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Abstract

Leader election is one of the basic problems in distributed computing. This is a symmetry
breaking problem: all nodes of a network must agree on a single node, called the leader. If the
nodes of the network have distinct labels, then such an agreement means that all nodes have to
output the label of the elected leader. For anonymous networks, the task of leader election is
formulated as follows: every node v of the network must output a simple path, which is coded
as a sequence of port numbers, such that all these paths end at a common node, the leader. In
this paper, we study deterministic leader election in arbitrary anonymous networks.

It is well known that leader election is impossible in some networks, regardless of the allocated
amount of time, even if nodes know the map of the network. This is due to possible symmetries
in it. However, even in networks in which it is possible to elect a leader knowing the map, the
task may be still impossible without any knowledge, regardless of the allocated time. On the
other hand, for any network in which leader election is possible knowing the map, there is a
minimum time, called the election index, in which this can be done. Informally, the election
index of a network is the minimum depth at which views of all nodes are distinct. Our aim is to
establish tradeoffs between the allocated time τ and the amount of information that has to be
given a priori to the nodes to enable leader election in time τ in all networks for which leader
election in this time is at all possible. Following the framework of algorithms with advice, this
information (a single binary string) is provided to all nodes at the start by an oracle knowing
the entire network. The length of this string is called the size of advice. For a given time τ
allocated to leader election, we give upper and lower bounds on the minimum size of advice
sufficient to perform leader election in time τ .

We focus on the two sides of the time spectrum. For the smallest possible time, which is the
election index of the network, we show that the minimum size of advice is linear in the size n of
the network, up to polylogarithmic factors. On the other hand, we consider large values of time:
larger than the diameter D by a summand, respectively, linear, polynomial, and exponential in
the election index; for these values, we prove tight bounds on the minimum size of advice, up to
multiplicative constants. We also show that constant advice is not sufficient for leader election
in all graphs, regardless of the allocated time.
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1 Introduction

Background. Leader election is one of the basic problems in distributed computing [35]. This is a
symmetry breaking problem: all nodes of a network must agree on a single node, called the leader.
It was first formulated in [34] in the study of local area token ring networks, where, at all times,
exactly one node (the owner of a circulating token) is allowed to initiate communication. When
the token is accidentally lost, a leader must be elected as the initial owner of the token.

If the nodes of the network have distinct labels, then agreeing on a single node means that all
nodes output the label of the elected leader. However, in many applications, even if nodes have
distinct identities, they may decide to refrain from revealing them, e.g., for privacy or security
reasons. Hence it is important to design leader election algorithms that do not rely on knowing
distinct labels of nodes, and that can work in anonymous networks as well. Under this scenario,
agreeing on a single leader means that every node has to output a simple path (coded as a sequence
of port numbers) to a common node.
Model and Problem Description. The network is modeled as a simple undirected connected
n-node graph with diameter D, for n ≥ 3. Nodes do not have any identifiers. On the other hand, we
assume that, at each node v, each edge incident to v has a distinct port number from {0, . . . , d−1},
where d is the degree of v. Hence, each edge has two corresponding port numbers, one at each of
its endpoints. Port numbering is local to each node, i.e., there is no relation between port numbers
at the two endpoints of an edge. Initially, each node knows only its own degree. The task of leader
election is formulated as follows. Every node v must output a sequence P (v) = (p1, q1, . . . , pk, qk) of
nonnegative integers. For each node v, let P ∗(v) be the path starting at v, such that port numbers
pi and qi correspond to the i-th edge of P ∗(v), in the order from v to the other end of this path. All
paths P ∗(v) must be simple paths in the graph (i.e., paths without repeated nodes) that end at a
common node, called the leader. In this paper, we consider deterministic leader election algorithms.

In the absence of port numbers, there would be no way to identify the elected leader by non-
leaders, as all ports, and hence all neighbors, would be indistinguishable to a node. Security and
privacy reasons for not revealing node identifiers do not apply in the case of port numbers.

The central notion in the study of anonymous networks is that of the view of a node [44]. Let
G be a graph and let v be a node of G. We first define, for any l ≥ 0, the truncated view V l(v) at
depth l, by induction on l. V0(v) is a tree consisting of a single node x0. If V l(u) is defined for
any node u in the graph, then V l+1(v) is the port-labeled tree rooted at x0 and defined as follows.
For every node vi, i = 1, . . . , k, adjacent to v, there is a child xi of x0 in V l+1(v) such that the
port number at v corresponding to edge {v, vi} is the same as the port number at x0 corresponding
to edge {x0, xi}, and the port number at vi corresponding to edge {v, vi} is the same as the port
number at xi corresponding to edge {x0, xi}. Now node xi, for i = 1, . . . , k, becomes the root of
the truncated view V l(vi).

The view from v is the infinite rooted tree V(v) with labeled ports, such that V l(v) is its
truncation to level l, for each l.

We use the extensively studied LOCAL communication model [39]. In this model, communica-
tion proceeds in synchronous rounds and all nodes start simultaneously. In each round, each node
can exchange arbitrary messages with all of its neighbors and perform arbitrary local computations.
The information that v gets about the graph in r rounds is precisely the truncated view Vr(v),
together with degrees of leaves of this tree. Denote by Br(v) the truncated view Vr(v) whose leaves
are labeled by their degrees in the graph, and call it the augmented truncated view at depth r. If
no additional knowledge is provided a priori to the nodes, the decisions of a node v in round r in
any deterministic algorithm are a function of Br(v). Note that all augmented truncated views can
be canonically coded as binary strings, and hence the set of all augmented truncated views can be
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ordered lexicographically. The time of leader election is the minimum number of rounds sufficient
to complete it by all nodes. It is well known that the synchronous process of the LOCAL model
can be simulated in an asynchronous network using time-stamps.

Unlike in labeled networks, if the network is anonymous then leader election is sometimes
impossible, regardless of the allocated time, even if the network is a tree and its topology is known.
This is due to symmetries, and the simplest example is the two-node graph. It follows from [44] that
if nodes know the map of the graph (i.e., its isomorphic copy with all port numbers indicated) then
leader election is possible if and only if views of all nodes are distinct. We will call such networks
feasible and restrict attention to them. However, even in the class of feasible networks, leader
election is impossible without any a priori knowledge about the network. This simple observation
follows from a slightly stronger result proved in Proposition 4.1. On the other hand, for any fixed
feasible network G, whose map is given to the nodes, there is a minimum time, called the election
index and denoted by φ(G), in which leader election can be performed. The election index of a
network is equal to the smallest integer `, such that the augmented truncated views at depth ` of
all nodes are distinct. This will be proved formally in Section 2. The election index is always a
strictly positive integer because there is no graph all of whose nodes have different degrees.

Our aim is to establish tradeoffs between the allocated time and the amount of information
that has to be given a priori to the nodes to enable them to perform leader election. Following the
framework of algorithms with advice, see, e.g., [10, 13, 15, 18, 22, 29, 38], this information (a single
binary string) is provided to all nodes at the start by an oracle knowing the entire network. The
length of this string is called the size of advice. It should be noted that, since the advice given to
all nodes is the same, this information does not increase the asymmetries of the network (unlike in
the case when different pieces of information could be given to different nodes) but only helps to
harvest the existing asymmetries and use them to elect the leader. Hence the high-level formulation
of our problem is the following. What is the minimum amount of identical information that can be
given to nodes to enable them to use asymmetries present in the graph to elect a leader in a given
time?

Of course, since the faithful map of the network is the total information about it, asking about
the minimum size of advice to solve leader election in time τ is meaningful only in the class of
networks G for which φ(G) ≤ τ , because otherwise, no advice can help. The central problem of
this paper can be now precisely formulated as follows.

For a given time τ , what is the minimum size of advice that permits leader election in
time τ , for all networks G for which φ(G) ≤ τ?

The paradigm of algorithms with advice has been proven very important in the domain of
network algorithms. Establishing a strong lower bound on the minimum size of advice sufficient to
accomplish a given task in a given time permits to rule out entire classes of algorithms and thus
focus only on possible candidates. For example, if we prove that Ω(n/ log n) bits of advice are
needed to perform a certain task in n-node networks (as we do in this paper for leader election in
minimum possible time), this rules out all potential algorithms that can work using only the size
n of the network, as n can be given to the nodes using O(log n) bits. Lower bounds on the size
of advice give us impossibility results based strictly on the amount of initial knowledge allowed in
a model. This is much more general than the traditional approach based on specific categories of
information given to nodes, such as the size, diameter, or maximum node degree.
Our results. For a given time τ allocated to leader election, we give upper and lower bounds
on the minimum size of advice sufficient to perform leader election in time τ for networks with
election index at most α. An upper bound U for a class of networks C means that, for all networks
in C, leader election in time τ is possible given advice of size O(U). We prove such a bound by
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constructing advice of size O(U) together with a leader election algorithm for all networks in the
class C, that uses this advice and works in time τ . A lower bound L for a class of networks C
means that there exist networks in C for which leader election in time τ requires advice of size
Ω(L). Proving such a bound means constructing a subclass C′ of C such that no leader election
algorithm running in time τ with advice of size o(L) can succeed for all networks in C′.

We focus on the two sides of the time spectrum. For the smallest possible time, which is the
election index of the network, we show that the minimum size of advice is linear in the size n of
the network, up to polylogarithmic factors. More precisely, we establish a general upper bound
O(n log n) and lower bounds Ω(n log log n) and Ω(n(log log n)2/ log n), for election index equal to 1
and larger than 1, respectively.

On the other hand, we consider large values of time: those exceeding the diameter D by a
summand, respectively, linear, polynomial, and exponential in the election index; for these values,
we prove tight bounds on the minimum size of advice, up to multiplicative constants. More precisely,
for any positive integer α, consider the class of networks with election index at most α. Let c > 1
be an integer constant. For any graph of election index φ ≤ α in this class, consider leader election
algorithms working in time, respectively, at most D + φ+ c, at most D + cφ, at most D + φc, and
at most D + cφ. Hence the additive offset above D in the time of leader election is asymptotically
equal to φ in the first case, it is linear in φ but with a multiplicative constant larger than 1 in the
second case, it is polynomial in φ but super-linear in the third case, and it is exponential in φ in
the fourth case. In the considered class we show that the minimum size of advice is Θ(logα) in
the first case, it is Θ(log logα) in the second case, it is Θ(log log logα) in the third case, and it is
Θ(log(log∗ α)) in the fourth case. Hence, perhaps surprisingly, the jumps in the minimum size of
advice, when the time of leader election varies between the above milestones, are all exponential.
We also show that constant advice is not sufficient for leader election in all graphs, regardless of
the allocated time.
Related work. The first papers on leader election focused on the scenario where all nodes have
distinct labels. Initially, it was investigated for rings in the message passing model. A synchronous
algorithm based on label comparisons was given in [28]. It used O(n log n) messages. In [19] it
was proved that this complexity cannot be improved for comparison-based algorithms. On the
other hand, the authors showed a leader election algorithm using only a linear number of messages
but requiring very large running time. An asynchronous algorithm using O(n log n) messages was
given, e.g., in [40], and the optimality of this message complexity was shown in [8]. Leader election
was also investigated in the radio communication model, both in the deterministic [30, 33, 37] and
in the randomized [42] scenarios. In [26], leader election for labeled networks was studied using
mobile agents.

Many authors [3, 4, 5, 6, 7, 43, 44] studied leader election in anonymous networks. In particular,
[6, 44] characterize message-passing networks in which leader election is feasible. In [43], the authors
study the problem of leader election in general networks, under the assumption that node labels
exist but are not unique. They characterize networks in which leader election can be performed and
give an algorithm which achieves election when it is feasible. In [12, 14], the authors study message
complexity of leader election in rings with possibly nonunique labels. Memory needed for leader
election in unlabeled networks was studied in [22]. In [11], the authors investigated the feasibility
of leader election among anonymous agents that navigate in a network in an asynchronous way.

Providing nodes or agents with arbitrary types of knowledge that can be used to increase
efficiency of solutions to network problems has previously been proposed in [1, 10, 13, 15, 16, 17,
18, 22, 23, 24, 29, 31, 32, 36, 38, 41]. This approach was referred to as algorithms with advice. The
advice is given either to the nodes of the network or to mobile agents performing some task in a
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network. In the first case, instead of advice, the term informative labeling schemes is sometimes
used if (unlike in our scenario) different nodes can get different information.

Several authors studied the minimum size of advice required to solve network problems in an
efficient way. In [32], given a distributed representation of a solution for a problem, the authors
investigated the number of bits of communication needed to verify the legality of the represented
solution. In [16], the authors compared the minimum size of advice required to solve two information
dissemination problems using a linear number of messages. In [18], it was shown that advice of
constant size given to the nodes enables the distributed construction of a minimum spanning tree
in logarithmic time. In [13], the advice paradigm was used for online problems. In [15], the authors
established lower bounds on the size of advice needed to beat time Θ(log∗ n) for 3-coloring cycles
and to achieve time Θ(log∗ n) for 3-coloring unoriented trees. In the case of [38], the issue was not
efficiency but feasibility: it was shown that Θ(n log n) is the minimum size of advice required to
perform monotone connected graph clearing. In [29], the authors studied radio networks for which
it is possible to perform centralized broadcasting in constant time. They proved that constant time
is achievable with O(n) bits of advice in such networks, while o(n) bits are not enough. In [23], the
authors studied the problem of topology recognition with advice given to the nodes. In [10], the
task of drawing an isomorphic map by an agent in a graph was considered, and the problem was
to determine the minimum advice that has to be given to the agent for the task to be feasible.

Among papers studying the impact of information on the time of leader election, the papers
[21, 25, 36] are closest to the present work. In [36], the authors investigated the minimum size of
advice sufficient to find the largest-labelled node in a graph, all of whose nodes have distinct labels.
The main difference between [36] and the present paper is that we consider networks without node
labels. This is a fundamental difference: breaking symmetry in anonymous networks relies heavily
on the structure of the graph, rather than on labels, and, as far as results are concerned, much
more advice is needed for a given allocated time. In [21], the authors investigated the time of
leader election in anonymous networks by characterizing this time in terms of the network size, the
diameter of the network, and an additional parameter called the level of symmetry, similar to our
election index. This paper used the traditional approach of providing nodes with some parameters
of the network, rather than any type of advice, as in our setting. Finally, the paper [25] studied
leader election under the advice paradigm for anonymous networks, but restricted attention to trees.
It should be stressed that leader election in anonymous trees and in arbitrary anonymous networks
present completely different difficulties. The most striking difference is that, in the case of trees,
for the relatively modest time equal to the diameter D, leader election can be done in feasible trees
without any advice, as all nodes can reconstruct the map of the tree. This should be contrasted
with the class of arbitrary networks, in which leader election with no advice is impossible. Our
results for large election time values (exceeding the diameter D) give a hierarchy of sharply differing
tight bounds on the size of advice in situations in which leader election in trees can be performed
with no advice at all.

2 Preliminaries

We use the word “graph” to mean a simple undirected connected graph with unlabeled nodes
and all port numbers fixed. In the sequel we use the word “graph” instead of “network”. Unless
otherwise specified, all logarithms are to the base 2.

We will use the following characterization of the election index.

Proposition 2.1 The election index of a feasible graph is equal to the smallest integer `, such that
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the augmented truncated views at depth ` of all nodes are distinct.

Proof. Fix a feasible graph G, let α be its election index, and let β be the smallest integer `, such
that the augmented truncated views at depth ` of all nodes are distinct.

Let r be an integer such that augmented truncated views Br(v) are distinct for all nodes v of
the graph. If nodes are provided with a map of the graph, then after time r every node gets Br(v),
can locate itself on the map because all augmented truncated views at depth r are distinct, and can
find the node v0 for which Br(v0) is lexicographically smallest. Then every node outputs a simple
path leading from it to v0. Hence α ≤ β.

Conversely, suppose that r is an integer for which there exist two nodes v and w with Br(v) =
Br(w). Then, after time r, nodes v and w have identical information, and hence, when running
any hypothetical leader election algorithm they must output an identical sequence of ports. This
sequence must correspond to two simple paths, one starting at v, the other starting at w, and
ending at the same node. Let x be the first node common in these paths, and consider the parts of
these paths from v to x and from w to x, respectively. These parts must have the same length, and
hence the corresponding sequences of port numbers must be identical. In particular, the last terms
in these sequences must be the same, which is impossible because they correspond to different ports
at node x. Hence α ≥ β. �

The value of the election index is estimated in the following proposition, which is an immediate
consequence of the main result of [27].

Proposition 2.2 For any n-node feasible graph of diameter D, its election index is in O(D log(n/D)).

Our algorithms use the subroutine COM to exchange augmented truncated views at different
depths with their neighbors. This subroutine is detailed in Algorithm 1.

Algorithm 1 COM(i)

send Bi(u) to all neighbors;
foreach neighbor v of u

receive Bi(v) from v

When all nodes repeat this subroutine for i = 0, . . . , t− 1, every node acquires its augmented
truncated view at depth t.

3 Election in minimum time

We start this section by designing a leader election algorithm working in time φ, for any graph of
size n and election index φ, and using advice of size O(n log n). The high-level idea of the algorithm
is the following. The oracle knowing the graph G produces the advice consisting of three items:
the integer φ, A1 and A2. The integer φ serves the nodes to determine for how long they have to
exchange information with their neighbors. The item A1 is the most difficult to construct. Its aim
is to allow every node that knows its augmented truncated view at depth φ (which is acquired in
the allocated time φ) to construct a unique integer label from the set {1, 2, . . . , n}. Recall that the
advice is the same for all nodes, and hence each node has to produce a distinct label using this
common advice, relying only on its (unique) augmented truncated view at depth φ. The third item
in the advice, that we call A2, is a labeled BFS tree of the graph G. (To avoid ambiguity, we take
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the canonical BFS tree, in which the parent of each node u at level i + 1 is the node at level i
corresponding to the smallest port number at u.) The labels of nodes are equal to those that nodes
will construct using item A1, the root is the node labeled 1, and all port numbers in the BFS tree
(that come from the graph G) are faithfully given. More precisely, A2 is the code of this tree, i.e.,
a binary string of length O(n log n) which permits the nodes to reconstruct unambiguously this
labeled tree (the details are given below). After receiving the entire advice, Algorithm Elect works
as follows. Each node acquires its augmented truncated view at depth φ, then positions itself in
the obtained BFS tree, thanks to the unique constructed label, and outputs the sequence of port
numbers corresponding to the unique path from itself to the root of this BFS tree.

The main difficulty is to produce item A1 of the advice succinctly, i.e., using only O(n log n)
bits, and in such a way that allows nodes to construct unique short labels. Note that a naive way
in which nodes could attribute themselves distinct labels would require no advice at all and could
be done as follows. Nodes could list all possible augmented truncated views at depth φ, order them
lexicographically in a canonical way, and then each node could adopt as its label the rank in this
list. However, already for φ = 1, there are Ω(n)Ω(n) different possible augmented truncated views
at depth 1, and hence these labels would be of size Ω(n log n). Now item A2 of the advice would
have to give the tree with all these labels, thus potentially requiring at least Ω(n2 log n) bits, which
significantly exceeds the size of advice that we want to achieve. This is why item A1 of the advice
is needed, and must be constructed in a subtle way. On the one hand, it must be sufficiently short
(use only O(n log n) bits) and on the other hand it must allow nodes to construct distinct labels of
size O(log n). Then item A2 of the advice can be given using also only O(n log n) bits.

We now give some intuitions concerning the construction of item A1 of the advice. This item
can be viewed as a carefully constructed trie, cf.[2], which is a rooted binary tree whose leaves
correspond to objects, and whose internal nodes correspond to yes/no queries concerning these
objects. The left child of each internal node corresponds to port 0 and to the answer “no” to the
query, and the right child corresponds to port 1 and to the answer “yes” to the query. The object in
a given leaf corresponds to all answers on the branch from the root to the leaf, and must be unique.
In our case, objects in leaves of the trie are nodes of the graph, and queries serve to discriminate
all views Bφ(v), for all nodes v of the graph G. Since each node v knows its augmented truncated
view Bφ(v), after learning the trie it can position itself as a leaf of it and adopt a unique label from
the set {1, 2 . . . , n}.

As an example, consider the case φ = 1. All augmented truncated views at depth 1 can be
coded by binary sequences of length O(n log n). In this case the queries at internal nodes of the
trie are of two types: “Is the binary representation of your augmented truncated view at depth
one of length smaller than t?” (this query is coded as (0, t)), and “Is the jth bit of the binary
representation of your augmented truncated view at depth one equal to 1?” (this query is coded as
(1, j)). Since both the possible lengths t and the possible indices j are of size O(log n), the entire
trie can be coded as a binary sequence of length O(n log n), because there are n leaves of the trie.

For φ > 1 the construction is more complicated. Applying the same method as for φ = 1
(by building a large trie discriminating between all augmented truncated views at depth φ, using
similar questions as above, only concerning depth φ instead of depth 1) is impossible, because the
sizes of the queries would exceed Θ(log n). Actually, queries would be of size Ω(φ log n), resulting in
advice of size Ω(φn log n), and not O(n log n). Hence we apply a more subtle strategy. The upper
part of the trie is as for the case φ = 1. However, this is not sufficient, as in this case there exist
nodes u and v in the graph such that B1(u) = B1(v) but Bφ(u) 6= Bφ(v), and hence such a small
trie would not discriminate between all augmented truncated views at depth φ. Hence leaves of this
partial trie, corresponding to sets of nodes in the graph that have the same augmented truncated
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view at depth 1, have to be further developed, by adding sub-tries rooted at these leaves, to further
discriminate between all augmented truncated views at depth φ. This is done recursively in such
a way that these further queries are still of size O(log n), and constitutes the main difficulty of the
advice construction.

We now proceed with the detailed description of the advice and of Algorithm Elect using it. We
first address technical issues concerning coding various objects by binary strings. This will be needed
to define the advice formally. First we show how to encode a sequence of several binary substrings,
corresponding to various parts of the advice, into a single string, in a way that permits the algorithm
to unambiguously decode the original sequence of substrings, and hence recover all parts of the
advice. This can be done as follows. We encode the sequence of substrings (A1, . . . , Ak) by doubling
each digit in each substring and putting 01 between substrings. Denote by Concat(A1, . . . , Ak) this
encoding and let Decode be the inverse (decoding) function, i.e. Decode(Concat(A1, . . . , Ak)) =
(A1, . . . , Ak). As an example, Concat((01), (00)) = (0011010000). Note that the encoding increases
the total number of advice bits by a constant factor.

When constructing the advice, we will need to encode rooted trees with port numbers and
labeled nodes. The code will be a binary sequence of length O(n log n), if the tree is of size n
and all labels are of length O(log n). One way to produce such a code is the following. Con-
sider the DFS walk in the tree, starting and ending at its root, where children of any node v
are explored in the increasing order of the corresponding port numbers at v. Let S1 be the se-
quence of length 4(n − 1) of all port numbers encountered in this walk, in the order of traversing
the edges of the walk, and listing the port 0 at each leaf twice in a row: when entering the
leaf and when leaving it. Let S2 be the sequence of length n of node labels, in the order of
visits during this walk, without repetitions. Consider the couple (S1, S2). Using the sequence
S1 it is possible to reconstruct the topology of the rooted tree with all port numbers, and us-
ing the sequence S2 it is possible to correctly assign labels to all nodes, starting from the root.
It remains to encode the couple (S1, S2) as a binary string. Let S1 = (a1, . . . a4(n−1)), and let
S2 = (b1, . . . , bn), where ai and bi are non-negative integers. For any non-negative integer x,
let bin(x) denote its binary representation. The couple (S1, S2) can be unambiguously coded by
the string Concat(Concat(bin(a1), . . . , bin(a4(n−1))), Concat(bin(b1), . . . , bin(bn))). The above de-
scribed code of any labeled tree T will be denoted by bin(T ). By the definition of bin(T ) we have
the following proposition.

Proposition 3.1 Let T be a rooted labeled n-node tree. If all node labels are integers in O(n), then
the length of bin(T ) is in O(n log n).

Next, we define a binary code bin(Tr) of a trie Tr. Since a trie can be considered as a rooted
binary tree whose internal nodes are labeled by queries, the above described definition of codes
for labeled trees can be adapted, with the following modification: the strings bin(bi) at internal
nodes are now binary codes of queries in the trie, instead of binary representations of integers. In
our case, the queries are pairs of integers, hence their binary codes are straightforward. In order
to have labels of all nodes of the respective binary tree, we put the string (0) at all leaves. This
implies the following proposition.

Proposition 3.2 Let Tr be a trie of size O(n). If the query (a, b) at each internal node of Tr is
such that a and b are integers in O(n log n), then the length of bin(Tr) is in O(n log n).

We also need to encode augmented truncated views at depth 1. Consider a node v of degree
k, and call vj the neighbor of v corresponding to the port j at v. Let aj be the port at node vj
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corresponding to edge {v, vj}, and let bj be the degree of vj . The augmented truncated view B1(v)
can be represented as a list ((0, a0, b0), . . . , (k − 1, ak−1, bk−1)). Hence its encoding bin(B1(v)) is
Concat(Concat(bin(0), bin(a0), bin(b0)), . . . , Concat(bin(k−1), bin(ak−1), bin(bk−1))), and we have
the following proposition.

Proposition 3.3 Let v be a node of a graph of size n. The length of bin(B1(v)) is in O(n log n).

In the construction of our advice we will manipulate nested lists. These are lists of the form
L = ((a1, L1), . . . , (ak, Lk)), where each ai is a non-negative integer, and each Li is a list of the
form ((b1, T1), . . . , (bm, Tm)), where bj are non-negative integers, and Tj are tries. We have already
defined binary codes bin(Tj) of tries. The binary code of each list Li is defined as bin(Li) =
Concat(bin(b1), bin(T1), . . . , bin(bm), bin(Tm)), and the binary code bin(L) of the nested list L
is defined as bin(L) = Concat(bin(a1), bin(L1), . . . , bin(ak), bin(Lk)). This implies the following
proposition.

Proposition 3.4 Let L be a list of couples (ai, Li), where ai is a non-negative integer, and Li is a
list of couples (bj , Tj), such that bj is a non-negative integer and Tj is a trie. The length of bin(L)
is in O(n log n), if the following three conditions are satisfied.

• The length of L is in O(n), and the sum of lengths of all lists Li, such that there exists a
couple (∗, Li) in L, is in O(n).

• The sum of sizes of all tries Tj, such that there exists a couple (∗, Li) in L, where Li contains
a couple (∗, Tj), is in O(n). For each of these tries Tj the query (a, b) at each internal node
is such that a and b are integers in O(n).

• For each (ai, Li) in L, the integer ai is in O(n), and, for each (bj , Tj) in Li, the integer bj is
in O(n).

We first describe the construction of the advice produced by the oracle knowing graph G. This
construction is formulated using Algorithm ComputeAdvice(G) that will be executed by the oracle.
This algorithm uses two procedures: BuildTree and RetrieveLabel, the latter using a subroutine
LocalLabel. We start with the description of this subroutine.

The subroutine LocalLabel is a recursive procedure that takes three arguments. The first
is an augmented truncated view B at some depth d, rooted at some node v, the second is a list
X of integers, and the third is a trie T . The list X is a list of temporary labels that have been
previously assigned to children of v. The trie T permits to discriminate between all views from the
set Y of augmented truncated views at depth d which correspond to the same augmented truncated
view at depth d − 1 as that of the root of B. The list X permits to determine to which leaf of T
corresponds B. LocalLabel returns an integer label from the set {1, . . . , |Y |} with the following
property. Consider the set P of nodes whose augmented truncated view at depth d belongs to Y .
The labels returned by LocalLabel are different for all nodes u, v ∈ P , for which Bd(u) 6= Bd(v).
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Algorithm 2 LocalLabel(B, X, T )

if T is a single node then
return 1

else
(x, y)← the label of the root of T
Tl ← the subtree of T rooted at the left child of the root of T
Tr ← the subtree of T rooted at the right child of the root of T
left← false
if X is the empty list then

if (x = 0) and the length of the binary representation bin(B) is smaller than y then
left← true

if (x = 1) and the yth bit of the binary representation bin(B) is 0 then
left← true

else
if the (x+ 1)th term of the list X is different from y then

left← true
if left = true then

return LocalLabel(B, X, Tl)
else

numleaves← the number of leaves in Tl
return numleaves+LocalLabel(B, X, Tr)

In what follows, the integer returned by LocalLabel(B, X, Tr) will be denoted, for simplicity,
by LocalLabel(B, X, Tr). A similar convention will be used for the objects returned by procedures
BuildTree and RetrieveLabel.

The procedure RetrieveLabel has three arguments: an augmented truncated view B at some
depth d, a trie E1, and a (possibly empty) list E2 of couples, such that the first term of each couple
is an integer, and the second is a list. The procedure uses the subroutine LocalLabel and returns
a temporary integer label with the following two properties.

1. The label is from the set {1, 2, . . . , |Z|}, where Z is the set of augmented truncated views
at depth d in G.

2. The labels returned by RetrieveLabel(B, E1, E2) and by RetrieveLabel(B′, E1, E2), for
any E1, E2, and any augmented truncated views B 6= B′ at the same depth, are different.

This temporary label will serve to construct queries in the trie built by the procedure BuildTrie,
and will serve the nodes to position themselves in the BFS tree, given by the item A2 of the advice.

Below is the pseudocode of RetrieveLabel.
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Algorithm 3 RetrieveLabel(B, E1, E2)

d← depth of B
if d = 1 then return LocalLabel(B, (), E1)
else

X ← empty list
deg ← degree of the root of B
for j = 0 to deg − 1 do

X ← X with RetrieveLabel(Bd−1(vj), E1, E2) appended as the last term,
where vj is the node at depth 1 in B corresponding to the port number j at
the root of B

B′ ← the augmented truncated view at depth d− 1 of the root of B
label← RetrieveLabel(B′, E1, E2)
sum← 0
L← the second term of the couple from E2 whose first term is d (* L is a list*)
for i = 1 to label do

if the list L has a term which is a couple (i, T ) (*T is a trie*)
then

if i < label then
numleaves← the number of leaves in T
sum← sum+ numleaves

else
sum← sum+LocalLabel(B, X, T )

else
sum← sum+ 1

return sum

The last of the three procedures is BuildTrie. It takes three arguments. The first argument
S is a non-empty set of distinct augmented truncated views at the same positive depth `, E1 is
a (possibly empty) trie, and E2 is a (possibly empty) list of couples, such that the first term of
each couple is an integer, and the second is a list. The procedure returns a trie which permits to
discriminate between all augmented truncated views of S. This is done as follows. If E1 is empty
then the returned trie is constructed using the differences between the binary representations of
the augmented truncated views of S. Actually, as we will see in the proof of Theorem 3.1, this case
occurs only when the depth of the augmented truncated views of S is 1. Otherwise, the returned
trie is constructed using intermediate labels that were previously assigned to augmented truncated
views at depth l− 1: these labels can be recursively computed using the arguments E1 and E2. In
particular, the trie E1, that is the second argument, permits to discriminate between all augmented
truncated views at depth 1. The list E2, that is the third argument, permits to further discriminate
between the augmented truncated views from S corresponding to any given leaf of E1.

We use the following notions. For two nodes u and v in the graph G, such that B`(u) 6=
B`(v) and B`−1(u) = B`−1(v) with l ≥ 2, the discriminatory index for the couple u and v is the
smallest integer i, such that B`−1(u′) 6= B`−1(v′), where u′ is the neighbor of u corresponding to
the port number i at u, and v′ is the neighbor of v corresponding to the port number i at v. The
discriminatory index of the list S of augmented truncated views at depth l ≥ 2 that are all identical
at depth l − 1 (in the case when the length of S is larger than 1) is the discriminatory index for
nodes u and v, such that B`(u) and B`(v) are the augmented truncated views from S with the two

10



smallest binary representations. The discriminatory subview of S is the augmented truncated view
B`−1(u′), where u′ and v′ are defined above and B`−1(u′) has a lexicographically smaller binary
representation than B`−1(v′).

Algorithm 4 BuildTrie(S,E1, E2)

if |S| = 1 then return a single node labeled (0)
else

if E1 = ∅ then
if there exist augmented truncated views B from S with binary representations bin(B)
of different lengths then

max← the length of the longest binary representation of an element of S
S′ ← the set of views B from S with binary representations bin(B) of

lengths < max
val← (0,max)

else
j ← the smallest index such that the binary representations of some elements

of S differ at the jth position
S′ ← the set of elements B of S whose jth bit of the binary representation bin(B)

is 0
val← (1, j)

else
`← the depth of augmented truncated views from S
i← the discriminatory index of S
Bdisc ← the discriminatory subview of S
S′ ← the set of elements B`(v) of S, such that B`−1(v′) 6= Bdisc,

where v′ is the neighbor of v corresponding to the port number i at v
val← (i,RetrieveLabel(Bdisc, E1, E2))

return the node labeled val with the left child equal to BuildTrie(S′, E1, E2)
and the right child equal to BuildTrie(S \ S′, E1, E2)

Finally, we present Algorithm ComputeAdvice used by the oracle to compute the advice given to
nodes of the graph. Recall that bin(x), for any non-negative integer x, is the binary representation
of x, bin(T ), for any labeled tree T , is the binary code of this tree, and bin(L), for any nested list
L, is the binary code of this list, as described previously.

Conceptually, the advice consists of three items. The first item is the binary representation
of the election index φ. It serves the nodes to determine when to stop exchanging information
with their neighbors. The second item is A1 = Concat(bin(E1), bin(E2)), where E1 and E2 are as
follows. E1 is a trie that permits to discriminate between all augmented truncated views at depth 1.
Hence this is a labeled tree. E2 is a list of couples constructed using procedures RetrieveLabel and
BuildTrie. The ith couple of this list permits to discriminate between all augmented truncated
views at depth i+1, for i < φ, using the previous couples and E1. The couples in E2 are of the form
(x, λ), where x is an integer and λ is a list of couples (a, Ta), where a is a non-negative integer, and
Ta is a trie. Hence E2 is a nested list. Parts E1 and E2 together permit to discriminate between all
augmented truncated views at depth φ. The third item of the advice is A2. This is the code of the
canonical BFS tree of G rooted at r, with each node u labeled by RetrieveLabel(Bφ(u), E1, E2),
where Bφ(u) is the augmented truncated view in G. Each node will position itself in this tree,
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thanks to the label computed using A1, and then find the path to the root. The advice computed
by the oracle and given to the nodes of the graph is Adv = Concat(bin(φ), A1, A2).

Algorithm 5 ComputeAdvice(G)

φ← election index of G
S1 ← the set of all augmented truncated views at depth 1 in G
for i = 1 to φ do

if i = 1 then
E1 ← BuildTrie(S1, ∅, ())
E2(1)← ()

else
L(i)← ()
for all augmented truncated views B′ at depth i− 1 in G do

N ← the set of nodes u in G for which Bi−1(u) = B′
X ← the set of augmented truncated views Bi(v) in G, for all v ∈ N
if |X| > 1 then

j ← RetrieveLabel(B′, E1, E2(i− 1))
Tj ← BuildTrie(X,E1, E2(i− 1))
L(i)← L(i) with the couple (j, Tj) appended as the last term

E2(i)← E2(i− 1) with the couple (i, L(i)) appended as the last term
E2 ← E2(φ)
r ← the node of G such that RetrieveLabel(Bφ(r), E1, E2) = 1
A1 ← Concat(bin(E1), bin(E2))
T ← the canonical BFS tree of G rooted at r, with each node u labeled by

RetrieveLabel(Bφ(u), E1, E2), where Bφ(u) is the augmented truncated view in G
A2 ← bin(T )
return Concat(bin(φ), A1, A2)

The main algorithm Elect uses advice Adv = Concat(bin(φ), A1, A2) given by the oracle, and
is executed by a node u of the graph. The node decodes the parts φ, E1, E2, and A2 of the advice
from the obtained binary string Adv. Then it acquires the augmented truncated view Bφ(u) in φ
rounds. It assigns itself the unique label x returned by RetrieveLabel(Bφ(u), E1, E2). It decodes
the labeled tree coded by A2, and positions itself in this tree, using the assigned label. Finally, it
outputs the sequence of port numbers corresponding to the unique simple path in this tree from
the node with node x to the root (labeled 1). Below is the pseudocode of the main algorithm.

Algorithm 6 Elect

for i = 0 to φ− 1 do
COM(i)

x← RetrieveLabel(Bφ(u), E1, E2)
output the sequence of port numbers corresponding to the unique simple path in the tree coded
by A2, from the node labeled x to the node labeled 1

The following theorem shows that Algorithm Elect, executed on any n-node graph, performs
leader election in time equal to the election index of this graph, using advice of size O(n log n).
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Theorem 3.1 For any n-node graph G with election index φ, the following properties hold:

1. Algorithm ComputeAdvice(G) terminates and returns a binary string of length O(n log n).

2. Using the advice returned by Algorithm ComputeAdvice(G), Algorithm Elect performs leader
election in time φ.

Proof. In order to prove Part 1, it is enough to show that the values of variables E1, E2 and
T in the Algorithm ComputeAdvice(G) are computed in finite time, and that the length of the
binary string Concat(bin(φ), A1, A2) (where A1 = Concat(bin(E1), bin(E2)) and A2 = bin(T )) is
in O(n log n). We first show that the length of bin(E1) is in O(n log n). In what follows, for any
integer x ≥ 0, we denote by Sx the set of all augmented truncated views at depth x in G.

We will use the following claims.

Claim 3.1 For any S ⊆ S1 such that |S| ≥ 1, the procedure BuildTrie(S, ∅, ()) terminates and
returns a trie of size 2|S|−1 with exactly S leaves. The leaves of this trie are labeled by (0) and the
internal nodes are labeled by queries of the form (a, b), where a and b are integers in O(n log n).

Claim 3.2 For any S ⊆ S1 such that |S| ≥ 1, and for any B ∈ S, the procedure
LocalLabel(B,(),BuildTrie(S, ∅, ())) terminates and returns an integer from {1, 2, . . . , |S|}. More-
over, for any B′ ∈ S such that B 6= B′, the integers LocalLabel(B,(),BuildTrie(S, ∅, ())) and
LocalLabel(B′,(),BuildTrie(S, ∅, ())) are different.

The two claims are proved by simultaneous induction on the size of S. We first prove them
for |S| = 1. In this case BuildTrie(S, ∅, ()) consists of a single node with label (0), and the integer
LocalLabel(B,(),BuildTrie(S, ∅, ())) is 1, where B is the unique element of S. Hence, both claims
hold, if |S1| = 1. Consider the case |S1| ≥ 2, and suppose, by the inductive hypothesis, that, for
some integer k ∈ {1, 2, . . . , |S1| − 1}, both claims hold when 1 ≤ |S| ≤ k. We prove that they
hold for |S| = k + 1. We have |S| ≥ 2 and there are two cases. The first case is when there exist
B1,B2 ∈ S, such that the lengths of bin(B1) and bin(B2) are different. The second case is when
all codes bin(B), for B ∈ S, have equal length, but there exist B1,B2 ∈ S, and an index j, such
that the jth bits of bin(B1) and bin(B2) are different.We consider only the first case, as the second
one can be proved similarly. Denote by max the largest among lengths of codes bin(B), for B ∈ S,
and denote by S′ the subset of S consisting of those augmented truncated views B ∈ S, for which
bin(B) has length smaller than max.

By the inductive hypothesis, procedure BuildTrie(S, ∅, ()) terminates and returns a binary
tree with the root labeled (0,max), whose left child is the root of BuildTrie(S′, ∅, ()) and whose
right child is the root of BuildTrie(S\S′, ∅, ()). Since codes of elements of S are not all of the same
length, we have 1 ≤ |S′| < |S| = k + 1. Hence, the number of nodes and the number of leaves of
BuildTrie(S′, ∅, ()) are, respectively, 2|S′|−1 and |S′|. Also, the number of nodes and the number
of leaves of BuildTrie(S \S′, ∅, ()) are, respectively, 2|S \S′|−1 and |S \S′|. Hence, the number of
nodes and the number of leaves of BuildTrie(S, ∅, ()) are, respectively, 2|S|−1 and |S|. Moreover,
by the inductive hypothesis, all leaves of BuildTrie(S′, ∅, ()) and of BuildTrie(S \ S′, ∅, ()) have
label (0), while internal nodes of these tries are labeled by couples (a, b), where a and b are integers
in O(n log n). Since the integer max used in the label (0,max) of the root of BuildTrie(S, ∅, ()),
is in O(n log n), by Proposition 3.3, this implies that Claim 3.1 holds for |S| = k + 1.

Concerning Claim 3.2, consider distinct views B and B′ from S, and suppose, without loss
of generality, that the length of bin(B) is not smaller than the length of bin(B′). If the length of
bin(B′) is equal to max, then, by the inductive hypothesis and by Algorithms 2 and 4, we have
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LocalLabel(B′,(),BuildTrie(S, ∅, ())) = |S′|+ LocalLabel(B′,(),BuildTrie(S \ S′, ∅, ())) and
LocalLabel(B,(),BuildTrie(S, ∅, ())) = |S′|+ LocalLabel(B,(),BuildTrie(S \ S′, ∅, ())). Again
in view of the inductive hypothesis, the integers LocalLabel(B,(),BuildTrie(S \ S′, ∅, ())) and
LocalLabel(B′,(),BuildTrie(S \ S′, ∅, ())) both belong to the set {1, . . . , |S \ S′|} and are differ-
ent. Hence, if the length of bin(B′) is equal to max, then Claim 3.2 holds for |S| = k + 1. It
remains to consider the case when the length of bin(B′) is smaller than max. In this case we have
LocalLabel(B′,(),BuildTrie(S, ∅, ())) = LocalLabel(B′,(),BuildTrie(S′, ∅, ())), and this integer
belongs to the set {1, . . . , |S′|}. If the length of bin(B) is max, a similar argument as above im-
plies that LocalLabel(B,(),BuildTrie(S, ∅, ())) belongs to the set {|S′| + 1, . . . , |S′| + |S \ S′|},
and Claim 3.2 holds for |S| = k + 1. Otherwise, we have LocalLabel(B,(),BuildTrie(S, ∅, ())) =
LocalLabel(B,(),BuildTrie(S′, ∅, ())). However, by the inductive hypothesis and by Algorithms 2
and 4, LocalLabel(B,(),BuildTrie(S′, ∅, ())) belongs to the set {1, . . . , |S′|} but is different from
LocalLabel(B′,(),BuildTrie(S′, ∅, ())). Hence Claim 3.2 holds for |S| = k + 1 in this case as well.

We proved that Claims 3.1 and 3.2 hold for |S| = k + 1, which completes the proof of these
claims by induction.

In Algorithm ComputeAdvice we have E1 = BuildTrie(S1, ∅, ()). Hence, Claim 3.1 and Propo-
sition 3.2 imply the following claim.

Claim 3.3 The computations of variables E1 and E2(1) in Algorithm ComputeAdvice(G) termi-
nate, E2(1) is the empty list, and the length of bin(E1) is in O(n log n).

In view of Algorithm 3, we have RetrieveLabel(B, E1, ()) = LocalLabel(B,(),E1), for every
B in S1. Claim 3.2 and the equality E1 = BuildTrie(S1, ∅, ()) imply the following claim.

Claim 3.4 For every B ∈ S1, the procedure RetrieveLabel(B, E1, ()) terminates and returns a
value belonging to {1, . . . , |S1|}. For all B′ 6= B from S1, we have RetrieveLabel(B, E1, ()) 6=
RetrieveLabel(B′, E1, ()).

Notice that, if the election index of the graph G is 1, then in Algorithm ComputeAdvice(G)
we have E2 = E2(1) = (), in view of Claim 3.3. Hence, in view of Claim 3.4, the computation of
the labeled BFS tree T terminates in this algorithm, and labels of nodes of T belong to O(n), since
|S1| ≤ n. Hence, Proposition 3.1 and Claim 3.3 imply that, if φ = 1, then computations of variables
E1, E2 and T in Algorithm ComputeAdvice(G) terminate, and the length of the returned binary
string Concat(bin(φ), A1, A2) (where A1 = Concat(bin(E1), bin(E2)) and A2 = bin(T )) belongs
to O(n log n). This proves Part 1 of our theorem for φ = 1. We continue the proof of this part
assuming that φ ≥ 2. In the rest of this proof, for all integers i ∈ {2, . . . , φ}, and for all integers j,
we denote by Si(j) the set of all augmented truncated views at depth i of all nodes u of G, such
that RetrieveLabel(Bi−1(u), E1, E2(i− 1)) = j.

We will use the following three claims.

Claim 3.5 For every integer i ∈ {2, . . . , φ}, Algorithm ComputeAdvice(G) terminates the compu-
tation of variable E2(i), and assigns to it the value ((2, L(2)), (3, L(3)), . . . , (i, L(i))), such that for
all k ∈ {2, . . . , i} the following four properties hold:

• Property 1. L(k) is a list of distinct couples (j, Tj), such that j is a non-negative integer
and Tj is a trie.

• Property 2. For any couples (j, Tj) and (j′, Tj′) of L(k), such that (j, Tj) and (j′, Tj′) are
not at the same position in L(k), we have j 6= j′.
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• Property 3. For every couple (j, Tj) of L(k), we have Tj = BuildTrie(Sk(j), E1, E2(k−1)).

• Property 4. There is a couple (j, Tj) in L(k) if and only if |Sk(j)| ≥ 2.

Claim 3.6 For every integer i ∈ {2, . . . , φ} and for every integer j, the following properties hold:

• Property 1. For every S ⊆ Si(j), such that |S| ≥ 1, the procedure BuildTrie(S,E1, E2(i−
1)) terminates and returns a trie of size 2|S| − 1 with exactly S leaves. The leaves of this trie
are labeled by (0) and its internal nodes are labeled by queries of the form (a, b) where a and
b are integers in O(n).

• Property 2. For every S ⊆ Si(j) such that |S| ≥ 1, and for every node u of G such that
Bi(u) ∈ S, let Xu be the list
(RetrieveLabel(Bi−1(u0, E1, E2(i − 1)),. . . ,RetrieveLabel(Bi−1(udeg(u)−1, E1, E2(i − 1))),
where deg(u) is the degree of u and, for all 0 ≤ l ≤ deg(u) − 1, ul is the neighbor of u
corresponding to port l at u.

– Property 2.1 The list Xu is not empty.

– Property 2.2 The procedure LocalLabel(Bi(u),Xu,BuildTrie(S,E1, E2(i − 1))) ter-
minates and returns an integer belonging to {1, . . . , |S|}.

– Property 2.3 For every node u′, such that Bi(u′) ∈ S and Bi(u) 6= Bi(u′), we have
LocalLabel(Bi(u),Xu,BuildTrie(S,E1, E2(i− 1)))
6= LocalLabel(Bi(u′),Xu′,BuildTrie(S,E1, E2(i− 1))).

Claim 3.7 For every integer i ∈ {2, . . . , φ}, for every integer k ∈ {1, . . . , i}, and for every B ∈ Sk,
the following properties hold:

• Property 1. The procedure RetrieveLabel(B, E1, E2(i)) terminates and returns an integer
belonging to {1, . . . , |Sk|}.

• Property 2. For all augmented truncated views B′ 6= B from Sk, we have
RetrieveLabel(B, E1, E2(i)) 6= RetrieveLabel(B′, E1, E2(i)).

Claims 3.5, 3.6 and 3.7 are proved by simultaneous induction on i. We first prove them for
i = 2. In this case we have E2(i − 1) = E2(1) = (), in view of Claim 3.3. First consider Claim
3.6. Fix an integer j. If S2(j) = ∅, then both properties of the claim are immediately verified.
Hence suppose that S2(j) 6= ∅. We show by induction on the size of S that both these properties
are satisfied. If |S| = 1, then procedure BuildTrie(S,E1, E2(1)) returns a single node labeled (0),
and hence property 1 is satisfied in this case. As for property 2, for every node v in G, such that
B2(v) ∈ S, the list Xv is non-empty by Claim 3.4. Since BuildTrie(S,E1, E2(1)) returns a single
node, procedure LocalLabel(B2(v),Xv,BuildTrie(S,E1, E2(1))) terminates and returns integer 1.
Hence properties 2.1 and 2.2 hold in this case. Moreover, property 2.3 holds as well, since S is a
singleton in this case. It follows that property 2 of Claim 3.6 holds for |S| = 1.

It follows that Claim 3.6 holds, if |S2(j)| = 1. Suppose that |S2(j)| ≥ 2, and assume, by
inductive hypothesis on the size of S, that properties 1 and 2 of Claim 3.6 hold, when 1 ≤ |S| ≤ k,
for some integer 1 ≤ k ≤ |S2(j)|−1. We prove that these properties hold if |S| = k+1. If |S| = k+1
then |S| ≥ 2. Let p and Bdisc be, respectively, the discriminatory index of S and the discriminatory
subview of S. These objects are well defined because, by definition, all augmented truncated views
at depth 1 of the roots of the augmented truncated views from S2(j) are identical. Notice that the
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depth of Bdisc is 1 because the depth of all augmented truncated views in S2(j) is 2. Denote by
S′ the set of augmented truncated views B2(v) from S, such that B1(w) 6= Bdisc, where w is the
neighbor of v corresponding to the port number p at v. In view of the inductive hypothesis and of
Claim 3.4, the procedure BuildTrie(S,E1, E2(1))) terminates and returns a binary tree with root
labeled by (p,RetrieveLabel(Bdisc, E1, ())), whose left child is the root of BuildTrie(S′, E1, ()),
and whose right child is the root of BuildTrie(S\S′, E1, ()). Hence property 1 of Claim 3.6 holds for
|S| = k+ 1: in particular, p is an integer smaller than the degree of v, RetrieveLabel(Bdisc, E1, ())
is in {1, . . . ,S1}, and hence p and RetrieveLabel(Bdisc, E1, ()) are integers in O(n).

Concerning property 2, notice that, for every node v from G, such that B2(v) ∈ S, the list
Xv is non-empty by Claim 3.4, and hence property 2.1 holds for |S| = k + 1. We now prove
properties 2.2 et 2.3. Consider any nodes v and v′ of G, such that B2(v) and B2(v′) are in S and
B2(v) 6= B2(v′). First suppose that B1(vp) 6= Bdisc (i.e., B2(v) ∈ S′), where vp is the neighbor of v
corresponding to the port number p at v. In this case, in view of Claim 3.4, the (p+1)th term of the
list Xv is different from RetrieveLabel(Bdisc, E1, ()), and, in view of Algorithms 2 and 4, we have
LocalLabel(B2(v),Xv,BuildTrie(S,E1, E2(1))) =LocalLabel(B2(v),Xv,BuildTrie(S′, E1, E2(1))).
We have 1 ≤ |S′| < k + 1. By the inductive hypothesis and by property 2.1, proved above for
|S| = k + 1, we know that procedure LocalLabel(B2(v),Xv,BuildTrie(S,E1, E2(1))) terminates
and returns an integer from {1, . . . , |S′|}. Since |S′| < |S|, property 2.2 is proved if B2(v) ∈ S′.
Moreover, if B2(v′) ∈ S′, then by Claim 3.4 and Algorithms 2 and 4, the (p+1)th term of the list Xv′

is different from RetrieveLabel(Bdisc, E1, ()), and by property 2.1, proved above for |S| = k + 1,
procedure LocalLabel(B2(v′),Xv′ ,BuildTrie(S,E1, E2(1))) terminates and returns the same inte-
ger as LocalLabel(B2(v′),Xv′ ,BuildTrie(S′, E1, E2(1))). By the inductive hypothesis, we have
LocalLabel(B2(v),Xv,BuildTrie(S′, E1, E2(1))) 6= LocalLabel(B2(v′),Xv′ ,BuildTrie(S′, E1, E2(1))).
This implies
LocalLabel(B2(v),Xv,BuildTrie(S,E1, E2(1))) 6= LocalLabel(B2(v′),Xv′ ,BuildTrie(S,E1, E2(1))).

Moreover, if B2(v′) /∈ S′, then the (p + 1)th term of the list Xv′ is equal to the integer
RetrieveLabel(Bdisc, E1, ()), and hence LocalLabel(B2(v′),Xv′ ,BuildTrie(S,E1, E2(1))) =
numleaves + LocalLabel(B2(v′),Xv′ ,BuildTrie(S \ S′, E1, E2(1))) in view of Algorithms 2 and 4,
where numleaves is the number of leaves in BuildTrie(S′, E1, E2(1)). Since 1 ≤ |S′| ≤ k and
1 ≤ |S \ S′| ≤ k, by the inductive hypothesis and property 2.1, proved for |S| = k + 1,
LocalLabel(B2(v′),Xv′ ,BuildTrie(S,E1, E2(1))) terminates and returns an integer from {|S′| +
1, . . . , |S′|+ |S \ S′|}. It follows that
LocalLabel(B2(v′),Xv′ ,BuildTrie(S,E1, E2(1)))> LocalLabel(B2(v),Xv,BuildTrie(S,E1, E2(1))).
Hence, if B1(vp) 6= Bdisc (i.e., B2(v) ∈ S′) the properties 2.2 et 2.3 hold when |S| = k + 1. If
B1(vp) = Bdisc, a similar reasoning shows that they hold as well. By induction, we deduce that
properties 1 and 2 of Claim 3.6 hold for every non-empty set S ⊆ S2(j), which finishes the proof
of Claim 3.6 for i = 2.

We now prove that Claim 3.5 holds for i = 2. According to Algorithm 5, L(2) is a (possibly
empty) list of couples (La, Lb), such that La is the integer returned by RetrieveLabel(B′, E1, ()),
for some augmented truncated view B′ at depth 1, and Lb is the trie BuildTrie(X,E1, ())), where
X is a non-empty set of augmented truncated views at depth 1. By Claim 3.4 and Claim 3.6 for
i = 2 (proved above) the computation of L(2) terminates, the variable E2(2) is assigned the value
(2, L(2)), La is a non-negative integer and Lb is a trie. Hence property 1 of Claim 3.5 holds for
i = 2. Concerning property 2 of this claim, notice that, if L(2) is empty or has a unique term,
then this property holds for i = 2. If L(2) has at least two terms (La, Lb) et (L′a, L

′
b), we have

La = RetrieveLabel(B′, E1, ()) and L′a = RetrieveLabel(B′′, E1, ()), where B′ and B′′ are two
different augmented truncated views at depth 1. By Claim 3.4, we have RetrieveLabel(B′, E1, ())
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6= RetrieveLabel(B′′, E1, ()). This implies property 2 for i = 2 because La 6= L′a. As for properties
3 and 4, consider a couple (La, Lb) from L(2). We have La = RetrieveLabel(B′, E1, ()) for some
augmented truncated view B′ at depth 1, and Lb = BuildTrie(X,E1, ())), where X is the set of
augmented truncated views at depth 2 of all nodes u of G such that B1(u) = B′. Hence X = S2(La),
and property 3 holds for i = 2. Moreover, according to Algorithm 5, |X| ≥ 2. Hence, if there exists
a couple (La, Lb) in L(2), then |S2(La)| ≥ 2. In order to prove property 4 for i = 2, we have to
show that the converse implication holds as well. For each augmented truncated view B′ at depth 1,
consider the set Y of augmented truncated views B2(u) of all nodes u such that B1(u) = B′. If Y is of
cardinality greater than 1, then there is a couple (RetrieveLabel(B′, E1, ()),BuildTrie(Y,E1, ())))
in L(2). Hence, in view of Claim 3.4, this implies the converse implication of property 4, which
proves this property for i = 2. This completes the proof of Claim 3.5 for i = 2.

We next prove Claim 3.7 for i = 2. We have to show its validity for k = 1 and for k = 2. If
k = 1 then, for every augmented truncated view B ∈ S1, we have RetrieveLabel(B, E1, E2(2)) =
RetrieveLabel(B, E1, E2(1)), as the depth of B is 1. Hence, in view of Claim 3.4, Claim 3.7 holds
for k = 1.

Suppose that k = 2. Let u be any node of G. In view of Claim 3.4 and of Claims 3.5
and 3.6 shown above for i = 2, the procedure RetrieveLabel(B2(u), E1, E2(2)) terminates. Hence,
to complete the proof of Claim 3.7 for i = 2, it is enough to prove the following facts:

Fact 1. RetrieveLabel(B2(u), E1, E2(2)) ∈ {1, . . . , |S2|}.
Fact 2. For every node v of G, such that B2(u) 6= B2(v), we have
RetrieveLabel(B2(u), E1, E2(2)) 6= RetrieveLabel(B2(v), E1, E2(2)).
We first prove Fact 1. The value of the variable label in RetrieveLabel(B2(u), E1, E2(2))

is equal to the integer returned by RetrieveLabel(B1(u), E1, E2(2)) which is equal to the integer
returned by RetrieveLabel(B1(u), E1, E2(1)) because the depth of B1(u) is 1. In view of Claim 3.4,
we have to consider two cases: when label = 1 and when label > 1.

• label = 1. If there is no couple (1, ∗) in the list L(2), then RetrieveLabel(B2(u), E1, E2(2))
returns the integer 1. If there is a couple (1, T1) in the list L(2), then Claim 3.5 for
i = 2 implies that this is the only couple in this list whose first term is 1, and T1 is
the trie equal to BuildTrie(S2(1), E1, E2(1))). We have RetrieveLabel(B2(u), E1, E2(2))
= LocalLabel(B2(u),Xu, T1), and this integer belongs to {1, . . . , |S2(1)|}, in view of property
2.2 of Claim 3.6. Since |S2(1)| ≤ |S2|, the proof of Fact 1 is completed in this case.

• label > 1. Denote by K the set of indices l ≤ label, such that there exists a couple (l, Tl) in
the list L(2). Claims 3.5 and 3.6 for i = 2 imply that, for every l ∈ K, there exists a unique
couple in L(2) whose first term is l. Also, Tl = BuildTrie(S2(l), E1, E2(1)))), and the number
of leaves of Tl is |S2(l)|. Hence, if label /∈ K, we have RetrieveLabel(B2(u), E1, E2(2)) =∑

z∈K |S2(z)|+ |{1, . . . , label} \ K|, which is at most
∑

z∈{1,...,label} |S2(z)| ≤ |S2|, because, for

every pair of distinct integers z1 and z2 from {1, . . . , label}, we have S2(z1) ∩ S2(z2) = ∅, in
view of Claim 3.4. On the other hand, if label ∈ K, then RetrieveLabel(B2(u), E1, E2(2)) =∑

z∈K\{label} |S2(z)|+ |{1, . . . , label} \ K| + LocalLabel(B2(u),Xu,Tlabel)

(where Tlabel =BuildTrie(S2(label), E1, E2(1))). Hence RetrieveLabel(B2(u), E1, E2(2)) ≤∑
z∈{1,2,...,label−1} |S2(z)|+ LocalLabel(B2(u),Xu,Tlabel). The latter integer is not larger than∑
z∈{1,2,...,label} |S2(z)| because LocalLabel(B2(u),Xu,Tlabel) belongs to {1, . . . , |S2(label)|},

by property 2.2 of Claim 3.6 for i = 2. As mentioned above,
∑

z∈{1,...,label} |S2(z)| ≤ |S2|.
This completes the proof of Fact 1 in the case label > 1.

We now prove Fact 2. Denote by local(u) (resp. local(v)) the variable local in proce-
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dure RetrieveLabel(B2(u), E1, E2(2)) (resp. in RetrieveLabel(B2(v), E1, E2(2))), and first con-
sider the case local(u) = local(v). Then B2(u) and B2(v) belong to the set S2(local(v)), and
|S2(local(v))| ≥ 2. Moreover, in view of Claim 3.5 for i = 2, there exists a unique couple
(label(v), Tlabel(v)) in L(2), where Tlabel(v) = BuildTrie(S2(label(v)), E1, E2(1))). For some non-

negative integerW , we have RetrieveLabel(B2(u), E1, E2(2)) =W+ LocalLabel(B2(u),Xu,Tlabel(v)),
and
RetrieveLabel(B2(v), E1, E2(2)) = W+ LocalLabel(B2(v),Xv,Tlabel(v)). In view of Claim 3.6 for

i = 2, we have LocalLabel(B2(u),Xu,Tlabel(v)) 6= LocalLabel(B2(v),Xv,Tlabel(v)). It follows that

RetrieveLabel(B2(u), E1, E2(2)) 6= RetrieveLabel(B2(v), E1, E2(2)), which proves Fact 2 when
local(u) = local(v).

Now suppose that local(u) 6= local(v). Without loss of generality, local(u) < local(v). There
are 3 cases.

• Case 1. There is no couple in L(2) whose first term is local(u) or local(v).

Then RetrieveLabel(B2(u), E1, E2(2)) ≤ RetrieveLabel(B2(v), E1, E2(2)) + 1.

• Case 2. There is a couple (local(u), Tlocal(u)) and a couple (local(v), Tlocal(v)) in L(2).

In view of Claim 3.5 for i = 2, we have Tlocal(u) = BuildTrie(S2(label(u)), E1, E2(1))) and
Tlocal(v) = BuildTrie(S2(label(v)), E1, E2(1))). Hence, Claim 3.6 for i = 2 implies that

LocalLabel(B2(u),Xu,Tlabel(u)) returns an integer at most equal to the number of leaves

in Tlabel(u)), and implies the inequality LocalLabel(B2(v),Xv,Tlabel(v)) ≥ 1. It follows that

RetrieveLabel(B2(u), E1, E2(2)) < RetrieveLabel(B2(v), E1, E2(2)).

• Case 3. There is exactly one couple in L(2) whose first term is local(u) or local(v).

The inequality RetrieveLabel(B2(u), E1, E2(2)) < RetrieveLabel(B2(v), E1, E2(2)) is shown
using similar arguments as in the two preceding cases.

This concludes the proof of Fact 2, and thus also the proof of Claim 3.7 for i = 2. Hence,
Claims 3.5, 3.6 and 3.7 are valid for i = 2. The inductive step for these three claims is proved using
similar arguments.

We now prove that the computation of E2 in Algorithm ComputeAdvice terminates, and that
the length of bin(E2) is inO(n log n). In this algorithm, the value of E2 is set to E2(φ). Claim 3.5 im-
plies that the computation of E2 terminates, and that E2 is a list ((2, L(2)), (3, L(3)), . . . , (φ,L(φ))),
where in every couple (i, L(i)), i is an integer and L(i) is a list of couples (j, Tj), such that j is an
integer, and Tj is a trie. In order to show that the length of bin(E2) is in O(n log n), it is enough to
prove that the three conditions from Proposition 3.4 are satisfied. In view of Claim 3.5, the number
of couples in E2 is in O(n) because φ ∈ O(n). Moreover, for every couple (i, L(i)) in E2, there exists
a couple (j, ∗) ∈ L(i) if and only if |Si(j)| ≥ 2. Since Si(j) is the set of augmented truncated views
at depth i of all nodes u of G, such that RetrieveLabel(Bi−1(u), E1, E2(i − 1)) = j, Claim 3.6
implies that j ∈ O(n). For every trie appearing in a term of some list L(i), where (i, L(i)) is in
E2, all its leaves are labeled by (0), and all its internal nodes are labeled by queries of the form
(a, b), where a and b are integers in O(n). Hence, in order to show that the length of bin(E2) is in
O(n log n), it is enough to show that the following two conditions are satisfied.
C1. The sum of lengths of all lists Li appearing in terms of E2 is in O(n).
C2. The sum of sizes of all tries appearing in terms of lists L(i) appearing in terms of E2 is in
O(n).
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For every couple (i, L(i)) in E2 and for every couple (j, Tj) in L(i), the term Tj is a non-empty
trie. Indeed, by property 3 of Claim 3.5, we have Tj = BuildTrie(Si(j), E1, E2(i− 1))). In view of
property 4 of Claim 3.5, we have |Si(j)| ≥ 2, and in view of property 1 of Claim 3.6, the size of Tj
is 2|Si(j)| − 1. Hence condition C2 implies condition C1, and thus it is enough to prove condition
C2.

In view of Claim 3.5 and of property 1 of Claim 3.6, for every list L(i), such that the couple
(i, L(i)) is in E2, the sum of sizes of all tries appearing in terms of L(i) is (2

∑
j∈H |Si(j)|) − |H|,

where H is the set of integers j such that |Si(j)| ≥ 2 and Si(j) is the set of augmented truncated
views at depth i of all nodes u of G, for which RetrieveLabel(Bi−1(u), E1, E2(i− 1)) = j.

Let H′ be the set of integers j, such that |Si(j)| = 1. By Claim 3.7 we have H ∪ H′ =
{1, 2, . . . , |Si−1|},

⋃
j∈H∪H′ Si(j) = Si, and Si(j1) ∩ Si(j2) = ∅, for distinct j1, j2 ∈ H ∪ H′. Hence∑

j∈H∪H′ |Si(j)| = |Si|. It follows that:

∑
j∈H
|Si(j)|+

∑
j∈H′
|Si(j)| = |Si| (1)

2(
∑
j∈H
|Si(j)|+

∑
j∈H′
|Si(j)|) + |H| − |H| = 2|Si| (2)

2(
∑
j∈H
|Si(j)|)− |H| = 2|Si| − 2(

∑
j∈H′
|Si(j)|)− |H| (3)

= 2|Si| − 2(
∑
j∈H′
|Si(j)|)− 2|H|+ |H| (4)

≤ 2|Si| − 2|H ∪ H′|+ |H| (5)

≤ 2|Si| − 2|Si−1|+ |H| (6)

However, we know that
∑

j∈H∪H′ |Si(j)| = |Si| and H∪H′ = {1, 2, . . . , |Si−1|}. Thus we have:

|Si| − |Si−1| =
∑

j∈H∪H′
|Si(j)| − |H ∪H′| (7)

=
∑

j∈H∪H′
(|Si(j)| − 1) (8)

=
∑
j∈H

(|Si(j)| − 1) +
∑
j∈H′

(|Si(j)| − 1) (9)

Note that
∑

j∈H′(|Si(j)| − 1) = 0 because, by definition of H′, we have |Si(j)| = 1, for all

j ∈ H′. It follows that

|Si| − |Si−1| =
∑
j∈H
|Si(j)| − |H| (10)

Since for all j ∈ H we have |Si(j)| ≥ 2, it follows that

∑
j∈H
|Si(j)| − |H| ≥ |H|. (11)

Equations (10) and (11) imply that
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|Si| − |Si−1| ≥ |H|. (12)

Hence equations (6) and (12) imply:

2(
∑
j∈H
|Si(j)|)− |H| ≤ 3(|Si| − |Si−1|). (13)

As mentioned above, the sum of sizes of all tries appearing in terms of L(i) is (2
∑

j∈H |Si(j)|)−
|H|. Thus, by Claim 3.5, the sum of sizes of all tries appearing in terms of lists L(i) appearing in

terms of E2 is at most
∑φ

i=2 3(|Si| − |Si−1|) = 3(|Sφ| − |S2|) ≤ 3n. This proves condition C2 and
concludes the proof that the length of bin(E2) is in O(n log n).

We are now able to conclude the proof of Part 1 of our theorem. We have seen that the
computation of E2 terminates, and that the length of bin(E2) is in O(n log n). By Claim 3.4, the
computation of E1 terminates and the length of bin(E1) is in O(n log n). By property 1 of Claim 3.7,
the computation of the labeled BFS tree T in ComputeAdvice(G) terminates, and the labels of nodes
of T are in O(n) because |Sφ| = n. Hence, Proposition 3.1 implies that the length of bin(T ) is in
O(n log n). Finally, the length of bin(φ) is in O(log n) because φ ≤ n. It follows that Algorithm
ComputeAdvice(G) terminates, and the length of the returned string Concat(bin(φ), A1, A2) (where
A1 = Concat(bin(E1), bin(E2)) and A2 = bin(T )) is in O(n log n).

It remains to prove Part 2 of the theorem. Using advice Concat(bin(φ), A1, A2) returned by
ComputeAdvice(G), every node of G executing Algorithm Elect can decode the objects φ,E1, E2,
and T computed by Algorithm ComputeAdvice(G). After φ rounds, each node u of G learns its
augmented truncated view at depth φ, and can execute RetrieveLabel(Bφ(u), E1, E2) which termi-
nates in view of Claims 3.4 (if φ = 1) and 3.7 (if φ ≥ 2), as E2 = E2(φ). According to these claims
and by Proposition 2.1, for all distinct nodes u and u′ of G, we have RetrieveLabel(Bφ(u), E1, E2)
6= RetrieveLabel(Bφ(u′), E1, E2). Moreover, there exists exactly one node u′′ of G such that
RetrieveLabel(Bφ(u′′), E1, E2) = 1. Since each node u of the BFS tree T is labeled by the integer
RetrieveLabel(Bφ(u), E1, E2), each node executing Algorithm Elect outputs the sequence of port
numbers corresponding to the unique simple path in the tree T , from this node to the node u′′.
Consequently, all nodes perform correct leader election, which proves Part 2 of our theorem. �

We now prove two lower bounds on the size of advice for election in the minimum time, i.e.,
in time equal to the election index φ. For φ = 1 we establish the lower bound Ω(n log logn), and
for φ > 1 we establish the lower bound Ω(n(log log n)2/ log n). Both these bounds differ from our
upper bound O(n log n) only by a polylogarithmic factor.

The high-level idea of the proofs of these bounds is the following. Given a positive integer φ
we construct, for arbitrarily large integers n, families of n-node graphs with election index φ and
with the property that each graph of such a family must receive different advice for any election
algorithm working in time φ for all graphs of this family. This property is established by showing
that, if two graphs G1 and G2 from the family received the same advice, some nodes v1 in G1 and
v2 in G2 would have to output identical sequences of port numbers because they have identical
augmented truncated views at depth φ, which would result in failure of leader election in one
of these graphs. Since the constructed families are large enough, the above property implies the
desired lower bound on the size of advice for at least one graph in the family.

We start with the construction of a family F(x) = {C1, . . . , Cy} of labeled (x+1)-node cliques,
for x ≥ 2. All these cliques will have node labels r, v0, v1, . . . , vx−1. We first define a clique C by
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assigning its port numbers. Assign port number i, for 0 ≤ i ≤ x− 1, to the port at r corresponding
to the edge {r, vi}. The rest of the port numbers are assigned arbitrarily. We now show how to
produce the cliques of the family F(x) from the clique C. Consider all sequences of x integers from
the set {1, . . . , x− 1}. There are y = (x− 1)x such sequences. Let (s1, . . . , sy) be any enumeration
of them. Let st = (h0, h1, . . . , hx−1), for a fixed t = 1, . . . , y. The clique Ct is defined from clique
C by assigning port (p+ hj) mod x instead of port p at node vj , for all pairs 0 ≤ j, p ≤ x− 1.

We first consider the election index φ = 1.

Theorem 3.2 For arbitrarily large integers n, there exist n-node graphs with election index 1, such
that leader election in time 1 in these graphs requires advice of size Ω(n log log n).

Proof. Fix an integer k ≥ 216, and let x = d2 log k/ log log ke. We have k ≤ y = (x− 1)x. We first
define a graph Hk using the family F(x), cf. Fig. 1.
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Figure 1: A representation of the graph H7. The grey discs represent cliques from F(x).

Consider a ring of size k with nodes w1, . . . , wk. Attach an isomorphic copy of the clique Ct
to node wt, by identifying wt with node r of this copy and taking all other nodes different from
the nodes of the ring. (The term “isomorphic” means that all port numbers are preserved.) All
attached cliques are pairwise node-disjoint. Assign ports x and x+ 1 corresponding to edges of the
ring at each of its nodes, in the clockwise order. This concludes the construction of graph Hk.

Finally we produce a family Gk consisting of (k − 1)! graphs as follows. Keep the clique at
node w1 of the ring in Hk fixed, and permute arbitrarily cliques attached to all other nodes of the
ring. Then delete all node labels.

The proof relies on the following two claims. The first claim establishes the election index of
graphs in Gk.

Claim 3.8 All graphs in the family Gk have election index 1.

To prove the claim it is enough to show that all these graphs have election index at most 1.
Hence it suffices to show that all augmented truncated views at depth 1 are distinct. Fix a graph G
in Gk. Consider two nodes u and v of G. First suppose that they belong to the same clique. If they
have different degrees (in the graph G) then B1(u) 6= B1(v). If they have the same degree, then
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the port numbers at the unique node r of degree x+ 2 in this clique corresponding to edges {r, u}
and {r, v} must be different, and hence B1(u) 6= B1(v) as well. Next suppose that u and v are in
different cliques Cu and Cv, respectively. Again, if they have different degrees then B1(u) 6= B1(v).
Hence assume that they have the same degree. Consider two cases.
Case 1. The degree of u and of v is x+ 2.

By the construction of the family F(x), there exists an integer 0 ≤ i ≤ x−1 with the following
property. Let u′ be the node of Cu, such that the port at u corresponding to edge {u, u′} is i, and
let v′ be the node of Cv, such that the port at v corresponding to edge {v, v′} is i. The port at
u′ corresponding to edge {u, u′} is different from the port at v′ corresponding to edge {v, v′}, and
hence B1(u) 6= B1(v).
Case 2. The degree of u and of v is x.

Let ru be the unique node of degree x + 2 in the clique Cu, and let rv be the unique node
of degree x + 2 in the clique Cv. Consider the edges eu = {ru, u} and ev = {rv, v}. If the port
number at ru corresponding to edge eu is different from the port number at rv corresponding to
edge ev, or the port number at u corresponding to edge eu is different from the port number at
v corresponding to edge ev, then B1(u) 6= B1(v). Hence assume that the respective port numbers
are equal. For any integer 0 ≤ i ≤ x − 1, let ai be the node of degree x in Cu, such that the port
number at ru corresponding to edge {ru, ai} is i, and let bi be the node of degree x in Cv, such that
the port number at rv corresponding to edge {rv, bi} is i. By the construction of the family F(x),
we have the following two properties:
1. The port number at u corresponding to edge {u, ai}, for any ai 6= u, is equal to the port number
at v corresponding to edge {v, bi} (because the port number at u corresponding to edge eu is equal
to the port number at v corresponding to edge ev);
2. There exists an integer 0 ≤ i ≤ x− 1, such that ai 6= u and the port number at ai corresponding
to edge {u, ai}, is different from the port number at bi corresponding to edge {v, bi} (because the
cliques Cu and Cv correspond to different cliques from the family F(x)).
Hence B1(u) 6= B1(v) in all cases. This concludes the proof of the claim.

The next claim will imply a lower bound on the number of different pieces of advice needed to
perform election in the family Gk in time 1.

Claim 3.9 Consider any election algorithm working for the family Gk in time 1. The advice given
to distinct graphs in this family must be different.

In the proof of the claim we will use the following observation that follows from the fact that
port numbers in the ring in all graphs of the family Gk are the same.
Observation. Let G1 and G2 be any graphs from the family Gk. Let Ct be an arbitrary clique
from the family F(x) used to form the graph Hk. For j = 1, 2, let rj be the node of Gj by which
the clique isomorphic to Ct is attached to the ring in this graph. Then B1(r1) = B1(r2).

The proof of the claim is by contradiction. Fix an election algorithm and suppose that two
graphs G1 and G2 from the family Gk get the same advice. Let z1 be the node elected in G1 and
z2 the node elected in G2. Denote by C ′ the clique containing z1 and by C ′′ the clique containing
z2. Let r′ be the unique node of degree x+ 2 in C ′ and let r′′ be the unique node of degree x+ 2
in C ′′.

Consider two cases.
Case 1. The cliques C ′ and C ′′ are non-isomorphic.

Let s be the node in G2 at which the clique isomorphic to C ′ is attached. By the observation,
the augmented truncated view B1(r′) in G1 is equal to the augmented truncated view B1(s) in G2.
Since G1 and G2 get the same advice, nodes r′ in G1 and s in G2 must output the same sequence
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of port numbers corresponding to a simple path to the leader. The sequence outputted by node
r′ in G1 cannot contain the port number x, hence the sequence outputted by node s in G2 cannot
contain the port number x either. This is a contradiction, because every path from s to z2 in G2

must use port x at least once.
Case 2. The cliques C ′ and C ′′ are isomorphic.

Since graphs G1 and G2 differ only by the permutation of cliques, there must exist isomorphic
cliques D′ in G1 and D′′ in G2, such that the clockwise distance (in the ring) from the unique
node s′ of degree x+ 2 in D′ to node r′ is different than the clockwise distance (in the ring) from
the unique node s′′ of degree x + 2 in D′′ to node r′′. Since D′ and D′′ are isomorphic, by the
observation, the augmented truncated view B1(s′) in G1 is equal to the augmented truncated view
B1(s′′) in G2. Since G1 and G2 get the same advice, nodes s′ in G1 and s′′ in G2 output the same
sequence of port numbers corresponding to a simple path to the leader. Without loss of generality,
suppose that the first number in the outputted sequences is x; the case when it is x+ 1 is similar.
Due to the differences in clockwise distances from s′ to r′ and from s′′ to r′′, the number of integers
x in both sequences must be different, which gives a contradiction. This concludes the proof of the
claim.

Our lower bound will be shown on the family G =
⋃∞
k=216 Gk. Consider an election algorithm

working in all graphs of this family in time 1. For any k ≥ 216, let nk = k(d2 log k/ log log ke+ 1).
Graphs in the family Gk have size nk. By Claim 3.8, all these graphs have election index 1.
By Claim 3.9, all of them must get different advice. Since, for any k ≥ 216, there are (k − 1)!
graphs in Gk, at least one of them must get advice of size Ω(log((k − 1)!)) = Ω(k log k). We have
k log k ∈ Θ(nk log lognk). Hence there exists an infinite sequence of integers nk such that there
are nk-node graphs with election index 1 that require advice of size Ω(nk log log nk) for election in
time 1. �

We next consider the election index φ > 1. The lower bound in this case uses a construction
slightly more complicated than for φ = 1. Note that a straightforward generalization of the previous
construction would lead to a lower bound Ω(n log logn/φ) which would be too weak for our purpose,
as φ can be much larger than polylogarithmic in n.

Theorem 3.3 Let φ be an integer larger than 1. For arbitrarily large integers n, there exist n-node
graphs with election index φ, such that leader election in time φ in these graphs requires advice of
size Ω(n(log log n)2)/ log n).

Proof. Fix an even integer k ≥ 216, and let x = d2 log k/ log log ke. We have k ≤ y = (x − 1)x.
We construct a family Nk of graphs, called k-necklaces. This family is derived from a graph Mk

defined as follows, cf. Fig. 2.
Let w1, . . . , wk be nodes, that will be called joints. Let D1, . . . , Dk−1 be pairwise disjoint cliques

of size x. These cliques will be called diamonds. Attach every node of Di, for i = 1, . . . , k − 1, to
wi and to wi+1 by edges called rays. Next, let E1, . . . , Ek be distinct cliques from the family F(x).
These cliques will be called emeralds. Attach Ei to wi, for i = 1, . . . , k, by identifying wi with the
node r of Ei (see the definition of the family F(x)). Since k ≤ (x− 1)x, there are enough cliques in
F(x). Finally, consider chains of nodes (a0, . . . , aφ−2) and (b0, . . . , bφ−2), such that all these nodes
are distinct and different from all previously constructed nodes. Attach aφ−2 to w1 by an edge and
attach bφ−2 to wk by an edge.

We next assign port numbers to the above constructed graph Mk. First fix the same arbitrary
port numbering (from the range {0, . . . , x − 2}) inside each diamond Di. Then, for any diamond
Di, assign number x − 1 to the port at any node of Di corresponding to the ray joining it to wi,
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Figure 2: A representation of the graph Mk for k = 6.

and assign number x to the port at any node of Di corresponding to the ray joining it to wi+1.
Keep the port numbering inside each emerald as it is defined in the description of the family F(x).
Next we define port numbers corresponding to all rays at nodes w1, . . . , wk. Port numbers at node
w1 corresponding to rays joining it to diamond D1, and port numbers at node wk corresponding
to rays joining it to diamond Dk−1 are assigned arbitrarily from the range {x, . . . , 2x − 1}. The
port number at node w1 corresponding to the edge joining it to aφ−2, and the port number at node
wk corresponding to the edge joining it to bφ−2 is 2x. Consider a node wi, for 1 < i < k. If i is
even, then port numbers at node wi corresponding to rays joining it to diamond Di−1 are assigned
arbitrarily from the range {x, . . . , 2x − 1}, and port numbers at node wi corresponding to rays
joining it to diamond Di are assigned arbitrarily from the range {2x, . . . , 3x− 1}. If i is odd, then
port numbers at node wi corresponding to rays joining it to diamond Di−1 are assigned arbitrarily
from the range {2x, . . . , 3x − 1}, and port numbers at node wi corresponding to rays joining it
to diamond Di are assigned arbitrarily from the range {x, . . . , 2x − 1}. It remains to assign port
numbers at nodes of the two chains. The unique port number at nodes a0 and b0 is 0. Call node a0

the left leaf and call node b0 the right leaf. If φ > 2 then φ− 2 > 0, and the port number at node
aφ−2 (resp. bφ−2) corresponding to the edge joining it to w1 (resp. to wk) is 0, while the other
port number at node aφ−2 (resp. bφ−2) corresponding to the unique other edge is 1. If φ > 3 then
φ− 2 > 1 and, for every 0 < i < φ− 2, the port number at node ai (resp. bi) corresponding to the
edge joining it to ai−1 (resp. bi−1) is 1, and the port number at node ai (resp. bi) corresponding to
the edge joining it to ai+1 (resp. bi+1) is 0. Finally we delete all node labels. This concludes the
construction of graph Mk.

The family Nk of k-necklaces is defined from the graph Mk as follows. Let C = (c1, . . . , ck) be
any sequence of integers from the range {0, . . . , x}, such that c1 = ck = 0. Such a sequence is called
the code of a graph in Nk. The graph corresponding to code C is obtained from Mk by replacing
any port number p at any node of Di, for i ≤ k, by (p+ ci) mod (x+ 1). All the rest of the graph
Mk remains intact. This concludes the construction of the family of k-necklaces.

The proof relies on the following two claims similar to those from the proof of Theorem 3.2.
The first claim establishes the election index of graphs in Nk.

Claim 3.10 All graphs in the family Nk have election index φ.

To prove the claim first observe that the election index of graphs in the family Nk is at least φ
because, by the construction of the graph Mk, we have Bφ−1(v) = Bφ−1(w), where v and w are the
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only nodes of degree 1 in any k-necklace (i.e., the left and right leaves). Hence it is enough to prove
that the augmented truncated views at depth φ of any two nodes in any k-necklace are different.

Consider any two nodes v and w in a k-necklace. If v is a joint and w is not, then v and
w have different degrees, hence B1(v) 6= B1(w), and hence Bφ(v) 6= Bφ(w). If both v and w are
joints then B1(v) 6= B1(w), using an argument similar to that in Case 1 in the proof of Claim 3.8
(because v and w correspond to nodes r in two different graphs from the family F(x)), and hence
Bφ(v) 6= Bφ(w). Hence we may assume that none of nodes v and w are joints. Every node that
is not a joint is at distance at most φ− 1 from a joint. Consider the joint v′ corresponding to the
lexicographically smallest among the shortest paths from v to a joint, and a joint w′ corresponding
to the lexicographically smallest among the shortest paths from w to a joint. Let sv be the sequence
of port numbers in the first path, and let sw be the sequence of port numbers in the second path. If
sv 6= sw, then Bφ−1(v) 6= Bφ−1(w), and hence Bφ(v) 6= Bφ(w). If sv = sw then v′ 6= w′ because the
same sequence of port numbers cannot correspond to paths from distinct nodes to the same node.
As stated above, the augmented truncated views at depth 1 of all joints are unique. It follows that
Bφ(v) 6= Bφ(w). This proves the claim.

The next claim will imply a lower bound on the number of different pieces of advice needed to
perform election in the family Nk in time φ.

Claim 3.11 Consider any election algorithm working for the family Nk in time φ. The advice
given to distinct graphs in this family must be different.

In the proof of the claim we will use the following observation following from the fact that all
codes of k-necklaces start and finish with a 0.
Observation. Let N1 and N2 be any graphs from the family Nk. Augmented truncated views at
depth φ of left leaves in N1 and N2 are equal, and augmented truncated views at depth φ of right
leaves in N1 and N2 are equal.

The proof of the claim is by contradiction. Fix an election algorithm and suppose that two
graphs from the family Nk, graph N1 with code (c1, . . . , ck) and graph N2 with code (c′1, . . . , c

′
k),

get the same advice. Let i be the smallest index such that ci 6= c′i. In view of the unicity of the
leader in every k-necklace, the sequence outputted by the left leaf of N1, or the sequence outputted
by the right leaf of N1 must correspond to a simple path containing a ray of the diamond Di.
Suppose that this is the case for the left leaf and that i is even. The remaining three cases can be
analyzed similarly. Denote by σ the prefix of the sequence outputted by the left leaf of N1 that
corresponds to a path from this leaf to the “ith joint from the left”, i.e., more precisely, the joint at
distance (φ− 1) + 2(i− 1) from the left leaf. The first term following the prefix σ in the sequence
outputted by the left leaf of N1 is some integer y ∈ {2x, 2x+ 1, . . . , 3x− 1} (because otherwise the
corresponding path would visit at least twice the ith joint from the left, and hence this path would
not be simple) and the second term following the prefix σ in the sequence outputted by the left
leaf of N1 is (x + ci) mod (x + 1) by the construction of the family Nk. By the observation, the
left leaf of N2 outputs the same sequence as the left leaf of N1, with the same prefix σ, followed
by(y, (x + ci) mod (x + 1)). By the minimality of i, the path corresponding to σ reaches the ith
joint from the left in N2. By the construction of the family Nk, the edge incident to the ith joint
from the left in N2 with port number y at this joint has the other port number (x+c′i) mod (x+1).
This is a contradiction, because (x+ ci) mod (x+ 1) 6= (x+ c′i) mod (x+ 1), as ci 6= c′i and both
ci and c′i are at most x. This proves the claim.

Consider the family N =
⋃∞
k=max(216,φ)Nk. Our lower bound will be proven on the family

N . Consider an election algorithm working in all graphs of this family in time φ. For any k ≥
max(216, φ), let nk = 2(φ − 1) + k(x − 1) + (k − 1)x. Graphs in the family Nk have size nk.
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Since x = d2 log k/ log log ke, we have nk ∈ Θ(k log k/ log log k). By Claim 3.10, all these graphs
have election index φ. By Claim 3.11, all of them must get different advice. Since, for any
k ≥ max(216, φ), there are (x + 1)k−3 graphs in Nk, at least one of them must get advice of size
Ω(log((x + 1)k−3)) = Ω(k log log k). We have k log log k ∈ Θ(nk(log log nk)

2/ log nk). Hence there
exists an infinite sequence of integers nk such that there are nk-node graphs with election index φ
that require advice of size Ω(nk(log log nk)

2/ log nk) for election in time φ. �

4 Election in large time

In this section we study the minimum size of advice sufficient to perform leader election when the
allocated time is large, i.e., when it exceeds the diameter of the graph by an additive offset which
is some function of the election index φ of the graph. We consider four values of this offset, for an
integer constant c > 1: φ+ c, cφ, φc, and cφ. In the first case the offset is asymptotically equal to
φ, in the second case it is linear in φ but the multiplicative constant is larger than 1, in the third
case it is polynomial in φ but super-linear, and in the fourth case it is exponential in φ. Note that,
even in the first case, that calls for the fastest election among these four cases (in time D+ φ+ c),
the allocated time is large enough for all nodes to see all the differences in truncated views of other
nodes, which makes a huge difference between leader election in such a time and in the minimum
possible time φ. For all these four election times, we establish tight bounds on the minimum size
of advice that enables election in this time, up to multiplicative constants.

We start by designing an algorithm that performs leader election in time at most D + x + 1,
for any graph of diameter D and election index φ, provided that nodes receive as input an integer
x ≥ φ). Note that nodes of the graph know neither D nor φ. We will then show how to derive from
this generic algorithm four leader election algorithms using larger and larger time and smaller and
smaller advice.

The high-level idea of Algorithm Generic is the following. Nodes of the graph communicate
between them and acquire augmented truncated views at increasing depths. Starting from round
x, they discover augmented truncated views at depth x of an increasing set of nodes. They stop
in the round when no new augmented truncated views at depth x are discovered. At this time, we
have the guarantee that all nodes learned all augmented truncated views at depth x. Hence, to
solve leader election, it suffices that every node outputs a sequence of port numbers leading to a
node with the lexicographically smallest augmented truncated view at depth x. Since x ≥ φ, the
augmented truncated view at depth x of every node is unique in the graph. Hence all nodes output
sequences of port numbers leading to the same node.

Below we give a detailed description of Algorithm Generic. It is executed by a node u that
gets the integer x as input.

The following lemma establishes the correctness of Algorithm Generic and estimates its exe-
cution time.

Lemma 4.1 For any graph G of diameter D and election index φ, Algorithm Generic(x), with
any parameter x ≥ φ, is a correct leader election algorithm and works in time at most D + x+ 1.

Proof. All rounds are numbered starting at 0. Let u be a node of graph G executing Algorithm
Generic(x), with any parameter x ≥ φ. Let S be the set of augmented truncated views at depth x
in G. Let s be the node of G such that Bx(s) is the lexicographically smallest among the augmented
truncated views from S. The node s is unique in view of Proposition 2.1 and because x ≥ φ. First
we show that the execution of Algorithm Generic(x) by node u stops at the latest in round D+x.
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Algorithm 7 Generic(x)

for r := 0 to x− 1 do COM(r)
r ← x
repeat

COM(r)
B ← Br+1(u)
X ← the set of augmented truncated views Bx(v),

for all nodes v at depth at most r − x in B
Y ← the set of augmented truncated views Bx(v),

for all nodes v at depth exactly r − x+ 1 in B
until Y ⊆ X
Bmin ← the lexicographically smallest among augmented truncated views from X
W ← the set of nodes v of smallest depth in B, such that Bx(v) = Bmin
w ← the node from W corresponding to the lexicographically smallest sequence of port numbers
return the sequence of port numbers corresponding to the shortest path from u to w in B

If this execution did not stop earlier, in round D + x the value of X is S because, in round D + x,
the set X is the set of augmented truncated views Bx(v), for all nodes v at depth at most D in
BD+x+1(u). Since Y ⊆ S in every round, it follows that Y ⊆ X in round D + x. Hence, in round
D + x, node u outputs a sequence of port numbers and stops its execution.

It remains to show that the sequences of port numbers outputted by all nodes in G correspond
to simple paths in this graph, whose other extremity is the same node. In view of the unicity of s, it
is enough to show that the node u outputs a sequence corresponding to a simple path in G, whose
other extremity is s. By the description of the algorithm, node u cannot terminate before round
x. Hence, as shown above, there exists an integer 0 ≤ j ≤ D, such that u outputs a sequence of
ports in round x+ j. Hence, in this round, Y ⊆ X. Since every node in G has a unique augmented
truncated view at depth x, all nodes of G are at distance at most j from u. Hence, in round x+ j,
the set X contains Bx(s). By the definition of the variable w in the algorithm, it follows that the
node u outputs a sequence of port numbers corresponding to a shortest path leading to s. Such a
shortest path must be simple, which concludes the proof. �

We now describe four algorithms, called Electioni, for i = 1, 2, 3, 4, working for graphs of
diameter D and election index φ. Recall the notation ic defined by induction as follows: 0c = 1 and
i+1c = c

ic. Intuitively it denotes a tower of powers. For an integer constant c > 1, let T1 = D+φ+c,
T2 = D+cφ, T3 = D+φc, and T4 = D+cφ. Let A1 be the binary representation of φ, let A2 be the
binary representation of blog φc, let A3 be the binary representation of blog log φc, and let A4 be
the binary representation of log∗ φ. Hence the size of A1 is O(log φ), the size of A2 is O(log log φ),
the size of A3 is O(log log log φ), and the size of A4 is O(log(log∗ φ)). Define the following integers.

P1 = φ, P2 = 2blog φc+1 − 1, P3 = 22blog log φc+1 − 1, and P4 = (log∗ φ)+12− 1.
Algorithm Electioni uses advice Ai and will be shown to work in time Ti. It consists of a

single instruction:

Algorithm 8 Electioni

Generic(Pi)
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We will prove the following theorem.

Theorem 4.1 Let G be a graph of diameter D and election index φ. Let c > 1 be any integer
constant.

1. Algorithm Election1 solves leader election in G in time at most D+φ+c and using O(log φ)
bits of advice.

2. Algorithm Election2 solves leader election in G in time at most D+cφ and using O(log log φ)
bits of advice.

3. Algorithm Election3 solves leader election in G in time at most D+φc and using O(log log log φ)
bits of advice.

4. Algorithm Election4 solves leader election in G in time at most D+cφ and using O(log(log∗ φ))
bits of advice.

Proof.
1. Algorithm Election1 uses advice A1 which is the binary representation of φ of size O(log φ).

It first computes φ using A1, and then calls Algorithm Generic(φ). In view of Lemma 4.1, Algo-
rithm Generic(φ) solves leader election in G in time at most D + φ+ 1 < D + φ+ c. This proves
part 1 of the theorem.

2. Algorithm Election2 uses advice A2 which is the binary representation of blog φc of size
O(log log φ). It first computes blog φc using A2, then computes P2 = 2blog φc+1 − 1 and calls
Algorithm Generic(P2). Notice that P2 ≥ φ. In view of Lemma 4.1, Algorithm Generic(P2) solves
leader election in G in time at most D+P2 + 1 = D+ 2blog φc+1. This is at most D+ 2φ and hence
at most D + cφ, since c is an integer larger than 1.

3. Algorithm Election3 uses advice A3 which is the binary representation of blog log φc of size

O(log log log φ). It first computes blog log φc using A3, then computes P3 = 22blog log φc+1 − 1 and
calls Algorithm Generic(P3). Notice that P3 ≥ φ. In view of Lemma 4.1, Algorithm Generic(P3)

solves leader election in G in time at most D + P3 + 1 = D + 22blog log φc+1
. This is at most D + φ2

and hence at most D + φc, since c is an integer larger than 1.
4. Algorithm Election4 uses advice A4 which is the binary representation of log∗ φ of size

O(log(log∗ φ)). It first computes log∗ φ using A4, then computes P4 = (log∗ φ)+12 − 1 and calls
Algorithm Generic(P4). Notice that P4 ≥ φ. In view of Lemma 4.1, Algorithm Generic(P4) solves
leader election in G in time at most D+P4 + 1 = D+ (log∗ φ)+12. This is at most D+ 2φ and hence
at most D + cφ, since c is an integer larger than 1. �

Remark. Notice that the first part of the theorem remains valid for c = 1, and the proof
remains the same. Hence, it is possible to perform leader election in time D+φ+ 1 using O(log φ)
bits of advice. We do not know if the same is true for the time D+φ, but in this time it is possible
to elect a leader using O(logD + log φ) bits of advice. Indeed, it suffices to provide the nodes
with values of the diameter D and of the election index φ. Equipped with this information, each
node u learns BD+φ(u) in time D + φ. Then, knowing D, it knows that nodes that it sees in this
augmented truncated view at distance at most D from the root of this view represent all nodes of
the graph. Knowing the value of φ, node u can reconstruct Bφ(v), for each such node v, and hence
find in BD+φ(u) a representation of the node w in the graph, whose augmented truncated view
Bφ(v) is lexicographically smallest. Finally, the node u can output a sequence of port numbers
corresponding to one of the shortest paths from u to w in BD+φ(u).
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The following theorem provides matching lower bounds (up to multiplicative constants) on
the minimum size of advice sufficient to perform leader election in time corresponding to our four
milestones.

Theorem 4.2 Let α be a positive integer, and let c > 1 be any integer constant.

1. Consider any leader election algorithm working in time at most D + φ + c, for all graphs of
diameter D and election index φ. There exist graphs with election index at most α such that
this algorithm in these graphs requires advice of size Ω(logα).

2. Consider any leader election algorithm working in time at most D + cφ, for all graphs of
diameter D and election index φ. There exist graphs with election index at most α such that
this algorithm in these graphs requires advice of size Ω(log logα).

3. Consider any leader election algorithm working in time at most D + φc, for all graphs of
diameter D and election index φ. There exist graphs with election index at most α such that
this algorithm in these graphs requires advice of size Ω(log log logα).

4. Consider any leader election algorithm working in time at most D + cφ, for all graphs of
diameter D and election index φ. There exist graphs with election index at most α such that
this algorithm in these graphs requires advice of size Ω(log(log∗ α)).

Proof. The high-level idea of the proof relies on the construction of (ordered) families of graphs
with controlled growth of election indices, and with the property that, for any election algorithm
working in the prescribed time, graphs from different families must receive different advice. Since
the growth of election indices in the constructed sequence of families is controlled (it is linear in
part 1), this implies the desired lowered bound on the size of advice. In order to prove that advice
in different families must be different, we have to show that otherwise the algorithm would fail
in one of these families. The difficulty lies in constructing the families of graphs in such a way
as to confuse the hypothetical algorithm in spite of the fact that, as opposed to the situation in
Theorems 3.2 and 3.3, the algorithm has now a lot of time: nodes can see all the differences in
augmented truncated views of other nodes. In this situation, the way to confuse the algorithm is
to make believe two nodes that they are in a graph with a smaller diameter and thus have to stop
early, outputting a path to the leader, while in reality they are in a graph of large diameter, and
each of them has seen less than “half” of the graph, which results in outputting by each of them
a path to a different leader. These nodes are fooled because their augmented truncated views in
the large graph at the depth requiring them to stop in the smaller graph are the same as in this
smaller graph. In order to assure this, parts of the smaller graph must be carefully reproduced in
the large graph, which significantly complicates the construction and the analysis.

We give the proof of part 1 and then show how to modify it to prove the three remaining parts.
For any integer z ≥ 4, we first define the following graph of size z + 2, called a z-lock, cf. Fig. 3.

Take a cycle of size 3, with port numbers 0, 1 in clockwise order at each node, and attach to
one of the nodes of the cycle a clique of size z by identifying this node with one of the nodes of the
cycle. The port numbers in the clique are assigned arbitrarily. Let w be the only node of degree
z + 1 in a z-lock. Call it the central node of the lock. The node v of the cycle such that the port
at w corresponding to the edge {w, v} is 0, is called the principal node of the lock.

Let G1 and G2 be disjoint graphs. We say that a graph G is of the form G1 ∗G2 (cf. Fig. 4),
if and only if, there exist two nodes, a node a from G1 and a node b from G2, such that the graph
G results from G1 and G2 by adding the edge {a, b}. We define similarly a graph of the form
G1 ∗G2 ∗ · · · ∗Gr.
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For any integer x, denote A(x, c) = x + c, B(x, c) = cx + 2x + 1, and R(x) = x. We use this
notation to be able to derive the proofs of parts 2, 3, and 4 of the theorem from the proof of part
1, by suitably changing only the definitions of functions A, B, and R.

Fix a leader election algorithm A working in time at most D+A(φ, c) for all graphs of diameter
D and election index φ. In part 1, A(φ, c) = φ + c, hence the time of the algorithm is D + φ + c,
as supposed. Let k∗ be such that B(k∗, c) ≤ α < B(k∗ + 1, c). We will construct, by induction
on k, ordered families (i.e., sequences) T0, . . . , Tk of graphs, for k ≤ k∗, satisfying the following
properties.

1. Any graph G of any sequence Ti can be unambiguously represented in the form L1 ∗M ∗ L2,
where Li is a zi-lock, for i = 1, 2, where z1 < z2.

L1 is called the left lock of the graph, L2 is called the right lock of the graph and M is called
the central part of the graph. The principal node of L1 is called the left principal node of the
graph, and the principal node of L2 is called the right principal node of the graph.

2. For any i ≤ k, any indices j1 < j2, and any graphs Gj1 and Gj2 from Ti , the size of the right
lock of Gj1 is smaller than the size of the left lock of Gj2 .

3. All nodes of all graphs of any sequence Ti have degree at least 2.

4. For any i ≤ k, the diameter of all graphs of the sequence Ti is the same.

5. For any i < j, the diameter of graphs from Ti is smaller than the diameter of graphs from Tj .

6. For any i ≤ k, the advice used by algorithm A for all graphs of the sequence Ti is the same.
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7. For any i < j, the advice used by algorithm A for graphs of the sequence Ti is different from
the advice used by algorithm A for graphs of the sequence Tj .

8. For any i ≤ k, and any graph G from Ti, the election index of G is at most B(i, c).

9. For any i < j, for any graph G from Tj , there exist graphs G′ 6= G′′ from Ti, such that the

augmented truncated view BD+A(B(i,c),c)(v) in G is equal to the augmented truncated view
BD+A(B(i,c),c)(v′) in G′, and the augmented truncated view BD+A(B(i,c),c)(w) in G is equal to
the augmented truncated view BD+A(B(i,c),c)(w′′) in G′′, where D is the diameter of graphs in
Ti, v is the left principal node of G, v′ is the left principal node of G′, w is the right principal
node of G, and w′′ is the right principal node of G′′.

10. For any graph G of any sequence Ti, the distance between the left principal node of G and
the right principal node of G is equal to the diameter of G.

11. For any graph G of any sequence Ti, the diameter of G is at least A(α, c) + 4.

12. For any i ≤ k, there are (2α)α−i graphs in the sequence Ti.

13. For any i ≤ k, any graphs G′ 6= G′′ from Ti, any node u′ from G′, and any node u′′ from G′′,
the augmented truncated views BB(i,c)(u′) and BB(i,c)(u′′) are different.

We first prove that, given sequences T0, . . . , Tk∗ , with the above properties, we can prove our
result. By properties 6 and 7, there exist k∗ graphs that receive different pieces of advice. By
property 8, election indices of these graphs are all at most B(k∗, c) ≤ α. By definition, k∗ ∈
Ω(R(α)). Hence there exists a graph with election index at most α that requires advice of size
Ω(log(R(α))). In part 1, R(α) = α, hence we get the required lower bound Ω(logα). In order
to complete the proof of part 1, it remains to construct sequences T0, . . . , Tk∗ , with the above
properties. (Note that we used only properties 6, 7 and 8, but the remaining properties are
necessary to carry out the inductive construction.)

We proceed with the construction of sequences T0, . . . , Tk, for k ≤ k∗ of graphs, by induction on
k. For k = 0 we first construct a sequence S0 of graphs. The sequence S0 consists of s0 = 2α ·αα+1

graphs Gi, for 0 ≤ i ≤ s0− 1 defined as follows. For 0 ≤ i ≤ s0− 1 define xi = 4 + 2i(α+ c+ 2) + i.
To construct the graph Gi take an xi-lock with the node u of degree xi + 1, which will be the left
lock of this graph, and an (xi + 2(α+ c+ 2))-lock with the node v of degree xi + 2(α+ c+ 2) + 1,
which will be the right lock of this graph. Join nodes u and v by a chain of length α+ c+ 2 with
internal nodes w1, w2, . . . , wα+c+1, where w1 is adjacent to u and wα+c+1 is adjacent to v. Attach
a clique of size xi + 2j to node wj by identifying one of the nodes of the clique with wj . All port
numbers in locks remain unchanged and all port numbers outside of locks are assigned arbitrarily.
Finally, remove all node labels. This completes the construction of graph Gi. We have given its
unambiguous representation in the form required in property 1. This completes the construction
of the sequence S0, from which the subsequence T0 will be extracted. A representation of a graph
from S0 is given in Fig. 5.

Before continuing the construction we prove the following claim.

Claim 4.1 The election index of all graphs in S0 is 1.

To prove the claim it is enough to show that B1(w′) 6= B1(w′′), for any nodes w′ 6= w′′ in any
graph of S0. By construction, nodes u,w1, w2, . . . , wα+c+1, v in the chain have unique degrees, and
every node of the graph is at distance at most 1 from one of them. If w′ and w′′ are at distance
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cliques

Figure 5: A representation of a graph from S0.

exactly 1 from two distinct nodes of this chain, then B1(w′) 6= B1(w′′) because nodes in the chain
have different degrees. If w′ and w′′ are at distance exactly 1 from the same node r of the chain
then B1(w′) 6= B1(w′′) because port numbers at r corresponding to edges {r, w′} and {r, w′′} must
be different. Finally, if one of the nodes w′ and w′′ is in the chain then B1(w′) 6= B1(w′′) because,
by construction, they must have different degrees. This concludes the proof of the claim.

Next we define a subsequence T0 of the sequence S0 with the following two properties: the
size of T0 is (2α)α, and all graphs in T0 receive the same advice. We can assume that such a
subsequence exists because otherwise the number of distinct pieces of advice received by graphs
from S0 would be at least α (because S0 has size 2α ·αα+1) which would prove part 1 of our theorem,
in view of Claim 4.1. The verification that the sequence T0 satisfies properties 1–12 is immediate,
and property 13 is implied by the fact that nodes in chains of two different graphs from T0 have
different degrees, and every node is at distance at most 1 from one of them.

Assume by induction that sequences T0, . . . , Tk of graphs, for k < k∗, have been already
constructed, and that they satisfy properties 1 – 13. We now construct the sequence Tk+1 of graphs.
Let Tk = {H1, . . . ,Htk}, where tk = (2α)α−k. We first define the sequence Sk+1 = {Q1, . . . , Qtk/2}
of graphs, where Qi is the result of the merge operation of H2i and H2i+1.

In order to define the merge operation of graphs H2i and H2i+1 from Tk, we first define the
pruned view of a node u in any graph G. Let p1, . . . , pt be any port numbers at node u. The
pruned view of u at depth ` with respect to ports p1, . . . , pt is a tree of height ` rooted at u,
that is denoted by PVG(u, {p1, . . . , pt}, `) and is defined by induction on `. For ` = 0 we define
PVG(u, {p1, . . . , pt}, 0) = {u}. Suppose that PVG(u, {p1, . . . , pt}, `) is already defined, for any node
v and with respect to any port numbers at v. Let T be the tree of height 1 rooted at u whose leaves
are all neighbors v of u except the neighbors wi such that the port at u corresponding to the edge
{u,wi} is pi, for 1 ≤ i ≤ t. Assign at all edges of this tree the same port numbers as in graph G.
Let v1, . . . , vr be the leaves of T . Let qi be the port number at vi corresponding to the edge {vi, u}.
Attach to vi the tree PVG(vi, {qi}, `) by identifying vi with the root of this tree. The resulting tree
is PVG(v, {p1, . . . , pt}, `+ 1). Notice that, as opposed to the truncated view at depth `, the pruned
view at depth ` does not contain repeated port numbers at any node, and hence can be used as a
building block for graph constructions. We will use pruned views in this way in the sequel.

The following claim will enable us to replace a subgraph of a graph by the pruned view of an
articulation node without changing its augmented truncated view.

Claim 4.2 Let u be an articulation node of a graph G, and let p1, . . . , pt be the port numbers at
this node, such that the removal of edges corresponding to these ports disconnects the graph into at
least two connected components. Let G′ be the connected component containing u, after removal of
these edges. Let G∗ be the graph resulting from G by replacing the subgraph G′ by the pruned view
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PVG(u, {p1, . . . , pt}, `), for positive `. Then the augmented truncated view B`−1(u) is the same in
graphs G and G∗, and the augmented truncated view Bd+`−1(v), for all nodes v outside of G′, is
the same in graphs G and G∗, where d is the distance between u and v in G.

In order to prove the claim, it suffices to show that B`−1(u) is the same in graphs G and
G∗. The other part follows from this because u is an articulation node. In order to prove that
B`−1(u) is the same in graphs G and G∗, it is enough to prove that V`(u) is the same in graphs G
and G∗. This is equivalent to the fact that sequences of port numbers of even length at most 2`,
corresponding to paths of V`(u), are the same in graphs G and G∗. Define a normal sequence of
port numbers as a sequence (q1, q

′
1, . . . , qj , q

′
j), such that qi+1 6= q′i, for any i < j. A normal sequence

corresponds to a path in a graph, whose consecutive edges are never equal. For any `′ ≤ `, let V`′

be the set of sequences, of even length at most 2`′, of port numbers, corresponding to the paths in
the view V`′(u) in G, let V`′∗ be the set of sequences, of even length at most 2`′, of port numbers,
corresponding to the paths in the view V`′(u) in G∗, letW`′ be the set of normal sequences, of even
length at most 2`′, of port numbers, corresponding to the paths in V`′ , and let W`′∗ be the set of
normal sequences, of even length at most 2`′, of port numbers, corresponding to the paths in V`′∗.
Note that V`′ = V`′∗ if and only if W`′ =W`′∗.

We prove by induction on `′, such that 1 ≤ `′ ≤ `, that W`′ = W`′∗. For `′ = 1 this follows
from the fact that, by construction, V1(u) is the same in both graphs. Hence if ` = 1 the proof
is done. So consider that ` ≥ 2. To prove the inductive step, suppose that, for some integer r
such that 2 ≤ r ≤ l, we have W`′ = W`′∗, for all `′ < r. We have to prove that Wr = Wr∗.
Let π be a sequence from Wr. The definition of PVG(u, {p1, . . . , pt}, r) implies that the sets of
normal sequences of even length at most 2r starting at u and having the first port number outside
of {p1, . . . , pt} are the same in Vr and in Vr∗. If the first term of π is outside of {p1, . . . , pt} , then
π is in Wr∗ by the preceding statement. Consider a sequence π in Wr whose first port number
is in {p1, . . . , pt}. There are two cases. If the node u does not appear again in the path in G
corresponding to π, then π is also in Wr∗ by construction. Otherwise, let π′ be the shortest prefix
of π, such that, in the corresponding path in G, the node u appears exactly twice, i.e., this path
is a loop ending at u. (The prefix π′ has necessarily even length). The path in G∗ starting at u
and corresponding to π′ ends at node u as well, by construction. Let π′′ be the part of π after
removal of π′. The length of π′′ is even and smaller than r. By the inductive hypothesis, π′′ is
in W(r−1)∗. Hence the sequence π, which is the concatenation of π′ and π′′ belongs to Wr∗. This
proves the inclusion Wr ⊆ Wr∗. The proof of the other inclusion is similar. Hence, for all `′ such
that 1 ≤ `′ ≤ `, we haveW`′ =W`′∗. As noted before, this implies that V`(u) is the same in graphs
G and G∗ and hence B`−1(u) is also the same in these graphs. This proves the claim.

We are now ready to define the merge operation of graphs H2i and H2i+1 from Tk. The result
of such a merge operation is illustrated in Fig. 7. By property 1, the graph H2i is of the form
L1 ∗M ′ ∗L2, where L1 is its left lock and L2 is its right lock, and H2i+1 is of the form L3 ∗M ′′ ∗L4,
where L3 is its left lock and L4 is its right lock. The result of the merge operation of graphs H2i

and H2i+1 is the graph Q of the form L1 ∗N ∗L4, where L1 is its left lock, L4 is its right lock, and
N is defined below.

First define the transformations T (L2) and T (L3) of locks L2 and L3, cf. Fig. 6. Suppose that
L2 is a z-lock and let u be its central node. Replace the 3-cycle of the lock by the pruned view
PVH2i(u, {2, . . . , z + 1}, B(k + 1, c)). More precisely, remove the two nodes adjacent to u in this
cycle, together with the incident edges, and attach the above pruned view at u, by identifying u with
the root of this pruned view. Let m1, . . . ,mt be the leaves of PVH2i(u, {2, . . . , z + 1}, B(k + 1, c)).
Let x be the largest degree of any of the previously constructed graphs. For all 1 ≤ f ≤ t, attach
a clique of size x + 4f to the leaf mf by identifying one node of this clique with this leaf. This
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concludes the description of T (L2). The central node of L2 is also called the central node of T (L2).
The transformation T (L3) is defined similarly, with L2 replaced by L3, t replaced by t′, x + 4f
replaced by x+ 4f + 4t+ 4 and H2i replaced by H2i+1.

clique

(a) A z-lock L

clique
the central node

cliques attached to 

leaves of the pruned view

replacing the cycle

the pruned view

(b) The graph T (L).

Figure 6: A z-lock and its transformation.

Next define a subgraph X. Let n be the maximum size of all previously defined graphs. Let
g1, . . . , g2n be nodes yet unused in the construction, forming a chain. Let y be the largest degree
of T (L3). For all 1 ≤ f ≤ 2n, attach a clique of size y + 4f to node gf by identifying one node of
this clique with it. All attached cliques are pairwise disjoint and consist of nodes not used before.
Assign all port numbers arbitrarily. This completes the construction of the subgraph X. Attaching
larger and larger cliques to different nodes will guarantee properties 8 and 13 for graphs of Tk+1.

Finally, the subgraph N of the graph Q under construction is defined as follows. Let a be the
node with the highest degree in T (L2), and let b be the node with the highest degree in T (L3). Let
c′ be the node in M ′ and let b′ be the node in L2 such that the edge {c′, b′} attaches M ′ to L2 in
H2i. Let c′′ be the node in M ′′ and let b′′ be the node in L3 such that the edge {c′′, b′′} attaches
M ′′ to L3 in H2i+1. Note that the node b′ from L2 remains in T (L2) and the node b′′ remains in
T (L3). In fact, by construction, b′ is the central node of T (L2), and b′′ is the central node of T (L3).
Attach M ′ to T (L2) by edge {c′, b′} (keeping the port numbers), attach a to g1 by a new edge with
smallest port numbers not yet used at each endpoint, attach g2n to b by a new edge with smallest
port numbers not yet used at each endpoint, and attach T (L3) to M ′′ by edge {b′′, c′′} (keeping the
port numbers). The resulting graph is N . In the graph Q of the form L1 ∗N ∗L4, the subgraph N
is attached to L1 by the edge that attached M ′ to L1 in H2i, and N is attached to L4 by the edge
that attached M ′′ to L4 in H2i+1. This concludes the description of the graph Q. Fig. 7 illustrates
the merge operation leading to such a graph. We have given its unambiguous representation in the
form required in property 1. This completes the construction of the sequence Sk+1, from which the
subsequence Tk+1 will be extracted.

Before defining the subsequence Tk+1 of Sk+1, we prove the following four claims. The first
claim is implied by property 3 of graphs in Tk, that holds by the inductive assumption. Since
graphs in Tk do not have nodes of degree one, all branches of a pruned view of any node can be
extended indefinitely. More precisely, we have:

Claim 4.3 For any graph G in Tk, any node u of G, and any non-negative integer `, all leaves in
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Figure 7: Illustration of the merge operation of H2i and H2i+1.

PV(u, P, `), are exactly at distance ` (in PV(u, P, `)) from the root of PV(u, P, `), provided that the
size of P is strictly smaller than the degree of u in G.

The next claim states property 1 for graphs in Sk+1. It follows from the construction of this
class and from property 2 for the sequence Tk.

Claim 4.4 Any graph Q from Sk+1 can be unambiguously represented in the form L1 ∗M ∗ L2,
where Li is a zi-lock, for i = 1, 2, where z1 < z2.

The next claim states property 8 for graphs in Sk+1.

Claim 4.5 For any graph Q from Sk+1, the election index of Q is at most B(k + 1, c).

In order to prove the claim, it is enough to show that for any distinct nodes u and v from Q,
we have BB(k+1,c)(u)) 6= BB(k+1,c)(v)). Let Q be the result of the merge operation of graphs H2i

and H2i+1 from Tk. Hence Q is of the form L1 ∗M ′ ∗ T (L2) ∗X ∗ T (L3) ∗M ′′ ∗L4, where L1 is the
left lock of H2i, M

′ is the central part of H2i, M
′′ is the central part of H2i+1, and L4 is the right

lock of H2i+1. Let Y be the subgraph of Q of the form T (L2) ∗X ∗ T (L3). Let Z ′ be the subgraph
of Q of the form L1 ∗M ′, and let Z ′′ be the subgraph of Q of the form M ′′ ∗ L4. Let P (T (Li)),
for i = 2, 3, be the set of nodes of the subclique of T (Li) attached to its central node, excluding
the central node itself. Let W be the set of all nodes of Q at which cliques are attached during the
merge operation of graphs H2i and H2i+1. By construction, each of the nodes of W has a unique
degree with respect to all graphs from Sk+1 and in particular, a unique degree in Q. By Claim 4.3,
all nodes from Y are at distance at most B(k + 1, c) from some node of W . Consider three cases.
Case 1. Both nodes u and v are from Y , outside of P (T (L2)) ∪ P (T (L3)).

In each of BB(k+1,c)(u) and BB(k+1,c)(v), there exists a node with a unique degree in Q. If
there is a node in one of these views, such that a node of the same degree does not appear in the
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other view, then BB(k+1,c)(u) 6= BB(k+1,c)(v). Otherwise, there is a node w with a unique degree
in Q that appears in both views. Since the two sequences of port numbers corresponding to paths
from u to w and from v to w must be different, this implies BB(k+1,c)(u) 6= BB(k+1,c)(v).
Case 2. One of the nodes u or v is in Y , outside of P (T (L2)) ∪ P (T (L3)), and the other is either
in Z ′, or Z ′′ or in P (T (L2)) ∪ P (T (L3)).

Without loss of generality, assume that u is in Y , outside of P (T (L2)) ∪ P (T (L3)), and v is
either in Z ′, or Z ′′ or in P (T (L2))∪P (T (L3)). In view of the Claim 4.3, the central nodes of T (L2)
and T (L3) are at distance at least B(k + 1, c) from all nodes in W . By construction, the node v
is at distance at least B(k + 1, c) + 1 from all nodes in W . Hence, there is a node in BB(k+1,c)(u),
such that no node of the same degree appears in BB(k+1,c)(v). Hence BB(k+1,c)(u) 6= BB(k+1,c)(v).
Case 3. Each of u and v is either in Z ′, or Z ′′ or in P (T (L2)) ∪ P (T (L3)).

Consider the subcase where u is in Z ′ or in P (T (L1)) and v is in Z ′′ or in P (T (L2)). By
Claim 4.2, BB(k+1,c)(u) is the same in H2i and in Q. Hence BB(k,c)(u) is the same in H2i and in Q.
Similarly, BB(k,c)(v) is the same in H2i+1 and in Q. By property 13 for the sequence Tk, we have
BB(k,c)(u) 6= BB(k,c)(v), hence BB(k+1,c)(u) 6= BB(k+1,c)(v). The other subcase is when both u and
v are either in Z ′ or in P (T (L1)), or they are both in Z ′′ or in P (T (L2)). The argument in this
subcase is similar as above. This concludes the proof of the claim.

The last claim states property 13 for Sk+1. It follows from this property for Tk, using arguments
similar to those used to prove Claim 4.5.

Claim 4.6 For any graphs G′ 6= G′′ from Sk+1, any node u′ from G′ and any node u′′ from G′′,
the augmented truncated views BB(k+1,c)(u′) and BB(k+1,c)(u′′) are different.

Finally we define a subsequence Tk+1 of the sequence Sk+1 with the following two properties:
the size of Tk+1 is (2α)α−k−1, and all graphs in Tk+1 receive the same advice. We can assume
that such a subsequence exists. Indeed, first observe that Tk has size 2α−k · αα−k, by property 12
for Tk, and that the size of Sk+1 is half the size of Tk by construction. Hence, the size of Sk+1 is
2α−k−1 ·αα−k. If a subsequence Tk+1 of the sequence Sk+1 with the above two properties could not
be extracted from Sk+1, this would mean that the number of distinct pieces of advice received by

graphs from Sk+1 would be at least
|Sk+1|

(2α)α−k−1 = α. This in turn would imply, in view of Claim 4.5,

that one of the graphs with election index at most B(k+ 1, c) would receive advice of size Ω(logα)
which would prove part 1 of our theorem (because k + 1 ≤ k∗ and thus B(k + 1, c) ≤ α).

This concludes the construction of the sequence Tk+1. It remains to prove that this sequence
has all the properties 1 –13.

Property 1 holds for Tk+1 because it holds for Sk+1 by Claim 4.4. In order to prove property
2 for Tk+1, it is enough to prove it for all graphs in Sk+1. To do this, consider any graphs Qi and
Qj from Sk+1, such that i < j. By construction, the graph Qi is the result of the merge of graphs
H2i and H2i+1 from Tk, and the graph Qj is the result of the merge of graphs H2j and H2j+1 from
Tk. The right lock of Qi is the right lock Li of H2i+1, and the left lock of Qj is the left lock Lj of
H2j . Let Li be a zi-lock, and let Lj be a zj-lock. By property 2 for Tk, we have zi < zj because
2j > 2i + 1. This proves property 2 for Sk+1 and hence for Tk+1. In order to prove property 3
for Tk+1, take a graph Q from this sequence. It is a result of the merge operation of two graphs
from Tk. By property 3 for Tk, these graphs have no nodes of degree 1. The merge operation does
not create such nodes. Hence the graph Q does not have nodes of degree 1. Properties 6 and 12
for Tk+1 hold by the definition of this sequence. Properties 5 and 11 for Tk+1 follow from these
properties for Tk and from the fact that the result of the merge operation of two graphs is a graph
of diameter larger than that of each of them. Property 8 for Tk+1 follows from Claim 4.5, and
property 13 for Tk+1 follows from Claim 4.6.
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Properties 4 and 10 for Tk+1 will be proved together as follows. For any graph Q from Tk+1,
we first compute the distance between the left principal node of Q and the right principal node of
Q. This distance turns out to be the same for all graphs in Tk+1. Then we prove that the distance
between any two nodes of any graph from Tk+1 is at most this value.

Let Q be the result of the merge operation of graphs H ′ and H ′′ from Tk. The graph H ′ is
of the form L1 ∗M ′ ∗ L2, where L1 is its left lock and L2 is its right lock, and the graph H ′′ is of
the form L3 ∗M ′′ ∗ L4, where L3 is its left lock and L4 is its right lock. Let u be the left principal
node of H ′, and let u′ be the right principal node of H ′. Let v′ be the left principal node of H ′′,
and let v be the right principal node of H ′′. Note that u is the left principal node of Q, and v
is the right principal node of Q. By construction, the graph Q can be represented in the form
L1 ∗M ′ ∗ T (L2) ∗X ∗ T (L3) ∗M ′′ ∗ L4. Consider nodes a in L1, b and c in M ′, d and e in T (L2),
f and f ′ in X, e′ and d′ in T (L3), c′ and b′ in M ′′, and a′ in L4, such that the edge {a, b} joins
L1 to M ′, the edge {c, d} joins M ′ to T (L2), the edge {e, f} joins T (L2) to X , the edge {f ′, e′}
joins X to T (L3), the edge {d′, c′} joins T (L3) to M ′′, and the edge {b′, a′} joins M ′′ to L4. A
representation of graph Q with the above notation is given in Fig. 8.
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Figure 8: A representation of graph Q with the notations of components used in the proof of
Properties 4 and 10.

Let δG(x, y) denote the distance between nodes x and y in the graph G. We first compute
δQ(u, v). By property 4 for Tk, all graphs in this sequence have the same diameterD. By property 10
for Tk, we have δH′(u, u

′) = D, hence δQ(u, c) = D − 2, by construction. Similarly, δH′′(v, v
′) = D,

hence δQ(v, c′) = D−2. By construction and by Claim 4.3, we have δQ(d, e) = B(k+1, c). Similarly,
δQ(d′, e′) = B(k+1, c). By construction, δQ(f, f ′) = 2n−1, because 2n−1 is the length of the chain
used in the merge procedure to construct the graph X. Hence δQ(u, v) = 2D+2B(k+1, c)+2n−1.

We now show, again for any graph Q from Tk, that the distance between any two nodes x and
y of Q is at most this value. Consider six cases.
Case 1. x and y are in L1 or M ′ (respectively in L4 or M ′′).

We give the argument for the first situation. The second one is symmetric. Since x and
y are in L1 or M ′, they are both in H ′ whose diameter is D. Hence δH′(x, y) ≤ D and hence
δQ(x, y) ≤ D < δQ(u, v).
Case 2. x and y are in T (L2) (respectively in T (L3)).

We give the argument for the first situation. The second one is symmetric. By construction
and by Claim 4.3, the diameter of T (L2) is 2B(k + 1, c) + 2 < δQ(u, v).
Case 3. x and y are in X.

By construction, the diameter of X is 2n+ 1 < δQ(u, v).
Case 4. x is in T (L2), and y is in X or in T (L3) (resp. x is in T (L2) or in X, and y is in T (L3)).

37



We give the argument for the first situation. The second one is symmetric. By construction and
by Claim 4.3, the diameter of X is 2n+ 1, and the diameter of T (L2) and T (L3) is 2B(k+ 1, c) + 2,
hence δQ(x, y) ≤ 4B(k+ 1, c) + 2n+ 6. On the other hand, we have δQ(u, v) = 2D+ 2B(k+ 1, c) +
2n−1. By property 11 for Tk we have 2D+2B(k+1, c)+2n−1 ≥ 2(A(α, c)+4)+2B(k+1, c)+2n−1.
Since A(α, c) ≥ B(k+ 1, c), we have 2(A(α, c) + 4) + 2B(k+ 1, c) + 2n− 1 ≥ 4B(k+ 1, c) + 2n+ 7.
Hence δQ(x, y) < δQ(u, v).
Case 5. x is in L1 or M ′, and y is either in T (L2) or in X or in T (L3) (resp. x is in L4 or M ′′, and
y is either in T (L2) or in X or in T (L3)).

We give the argument for the first situation. The second one is symmetric. First observe
that every node in L1 or in M ′ is at distance at most D − 2 from c. Otherwise, it would be at
distance at least D + 1 in H ′ from u′, which would contradict the fact that D is the diameter
of H ′. Consider three possibilities. If y is in T (L2) then, in view of the above observation and
of the fact that d is at distance at most B(k + 1, c) + 1 from every node in T (L2), we have
δQ(x, y) ≤ D+B(k+1, c) < δQ(u, v). If y is in X then δQ(x, y) ≤ D+B(k+1, c)+2n+1 < δQ(u, v).
Finally, suppose that y is in T (L3). Since the distance between e′ and any node in T (L3) is
at most 2B(k + 1, c) + 1, and δQ(f, f ′) = 2n − 1, in view of the above observation we have
δQ(x, y) ≤ D + 3B(k + 1, c) + 2n + 1. We have A(α, c) ≥ B(k + 1, c), and, by property 11 for Tk,
we have D ≥ A(α, c) + 4. Hence D + 3B(k + 1, c) + 2n + 1 ≤ 2D + 2B(k + 1, c) + 2n − 3. Hence
δQ(x, y) ≤ 2D + 2B(k + 1, c) + 2n− 3 < δQ(u, v).
Case 6. x is in L1 or M ′, and y is in M ′′ or in L4.

As noticed in the analysis of Case 5, δQ(x, c) ≤ D− 2. Similarly, δQ(y, c′) ≤ D− 2. Moreover,
δQ(d, d′) = 2B(k + 1, c) + 2n+ 1. Hence δQ(x, y) ≤ 2D + 2B(k + 1, c) + 2n− 1 = δQ(u, v).

This concludes the proof of properties 4 and 10 for Tk+1.
We now prove property 9 for i ≤ k and j = k + 1. First suppose that i = k and j = k + 1.

Consider a graph Q from Tk+1 that results from the merge operation of graphs H ′ and H ′′ from
Tk. We keep the notation used in the analysis of properties 4 and 10. By construction and in
view of Claim 4.2, we have the augmented truncated view BB(k+1,c)−1(d) in graph Q is equal to
the augmented truncated view BB(k+1,c)−1(d) in graph H ′. Similarly, the augmented truncated
view BB(k+1,c)−1(d′) in graph Q is equal to the augmented truncated view BB(k+1,c)−1(d′) in graph
H ′′. By construction, δQ(u, d) = D − 1 and δQ(v, d′) = D − 1. By Claim 4.2, the augmented

truncated view BD+B(k+1,c)−2(u) in Q is equal to the augmented truncated view BD+B(k+1,c)−2(u)
in H ′. Likewise, the augmented truncated view BD+B(k+1,c)−2(v) in Q is equal to the augmented
truncated view BD+B(k+1,c)−2(v) in H ′′. By definition, D + B(k + 1, c) − 2 ≥ D + A(B(k, c), c).
This concludes the proof of property 9 when i = k and j = k + 1.

Next suppose that i < k and j = k + 1. By property 9 for indices i and k (holding by the
inductive hypothesis), there exist two graphs J ′ and J ′′ in Ti, such that the augmented truncated
view BD′+A(B(i,c),c)(u) in H ′ is equal to the augmented truncated view BD′+A(B(i,c),c)(w′) in J ′, and
the augmented truncated view BD′+A(B(i,c),c)(v) in H ′′ is equal to the augmented truncated view
BD′+A(B(i,c),c)(w′′) in J ′′, where D′ is the diameter of graphs in Ti, w′ is the left principal node of
J ′, and w′′ is the right principal node of J ′′.

However, as proven above, the augmented truncated view BD+A(B(k,c),c)(u) in Q is equal
to the augmented truncated view BD+A(B(k,c),c)(u) in H ′, and the augmented truncated view
BD+A(B(k,c),c)(v) in Q is equal to the augmented truncated view BD+A(B(k,c),c)(v) in H ′′.

Hence, since D > D′ (by property 5 for j = k) and A(B(k, c), c) > A(B(i, c), c) for all i < k
(by definition), the augmented truncated view BD′+A(B(i,c),c)(u) in Q is equal to the augmented
truncated view BD′+A(B(i,c),c)(w′) in J ′, and the augmented truncated view BD′+A(B(i,c),c)(v) in Q
is equal to the augmented truncated view BD′+A(B(i,c),c)(w′′) in J ′′ . As a result, the property also
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holds when i < k and j = k + 1. This concludes the proof of property 9.
The last property to be proved for Tk+1 is property 7. By the inductive assumption, it is

enough to prove it for i ≤ k and j = k+ 1. Suppose, by contradiction, that graphs in the sequence
Ti, for some i ≤ k, receive the same advice as graphs in Tk+1. Let Q be a graph in Tk+1. By
property 8, all graphs from Ti have election index at most B(i, c). Hence, for any graph H from
Ti, and any node z of H, z elects a leader after time at most D + A(B(i, c), c), where D is the
diameter of graphs in Ti. (Recall that in part 1 of the theorem, election must be performed after
time at most D+φ+ c, where φ is the election index.) The node z must output a sequence of port
numbers of length at most 2(m − 1) (corresponding to a path of length at most m − 1), where m
is the maximum size of a graph from Ti. By property 9, there exist graphs H ′ 6= H ′′ from Ti, such
that the augmented truncated view BD+A(B(i,c),c)(u) in Q is equal to the augmented truncated view
BD+A(B(i,c),c)(u′) in H ′, and the augmented truncated view BD+A(B(i,c),c)(v) in Q is equal to the
augmented truncated view BD+A(B(i,c),c)(v′′) in H ′′, where u is the left principal node of Q, u′ is
the left principal node of H ′, v is the right principal node of Q, and v′′ is the right principal node
of H ′′. Hence, in view of our assumption that graphs in the sequence Ti receive the same advice
as graphs in Tk+1, nodes u and v must also output sequences of port numbers of length at most
2(m− 1) after time at most D+A(B(i, c), c). By construction, the distance between u and v in Q
is at least 2m− 1. Hence the sequences of port numbers outputted by u and v must correspond to
paths in Q whose other extremities are different. It follows that u and v elect different leaders in
Q, which gives a contradiction.

This concludes the inductive proof of all properties 1-13 for Tk+1 and hence concludes the proof
that these properties hold for all Tk, where k ≤ k∗. This, in turn, finishes the proof of part 1 of the
theorem.

It remains to show how our proof of part 1 has to be changed, in order to obtain proofs of parts
2, 3, and 4. Thanks to our parametrization using functions A, B and R, the changes are very small.
Indeed, it suffices to change the definitions of these functions and all (parametrized) constructions
and arguments from the proof of part 1 remain unchanged. We now give the definitions of functions
A, B and R for each of parts 2, 3, and 4 separately.

To prove part 2, we define A(x, c) = cx, B(x, c) = (c + 2)x and R(x) = log x. Note that the
election time is then D + cφ, as assumed in part 2, and the lower bound on the size of advice
becomes Ω(log logα), as desired. Indeed, in part 2, the number k∗ of different pieces of advice is
in Ω(logα), since by definition we have (c+ 2)k

∗ ≤ α < (c+ 2)k
∗+1.

To prove part 3, we define A(x, c) = xc, B(x, c) = 2(c3x)−c and R(x) = log log x. Note that
the election time is then D + φc, as assumed in part 3, and the lower bound on the size of advice
becomes Ω(log log logα), as desired. Indeed, in part 3, the number k∗ of different pieces of advice

is in Ω(log logα), since by definition we have 2c
3k∗−c ≤ α < 2c

3(k∗+1)−c.

To prove part 4, recall the notation ic, defined by induction as follows: 0c = 1 and i+1c = c
ic.

We define A(x, c) = cx, B(x, c) = 2xc, and R(x) = log∗ x. Note that the election time is then
D + cφ, as assumed in part 4, and the lower bound on the size of advice becomes Ω(log(log∗ α)),
as desired. Indeed, in part 4, the number k∗ of different pieces of advice is in Ω(log∗ α), since by
definition we have 2k∗c ≤ α <2(k∗+1) c.

�

We close this section by showing that constant advice is not enough for leader election in all
feasible graphs, regardless of the allocated time.

Proposition 4.1 There is no algorithm using advice of constant size and performing leader election
in all feasible graphs.
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Proof. We define a familyH of graphs, called hairy rings, for which we will prove that no algorithm
with advice of constant size performs correct leader election for all graphs in H. Let Rn be the
ring of size n ≥ 3, with port numbers 0,1 at each node, in clockwise order. Let Sk, for any integer
k ≥ 2, be the (k + 1)-node tree with k leaves, called the k-star. The only node of degree larger
than 1 of the k-star is called its central node. For k = 1, Sk is defined as the two-node graph with
the central node designated arbitrarily, and for k = 0, Sk is defined as the one-node graph, with
the unique node being its central node. The class H is the set of all graphs that can be obtained
in the following way. For all n ≥ 3, attach to every node v of every ring Rn some graph Sk, for
k ≥ 0, by identifying its central node with the node v, in such a way that, for every ring, the star
of maximum size attached to it is unique. Assign missing port numbers in any legal way, i.e., so
that port numbers at a node of degree d are from 0 to d− 1. Every graph obtained in this way is
feasible because it has a unique node of maximum degree. An example of a hairy ring is depicted
in Fig. 9a.

1

0

0 1

0

1

1 0

w

(a) a hairy ring H.

0 1 0 1 0 1 0

w

(b) the cut of H at node w.

0 1 0 1 0 1 0 0 1 0 1 0 1 01

w

(c) the 2-stretch of H at node w.

Figure 9: Illustration of an hairy ring and its different transformations used in the proof of Propo-
sition 4.1.

For any graph H in H we define a cut of H as follows. Let H be a graph resulting from a
ring Rn by attaching stars. Fix any node w = w1 of this ring. Let w1, . . . , wn be nodes of this ring
listed in clockwise order. The cut of H at node w is the graph resulting from H by removing the
edge {w1, wn}. Node w = w1 is called the first node of the cut and node wn is called the last node
of the cut. For any integer γ ≥ 2, the γ-stretch of H starting at node w is the graph defined as
follows. Take γ pairwise disjoint isomorphic copies of the cut of H at w. For 1 < i ≤ γ, attach the
ith copy to the (i − 1)th copy joining the first node ai of the ith copy with the last node bi−1 of
the (i− 1)th copy by an edge with port 0 at ai and port 1 at bi−1 . The first node of the first copy
is called the first node of the γ-stretch, and the last node of the last copy is called the last node of
the γ-stretch.

Suppose that there exists a leader election algorithm A which uses advice of constant size to
perform leader election in all hairy rings from the family H. Let c be the smallest integer such that
a total of c pieces of advice are sufficient to elect a leader in every graph from H by algorithm A.
Let H1, . . . ,Hc be graphs from H for which algorithm A uses different pieces of advice. Let N be
the maximum of sizes of all graphs H1, . . . ,Hc, and let T be the maximum execution time of A,
for all graphs H1, . . . ,Hc.

Let γ = 4(N + T ) and let Gj be the γ-stretch of Hj starting at some node uj of Hj , for j ≤ c.
We define the graph G as follows. Take pairwise disjoint isomorphic copies of graphs Gj , for j ≤ c.
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For every 1 < j ≤ c, attach Gj to Gj−1 joining the first node ci of the ith copy with the last node
di−1 of the (i − 1)th copy by an edge with port 0 at ci and port 1 at di−1. Finally, take a γ-star
and join its central node by edges to the first node of G1 and to the last node of Gγ , assigning
missing port numbers in any legal way. The graph G obtained in this way is in H because it has
a unique node of maximum degree which is γ + 2. Let nHj be the size of the ring that was used
in the construction of Hj . Let aj be the (unique) node of Gj at distance nHj (N + T ) from uj , at
the end of a simple path all of whose ports are 0’s and 1’s. Let bj be the (unique) node of Gj at
distance 3nHj (N + T ) from uj , at the end of a simple path all of whose ports are 0’s and 1’s. Call
these nodes the foci of Gj . Each of them corresponds to the first node of the cut serving to define
Gj . Let zj be the node in Hj at which this cut was done.

By definition of graphs H1, . . . ,Hc, the advice received by graph G when algorithm A is
performed, is the same as that received by some graph Hj0 . In Hj0 the node zj0 executing algorithm
A must stop after time at most T . By construction, the augmented truncated view BT (zj0) in Hj0

is the same as the augmented truncated views BT (aj0) and BT (bj0) in G. Hence nodes aj0 and bj0
executing algorithm A in G must also stop after time at most T . Node zj0 in Hj0 must output a
sequence of port numbers of length smaller than 2N because the size of Hj0 is at most N . Hence
nodes aj0 and bj0 executing algorithm A in G must also output a sequence of port numbers of
length smaller than 2N , corresponding to simple paths in G of length smaller than N , starting,
respectively at nodes aj0 and bj0 . However, the distance between aj0 and bj0 in G is at least 2N ,
hence the other extremities of these simple paths must be different. It follows that the leaders
elected by nodes aj0 and bj0 executing algorithm A in G are different, and hence this algorithm is
not correct for the class H. �

5 Conclusion

We established almost tight bounds on the minimum size of advice sufficient for election in minimum
possible time (i.e., in time equal to the election index φ) and tight bounds on this size for several
large values of time. The first big jump occurs between time φ and time D + φ, where D is the
diameter of the graph. In the first case, the size of advice is (roughly) linear in the size n of the
graph, and in the second case it is at most logarithmic in n, in view of Proposition 2.2 and of the
remark after Theorem 4.1. The intriguing open question left by our results is how the minimum
size of advice behaves in the range of election time strictly between φ and D + φ, i.e., for time
sufficiently large to elect if the map were known, but possibly too small for all nodes to see the
augmented truncated views at depth φ of all other nodes, and hence to realize all the differences in
views. Note that, for time exactly D+ φ, all nodes see all these differences, although, without any
advice, they cannot realize that they see all of them: this is why some advice is needed for time
D + φ.
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