0.05,
which allow us to reject the null hypothesis in these 5 cases. This
shows that inmost of the cases, the spatial grouping of erroneous_-
nodes is not due to random occurrence and rather it is an effect of
other physical or operating factors.

4.2 Nearest Distance Error Node
In this experiment, we want to analyze how close erroneous_-
nodes are with respect to each other when they occur in the same
epoch. For each epoch, we calculate the distance of the nearest
erroneous_neighbor for each erroneous_node. We then plot a
cumulative distribution function as shown in Figure 4. We show
the epochs with at least 25 erroneous_nodes. In all such epochs,
at least 35% of erroneous_nodes have at least one erroneous_-
neighbor within 0.8 feet. Epoch 0 (May/13–Jun/13) has greater
than 70% of such nodes. The corresponding distributions for ran-
dom sampling (dotted lines) show much smaller percentages for
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Figure 3: Distribution of number of neighboring erroneous nodes for the nodes in Cab for selected epochs. The expected
distribution is generated after generating erroneous nodes randomly across the physical layout (total nodes in Cab are 1296).

distances smaller than 1 feet. This is also intuitive as a random
sampling would create samples that are relatively close but not
very close to each other.

Like the last experiment, chi-squared tests were performed for
each of the above epochs and the null hypothesis was rejected with
a p-value of < 0.05 for all epochs. This shows that the distance
between erroneous_nodes in an epoch is not very high and it is
not by chance in majority of the cases.

4.3 Classifying Data Samples Experiment
Being able to predict future erroneous nodes would be of great value
for job allocation, job migration, and overall system management2.
In this experiment, we are interested in building a classification
model that can predict if a node will be erroneous at a given times-
tamp t , given the history of the state of its neighborhood, for time
[t − 1, t − 2, . . . , t − n].

4.3.1 Dataset. We consider data samples that have at least one
new error reported for the given node from the last count of errors.
For example, if a node had 35 errors till time t , and at t + 1 a sample
reports the node has 35 errors (the same number), this sample is
labeled as not erroneous. In contrast, if the node has 55, the sample
is labeled as erroneous since 20 new errors were reported.

Not surprisingly, only 640 of such data samples are marked as
reporting new errors. Note that the features we use in the model
(described below) depend only on the history and not on the current
sample so we could effectively predict the state of a node at any
time given its recorded history.

2Prediction of UEs has more impact than prediction of CEs; however, the techniques
presented here using CEs can also be applied to UEs.

4.3.2 Features. From our observations in previous sections, we
define six features which would help us build a robust prediction
model: (1) Prev_error_count (number of samples in which a new
error was reported for this node in the past history); (2) Neighbor_-
error_count (number of neighbors that had at least one error in
the past history); (3) Total_error_count (total number of times a
new error was reported for this node since start of data collection);
(4) Max_error_value (maximum number of errors accumulated
for this node in the past history); (5) Prev_error_value (number
of new errors reported in the last sample); (6) Week_of_year (the
week number of the year corresponding to the current timestamp).

4.3.3 Results. Because our data is highly imbalanced, we trained
our model using ensemble learning techniques (Random Forest and
Adaboost algorithm). We selected the top k features using ANOVA
and performed a 3-fold cross-validation.

To measure the quality of the predictor, we used the F1-Score,
a metric that weights together classification precision and recall;
F1-Score reaches its best value at 1 and worst at 0. Our model
achieved a F1-Score of 0.63 for the minority class (samples which
report error; see Figure 5). For the majority class, the F1-Score is
always very close to one, hence discussion omitted for brevity. The
most important feature was Prev_error_count which is intuitive
since nodes which had errors in the past would be more likely have
errors in the current time [5, 7]. These results are encouraging and
show that the spatial location of erroneous nodes can be predicted
with a moderate degree of recall and precision, which may help in
building proactive resilience techniques.
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Figure 4: CDF plots for fraction of nodes having a erroneous_neighbor within a given distance. The bold line represent the
observed data for particular epochs whereas the dotted lines represent the randomly sampled data for the same epoch.
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Figure 5: Precision-Recall curve for the 3 folds of cross-
validation for the classification task. The values shown are
only for the error class (minority). For themajority class pre-
cision and recall are always very close to 1.

5 RELATEDWORK
DRAM errors at large scale in HPC and data center clusters have
been studied previously from various perspectives. Schroeder et
al. [7] present a study of DRAM errors from samples of Google’s
servers. Detailed studies of the characteristics of DRAM errors in
HPC clusters have been presented in [3, 6, 9, 10]. The study pre-
sented in [8] shows that counting errors instead of faults can have
a high impact when measuring system reliability. Characteristics of
DRAM locations with respect to bottom, middle and top positions
in a rack are shown in [10]. Spatial correlations of other system
failures are presented in [5].

6 SUMMARY AND FUTUREWORK
In this experience paper, we show insights into the spatial corre-
lation of DRAM errors in HPC clusters at a fine granularity and
show that this phenomenon is not due to random occurrence. In
particular, we show that nodes that experience a high degree of

correctable errors can be spatially correlated in certain racks of the
cluster. This can help to provide information of possible factors
that could cause this spatial grouping, such as non-uniform tem-
peratures inside the cluster room, or non-uniform workloads. We
also show that, using machine learning, erroneous nodes can be
predicted with moderate recall and precision, which can help in
proactive resilience techniques. As future work, we will correlate
spatial groups and epochs with temperature data, workload data,
and to perform the same spatial analysis on other clusters.
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