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ABSTRACT. We present an algorithm for computation of cell adjacencies for well-based
cylindrical algebraic decomposition. Cell adjacency information can be used to com-
pute topological operations e.g. closure, boundary, connected components, and topolog-
ical properties e.g. homology groups. Other applications include visualization and path
planning. Our algorithm determines cell adjacency information using validated numerical
methods similar to those used in CAD construction, thus computing CAD with adjacency
information in time comparable to that of computing CAD without adjacency information.
We report on implementation of the algorithm and present empirical data.

1. INTRODUCTION

A semialgebraic set is a subset of Rn which is a solution set of a system of polynomial
equations and inequalities. Computation with semialgebraic sets is one of the core subjects
in computer algebra and real algebraic geometry. A variety of algorithms have been devel-
oped for real system solving, satisfiability checking, quantifier elimination, optimization
and other basic problems concerning semialgebraic sets [7, 3, 5, 9, 10, 11, 13, 19, 24, 25].
Every semialgebraic set can be represented as a finite union of disjoint cells bounded by
graphs of semialgebraic functions. The Cylindrical Algebraic Decomposition (CAD) al-
gorithm [7, 5, 21] can be used to compute a cell decomposition of any semialgebraic set
presented by a quantified system of polynomial equations and inequalities. Alternative
methods of computing cell decompositions are given in [6, 22, 23]. For solving certain
problems, for instance computing topological properties or visualization, it is not suffi-
cient to know a cell decomposition of the set, but it is also necessary to know how the cells
are connected together.

Example 1. The CAD algorithm applied to the equation y2 = x(x4− 1) gives four one-
dimensional cells and three zero-dimensional cells shown in Figure 1.1. To find the con-
nected components of the solution set it is sufficient to know which one-dimensional cells
are adjacent to which zero-dimensional cells.

Several algorithms for computing cell adjacencies have been developed. The algorithm
given in [20] computes cell adjacencies for CAD that are well-based. A CAD is well-based
if none of the polynomials whose roots appear in cell description vanishes identically at
any point. This is a somewhat stronger condition than well-orientedness required for the
McCallum projection [15], nevertheless a large portion of examples that appear in practice
satisfies the condition. In a well-based CAD all cell adjacencies can be determined from
adjacencies between cells whose dimensions differ by one. In R2 all CADs are well-based.
Algorithm for computing cell adjacencies in arbitrary CADs in R3 has been given in [1].
For determining cell adjacencies [20] proposes methods based on fractional power series
representations of polynomial roots. Another method, given in [16], computes adjacencies
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FIGURE 1.1. y2 = x(x4−1)

between a zero-dimensional cell and one-dimensional cells by analyzing intersections of
the one dimensional cells with sides of a suitable box around the zero-dimensional cell.
For an alternative method of computing connectivity properties of semialgebraic sets see
[4, 2, 3, 8].

In this paper we present a new algorithm which computes cell adjacencies for well-
based CAD. The algorithm uses validated numerical methods similar to those used in
[21] for construction of CAD cell sample points. The method is based on computation
of approximations of polynomial roots and increasing the precision of computations un-
til validation criteria are satisfied. Unlike the previously known algorithms, it does not
require polynomial computations over algebraic number fields or computation with frac-
tional power series representations of polynomial roots. Also, unlike the CAD construction
algorithm given in [21], the algorithm never needs to revert to exact algebraic number com-
putations. We have implemented the algorithm as an extension to the CAD implementation
in Mathematica. Empirical results show that computation of CAD with cell adjacency data
takes time comparable to computation of CAD without cell adjacency data.

The general idea of the algorithm is as follows. It starts, similarly as the CAD algorithm,
with computing a sample point in each cell in Rk for all k ≤ n. The sample point of a cell
in Rk+1 extends the sample point of the projection of the cell on Rk. Then for each pair
of adjacent CAD cells C and C′ in Rk with dimC′ = dimC− 1 the algorithm constructs
a point p ∈ C that is “sufficiently close” to the sample point p′ of C′. Here “sufficiently
close” means that computing approximations of roots of projection polynomials at p and
p′ is sufficient to identify which roots over C tend to which roots over C′ and to continue
the construction to pairs of adjacent CAD cells in Rk+1. The construction gives all pairs of
adjacent cells in Rn whose dimensions differ by one. For well-based CAD this is sufficient
to determine all cell adjacencies.



CAD ADJACENCY COMPUTATION USING VALIDATED NUMERICS 3

2. PRELIMINARIES

A system of polynomial equations and inequalities in variables x1, . . . ,xn is a formula

S(x1, . . . ,xn) =
∨

1≤i≤l

∧
1≤ j≤mi

fi, j(x1, . . . ,xn)ρi, j0

where fi, j ∈ R[x1, . . . ,xn], and each ρi, j is one of <,≤,≥,>,=, or 6=.
A subset of Rn is semialgebraic if it is a solution set of a system of polynomial equations

and inequalities.
A quantified system of real polynomial equations and inequalities in free variables

x1, . . . ,xm and quantified variables xm+1, . . . ,xn is a formula

(2.1) Q1xm+1 . . .Qn−mxnS(x1, . . . ,xn)

Where Qi is ∃ or ∀, and S is a system of real polynomial equations and inequalities in
x1, . . . ,xn.

By Tarski’s theorem (see [24]), solution sets of quantified systems of real polynomial
equations and inequalities are semialgebraic.

Notation 2. For k ≥ 1, let a denote a k-tuple (a1, . . . ,ak) of real numbers and let x denote
a k-tuple (x1, . . . ,xk) of variables.

Every semialgebraic set can be represented as a finite union of disjoint cells (see [12]),
defined recursively as follows.

(1) A cell in R is a point or an open interval.
(2) A cell in Rk+1 has one of the two forms

{(a,ak+1) : a ∈Ck ∧ak+1 = r(a)}
{(a,ak+1) : a ∈Ck ∧ r1(a)< ak+1 < r2(a)}

where Ck is a cell in Rk, r is a continuous semialgebraic function, and r1 and r2
are continuous semialgebraic functions, −∞, or ∞, and r1 < r2 on Ck.

For a cell C ⊆ Rn let Πk(C) ⊆ Rk, for k ≤ n, denote the projection of C on Rk. A finite
collection D of cells in Rn is cylindrically arranged if for any C1,C2 ∈ D and any k ≤ n
Πk(C1) and Πk(C2) are either disjoint or identical.

A cylindrical algebraic decomposition (CAD) of Rn is a finite collection D of pairwise
disjoint cylindrically arranged cells in Rn such that

⋃
C∈D C = Rn.

Let P ⊂ R[x1, . . . ,xn] be a finite set of polynomials. A CAD D of Rn is P-invariant if
each element of P has a constant sign on each cell of D.

Let A⊆Rn be a semialgebraic set. A CAD D of Rn is consistent with A if A =
⋃

C∈DA
C

for some DA ⊆ D.
Let C1,C2 ∈ D. C1 and C2 are adjacent if C1 6=C2 and C1∪C2 is connected.
For a semialgebraic set A presented by a quantified system of polynomial equations and

inequalities (2.1), the CAD algorithm can be used to find a CAD D of Rn consistent with
A. The CAD D is represented by a cylindrical algebraic formula (CAF). A CAF describes
each cell by giving explicit semialgebraic function bounds and the Boolean structure of a
CAF reflects the cylindrical arrangement of cells. Before we give a formal definition of a
CAF, let us first introduce some terminology.

Let k≥ 1 and let f = cdyd + . . .+c0, where c0, . . . ,cd ∈ Z[x]. A semialgebraic function
given by the defining polynomial f and a root number λ ∈ N+ is the function

(2.2) Rooty,λ f : Rk 3 a−→ Rooty,λ f (a) ∈ R
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where Rooty,λ f (a) is the λ -th real root of f (a,y) ∈ R[y]. The function is defined for those
values of a for which f (a,y) has at least λ real roots. The real roots are ordered by the
increasing value and counted with multiplicities. A real algebraic number Rooty,λ f ∈ R
given by a defining polynomial f ∈ Z[y] and a root number λ is the λ -th real root of f .

Let C be a connected subset of Rk. The function Rooty,λ f is regular on C if it is con-
tinuous on C, cd(a) 6= 0 for all a ∈ C, and there exists m ∈ N+ such that for any a ∈ C
Rooty,λ f (a) is a root of f (a,y) of multiplicity m.

The polynomial f is degree-invariant on C if there exists e ∈ N such that cd(a) = . . .=
ce+1(a) = 0∧ ce(a) 6= 0 for all a ∈C.

A set W = { f1, . . . , fm} of polynomials is delineable on C if all elements of W are
degree-invariant on C and for 1≤ i≤ m

f−1
i (0)∩ (C×R) = {ri,1, . . . ,ri,li}

where ri,1, . . . ,ri,li are disjoint regular semialgebraic functions and for i1 6= i2 ri1, j1 and ri2, j2
are either disjoint or equal. Functions ri, j are root functions of fi over C.

Let W be delineable on C, let r1 < .. . < rl be all root functions of elements of W over
C, and let r0 =−∞ and rl+1 = ∞. For 1≤ i≤ l, the i-th W-section over C is the set

{(a,ak+1) : a ∈C∧ak+1 = ri(a)}

For 1≤ i≤ l +1, the i-th W-sector over C is the set

{(a,ak+1) : a ∈C∧ ri−1(a)< ak+1 < ri(a)}

W-stack over C is the set of all W -sections and W -sectors over C.
A formula F is an algebraic constraint with bounds BDS(F) if it is a level-k equational

or inequality constraint with 1≤ k ≤ n defined as follows.

(1) A level-1 equational constraint has the form x1 = r, where r is a real algebraic
number, and BDS(F) = {r}.

(2) A level-1 inequality constraint has the form r1 < x1 < r2, where r1 and r2 are real
algebraic numbers, −∞, or ∞, and BDS(F) = {r1,r2}\{−∞,∞}.

(3) A level-k+1 equational constraint has the form xk+1 = r(x), where r is a semial-
gebraic function, and BDS(F) = {r}.

(4) A level-k+1 inequality constraint has the form r1(x)< xk+1 < r2(x), where r1 and
r2 are semialgebraic functions, −∞, or ∞, and BDS(F) = {r1,r2}\{−∞,∞}.

A level-k+1 algebraic constraint F is regular on a connected set C⊆Rk if all elements of
BDS(F) are regular on C and, if F is an inequality constraint, r1 < r2 on C.

Definition 3. An atomic cylindrical algebraic formula (CAF) F in (x1, . . . ,xn) has the form
F1 ∧ . . .∧Fn, where Fk is a level-k algebraic constraint for 1 ≤ k ≤ n and Fk+1 is regular
on the solution set of F1∧ . . .∧Fk for 1≤ k < n.

Level-k cylindrical formulas in (x1, . . . ,xn) are defined recursively as follows

(1) A level-n cylindrical formula is f alse or a disjunction of level-n algebraic con-
straints.

(2) A level-k cylindrical formula, with 1≤ k < n, is f alse or has the form

(F1∧G1)∨ . . .∨ (Fm∧Gm)

where Fi are level-k algebraic constraints and Gi are level-k+ 1 cylindrical for-
mulas.
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A cylindrical algebraic formula (CAF) is a level-1 cylindrical formula F such that dis-
tributing conjunction over disjunction in F gives

DNF(F) = F1∨ . . .∨Fl

where each Fi is an atomic CAF. Let C(Fi) denote the solution set of Fi and let D(F) =
{C(F1), . . . ,C(Fl)}. The bound polynomials of F is a finite set BP(F)⊂R[x1, . . . ,xn] which
consists of all polynomials f such that Rootxk,λ f ∈ BDS(G) for some 1≤ k≤ n and a level-
k algebraic constraint G that appears in F.

Note that C(Fi) is a cell and D(F) is a finite collection of pairwise disjoint cylindrically
arranged cells.

For a CAF F in (x1, . . . ,xn), let Πk(F) denote the CAF in (x1, . . . ,xk) obtained from F
by removing all level-k+1 subformulas. Then

D(Πk(F)) = {Πk(C) : C ∈ D(F)}

Following the terminology of [20], we define a well-based CAF as follows.

Definition 4. A CAF F is well-based if D(F) is a BP(F)-invariant CAD of Rn and for
any f ∈ BP(F) if f ∈ R[x1, . . . ,xk+1] \R[x1, . . . ,xk] then for any a ∈ Rk f (a,xk+1) is not
identically zero.

In a CAD corresponding to a well-based CAF a closure of a cell is a union of cells
and the only cells from other stacks adjacent to a given section are sections defined by
the same polynomial. Moreover, any two adjacent cells have different dimensions and are
connected through a chain of adjacent cells with dimensions increasing by one, and hence
to determine all cell adjacencies it is sufficient to find all pairs of adjacent cells whose
dimensions differ by one. These properties, stated precisely in Proposition 5, are essential
for our algorithm.

Proposition 5. Let F be a well-based CAF.

(1) If C∈D(F) then there exits cells C1, . . . ,Cm ∈D(F) such that C =C∪C1∪ . . .∪Cm.
(2) Let C ∈ D(F) be a section

C = {(a,an) : a ∈Πn−1(C)∧an = Rootxn,λ f (a)}

and let C′ ∈D(Πn−1(F)) be a cell adjacent to Πn−1(C) with dimC′< dimΠn−1(C).
Then either C∩ (C′×R) is equal to a section

{(a,an) : a ∈C′∧an = Rootxn,λ ′ f (a)}

for some 1≤ λ ′ ≤ degxn
( f ), or for any a ∈C′

lim
b∈Πn−1(C),b→a

Rootxn,λ f (a) =−∞

or for any a ∈C′

lim
b∈Πn−1(C),b→a

Rootxn,λ f (a) = ∞

(3) Let Ck,Cl ∈ D(F) be adjacent cells such that dim(Ck) = k and dim(Cl) = l. Then
k 6= l and if k < l then there exist cells Ck+1, . . . ,Cl−1 ∈D(F) such that dim(C j)= j
and C j ⊆C j+1 for k ≤ j < l.
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Proof. Part (1) is Lemma 1 of [20]. To prove (2) first note that, by (1), C′ ⊂Πn−1(C). By
Lemma 2 of [20], there exists a unique continuous function r : Πn−1(C)→ R∪{−∞,∞}
extending Rootxn,λ f (a). Moreover, r is either infinite or a root of f . Since f is delineable
on C′ and C′ is connected, either r is a root of f on C′, or r ≡−∞ on C′, or r ≡ ∞ on C′.

We will prove (3) by induction on n. Note that by (1) it is sufficient to find cells C j
such that dim(C j) = j and C j and C j+1 are adjacent for k≤ j < l. If n = 1 then dimensions
of any pair of adjacent cells differ by one, hence (3) is true. To prove (3) for n > 1
we will use induction on l − k. If l − k = 1 then (3) is true. Suppose l − k > 1. Let
C′k′ = Πn−1(Ck) and C′l′ = Πn−1(Cl), where dim(C′k′) = k′ and dim(C′l′) = l′. If Cl is a
section, then, by Lemma 2 of [20], there exists a continuous function r : C′l′→R∪{−∞,∞}
such that Cl = {(x,r(x)) : x∈C′l′} and r is infinite or a root of an element of BP(F). In this
case set s = r. Similarly, if Cl is a sector, then, by Lemma 2 of [20], there exists continuous
functions r,s : C′l′ → R∪{−∞,∞} such that Cl = {(x,y) : x ∈C′l′ ∧ r(x)< y < s(x)} and r
and s are infinite or roots of elements of BP(F). Since l− k > 1, k′ < l′. Suppose first that
l′− k′ = 1. Since l− k > 1, Ck is a section and Cl is a sector. If Ck = {(x, t(x)) : x ∈C′k′},
where t = r or t = s, then t is finite on C′l′ , Ck is adjacent to Ck+1 := {(x, t(x)) : x∈C′l′}, and
Ck+1 is adjacent to Cl . Since l = k+2, (3) is true. Otherwise, let Ck+1 be the sector directly
below Ck. Then Ck+1⊂{(x,y) : x∈C′k′∧r(x)< y< s(x)}, and hence Ck+1 is adjacent to Cl .
Again, since l = k+ 2, (3) is true. Now suppose that l′− k′ > 1. Πn−1(F) is well-based,
hence, by the inductive hypothesis on n, there exist cells C′k′+1, . . . ,C

′
l′−1 ∈ D(Πn−1(F))

such that dim(C′j) = j and C′j ⊆C′j+1 for k′ ≤ j < l′. Let x0 ∈C′k′ and (x0,y0) ∈Ck. Then
r(x0)≤ y0 ≤ s(x0). Since C′k′ is adjacent to C′l′−1, there exist a sequence {xn}n≥1 such that
xn ∈C′l′−1 and limn→∞ xn = x0. Put yn =max(r(xn),min(s(xn),y0)). Then limn→∞(xn,yn)=

(x0,y0). The set

S = {(x,y) : x ∈C′l′−1∧ y ∈ R∧ r(x)≤ y≤ s(x)}

is a union of a finite number of cells, S ⊂ Cl , and (xn,yn) ∈ S. Hence, there exists a
cell C ⊆ S such that C contains infinitely many elements of the sequence {(xn,yn)}n≥1.
Therefore, C is adjacent to both Ck and Cl . Since dimC− k < l− k and l−dimC < l− k,
(3) is true by the inductive hypothesis on l− k. �

For a given semialgebraic set A a well-based CAF F such that D(F) is consistent with
A may not exist in a given system of coordinates. However, as shown in [20], there always
exists a linear change of variables after which a well-based CAF F such that D(F) is
consistent with A does exist.

Example 6. If A is the real solution set of xy+ xz+ yz = 0 then a well-based CAF F such
that D(F) is consistent with A does not exist for any order of variables. A CAD computed
using McCallum’s projection operator [14] includes cells

C1 = {(x,y,z) : x > 0∧ y >−x∧ z =− xy
x+ y

}

C2 = {(x,y,z) : x = 0∧ y = 0}
C1 is not a union of cells, since C1 ∩C2 = {(x,y,z) : x = 0∧ y = 0∧ z ≥ 0}, and section
C1 is adjacent to a sector C2 from a different stack. After the linear change of variables
(x,y,z)→ (x,y+ z,z) A is transformed to the solution set of z2 + z(y+ 2x)+ xy = 0. The
following CAF F is well-based and D(F) is consistent with the transformed A.

F = (x < 0∧G1)∨ (x = 0∧ ((y < Rooty,1g∧G1)∨
(y = Rooty,1g∧G2)∨ (y > Rooty,1g∧G1)))∨ (x > 0∧G1)



CAD ADJACENCY COMPUTATION USING VALIDATED NUMERICS 7

where

f = z2 + z(y+2x)+ xy

g = y2 +4x2

G1 = z < Rootz,1 f ∨ z = Rootz,1 f ∨Rootz,1 f < z < Rootz,2 f ∨
z = Rootz,2 f ∨ z > Rootz,2 f

G2 = z < Rootz,1 f ∨ z = Rootz,1 f ∨ z > Rootz,1 f

3. ROOT ISOLATION ALGORITHMS

In this section we describe root isolation algorithms we will use in the algorithm com-
puting cell adjacencies. Let us first introduce some notations and subalgorithms.

Let ∆(c,r) = {z ∈ C : | z− c |≤ r} denote a disk in the complex plane, let Q2 = Z[ 1
2 ] =

{a2b : a,b ∈ Z} denote the set of dyadic rational numbers, and let I2(C) = {∆(c,r) : c ∈
Q2[ı]∧ r ∈Q2∧ r > 0} denote the set of discs in the complex plane with dyadic Gaussian
rational centers and dyadic rational radii. For a disc Z = ∆(c,r) ∈ I2(C), let γ(Z) := c and
ρ(Z) := r denote the center and the radius of Z, let Z := max(0, | c | −r) and Z :=| c | +r
denote the minimum and maximum of absolute values of elements of Z, let con j(Z) denote
the disc that consists of complex conjugates of elements of Z, and let dbl(Z) = ∆(c,2r)
and quad(Z) = ∆(c,4r). When we refer to interval arithmetic operations we mean circular
complex interval (disc) arithmetic (see e.g. [18]).

Proposition 7. There exists an algorithm (ApproximateRoots) that takes as input a poly-
nomial

g = bNxN + . . .+b0 ∈Q2[ı][x]

and p ∈ N and outputs (s1, . . . ,sN) ∈Q2[ı]N such that for any polynomial

f = aNxN + . . .+a0 = aN(x−σ1) · · ·(x−σN) ∈ C[x]

and any ε > 0 there exits p0 ∈ N such that if p≥ p0 and, for all 0≤ i≤ N,

| bi−ai |≤ 2−p max
0≤i≤N

|ai|

then, after a suitable reordering of roots, for all 1≤ j ≤ N | s j−σ j |≤ ε .

Proof. The algorithm described in [17] satisfies Proposition 7. �

Let us now describe a subalgorithm computing roots of polynomials with complex disc
coefficients. The algorithm is based on the following proposition ([21], Proposition 4.1).

Proposition 8. Let f ∈ C[z] be a polynomial of degree N, z0 ∈ C, r > 0, and let ci :=|
f (i)(z0)

i! |. Suppose that

max 0≤i<k(
Nci

ck
)

1
k−i < r < min k<i≤N(

ck

Nci
)

1
i−k

Then f has exactly k roots, multiplicities counted, in the disc ∆(z0,r).

The following is an extended version of Algorithm 4.2 from [21]. The key difference
is that this version does not assume that the leading coefficient does not contain zero and
provides a lower bound on the absolute value of roots that tend to infinity when the leading
coefficients that contain zero vanish.
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Algorithm 9. (IntervalRoots)
Input: Z0, . . . ,ZN ∈ I2(C).
Output: D1, . . . ,Dm ∈ I2(C), positive integers k1, . . . ,km, and a positive radius R, such that
for any a0 ∈ Z0, . . . ,aN ∈ ZN and any 1 ≤ i ≤ m the polynomial f = aNzN + . . .+ a0 has
exactly ki roots in the disc Di, multiplicities counted, and f has no roots in ∆(0,R)\

⋃m
i=1 Di.

Moreover, for any 1≤ i < j≤m, Di∩D j = /0, and Di ⊆ ∆(0,R). The other possible output
is Failed.

(1) If 0 ∈ Zi for all 0 ≤ i ≤ N return Failed. Otherwise let d be the maximal i such
that 0 /∈ Zi.

(2) Put

R := min d<i≤N(
Zd

NZi
)

1
i−d

If

R≤max 0≤i<d(
NZi

Zd
)

1
d−i

return Failed.
(3) Set fc = bdzd + . . .+b0, where bi = γ(Zi) for 0≤ i≤ d, and set

p =− max
0≤i≤d

logρ(Zi)

(4) Compute (s1, . . . ,sd) = ApproximateRoots( fc, p).
(5) Let F = ZNzN + . . .+ Z0. For each 1 ≤ j ≤ d and 0 ≤ i ≤ N use complex disc

arithmetic to compute Wi, j := F(i)(s j)
i! .

(6) For each 1≤ j ≤ d let k̃ j be the smallest k > 0 such that Wk, j 6= 0 and

r j := max 0≤i<k(
NWi, j

Wk, j
)

1
k−i < min k<i≤N(

Wk, j

NWi, j
)

1
i−k

If there is no k satisfying the condition return Failed.
(7) Find the connected components of the union of4(s j,r j). Let J1, . . . ,Jm be the sets

of indices j corresponding to the connected components.
(8) For each 1≤ l ≤m, let Jl = { jl,1, . . . jl,kl}. If for some j ∈ Jl k̃ j 6= kl return Failed.

Otherwise pick j ∈ Jl with the minimal value of r j, and set Dl := ∆(s j,r j).
(9) If Dl * ∆(0,R) for some 1≤ l ≤ m return Failed.

(10) Return (D1, . . . ,Dm), (k1, . . . ,km), and R.

To show correctness of Algorithm 9, suppose that the algorithm returned (D1, . . . ,Dm),
(k1, . . . ,km), and R. Let a0 ∈ Z0, . . . ,aN ∈ ZN and f = aNzN + . . .+ a0. By Proposition 8,
and because the algorithm did not fail in step (2), f has exactly d roots in ∆(0,R). The
condition in step (6) and Proposition 8 imply that f has exactly ki roots in the disc Di.
Since the algorithm did not fail in step (8), k1 + . . .+ km = d, and hence f has no roots in
∆(0,R) \

⋃m
i=1 Di. Step (7) guarantees that for any 1 ≤ i < j ≤ m, Di ∩D j = /0. Step (9)

ensures that Di ⊆ ∆(0,R/2).
Computation of sample points in CAD cells requires a representation of vectors with

algebraic number coordinates. The following gives a recursive definition of root isolation
data and of representation of real algebraic vectors. Note that root isolation data provides
information about roots of fk not only at u, but also in a neighbourhood of u (point (5) of
the definition). This property is crucial for computing cell adjacencies.
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Definition 10. Θk =((D1, . . . ,Dm),(k1, . . . ,km),R) is root isolation data for fk ∈Q[x1, . . . ,xk]
at u = (α1, . . . ,αk−1) ∈ Rk−1 if

(1) D1, . . . ,Dm ∈ I2(C), k1, . . . ,km ∈ N+, and R > 0,
(2) gk = fk(α1, . . . ,αk−1,xk) has a root of multiplicity k j in D j, for 1≤ j≤m, and has

no other roots,
(3) for any 1≤ j ≤ m dbl(D j)⊆ ∆(0,R/2),
(4) for any j1 6= j2 dbl(D j1)∩dbl(D j2)= /0 and if dbl(D j1)∩R 6= /0 then con j(dbl(D j1))∩

dbl(D j2) = /0,
(5) if Wi is the isolating disc of αi for 1≤ i< k, and βi ∈ quad(Wi) then fk(β1, . . . ,βk−1,xk)

has exactly k j roots in D j, multiplicities counted, and has no roots in ∆(0,R) \⋃m
j=1 D j.

A real algebraic vector v = RAV (Ωk) = (α1, . . . ,αk) ∈ Rk is represented by

Ωk = (Ωk−1, fk,Wk,Θk)

where
• Ωk−1 represents the real algebraic vector Π(v) = RAV (Ωk−1) = (α1, . . . ,αk−1) ∈
Rk−1,

• fk ∈Q[x1, . . . ,xk] is a defining polynomial of αk,
• Wk ∈ I2(C) is an isolating disc of αk,
• Θk = ((D1, . . . ,Dm),(k1, . . . ,km),R) is root isolation data for fk at Π(v), Wk = D j0

for some 1≤ j0 ≤ m, and Wk ∩R 6= /0.
Define ρ(Ωk) = max(ρ(Ωk−1),max1≤ j≤m ρ(D j)).

To complete the recursive definition let Ω0 = () be the representation of the only element
of R0.

We will say that Ω′k = (Ω′k−1, fk,W ′k ,Θ
′
k) is a refinement of Ωk if RAV (Ω′k) = RAV (Ωk),

Θ′k = ((D′1, . . . ,D
′
m),(k1, . . . ,km),R′), ρ(D′j) < ρ(D j) and D′j ⊆ dbl(D j) for 1 ≤ j ≤ m,

and Ω′k−1 is a refinement of Ωk−1.
For any v = (a1, . . . ,ak) ∈ Rk and a ∈ R, we will use notation Λ(v) = ak and v× a =

(a1, . . . ,ak,a) ∈ Rk+1.

Remark 11. A refinement Ω′′k of a refinement Ω′k of Ωk is a refinement of Ωk.

Proof. With notations from Definition 10, let

Ω
′′
k = (Ω′′k−1, fk,W ′′k ,Θ

′′
k )

and
Θ
′′
k = ((D′′1 , . . . ,D

′′
m),(k1, . . . ,km),R′′)

By induction, it suffices to show ρ(D′′j )< ρ(D j) and D′′j ⊆ dbl(D j) for 1≤ j≤m. ρ(D′′j )<
ρ(D j) follows from ρ(D′′j )< ρ(D′j) and ρ(D′j)< ρ(D j). D′′j ⊆ dbl(D′j) and D′j ⊆ dbl(D j)

implies that D j, D′j and D′′j contain the same root of fk(α1, . . . ,αk−1,xk). Then ρ(D′′j ) <
ρ(D j) implies D′′j ⊆ dbl(D j). �

The algorithms we introduce next take a working precision argument. A working pre-
cision p is a positive integer. One can think of it as the number of bits in floating-point
numbers used in a numeric approximation algorithm. However, we will not attach any
specific meaning to the working precision argument. Instead our algorithms will satisfy
certain properties as p tends to infinity. For instance, if we say that a certain quantity ω in
the output of an algorithm tends to zero as p tends to infinity, it means that for any ε > 0
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there exists N > 0 such that if the working precision p > N then the algorithm will produce
an output with ω < ε .

Let v = (α1, . . . ,αk) be a real algebraic vector and let

f ∈Q[x1, . . . ,xk,xk+1]

be such that f (α1, . . . ,αk,xk+1) does not vanish identically. We will now describe an algo-
rithm AlgRootsk, with k ≥ 0, which finds the root isolation data of f at v and the real roots
of f (α1, . . . ,αk,xk+1). The algorithm uses two subalgorithms Re f inek and ZeroTestk that
will be defined recursively in terms of AlgRootsk−1. Given

(α1, . . . ,αk) = RAV (Ωk)

and a working precision p > 0 Re f inek computes a refinement Ω′k of Ωk such that as p
tends to infinity ρ(Ω′k) tends to zero. ZeroTestk decides whether h(α1, . . . ,αk) is zero for
a given h ∈Q[x1, . . . ,xk].

Algorithm 12. (AlgRootsk)
Input: Real algebraic vector v=(α1, . . . ,αk)=RAV (Ωk), where k≥ 0, f ∈Q[x1, . . . ,xk,xk+1],
such that f (α1, . . . ,αk,xk+1) does not vanish identically, and a working precision p > 0.
Output: Root isolation data Θ of f at v, a refinement Ω′k of Ωk, and real algebraic vec-
tors v1 = RAV (Ωk+1,1), . . . ,vr = RAV (Ωk+1,r) ∈ Rk+1 such that Π(v j) = RAV (Ω′k), for
1 ≤ j ≤ r, Λ(v1), . . . ,Λ(vr) are all the real roots of f (α1, . . . ,αk,xk+1), and as p tends to
infinity ρ(Ωk+1, j) tends to zero.

(1) Let f = aNxN
k+1 + . . .+a0. Find d such that ad(α1, . . . ,αk) 6= 0 and

ad+1(α1, . . . ,αk) = . . .= aN(α1, . . . ,αk) = 0

using ZeroTestk if k > 0. Set g = adzd + . . .+a0.
(2) Compute the principal subresultant coefficients psc0, . . . , pscn−1 of g and ∂g

∂ z with
respect to z.

(3) Find the largest integer µ ≥ 0 such that

psc0(α1, . . . ,αk) = . . .= pscµ−1(α1, . . . ,αk) = 0

using ZeroTestk if k > 0.
(4) Set p′ = p and Ω′k = Ωk.
(5) If k > 0 compute Ω′k = Re f inek(Ω

′
k, p′) and let W1, . . . ,Wk be the isolating discs of

α1, . . . ,αk in Ω′k.
(6) For 0≤ i≤ N

(a) if ai ∈Q compute Zi ∈ I2(C) such that ai ∈ Zi and ρ(ai)≤ 2−p′ ,
(b) else compute Zi = ai(quad(W1), . . . ,quad(Wk)) using interval arithmetic.

(7) Compute Θ := IntervalRoots(Z0, . . . ,ZN).
(8) If Θ = Failed double p′ and go to step (5).
(9) Let Θ = ((D1, . . . ,Dm),(k1, . . . ,km),R). If d−m > µ or the conditions (3) and (4)

of Definition 10 are not satisfied, double p′ and go to step (5).
(10) Let ( j1, . . . , jr) be the set of indices for which D jl ∩R 6= /0. For 1 ≤ l ≤ r let

Ωk+1,l = (Ω′k, f ,D jl ,Θ) and vl = RAV (Ωk+1,l).
(11) Return Θ, Ω′k, and v1, . . . ,vr.

Proof. To prove termination of the Algorithm 12 we need to show that for sufficiently large
p′ the call to IntervalRoots in step (7) succeeds and gives a result with d−m = µ . The
specification of the algorithm Re f inek implies that as p′ tends to infinity max1≤i≤k ρ(Wi)
tends to zero. Hence also max1≤i≤N ρ(Zi) tends to zero. Therefore, as p′ tends to infinity,
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γ(Zi) tends to ai(α1, . . . ,αk) and Zi and Zi tend to |ai(α1, . . . ,αk)| for all 0 ≤ i ≤ N. In
particular, for sufficiently large p′, 0 /∈ Zi iff ai(α1, . . . ,αk) 6= 0, and hence d in step (1) of
IntervalRoots is the same as d computed in step (1) of Algorithm 12. Since

R := min d<i≤N(
Zd

NZi
)

1
i−d

tends to infinity and

max 0≤i<d(
NZi

Zd
)

1
d−i

tends to a finite constant, the call to IntervalRoots does not fail in in step (2) for sufficiently
large p′. Let σ1, . . .σd be the roots of h(z) = g(α1, . . . ,αk,z), each repeated as many times
as its multiplicity. Let s1, . . . ,sd be the roots computed in step (4) of IntervalRoots. The
specification of ApproximateRoots implies that, as p′ tends to infinity, after a suitable re-

ordering of roots, s j tends to σ j for each 1≤ j ≤ d. Hence for Wi, j := F(i)(s j)
i! computed in

step (5) of IntervalRoots γ(Wi, j) tends to h(i)(σ j)
i! and ρ(Wi, j) tends to zero. Therefore, Wi, j

and Wi, j tend to | h
(i)(σ j)

i! |. Hence, if k j is the multiplicity of σ j,

r j := max 0≤i<k j(
NWi, j

Wk j , j
)

1
k j−i

tends to zero and

min k j<i≤N(
Wk j , j

NWi, j
)

1
i−k j

is bounded away from zero for sufficiently large p′. Therefore, for sufficiently large p′,
the condition in step (6) of IntervalRoots is satisfied by k j. Note that if s j is closer to σ j
than to other roots of h then the condition cannot be satisfied by any k < k j. Otherwise, by
Proposition 8, h would have exactly k roots in ∆(s j,r j) which is impossible since if σ j /∈
∆(s j,r j) then ∆(s j,r j) contains no roots of h and else ∆(s j,r j) contains at least k j roots of h.
Hence, for sufficiently large p′, step (6) does not fail and k̃ j = k j for each1≤ j ≤ d. Since
r j tends to zero for 1 ≤ j ≤ d, for sufficiently large p′, ∆(s j1 ,r j1) and ∆(s j2 ,r j2) intersect
iff σ j1 = σ j2 , and hence step (8) of IntervalRoots does not fail. Since R tends to infinity,
for sufficiently large p′, step (9) of IntervalRoots does not fail and the whole algorithm
succeeds. Since, for sufficiently large p′, the discs returned by IntervalRoots correspond
to distinct roots of h, d−m = µ in step (9) of Algorithm 12. Since ρ(Di) tends to zero for
1≤ i≤m and R tends to infinity, for sufficiently large p′, we have dbl(Di)⊆ ∆(0,R/2) for
any 1≤ i≤ m and

ρ(Di)<
minσ j1 6=σ j2

|σ j1 −σ j2 |
16

Therefore for any i1 6= i2 dbl(Di1)∩ dbl(Di2) = /0 and if σ is the root of h in Di1 then
either σ /∈ R and dbl(Di1)∩R = /0 or σ ∈ R and con j(dbl(Di1))∩ dbl(Di2) = /0. Hence
for sufficiently large p′, the conditions (3) and (4) of Definition 10 are satisfied and the
algorithm terminates.

Proposition 4.3 of [21] and correctness of Algorithm 9 imply that Ωk+1,l satisfy the
conditions (1), (2), and (5) of Definition 10, and the conditions (3) and (4) are ensured by
step (9) of Algorithm 12. Step (10) selects all isolating discs that intersect the real line,
hence Λ(v1), . . . ,Λ(vr) are all the real roots of f (α1, . . . ,αk,xk+1).
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To show that ρ(Ωk+1, j) tends to zero as p tends to infinity, note that p′ ≥ p, we have
already shown that ρ(Di) tends to zero for 1 ≤ i ≤ m as p′ tends to infinity, and since
Ω′k is computed by Re f inek with working precision p′, ρ(Ω′k) tends to zero as p′ tends to
infinity. �

Remark 13. If m = d in step (10) of Algorithm 12 then

g(α1, . . . ,αk,z)

does not have multiple roots and computing the principal subresultant coefficients is not
necessary. Hence instead of computing the principal subresultant coefficients in step (2)
it is sufficient to compute them only when the algorithm reaches step (9) for the first time
and m < d.

To complete the description of Algorithm 12 let us now define the subalgorithms Re f inek
and ZeroTestk.

Algorithm 14. (Re f inek)
Input: Real algebraic vector (α1, . . . ,αk) = RAV (Ωk), where k ≥ 1, and a working preci-
sion p > 0.
Output: A refinement Ω′k of Ωk such that as p tends to infinity ρ(Ω′k) tends to zero.

(1) Let Ωk = (Ωk−1, fk,Wk,Θk),

Θk = ((D1, . . . ,Dm),(k1, . . . ,km),R)

and Wk = D j0 . Set v = RAV (Ωk−1) and p′ = p.
(2) Compute

(Θ;Ω
′
k−1;v1, . . . ,vr) = AlgRootsk−1(v, fk, p′)

where Θ = ((D′1, . . . ,D
′
m),(k1, . . . ,km),R′).

(3) If no reordering of indices in Θ yields ρ(D′j) < ρ(D j) and D′j ⊆ dbl(D j) for
1≤ j ≤ m, double p′ and go to (2).

(4) Let v j = RAV (Ω′k) be such that the isolating disk of Λ(v j) is D′j0 . Return Ω′k.

Since ρ(D′j) tends to zero as p′ tends to infinity, for sufficiently large p′ the condition
in step (3) is satisfied for pairs D j and D′j containing the same root of fk(α1, . . . ,αk−1,xk),
and hence the algorithm terminates. Correctness of Algorithm 12 and the condition in step
(3) guarantee that Ω′k is a refinement of Ωk and as p tends to infinity ρ(Ω′k) tends to zero.

Algorithm 15. (ZeroTestk)
Input: Real algebraic vector (α1, . . . ,αk) = RAV (Ωk), where k ≥ 1, and h ∈Q[x1, . . . ,xk].
Output: true if h(α1, . . . ,αk) = 0 and f alse otherwise.

(1) Let Ωk = (Ωk−1, fk,Wk,Θk),

Θk = ((D1, . . . ,Dm),(k1, . . . ,km),R)

and Wk =D j0 . Set µ = k j0 , Ω′k =Ωk, and set an initial value p of working precision
(e.g. to precision that was used to compute Ωk).

(2) Compute Ω′k = Re f inek(Ω
′
k, p). Let Ω′k = (Ω′k−1, fk,W ′k ,Θ

′
k). Set v = RAV (Ω′k−1).

(3) Compute (Θ;Ω′k−1;v1, . . . ,vr) = AlgRootsk−1(v, fkh, p).
(4) If W ′k intersects the isolating disc of Λ(v j) for more than one j, double p and go to

step (2).
(5) Let j be the only index for which W ′k intersects the isolating disc W of Λ(v j). Let

Θ = ((D̃1, . . . , D̃m),(k̃1, . . . , k̃m), R̃), and W = ˜D j̃0.

(6) If ˜k j̃0 > µ return true otherwise return f alse.
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Since as p′ tends to infinity, ρ(W ′k) and max1≤ j≤r ρ(Λ(v j)) tend to zero, for sufficiently
large p′, W ′k intersects only the isolating disc of Λ(v j) = αk, which proves termination and
correctness of the algorithm.

Since AlgRootsk is defined for k ≥ 0 and Re f inek and ZeroTestk are defined for k ≥ 1,
the recursive definition of the algorithms is complete.

Remark 16. ZeroTestk is defined here in terms of AlgRootsk−1 for simplicity of descrip-
tion. In practice, to decide whether

h(α1, . . . ,αk) = 0

we can first evaluate h at the isolating discs of α1 . . . ,αk using interval arithmetic. If the
result does not contain zero then

h(α1, . . . ,αk) 6= 0

Otherwise, we isolate roots of

hα = h(α1, . . . ,αk−1,z)

and refine isolating discs of roots of

gα = g(α1, . . . ,αk−1,z)

and roots of hα until either the isolating disc of αk does not intersect any isolating discs
of roots of hα or the number of intersecting isolating discs of roots of gα and hα agrees
with the number of common roots of gα and hα computed by finding signs of principal
subresultant coefficients of gα and hα (see Proposition 4.4 of [21]). When the algorithm is
used in CAD construction we also use information about polynomials that are zero at the
current point that was collected during the construction (see [21], Section 4.1).

4. FINDING CELL ADJACENCIES

Let F be a well-based CAF in x1, . . . ,xn. For simplicity let us assume that BP(F) =
{ f1, . . . , fn}, where

fk ∈Q[x1, . . . ,xk]\Q[x1, . . . ,xk−1]

This can be always achieved by multiplying all elements of

BP(F)∩ (Q[x1, . . . ,xk]\Q[x1, . . . ,xk−1])

We can also assume that f1, . . . , fn are square-free.
The main algorithm CADAdjacency (Algorithm 18) finds all pairs of adjacent cells

(C,C′) ∈ D(F)2 such that dimC− dimC′ = 1. By Proposition 5, to determine all cell
adjacencies for a well-based CAF it is sufficient to find all pairs of adjacent cells whose
dimensions differ by one, hence Algorithm 18 is sufficient to fully solve the cell adjacency
problem for well-based CAF.

The algorithm first calls SamplePoints (Algorithm 19), which constructs a sample point
SPT (C) = (a1, . . . ,ak) ∈ Rk in each cell C ∈ D(Πk(F)), for 1 ≤ k ≤ n, and computes
root isolation data RT S(C) for each cell C ∈ D(Πk(F)), for 1 ≤ k < n. Let us describe
the representation of sample points and give the specification of root isolation data. Let
I = (i1, . . . , il) be the set of indices 1≤ i≤ k such that Πi(C) is a section. For i /∈ I, ai is a
rational number and for i∈ I, ai is an algebraic number. To represent sample points we will
use combinations of rational vectors and algebraic vectors defined as follows. Let 1≤ k ≤
n, let 0≤ l ≤ k, let I = {i1, . . . , il}, where 1≤ i1 < .. . < il ≤ k, and let J = {1, . . . ,k}\ I =
{ j1, . . . , jk−l}, where 1 ≤ j1 < .. . < jk−l ≤ k. Let v = (α1, . . . ,αl) = RAV (Ωl) be a real
algebraic vector and let w = (q1, . . . ,qk−l) ∈Qk−l be a rational vector. By PT (v,w, I,J) we
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denote the point (a1, . . . ,ak) ∈ Rk such that ais = αs for 1≤ s≤ l and a jt = qt for 1≤ t ≤
k− l. Suppose 1≤ k < n and SPT (C)=PT (v,w, I,J). Let f C

k+1 ∈Q[xi1 , . . . ,xil ,xk+1] denote
fk+1 with x jt replaced by a jt for 1≤ t ≤ k− l. Then RT S(C) computed by SamplePoints is
root isolation data of f C

k+1 at v.
Next CADAdjacency calls AdjacencyPoints (Algorithm 20) which, for 1 ≤ k ≤ n, and

for each pair of adjacent cells (C,C′) of D(Πk(F)) with dimC′ = dimC− 1, constructs a
point ADP(C,C′) ∈C which satisfies the following condition.

Condition 17. If SPT (C′) = (a1, . . . ,ak) and ADP(C,C′) = (b1, . . . ,bk) then

• for each 1 ≤ i ≤ k if ai is a root of fi(a1, . . . ,ai−1,xi) with isolating disc Wi then
bi ∈ dbl(Wi),

• if ai is a rational number between roots of fi(a1, . . . ,ai−1,xi) then bi = ai.

Finally, CADAdjacency returns the pairs of cells (C,C′) ∈D(F)2 for which ADP(C,C′)
is defined.

Algorithm 18. (CADAdjacency)
Input: A well-based CAF F in x1, . . . ,xn with BP(F)= { f1, . . . , fn}, where fk ∈Q[x1, . . . ,xk]\
Q[x1, . . . ,xk−1].
Output: The set A of all pairs of adjacent cells (C,C′) ∈D(F)2 such that dimC−dimC′ =
1.

(1) Compute (SPT,RT S) = SamplePoints(F).
(2) Compute ADP = Ad jacencyPoints(F,SPT,RT S).
(3) Return the set of all pairs of cells (C,C′)∈D(F)2 such that ADP(C,C′) is defined.

Algorithm 19. (SamplePoints)
Input: A well-based CAF F in x1, . . . ,xn with BP(F)= { f1, . . . , fn}, where fk ∈Q[x1, . . . ,xk]\
Q[x1, . . . ,xk−1].
Output: SPT and RT S such that

• for 1≤ k ≤ n and for each cell C of D(Πk(F)), SPT (C) is a sample point in C,
• for 1 ≤ k < n and for each cell C of D(Πk(F)), RT S(C) is root isolation data for

C.

(1) Set an initial value p of working precision.
(2) Compute (Θ;();v1, . . . ,vr) = AlgRoots0((), f1, p). We have

Θ = ((D1, . . . ,Dm),(k1, . . . ,km),R)

(3) Pick rational numbers−R < q1 < Λ(v1)< q2 < .. . < qr < Λ(vr)< qr+1 < R such
that qi /∈

⋃m
j=1 dbl(D j).

(4) For 1≤ i≤ r, let C be the i-th { f1}-section. Set SPT (C) = PT (vi,(),{1},{}).
(5) For 1≤ i≤ r+1, let C be the i-th { f1}-sector. Set SPT (C) = PT ((),(qi),{},{1}).
(6) For 1≤ k < n and for each cell C of D(Πk(F)):

(a) Let (a1, . . . ,ak) = PT (v,w, I,J) = SPT (C).
(b) Let I = {i1, . . . , il}, J = { j1, . . . , jk−l}, and let fC

k+1 be fk+1 with x jt replaced
by a jt for 1≤ t ≤ k− l.

(c) Compute (Θ;Ω′l ;v1, . . . ,vr) = AlgRootsl(v, f C
k+1, p). We have

Θ = ((D1, . . . ,Dm),(k1, . . . ,km),R)

(d) Set RT S(C)=Θ and replace representations of algebraic vectors in SPT (Πi(C))
for i≤ k with their refinements that appear in Ω′l .
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(e) Pick rational numbers−R < q1 < Λ(v1)< q2 < .. . < qr < Λ(vr)< qr+1 < R
such that qi /∈

⋃m
j=1 dbl(D j), and let wi = w×qi for 1≤ i≤ r+1.

(f) For 1≤ i≤ r, let S be the i-th { fk+1}-section over C. Set

SPT (S) = PT (vi,w, I∪{k+1},J)
(g) For 1≤ i≤ r+1, let S be the i-th { fk+1}-sector over C. Set

SPT (S) = PT (v,wi, I,J∪{k+1})
(7) Return SPT and RT S.

Algorithm 20. (AdjacencyPoints)
Input: A well-based CAF F in x1, . . . ,xn with BP(F)= { f1, . . . , fn}, where fk ∈Q[x1, . . . ,xk]\
Q[x1, . . . ,xk−1], SPT and RT S as in the output of Algorithm 19.
Output: ADP such that for 1 ≤ k ≤ n and for each pair of adjacent cells (C,C′) of
D(Πk(F)) with dimC′ = dimC−1, ADP(C,C′) is a point in C satisfying Condition 17.

(1) Let r be the number of real roots of f1. For 1≤ i≤ r+1:
(a) Let C be the i− th { f1}-sector.
(b) If i> 1 let C′ be the i−1-st { f1}-section. We have SPT (C′)=PT (v,(),{1},{}),

v = (α) = RAV (Ω1), and Ω1 = ((), f1,W,Θ). Let q∈ dbl(W )∩Q and q > α .
Set ADP(C,C′) = (q).

(c) If i≤ r let C′ be the i-th { f1}-section. We have

SPT (C′) = PT (v,(),{1},{})
v = (α) = RAV (Ω1), and

Ω1 = ((), f1,W,Θ)

Let q ∈ dbl(W )∩Q and q < α . Set ADP(C,C′) = (q).
(2) For 1≤ k < n and for each non-zero-dimensional cell C of D(Πk(F)):

(a) Let SPT (C) = PT (v,w, I,J) and let r be the number of real roots of fk+1 over
C. For 1≤ i≤ r+1:

(i) Let S be the i− th { fk+1}-sector over C.
(ii) If i > 1 let S′ be the i−1-st { fk+1}-section over C. We have SPT (S′) =

PT (v′,w, I∪{k+1},J), v′= v×α =RAV (Ωl+1), and Ωl+1 =(v,g,W,Θ).
Let q ∈ dbl(W )∩Q and q > α . Set ADP(S,S′) = PT (v,w′, I,J∪{k+
1}), where w′ = w×q.

(iii) If i ≤ r let S′ be the i-th { fk+1}-section over C. We have SPT (S′) =
PT (v′,w, I∪{k+1},J), v′= v×α =RAV (Ωl+1), and Ωl+1 =(v,g,W,Θ).
Let q ∈ dbl(W )∩Q and q < α . Set

ADP(S,S′) = PT (v,w′, I,J∪{k+1})
where w′ = w×q.

(b) For each cell C′ of D(Πk(F)) adjacent to C and such that dimC′ = dimC−1:
(i) Let (a1, . . . ,ak) = PT (v,w, I,J) = ADP(C,C′) and let

RT S(C′) = ((D1, . . . ,Dm),(k1, . . . ,km),R)

(ii) Let S′1, . . . ,S
′
s be the{ fk+1}-sections over C′, and let W ′j be the isolating

disc of Λ(SPT (S′j)) for 1≤ j ≤ s.
(iii) Let I = {i1, . . . , il}, J = { j1, . . . , jk−l}, and let g ∈ Q[xi1 , . . . ,xil ,xk+1]

be fk+1 with x jt replaced by a jt for 1≤ t ≤ k− l.
(iv) Compute (Θ;Ω′l ;v1, . . . ,vr) = AlgRootsl(v,g, p).



16 ADAM STRZEBOŃSKI

(v) For 1 ≤ i ≤ r refine the isolating disc Wi of Λ(vi) until it is contained
in one of dbl(W ′1), . . . ,dbl(W ′s ) or Wi∩∆(0,R/2) = /0. Let S be the i-th
{ fk+1}-section over C. If Wi ⊆ dbl(W ′j), set ADP(S,S′j) = PT (vi,w, I∪
{k+ 1},J), and set L(i) = S′j. Otherwise if Λ(vi) < 0 set L(i) = −∞

else set L(i) = ∞.
(vi) Set L(0) =−∞ and L(r+1) = ∞.

(vii) For 1 ≤ i ≤ r + 1, let S be the i-th { fk+1}-sector over C. For each
{ fk+1}-sector S′ over C′ that lies between L(i− 1) and L(i) put u =
w×Λ(SPT (S′)) and set ADP(S,S′) = PT (v,u, I,J∪{k+1}).

(3) Return ADP.

Proof. Let us now prove correctness of Algorithm 18. The working precision p set in
step (1) of SamplePoints is used in calls to AlgRoots. Since AlgRoots raises precision
as needed to reach its goals, p is just an initial value and can be set arbitrarily e.g. to
the number of bits in a double precision number. Steps (2)-(6) construct sample points
SPT (C) is all cells of D(F), starting with sample points in cells of D(Π1(F)), and then
extending them to sample points in D(Πk(F)) one coordinate at a time. An important fact
to note is that isolating discs in the representations of already constructed sample points
may change during the execution of step (6). Namely, in step (6d) the isolating discs
of the coordinates of the sample points SPT (Πi(C)) for all projections of the cell C are
replaced with their refinements that were computed in the process of isolating the roots of
f C
k+1. In particular, for any cell C ∈ D(F) if SPT (C) = (a1, . . . ,an) then for any 1≤ k ≤ n

SPT (Πk(C)) = (a1, . . . ,ak) and the isolating discs that appear in the representations of any
algebraic coordinate ai in SPT (C) and in SPT (Πk(C)) are equal. Note however, that after
SamplePoints is finished the representations of SPT (C) are fixed.

In step (1) of AdjacencyPoints for each pair of adjacent cells (C,C′) of D(Π1(F)) with
dimC′ = dimC−1 the algorithm constructs a point

ADP(C,C′) = (q) ∈C

such that if SPT (C′) = (α) and W is the isolating disc of α then q ∈ dbl(W ). At the
start of each iteration of the loop in step (2) the algorithm has already constructed a point
ADP(C,C′) for each pair of adjacent cells (C,C′) of D(Πk(F)) with dimC′ = dimC− 1.
The points satisfy Condition 17. Steps (2a) and (2b) construct points ADP(S,S′) for each
pair of adjacent cells (S,S′) of D(Πk+1(F)) with dimS′ = dimS− 1. It is clear that the
constructed points satisfy Condition 17. What we need to show is that the construction
will always succeed, pairs of cells (S,S′) for which ADP(S,S′) is constructed are adjacent,
and ADP(S,S′) is constructed for every pair of adjacent cells (S,S′) of D(Πk+1(F)) with
dimS′ = dimS−1. Step (2a) constructs ADP(S,S′) for every pair of adjacent cells from a
stack over the same cell C. Note that in step (2a) we have α ∈W and (dbl(W ) \W )∩R
consists of two intervals, one on each side of α , hence we can pick rational numbers
q ∈ dbl(W ) with q > α or q < α . If cells S and S′ from stacks over different cells C and C′

are adjacent and dimS′ = dimS−1 then C and C′ must be adjacent and, by Proposition 5,
dimC′ = dimC−1 and S is a section iff S′ is a section. This shows that step (2) constructs
ADP(S,S′) for every pair of adjacent cells (S,S′) of D(Πk+1(F)) with dimS′ = dimS−1.

Let us prove that the construction in step (2b) will always succeed and pairs of cells
(S,S′) for which ADP(S,S′) is constructed are adjacent. With notation of step (2b), let

(a1, . . . ,ak) = PT (v,w, I,J) = ADP(C,C′)
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and
(a′1, . . . ,a

′
k) = PT (v′,w′, I′,J′) = SPT (C′)

Note that J′ ⊆ J and a′j = a j for j ∈ J′. Let g′ = f C′
k+1 be fk+1 with x j replaced by a′j = a j

for j ∈ J′. Then g is equal to g′ with x j replaced by a j for j ∈ J ∩ I′. For i ∈ I′ let U ′i
be the isolating disk of a′i in v′ and let Ui be the isolating disk of a′i in the representation
of Π(v′) with which RT S(C′) was computed. Note that, by Remark 11, the current rep-
resentation of v′ is a refinement of the representation with which RT S(C′) was computed,
hence U ′i ⊆ dbl(Ui). Hence, ai ∈ dbl(U ′i ) and ai ∈ quad(Ui). By the condition (5) of Def-
inition 10, for each 1≤ i≤ r either Λ(vi) belongs to one of W ′1, . . . ,W

′
s or Λ(vi) /∈ ∆(0,R).

Therefore we can refine the isolating disc Wi of Λ(vi) so that it is contained in one of
dbl(W ′1), . . . ,dbl(W ′s ) or Wi ∩∆(0,R/2) = /0. In the former case the i-th { fk+1}-section
over C is adjacent to the j-th { fk+1}-section over C′, in the latter case the i-th { fk+1}-
section over C tends to infinity whose sign is determined by the sign of Λ(vi). This shows
that sections (S,S′) for which ADP(S,S′) is constructed are adjacent. Finally, let S and S′

be sectors over C and C′ defined in step (2b(vii)). Then, by construction in step (6e) of
SamplePoints, q = Λ(SPT (S′)) /∈

⋃m
j=1 dbl(D j), and since W ′j ⊆ dbl(D j) (possibly after

reordering of indices), q /∈
⋃s

j=1 W ′j . Moreover, −R < q < R. Since for each 1 ≤ i ≤ r ei-
ther Λ(vi) belongs to one of W ′1, . . . ,W

′
s or Λ(vi) /∈ ∆(0,R), the point PT (v,u, I,J∪{k+1})

defined in step (2b(vii)) belongs to S. If ADP(S,S′) is constructed in step (2b(vii)) then S′

is a sector that lies between sections adjacent to the sections bounding S, hence S and S′

are adjacent. �

5. EMPIRICAL RESULTS

An algorithm computing CAD cell adjacencies has been implemented in C, as a part
of the kernel of Mathematica. The implementation takes a quantified system of polyno-
mial equations and inequalities S and uses Mathematica multi-algorithm implementation
of CAD to compute a CAF F such that D(F) is a CAD of Rn consistent with the solution
set A of S. If F is well-based the implementation uses Algorithm 20 to find the cell ad-
jacencies. The implementation is geared towards solving a specified topological problem,
e.g. finding the boundary or the connected components of A, hence it avoids computing
cell adjacencies for cells that are known not to belong to the closure of A. The current im-
plementation also works for non-well-based problems in R3 using ideas from [1] to extend
Algorithm 20.

The experiments have been conducted on a Linux laptop with a 4-core 2.7 GHz Intel
Core i7 processor and 16 GB of RAM. The reported CPU time is a total from all cores used.
For each example we give three timings. tCAD is the computation time of constructing a
CAF consistent with the solution set the input system. tSP is the time of refining the CAD
to a BP(F)-invariant CAD ofRn and of constructing sample points in the CAD cells (steps
(1)-(6) of Algorithm 20). Our implementation refines the CAD while constructing sample
points, which is why we cannot give separate timings. The third timing, tADJ is the time of
computing cell adjacency information (steps (7)-(9) of Algorithm 20). We also report the
dimension dim of the embedding space, the number NCELL of cells in the CAD of A, the
number NADJ of computed pairs of adjacent cells whose dimensions differ by one, and the
number NCC of connected components of A.

Example 21. Find cell adjacencies for a CAD of the union of two unit balls in Rn

x2
1 + . . .+ x2

n ≤ 1∨ (x1−1)2 + . . .+(xn−1)2 ≤ 1
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TABLE 1. Union of two balls in Rn

dim tCAD tSP tADJ NCELL NADJ NCC

2 0.018 0.004 0.001 21 42 1
3 0.100 0.033 0.024 179 718 1
4 0.489 0.175 0.112 521 3898 1
5 1.42 0.773 0.352 954 11910 2
6 44.6 24.8 8.92 14050 251758 2

TABLE 2. Wilson’s benchmark

Ex # dim tCAD tSP tADJ NCELL NADJ NCC

2.13 4 0.109 0.263 0.210 3104 10576 1
2.16 3 3.06 2.65 1.27 2811 37416 1
6.1 3 0.768 0.794 0.312 2774 8926 2

5.10 4 14.9 11.2 4.01 2256 63190 1
6.6 6 14.6 7.85 3.52 2128 76360 1

Note that for n≤ 3 the balls have full-dimensional intersection, for n = 4 they touch at one
point, and for n > 4 they are disjoint.

Example 22. Here we used modified versions of examples from Wilson’s benchmark set
[26] (version 4). Of the 77 examples we selected 63 that involved at least 3 variables and
we used quantifier-free versions of the examples. In 21 of the examples the system was
not well-based and involved more than 3 variables, hence our algorithm did not apply. 7
examples did not finish in 600 seconds. Of the 35 examples for which our implementation
succeeded, 29 were well-based and 6 were not well-based and in R3. On average, tCAD
took 55% of the total time, tSP took 34%, and tADJ took 11%. Five examples with the
largest number of cells are given in Table 2. All but the third example are well-based.

Example 23. Here we took the 32 3D solids that appear in Mathematica SOLIDDATA and
intersected each of them with the solution set of 9(x+ y+ z)2 > z2 + 1. All 32 examples
were well-based and in all our implementation succeeded. On average, tCAD took 37%
of the total time, tSP took 47%, and tADJ took 16%. The five solids which resulted in the
largest number of cells are:

(1) Steinmetz 6-solid

2x2 +(y− z)2 ≤ 2∧2x2 +(y+ z)2 ≤ 2∧
2y2 +(x− z)2 ≤ 2∧2y2 +(x+ z)2 ≤ 2∧
(x− y)2 +2z2 ≤ 2∧ (x+ y)2 +2z2 ≤ 2

(2) Sphericon

(x2 + y2 ≤ (|z|−1)2∧ x≥ 0∧−1≤ z≤ 1)∨
(x2 + z2 ≤ (|y|−1)2∧ x≤ 0∧−1≤ y≤ 1)

(3) Steinmetz 4-solid

x2 + y2 ≤ 1∧9x2 + y2 +8z2 ≤ 9+164/29yz∧
3x2 +284/41xy+7y2 +82/29yz+8z2 ≤ 9+49/10xz∧
3x2 +7y2 +49/10xz+82/29yz+8z2 ≤ 9+284/41xy
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TABLE 3. Intersections of solids with 9(x+ y+ z)2 > z2 +1.

Ex # dim tCAD tSP tADJ NCELL NADJ NCC

1 3 254 614 189 156688 4320078 2
2 3 59.5 82.6 27.0 54256 767462 2
3 3 52.1 78.2 20.1 24476 461614 2
4 3 8.11 5.42 3.06 17152 84162 2
5 3 47.9 53.5 15.1 11756 349976 2

(4) Solid capsule

x2 + y2 +(z−1/2)2 ≤ 1∨ x2 + y2 +(z+1/2)2 ≤ 1∨
−1/2≤ z≤ 1/2∧ x2 + y2 ≤ 1

(5) Reuleaux tetrahedron

x2 + y2 +(19/31+ z)2 ≤ 1∧
(x−15/26)2 + y2 +(z−9/44)2 ≤ 1∧

(x+11/38)2 +(y−1/2)2 +(z−9/44)2 ≤ 1∧
(x+11/38)2 +(y+1/2)2 +(z−9/44)2 ≤ 1

The details are given in Table 3.

REFERENCES

[1] D. S. Arnon, G. E. Collins, and S. McCallum. Adjacency algorithm for cylindrical algebraic decomposition
of three-dimensional space. J. Symbolic Comp., 5:163–187, 1988.

[2] S. Basu, R. Pollack, and M. Roy. Computing roadmaps of semi-algebraic sets on a variety. Journal of the
AMS, 3:55–82, 1999.

[3] S. Basu, R. Pollack, and M. Roy. Algorithms in real algebraic geometry, volume 10. Springer-Verlag New
York Inc, 2006.

[4] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, USA, 1988.
[5] B. Caviness and J. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic Decomposition, New

York, 1998. Springer Verlag.
[6] C. Chen, M. M. Maza, B. Xia, and L. Yang. Computing cylindrical algebraic decomposition via triangular

decomposition. In Proceedings of the International Symposium on Symbolic and Algebraic Computation,
ISSAC 2009, pages 95–102. ACM, 2009.

[7] G. E. Collins. Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic
decomposition. Lect. Notes Comput. Sci., 33:134–183, 1975.

[8] M. S. E. Din and E. Schost. A baby steps/giant steps probabilistic algorithm for computing roadmaps in
smooth bounded real hypersurface. Discrete and Computational Geometry, 45:181–220, 2011.

[9] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in practice. In Algorithmic Alge-
bra and Number Theory, pages 221–247. Springer, 1998.

[10] D. Grigoriev and N. Vorobjov. Solving systems of polynomial inequalities in subexponential time. J. Symb.
Comput., 5(1/2):37–64, 1988.

[11] H. Hong and M. S. E. Din. Variant quantifier elimination. J. Symb. Comput., 47:883–901, 2012.
[12] S. Łojasiewicz. Ensembles semi-analytiques. I.H.E.S., 1964.
[13] R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Computer Journal, 36(5):450–

462, 1993.
[14] S. McCallum. An improved projection for cylindrical algebraic decomposition of three dimensional space.

J. Symbolic Comp., 5:141–161, 1988.
[15] S. McCallum. An improved projection for cylindrical algebraic decomposition. In B. Caviness and J. John-

son, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 242–268. Springer
Verlag, 1998.



20 ADAM STRZEBOŃSKI
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