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Abstract

This article explores a method for more accurately estimating the main effect of the system in a 

typical test-collection-based evaluation of information retrieval systems, thus increasing the 

sensitivity of system comparisons. Randomly partitioning the test document collection allows for 

multiple tests of a given system and topic (replicates). Bootstrap ANOVA can use these replicates 

to extract system-topic interactions—something not possible without replicates—yielding a more 

precise value for the system effect and a narrower confidence interval around that value. 

Experiments using multiple TREC collections demonstrate that removing the topic-system 

interactions substantially reduces the confidence intervals around the system effect as well as 

increases the number of significant pairwise differences found. Further, the method is robust 

against small changes in the number of partitions used, against variability in the documents that 

constitute the partitions, and the measure of effectiveness used to quantify system effectiveness.
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1 INTRODUCTION

Test collections are an important tool in the development of effective information retrieval 

systems [26, 32]. Test collections consist of a set of documents, a set of information-need 

statements called topics, and relevance judgments that say which documents should be 

retrieved for which topics. A retrieval system creates a run containing a ranked list of 

documents for each topic, such that each list is sorted by decreasing likelihood that the 

document should be retrieved for that topic. An evaluation measure is computed for each 

topic based on the ranks at which the relevant documents appear. The overall score for the 

run is calculated as the mean of the individual topic scores. Retrieval system A is considered 
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to be better than system B if the mean score for the run produced by A is sufficiently better 

than the mean score for run B, where “sufficiently” is frequently determined by a statistical 

hypothesis test.

This basic experimental framework was introduced by Cleverdon and his colleagues in the 

Cranfield experiments [12], and the retrieval literature is full of debates on how best to apply 

it: which measures [7, 8, 16, 19, 20], which statistical tests [15, 28–30], and how best to 

build good test collections [25, 31, 34].1 Other work has looked at the statistical validity of 

the framework. Savoy proposed using medians, rather than means, as the summary statistic 

because of the nature of information retrieval data [29]. Cormack and Lynam argued that no 

summary statistic is suitable, since each individual topic is essentially its own experiment 

[13]; they suggest that instead individual topic results should be combined using techniques 

drawn from meta-analysis. Carterette warns against the common practice of not correcting 

for multiple comparisons when performing tests as well as shows that any difference in 

mean scores can appear significant with an arbitrarily large confidence level by using 

sufficient numbers of topics [11]. More recently, he proposed replacing generic statistical 

hypothesis tests with an information-retrieval-specific method based on tests that directly 

model relevance (as opposed to indirectly modeling relevance through effectiveness 

measures) [9]. In light of these problems with statistical hypothesis tests, Sakai challenged 

the retrieval research community to focus instead on effect sizes and confidence intervals 

[23].

The goal of the test collection methodology is to be able to make reliable conclusions 

regarding the role the differences in retrieval systems have on the difference in retrieval 

evaluation scores, that is, to measure the system effect. The difficulty is that evaluation 

scores vary for more reasons than simply the differences in retrieval systems. Banks and 

colleagues showed that in addition to the system effect, the topic effect (i.e., which particular 

topics the test collection happens to contain) as well as the interaction between the system 

and topic effects (i.e., different systems find different topics relatively harder or easier) were 

not only significant but were often larger than the system effect [3]. They also noted that the 

primary limitation in exploiting the interaction effect to improve system comparisons is the 

lack of replicate measurements of system performance for each topic—a given system is run 

only once per topic on a given document collection.

Since then there have been efforts to accommodate topic variability to improve test-

collection-based retrieval evaluation. One approach is to use standardized scores, a technique 

that normalizes a run’s score for each topic by the mean score obtained for that topic over a 

set of runs, which has the desired result of reducing the effect of topic variability in system 

comparisons [24, 33]. Carterette and colleagues used a mixed-effect model to account for 

variance due to both the topic sample and an effect they called the user effect, which 

represents differences in how patient different users are with respect to finding relevant 

documents [10]. Bailey and colleagues characterize a similar sort of user effect to make 

recommendations regarding test collection design [2] but do not incorporate that variance 

within significance testing. In work that is most similar to this article, Robertson and 

1The given references are representative but by no means exhaustive.
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Kanoulas produced multiple simulated measurements per run-topic combination and used 

the replicate measurements in a mixed-effects model to test for statistically significant 

differences between system pairs [22]. Under the assumption that a test collection contains 

both a sample of topics from a larger universe of topics and a sample of documents from a 

larger universe of documents, they separately modeled the distribution of relevant documents 

and the distribution of nonrelevant documents contained within a ranked list for each topic 

and run using a probability distribution. Once the system-topic behavior was modeled, they 

sampled from that probability distribution to get the desired replicate measurements; these 

simulated measurements represent scores that might have been observed from that system 

had the document sample within the test collection been different. They used the replicate 

measures to implement different types of significance tests: using a standard t-test on the 

mean of the replicate measures, and deriving p-values for the likelihood that the runs were 

different from either a heteroscedastic or a homoscedastic mixed-effects model. They 

concluded that the power of all the tests was comparable in that each test found roughly the 

same number of significantly different run pairs, though the particular pairs found to differ 

changed somewhat for the different tests.

The work reported on in this article has the same goal as the Robertson and Kanoulas work, 

namely to use replicate measurements to model system-topic interactions and thus increase 

the sensitivity of system comparisons, but uses a different approach to accomplish that goal. 

We obtain replicate measurements by randomly partitioning the actual document set and 

measuring system performance on each partition. We use the replicate measurements to 

build a bootstrapped analysis of variance (ANOVA) model to estimate system, topic, and 

interaction effects; use the model to build false discovery rate (FDR) corrected confidence 

intervals on the estimated system effects; and finally, we use the confidence intervals to 

determine statistical significance of run differences. The next section shows that this 

procedure produces confidence intervals on system effect that are substantially tighter than 

confidence intervals that do not incorporate system-topic interactions. Section 3 describes 

the methodology used to find statistically different system pairs and shows that the 

procedure finds more significantly different pairs than do other current tests. In Section 4, 

we apply the procedure to different test collections as well as vary the number of replicates 

on which it is based to test the procedure’s robustness. These experiments show that the 

procedure is insensitive to small changes in the number of replicates and that the reduction 

in error estimates holds for collections of varying size, different document genres, and a 

variety of evaluation measures. Since the methodology incorporates a bootstrap model, it has 

a stochastic component. We investigate the effect of different starting configurations in 

Section 5 and show that different initial partitions can, in fact, lead to different decisions (to 

reject or not to reject the null hypothesis) for a given run pair. This suggests that the 

partitioning process itself should be repeated several times with a final decision based on an 

aggregation of the different partitionings’ decisions. The most conservative aggregation 

policy of rejecting the null hypothesis only if the hypothesis would be rejected using each of 

the initial configurations still finds more statistically different run pairs than current tests. 

Finally, preliminary experiments described in Section 6 suggest the methodology can be 

used with just a few related runs, such as the set of runs an individual research team would 

produce.
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2 METHODOLOGY USING REPLICATES

The goal of test-collection-based comparative evaluation is to distinguish more effective 

systems from less effective systems. Isolating the system effect from other sources of 

variation allows finer distinctions between systems to be drawn, but doing so requires a 

means by which the system, topic, and system-topic interaction effects can be estimated.

Consider the example in Figure 1 where the average precision (AP) scores for three systems 

are shown for three topics, and assume we will compare system effectiveness using analysis 

of variance (ANOVA) [11]. A one-way ANOVA model for just the system effect is

yi j = μ + si + εi j, (1)

where yij is the AP score, μ is the overall mean, si, i = 1,…, 3 is the system effect variable, j 
= 1,…,3 is the index for topic, and εij ~  (0,σ ) are errors (assumed to be normally 

distributed). A pairwise-comparison between systems using the output from this model will 

be dominated by the variability in AP scores resulting from the dip in performance across 

systems on topic 3. Using both system and topic effects (denoted by tj) gives a two-way 

ANOVA model of the form

yi j = μ + si + t j + εi j . (2)

Including the topic effect allows the model to capture the dip in performance, resulting in a 

better estimate of the model error and thereby affording more reliable inference in 

comparing system performance. (Traditional IR evaluation methodology uses paired tests of 

significance as a means of capturing the topic effect.)

To see why the inclusion of the topic effect results in a more reliable model, it is helpful to 

look at the decomposition of the different sources of variability and how they impact the 

estimates of the model standard error. Let SSM (E) denote the sum-of-squares error (SSE) 

for model M ∈ {A,B}, where A is the one-way model of Equation (1) and B is the two-way 

model of Equation (2), and let SS( ) be the sum-of-squares for the th source,  ∈ 
{Total,System,Topic} = {TOT,S,T }. The model standard error is defined as 

σM = SSM(E)/d f M, where dfM is the appropriate error degrees of freedom for model M. For 

a fully balanced design—which we assume throughout the article—SSA (E) = SS(TOT) – 

SS(S ) and SSB (E) = SS(TOT) – SS(S ) – SS(T ). Since SS(TOT) and SS(S ) are the same 

for both model A and B and SS(T) is non-negative, SSB (E) can be no larger than SSA (E) 

and will be smaller to the extent that the topic predicts the score.

Banks and colleagues showed that the system-topic interaction effect is another significant 

source of variability in search results [3]. An example of such an interaction is shown in 

Figure 1 for system C on topic 2. While system C generally performs worse than both 

systems A and B, the relative performance of C on topic 2 suggests it might have particular 
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issues with that topic. We could thus reduce the SSE even further if we incorporate a system-

topic interaction term into the model, but to be able to estimate a model of the interaction 

effect, we need replicate measurements.2 This section describes our technique for first 

obtaining the necessary replicate measurements and then using them to estimate system, 

topic, and system-topic interaction effects.

2.1 Random Partitioning

Our approach to obtain the required replicate measurements is to split an existing test 

collection into partitions and to evaluate partitioned runs on each of the document set 

partitions. This partitioning results in multiple scores per topic-run combination of the 

original collection.

More concretely, the document set is split into np partitions by considering each document in 

the collection in turn and rolling a np-sided die to determine the partition to which that 

document belongs. The document set partitions then induce partitions on the relevance 

judgments (called qrels in the rest of the article) and runs by restricting the original qrels/run 

to just the documents in the given document partition. That is, the run partition for document 

partition D is just the original run minus all documents not in D. The retrieval system that 

produced the original run is not re-run on the individual partitions.

Each run partition is evaluated using the corresponding qrels partition, with one score per 

topic being produced for each partition. With np partitions, we obtain np scores for each of 

the topics for each original run.

The critical assumption here is that per-topic scores computed from partitions are 

representative of a run’s per-topic scores in the original collection. For random assignment 

of documents to partitions and small np, this is likely to be true: the smaller the number of 

partitions, the more similar each document partition is likely to be to the original. The use of 

partitioned runs also has empirical support from the work by Sanderson and colleagues in 

their investigation of subcollections [27]. They compared AP scores computed from 

partitioned runs (i.e., no re-running) to the AP scores computed from running the 

corresponding retrieval system on just the subcollection for nine different retrieval system 

configurations using the TREC-8 ad hoc collection. They found the AP scores matched very 

closely, achieving a Pearson correlation of 0.995.

An additional consideration is the split of the relevant documents among the partitions. As 

we noted above, we are assuming a fully balanced design, so we must have the same number 

of scores per partition. Many IR measures are undefined when a topic has no relevant 

documents, and there is no good choice to use as a “default” value.3 To maintain a balanced 

design and avoid the issues surrounding undefined values, we enforce that all topics have 

relevant documents in all partitions in this work.

2There are methods such as Tukey’s and Mandel’s methods that do not require replicates that can indicate whether interaction effects 
exist, but these methods cannot capture the effects themselves without replicates.
3The lack of a good choice is not specific to our work here but true for IR evaluation in general. The usual suggestion is one of the 
extreme values the measure can take on, generally 0 or 1, but these values then dominate the means and thus put the evaluation 
emphasis on the topics for which there is no real data.
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Robertson showed that the number of relevant documents is a primary factor in the statistical 

precision of a retrieval measurement [21], so having roughly the same number of relevant 

documents in each partition might increase the fidelity of the partitioned scores to the full-

collection scores. One way of accomplishing an even split is round-robin assignment of 

relevant documents to partitions followed by random assignment of non-relevant documents. 

However, such a scheme invalidates the claim of random assignment of documents to 

partitions. Requiring that each partition has at least one relevant document for each topic 

also means that not all partitions of the original document set are equally likely, but it affects 

many fewer partitionings than round-robin assignment and should have little effect in 

practice. In the case that a particular generated partitioning contains a partition with no 

relevant documents for some topic, we do not use that partitioning and simply generate an 

entirely new partitioning.

2.2 Bootstrap ANOVA

The partitioning process is the means we use to get replicate scores for all topic-run 

combinations in the original data set. With replicate scores, we can learn a model that 

includes terms for the system effect, the topic effect, and the system-topic interaction effect:

yijk = μ + si + t j + (st)i j + εijk, (3)

where μ denotes the “grand” mean, si the system effect, tj the topic effect, and (st)ij the 

system-topic interaction effect. Correspondingly, i = 1,…,ns, j = 1,…,nt, and k = 1,…,np 

denote the indices for system, topic, and partition (i.e., replicates), respectively.

Since each run contains results for all topics (and we have relevant documents in each 

partition), we have a fully balanced design. Therefore, the solution to each of the parameters 

in the model has a closed form solution when using a least-squares framework [17]. Let

y… = 1
nsntnp

∑
ijk

yijk,

yi.. = 1
ntnp

∑
jk

yijk,

y . jk = 1
ns

∑
i

yijk,

where ·̄ denotes a mean and the “dots” in the subscript correspond to indices over which we 

are taking the mean, for example, ȳ1.. indicates the mean of system 1 across all topics and 

partitions. Similar notation is used for other combinations of the subscripts i, j, and k. Then 

our parameter estimates can be expressed as
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μ = y…,
s i = yi.. − y…,
t j = y . j . − y…,
(st)i j = yi j . − yi.. − y . j . + y…,

(4)

and the predictions are

yijk = μ + s i + t j + (st)i j .

where ·̂ denote the corresponding parameter estimates.

To determine parameter significance, we use a bootstrap-based model described below [14]. 

Our motivation for not using a standard ANOVA-based approach for inference (i.e., for not 

using t and F tests to determine parameter and model significance) is to minimize the 

assumptions we impose on the distribution of the data. This is partially motivated by the fact 

that our responses fall between 0 and 1 (for all of the evaluation measures we consider), and 

assuming normal or near-normal behavior is not appropriate.4

Our bootstrap model uses the residuals generated from a least-squares fitting of the data as 

the basis for the sampling scheme. Fixing the predictions ŷijk, we perform N = ns × nt × np 

random draws (with replacement) of rijk
(m) ∈ {rijk}

i, j, k = 1
ns, nt, np  from the residuals of the initial 

ANOVA model fit where m = 1,…,M is the mth of M total random samplings (this is 

agnostic to topic/system). Our bootstrap sample is generated as yijk
(m) = yijk + rijk

(m), for i = 1,

…,ns, j = 1,…,nt, and p = 1, …, np. For each of the M draws, these yijk
(m)’s are used to 

compute the parameters’ estimates. In other words, each bootstrap sample randomly assigns 

the residuals of the initial ANOVA model fit across the run-topic combinations and 

computes a new set of estimates of the model parameters using those values. The bootstrap 

samples from only the residuals in each iteration.

The result of the bootstrap process is a set of M different estimates of the model parameters. 

These estimates in turn provide an estimated probability density function of the mean value 

of a parameter. In particular, we have M different estimates of the system effect and thus an 

estimated probability density function for the mean system effect for each run. With a 

probability density function, we can build a confidence interval for the value of the system 

effect (details of how we build the intervals are given in the next section). Figure 2 shows 

95% confidence intervals of system effect computed using models with and without system-

topic interaction effects for the TREC-3 ad hoc task data set used by Banks and colleagues. 

The test collection consists of about 750,000 mostly newswire documents and 50 topics, and 

4QQ-plots of the residuals using a standard ANOVA approach showed “heavy-tailed” behavior indicative of non-normality. Basing 
inferences on an assumption of underlying normality could yield unreliable results. We found similar behavior in the residuals using 
various other transformations on the response as well other other model parameterizations (e.g., beta regression).

VOORHEES et al. Page 7

ACM Trans Inf Syst. Author manuscript; available in PMC 2018 June 12.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



the relevance judgments were constructed from the 40 runs submitted to the task. System 

effect for each TREC-3 run evaluated using AP is plotted in the top of the figure and 

evaluated using P10 is plotted in the bottom of the figure. Confidence intervals computed 

using the model without system-topic interactions (i.e., the model of Equation (2)) are 

plotted in black. Intervals computed using the model with interactions (Equation (3)) are 

plotted in red. In each case the model parameters were estimated using M = 10,000 bootstrap 

iterations and np = 3 document set partitions. The range of estimates of ŝi computed by the 

model without interactions is clearly larger than the range of estimates computed by the 

model with interactions, since the red intervals are strictly contained within the black 

intervals for all runs and both measures. As discussed above, this is because the model 

without the interaction effect has more unexplained variability so its residual error terms are 

larger. Defining the length of a confidence interval to be upperBound–lowerBound, the 

mean, shortest, and longest confidence interval lengths over the 40 TREC-3 runs are given in 

Table 1.

The fact that incorporating the system-topic interactions substantially reduces the size of the 

confidence interval of the system effect re-confirms the significance of the system-topic 

interaction effect for search results. AP-based confidence intervals are smaller than P10-

based intervals, because AP is an inherently more stable (less variable) measure than P10 

[6]. Tighter bounds on estimates of the system effect means that comparisons between 

systems are more sensitive.

3 DISTINGUISHING AMONG SYSTEMS

Our motivation for obtaining more precise estimates of the system effect in IR experiments 

is to improve our ability to distinguish more effective systems from less effective systems. In 

this section, we describe how to infer the likelihood that systems are different.

3.1 Computing p-values

A result of the bootstrap process is an estimated probability density function of the mean 

score for each run. A p-value for a run pair is the probability of the observed difference in 

scores, or one more extreme, when assuming that the two systems are actually equally 

effective. These p-values can be computed directly from the estimated probability density 

functions as shown in Figure 3.

However, because we are comparing many runs at once, we need to appropriately adjust the 

p-values for multiple comparisons when using them for the purpose of inference. There are a 

variety of options for performing such corrections; both References [5] and [11], for 

example, discuss the problem in the context of information retrieval. We focus on procedures 

that control for false discovery rate (FDR), as opposed to family-wise error rate (FWER). 

The primary difference between the two approaches is that FWER tries to reduce the 

probability that even one false discovery is made while FDR controls the proportion of 

expected false discoveries. FWER-based procedures tend to be highly under-powered, 

especially when a large number of hypotheses are being tested. FDR-based procedures tend 

to have greater power to detect differences at the cost of increased false positives. Since we 
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are dealing with N =
ns
2

 tests, where the number of runs in a typical TREC data set (ns) is at 

least several dozen, an FDR-based approach is a good fit.

The particular FDR correction we use is the Benjamini-Hochberg (BH) correction [4]. The 

input to the correction procedure is the set of N (the number of system pairs) p-values 

computed directly from the estimated probability density functions and sorted from smallest 

to largest: p(1) ≤ p(2) ≤ … ≤ p(N). Let α be the target level of significance, that is, the 

probability of concluding that two systems are different when, in fact, they are not, and k be 

an index over the sorted uncorrected p-values, k = 1 …N. We first find the largest k for 

which p(k) ≤ k
N α. The corrected p-values are obtained by normalizing each original value by 

k
N , that is, by multiplying the original value by N

k . Note that N
k ≥ 1 by construction, so the 

corrected p-values are no smaller than the original values and will generally be larger. Using 

the corrected p-values makes it more difficult to reject the null hypothesis of equality than 

using the original values.

The value of k is also used to create adjusted confidence intervals for a mean. For a (1-α)% 

confidence interval, we discard the α k
2N  smallest and the α k

2N  largest of the M estimates and 

use the minimum and maximum values of the remainder as the upper and lower bounds of 

the confidence interval. In practice, since we are primarily interested in whether one system 

outperforms another, we pre-sort the runs by mean score. For example, assuming AP as the 

evaluation measure, we order the scores such that MAP(1) ≥ MAP(2) ≥ ··· ≥ MAP(ns). Then, 

letting Hl
(i) denote the test,

MAP(i) = MAP(l) vs. MAP(i) > MAP(l),

for l ∈ {i +1,…,ns} our adjusted p-values are then derived for each i = 1,…,ns.

3.2 Significantly Different TREC-3 Runs

In this subsection, we compare the sets of run pairs inferred to be significantly different from 

one another by three methods: a paired t-test, a partial randomization test [18], and the p-

values that result from the with-interactions model created using the partition method. In 

each case, we use α = 0.05 as the significance threshold. The t-test and partial 

randomization methods are included as representative of current practice in IR research [30] 

(and are used without using any correction for multiple comparisons).

Table 2 gives the count of the number of significantly different run pairs found by each 

significance test over all run pairs using both AP and P10 scores. Since there are 40 runs, 

there are a total 780 run pairs; a percentage given in the table is the percentage of all run 

pairs found to be different.

Figure 4 shows the same data in more detail. Within each graph, each item on both axes is a 

run and runs are sorted by decreasing raw mean score as computed on the original test 

VOORHEES et al. Page 9

ACM Trans Inf Syst. Author manuscript; available in PMC 2018 June 12.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



collection. A point plotted at {x,y} summarizes the statistical significance decisions reached 

by the different tests: the set of tests that rejected the null hypothesis in favor of the alternate 

hypothesis that run x is better than run y, or the fact that no test rejected the null. The 

diagonal represents comparing a system to itself. A point plotted below the diagonal means 

that the significance test found a run pair to be significantly different from one another such 

that the better run is the run with the smaller mean score as computed on the original 

collection. The graph at the top in Figure 4 reports results when using AP as the evaluation 

measure and the graph at the bottom when using P10.

All three tests agree regarding the distinguishability of the majority of the run pairs. The t-
test can distinguish many fewer run pairs than the other two tests, while the partition method 

distinguishes somewhat more pairs than the partial randomization test. The set of pairs 

distinguished by the partial randomization test is not a strict subset of the set of pairs 

distinguished by the partition method, however—there are a few pairs distinguished only by 

the partial randomization test. In general, the partition method cannot distinguish runs when 

the difference between the runs is small relative to the size of the residuals across the entire 

run set.

Note that there are a few points plotted below the diagonal for P10 in Figure 4, showing that 

the partition method found significance but in the opposite direction as the original mean 

would suggest. The average P10 score computed on the original collection is a single data 

point, and its value is dominated by the high-performing topics. The estimates computed by 

the partition method are smoothed by the replicates and are thus more likely to be reliable. 

In no case (either for TREC-3 or for any of the additional collections and conditions 

described below) have we observed a conflict in which two different tests of significance 

each rejected the null hypothesis but preferred different runs in the pair.

4 ROBUSTNESS

To test the robustness of the partition method, we compute confidence intervals and derive p-

values for different TREC datasets and by partitioning the document sets into different 

numbers of partitions. In each case, we use 10,000 bootstrap iterations.

We use three TREC datasets: the TREC-3 ad hoc task runs described above, the TREC-8 ad 

hoc task runs, and the runs submitted to (the ad hoc task of) the Terabyte track in 2006. Each 

of the test collections built from the runs has 50 topics. The TREC-8 document set is similar 

to the TREC-3 document set (about 500,000 mostly newswire documents), but there are 

many more TREC-8 runs—129 versus 40—and there are several high-quality manual runs 

among the TREC-8 runs. Also as with the TREC-3 dataset, the TREC-8 qrels were built 

using pooling to depth 100. The combination of many and highly effective runs plus deep 

pools means the TREC-8 test collection is a high-quality collection that has been extensively 

studied, and we use it here for precisely this reason.

The dataset from the 2006 Terabyte track is starkly different, and we use it because it is so 

different from the other two. The document set in the 2006 Terabyte collection is the 

“GOV2” document set containing roughly 25 million web documents. Qrels were not 
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created by pooling because of the document set size; instead, the 80 runs were sampled such 

that extended inferred measures [35] could be computed. This sampling process is a 

stratified sampling method where the strata are document rank ranges. The qrels that results 

from the sampling process records a document’s stratum, defined to be the stratum 

containing the best rank that document was retrieved at across the run set, for each document 

in the collection. The computation of the extended inferred measures uses the qrels to count 

the number of documents in a given stratum and uses those counts in its estimates of the 

measures’ values. Here, we need to compute infAP on partitioned runs using partitioned 

qrels. We do so by using the stratum assigned to the document in the original collection. 

While a partitioned run will likely have a different absolute rank for a document than does 

the original run, since documents not in the current partition are removed from the 

partitioned run, the strata still correctly reflect the relative positioning of documents and the 

relative sizes of the strata remain approximately the same.

The number of partitions a test collection is divided into is the primary parameter of the 

partition method, since the number of replicate scores per topic and run is equal to the 

number of partitions. We used three partitions in the initial experiments simply as a 

convenient starting place. In addition to varying the dataset, we also examine the effect of 

using two, three, or five partitions per dataset.

As mentioned earlier, one consideration in selecting the number of partitions is that we 

assume a fully balanced design in our model so we need to ensure that all topics have 

relevant documents in each partition. The first random split into two and three partitions had 

relevant documents in all partitions for all topics for all datasets. For five partitions, however, 

both the TREC-3 and TREC-8 datasets had 49 of the 50 topics with relevant documents in 

all five partitions, so we used just 49 topics for the five-partition split. The Terabyte dataset 

lost approximately five topics in five-partition splits. Since (as discussed below) smaller 

number of partitions are both more convenient in practice and appear to be more effective, 

we did not use a five-partition split for the Terabyte dataset.

Table 3 gives the lengths of 95% confidence intervals on the system effect for all 

combinations for models without system-topic interactions (top row of a cell) and with 

interactions (bottom row of a cell). The TREC-3, three-partition data is repeated from Table 

1 for convenience. Consistent with the TREC-3 findings, the confidence intervals computed 

from the with-interactions model are much smaller than those computed from the without-

interaction model in all cases, demonstrating that the system-topic effect is highly 

significant.

With-interactions intervals are roughly the same length across changes in number of 

partitions. For AP and infAP, slightly smaller intervals are produced with smaller numbers 

of partitions. Five-partition splits produce slightly smaller intervals for P10, though that may 

be an artifact of using only 49 topics in the five-partition case (the one topic dropped has the 

smallest number of relevant in the original collection and thus P10 for that topic is highly 

variable). While it may seem counterintuitive that smaller numbers of replicates would lead 

to smaller confidence intervals, the confidence interval size is a function of the total 

variability in the data. A larger number of partitions results in individual partitions that are 
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overall more unlike each other as retrieval test collections than a smaller number of 

partitions because of the confounding effects of the distribution of relevant and similar-but-

not-relevant documents across the partitions. Since an evaluation methodology that requires 

splitting a collection into a small number of partitions—especially just two—is much easier 

to use in practice than one that requires creating many partitions (which requires ensuring 

the partition supports the balanced design requirement and creating and tracking more pieces 

per run), it is fortuitous that smaller numbers of partitions are also more effective. The 

remainder of our experiments are run using only two or three partitions.

Table 4 gives the number and percentage of run pairs found to be significantly different with 

α = 0.05 or α = 0.01 for four tests: the t-test, the partial randomization test, the partition 

method with three partitions, and the partition method with two partitions. (The final line of 

the table reports counts for the multiple partition method discussed in Section 5.) The t-test 

consistently finds many fewer run pairs significantly different than the other tests. The 

partial randomization test finds fewer significant differences than the two partition methods. 

The partition methods are similar, with the two-partition case finding slightly more 

significant differences than the three-partition case for all datasets and evaluation measures.

Figure 5 shows that the individual decisions regarding significance can differ between the 

two partition methods despite similar numbers of significantly different pairs found. The plot 

in the figure has the same structure as Figure 4: axes represent runs sorted by decreasing 

mean score and the point plotted at {x, y} shows the significance decision for “run x better 

than run y”. The three significance tests plotted in Figure 5 are the partial randomization test 

and the two partition methods, and the data is taken from the Terabyte track so the 

evaluation measure used is infAP. (The black circle labeled “random and 1p tests reject null” 

in the figure means that the partial randomization test and exactly one of the two partition 

methods rejected the null hypothesis.) Each of the three tests has some run pairs for which it 

alone rejected the null hypothesis.

The reduction in the number of pairs inferred to be significantly different when changing 

from α = 0.05 to α = 0.01 is more modest for the partition method than for either the t-test 

or the partial randomization test. This small reduction is corroborating evidence for the 

observation made when inspecting the p-values themselves that the partition method tends to 

produce relatively many extreme p-values, that is, many p-values that round to zero to six 

decimal places.

5 VARYING DOCUMENT SPLITS

The entire partition methodology is driven by the original split of the document set into 

partitions. The resulting document set split induces the partitioned qrels and runs and hence 

the scores and residuals in the models. Different splits can, and indeed are very likely to, 

cause differences in the downstream processing. Each of the experiments described above 

has been performed on a single (random) split of the document set into the target number of 

partitions. In this section, we keep a constant target of two-partition splits and investigate the 

effect of different assignments of documents to those two parts.
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As the basis for this set of experiments, we create 10 new random assignments of documents 

into two partitions for each of the datasets, resulting in a total of 11 two-partition splits per 

dataset (the original split used in the previous experiments plus the 10 new splits). Each split 

contains relevant documents for all topics, so no further processing is necessary to support 

the balanced design requirement. We then perform the entire bootstrap modeling process 

independently on each split, resulting in 11 different p-values for each run pair in a dataset. 

The research question is the extent to which we would infer the same decision as to whether 

the runs in a pair are significantly different from one another across the different initial 

starting configurations.

Figure 6 plots the amount of agreement observed across the 11 splits. For these experiments, 

we again use 10,000 bootstrap iterations and α = 0.05, and we use only the model with 

system-topic interactions. A dot is plotted for each pair of runs A,B where the color of the 

dot represents the number of splits that concur on the significance decision for A,B—either 

that A and B are not distinguishable from one another or that A is better than B. With 11 

splits, there are six possible agreement outcomes: all 11 splits lead to the same decision 

(0:11), one split leads to a different decision than the other 10 (1:10), and so on, up to a 

nearly evenly divided decision of 5:6. The darker the dot the more disagreement there is 

across the splits, so perfect agreement is plotted in white and a 5:6 decision is plotted in 

black. Runs along each axis are ordered by mean score on the original collection as in 

previous graphs, though in this case there is no distinction made between whether the x-axis 

run is better than the y-axis run or vice versa if there is a difference. (We never observed a 

case where two splits each led to a significantly different decision but preferred different 

runs.) For the TREC-3 and TREC-8 datasets, AP decisions are plotted in the upper diagonal 

portion and P10 decisions in the lower diagonal portion of the same graph; runs are sorted 

by AP score on the original collection.

The total number of run pairs with disagreements is given in Table 5, which also gives 

counts for each level of disagreement for both α = 0.05 and α = 0.01. Inspection of the p-

values produced by each split for a run pair with disagreements shows that, in general, 

disagreements are not caused by similar p-values that happen to fall on either side of the α 
threshold. This is consistent with the observation made earlier that the partition method 

produces relatively many p-values that are essentially zero. Because of this, the different 

significance thresholds make very little difference.

Figure 6 clearly shows that the particular split of documents into partitions does affect the 

significance decisions that are inferred. For AP scores, the disagreements are clustered a 

small off-set from the diagonal, a result caused by the runs being sorted by mean score. Runs 

in pairs far from the diagonal are easily recognized as being different so agreement is high, 

while runs in pairs very close to the diagonal are not distinguished by any test so agreement 

is again high. P10 scores are inherently more variable then AP scores, and this variability is 

reflected in a more widespread pattern of disagreements. The pattern of disagreements for 

infAP is less widespread than for P10 but noticeably more dispersed than for AP. While the 

total number of pairs that have disagreements for different splits is less than 15% of all pairs 

in all cases, the impact is greater than the 15% suggests: the run pairs with disagreements are 
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the run pairs that we would most want to submit to a statistical test, because they are the 

pairs with the least obvious decision.

The number of run pairs with different decisions on different splits is evidence that the 

model constructed by a single instance of the partition method captures too much detail of 

the particular assignment of documents to partitions to make reliable inferences. To produce 

more reliable inferences, an application of the method should itself use multiple splits and 

combine the splits’ decisions into one grand decision as outlined in Figure 7.

Both the best way of combining the different p-values into a single final inference and the 

number of splits to use (J in Figure 7) are areas for future research. Here, we used J = 11 and 

the brute-force aggregation method of rejecting the null hypothesis that two systems are 

equally effective only if the hypothesis would be rejected in each of the splits. This is the 

most conservative aggregation approach in that it will infer the fewest pairs to be different. 

Using this strict policy of perfect agreement, the partition method still finds more 

significantly different run pairs than either the partial randomization or paired t tests, as 

shown in the final row of Table 4.

6 SMALL RUN SETS

Carterette describes different approaches for analyzing system results depending on which 

systems are used to fit a model and how p-values are adjusted from inferences on the model 

[11]. As he explains, a model built from all runs in a large run set resulting from an 

evaluation exercise such as a TREC track (his option 1a) retains the most amount of 

knowledge of the world, so comparisons corrected for all pairs in that set can be considered 

the most “honest.” All of the experiments described so far in this article fit in this category, 

since they are based on the entire run set. A tool that can distinguish among runs in the 

context of a whole track is very useful, but a tool that individual research teams can use in 

the course of their own research is even more useful. In this case, we would be fitting a 

model only on the set of runs produced by a single team (Carterette’s option 2a), which 

means a model fit on a very much smaller set of runs. This section reports on preliminary 

experiments examining the efficacy of the partition method when used to compare a small 

set of runs such as the set of runs that result from using the same retrieval system with 

different parameter settings.

For these initial experiments, we use only AP as the evaluation measure and hence just the 

TREC-3 and TREC-8 collections. We use a single three-partition split of the document set 

and M = 1000 bootstrap iterations. In TREC-3, a given participant was restricted to 

submitting at most two runs; in TREC-8 a participant could submit up to five runs. We call 

the set of runs submitted by a single participant related runs. We create bootstrap ANOVA 

models using just the runs in each related run set in turn, which we call the Within condition. 

We compare the confidence intervals and significance decisions induced in the Within 

condition to those when the entire run set is used to build the model, the Across condition.

The 95% confidence interval results are summarized in Table 6 for both models with and 

without a system-topic interaction effect. The table gives the mean length of the confidence 
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interval on the system effect over all runs that occur in a related run set. Confidence intervals 

shrink when computed using only the runs in a related set. This can be explained by the fact 

that a set of runs from a given participant will generally exhibit much less total variability 

than a larger set of runs from many disparate systems. The with-interactions model causes 

the confidence intervals to shrink further, indicating that some system-topic interaction 

effect nevertheless remains for related runs.

We now compare the agreement in significance decisions between the Within and Across 

conditions (using the with-interactions model and α = 0.05). For TREC-3 there are 17 

related-run pairs. Of those, 14 pairs (82.4%) have the same significance decision in both 

conditions. For TREC-8 there are 180 related-run pairs, 171 (95%) of which have the same 

significance decision in both conditions. Except for a related pair of extremely ineffective 

runs (ineffective enough so the residuals in the Across model are comparable to the runs’ 

scores), differences in significance decisions are always such that the Within condition finds 

the runs indistinguishable when the Across condition rejects the null hypothesis.

To echo Carterette, models built from a small number of related runs necessarily contain less 

information than models built from larger, more diverse run sets. Individual research teams 

could incorporate others’ runs on the same test collection from a repository of runs as 

suggested by Armstrong and colleagues [1] to benefit from increased diversity.

7 CONCLUDING REMARKS

Randomly partitioning the document set of a test collection into just two or three parts 

creates sufficient replicate scores for system-topic combinations to build bootstrap ANOVA 

models that can account for system, topic, and system-topic interaction effects. The with-

interaction models yield tighter estimates of the system effect than do models without the 

interaction effect thereby increasing the sensitivity of system comparisons. Significance tests 

based on confidence intervals of system-effect sizes constructed using these with-interaction 

models find more significantly different pairs than do the tests currently in common use.

Because the partition method assumes a balanced design in an ANOVA, solutions for finding 

the parameters of the models have closed forms. This means the technique requires only 

modest computational resources. Thus, the partition method is a both powerful and practical 

tool for comparing retrieval systems’ effectiveness.

There remain a variety of additional questions to investigate with regard to the methodology. 

As noted earlier, one such question is how best to combine multiple initial assignments of 

documents to partitions to compute a single p-value for a run pair. The effect of the number 

and diversity of runs used to build the bootstrap model requires further investigation. There 

are different corrections for multiple comparisons that can be tried.

The decision to assume a balanced design in the ANOVA can also can be revisited. While 

the balanced design makes computing the models much more efficient, it also severely 

restricts the document set partitions that can be used, essentially making the topic with the 

smallest number of relevant documents the controlling factor. Allowing an unbalanced 
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design—or controlling for different numbers of relevant documents per topic in some other 

manner—might show some benefit for larger numbers of partitions.
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Fig. 1. 
Example of the types of effects generally present in search results. Here three systems report 

Average Precision scores for each of three topics, where each system does relatively less 

well on topic 3. An ANOVA model that contains only a single term that captures the system 

effect will have a large error term, because there is no way for that model to capture the dip 

in performance for all systems for topic 3. Models that include both system and topic effect 

terms can capture the variability in topics and thus produce less variable estimates of the 

system effect. Models that contain a third term for the system-topic interaction effects can 

capture yet more of the variability and produce even tighter bounds on the system effect.
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Fig. 2. 
95% confidence intervals on the system effect computed using models with (red inner bars) 

and without (black outer bars) system-topic interactions for TREC-3 runs. Runs evaluated 

using AP are plotted in the top of the figure and runs evaluated using P10 in the bottom of 

the figure.
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Fig. 3. 
Estimated probability density functions for MAP for two runs, plotted as dashed and solid 

lines. The vertical bars plot the mean values over the bootstrap iterations. The shaded area 

shows the probability of the event that a value at least as large as MAPA is, in fact, from the 

distribution associated with MAPB.
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Fig. 4. 
Significance decisions for run pairs as determined by different tests with α = 0.05 for the 

TREC-3 dataset. The x- and y-axis are runs sorted by raw mean score computed on the 

original test collection. A point plotted at {x, y} records the significance decisions as to 

whether system x is better than system y, with the null hypothesis that the two systems are 

the same. Runs were evaluated using either AP (top) or P10 (bottom).
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Fig. 5. 
Significance decisions for run pairs as determined by the partial randomization test and two 

variants of the partition method (using either two or three partitions) with α = 0.05 for the 

Terabyte dataset. The x-and y-axis are runs sorted by mean infAP computed on the original 

test collection. A point plotted at {x, y} records the decisions as to whether system x is 

better than system y, with the null hypothesis that the two systems are the same.
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Fig. 6. 
Amount of agreement in significance decisions across 11 different random two-partition 

splits of the dataset with α = 0.05. The x- and y-axes are runs sorted by decreasing mean AP 

(TRECs 3 and 8) or infAP (terabyte) as computed on the original collection. The darker a 

dot, the more disagreement there is among the different splits as to whether run A is 

significantly different from run B, with white showing perfect agreement from all 11 splits 

and black showing a 5-splits-to-6-splits tally. For the TREC-3 and TREC-8 datasets, AP is 

plotted in the upper diagonal and P10 in the lower diagonal.
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Fig. 7. 
Outline of method for making more reliable inferences about system differences by 

aggregating decisions over multiple document partitions.
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Table 2

Number of Significantly Different Run Pairs Found for TREC-3

t-test Randomization Partition

AP 409 (52.4%) 619 (79.4%) 741 (95.0%)

P10 411 (52.7%) 579 (74.2%) 712 (91.3%)

ACM Trans Inf Syst. Author manuscript; available in PMC 2018 June 12.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

VOORHEES et al. Page 28

Table 3

Mean [Minimum, Maximum] Lengths of 95% Confidence Intervals on the System Effect for Different 

Number of Partitions for Different TREC Datasets and Evaluation Measures. Confidence Intervals for Models 

with No Interactions Are on Top and for Models with Interactions Are on Bottom

Collection Measure 2 Partitions 3 Partitions 5 partitions

TREC-3

AP
0.075 [0.071, 0.082] 0.064 [0.060, 0.069] 0.055 [0.052, 0.058]

0.029 [0.026, 0.031] 0.032 [0.030, 0.034] 0.033 [0.031, 0.034]

P10
0.130 [0.122, 0.140] 0.106 [0.099, 0.112] 0.081 [0.076, 0.086]

0.065 [0.061, 0.069] 0.065 [0.061, 0.071] 0.055 [0.052, 0.060]

TREC-8

AP
0.088 [0.082, 0.094] 0.078 [0.070, 0.084] 0.069 [0.065, 0.074]

0.039 [0.035, 0.042] 0.044 [0.040, 0.047] 0.049 [0.046, 0.053]

P10
0.122 [0.115, 0.134] 0.098 [0.093, 0.109] 0.071 [0.066, 0.076]

0.061 [0.055, 0.065] 0.061 [0.057, 0.067] 0.048 [0.045, 0.053]

Terabyte infAP
0.064 [0.060, 0.071] 0.058 [0.055, 0.064]

—
0.032 [0.030, 0.035] 0.037 [0.035, 0.040]
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Table 6

Mean Size of 95% Confidence Intervals on the System Effect (AP) for Runs: With Interactions-in-the-Model 

Versus Without and Across-All-Systems Versus Within-Related-Sets

TREC-3 TREC-8

Without With Without With

Across 0.064 0.032 0.078 0.044

Within 0.039 0.030 0.052 0.040
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