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ABSTRACT
We give an algorithm for computing all roots of polynomials over a
univariate power series ring over an exact �eld K. More precisely,
given a precision d , and a polynomial Q whose coe�cients are
power series in x , the algorithm computes a representation of all
power series f (x) such that Q(f (x)) = 0 mod xd . �e algorithm
works unconditionally, in particular also with multiple roots, where
Newton iteration fails. Our main motivation comes from coding
theory where instances of this problem arise and multiple roots
must be handled.

�e cost bound for our algorithm matches the worst-case input
and output size d deg(Q), up to logarithmic factors. �is improves
upon previous algorithms which were quadratic in at least one of d
and deg(Q). Our algorithm is a re�nement of a divide & conquer
algorithm by Alekhnovich (2005), where the cost of recursive steps
is be�er controlled via the computation of a factor of Q which has
a smaller degree while preserving the roots.

KEYWORDS
Polynomial root-�nding algorithm; power series; list decoding.

1 INTRODUCTION
In what follows, K is an exact �eld, and K[[x]][y] denotes the set of
polynomials in y whose coe�cients are power series in x over K.

Problem andmain result. Given a polynomial inK[[x]][y], we are
interested in computing its power series roots to some precision,
as de�ned below.

Definition 1.1. Let Q ∈ K[[x]][y] and d ∈ Z>0. A power series
f ∈ K[[x]] is called a root of Q to precision d if Q(f ) = 0 mod xd ;
the set of all such roots is denoted by R(Q,d).

Our main problem (Problem 1) asks, givenQ and d , to compute a
�nite representation of R(Q,d); the fact that such a representation
exists is explained below (�eorem 2.8). In all the paper, we count
operations in K at unit cost, and we use the so�-O notation O∼(·)
to give asymptotic bounds with hidden polylogarithmic factors.
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Problem 1.
Input:

• a precision d ∈ Z>0,
• a polynomial Q ∈ K[[x]][y] known at precision d .

Output:
• (�nite) list of pairs (fi , ti )1≤i≤` ⊂ K[x] ×Z≥0 such that
R(Q,d) =

⋃
1≤i≤`(fi + x

tiK[[x]])

An algorithm solving this problem must involve �nding roots
of polynomials in K[y]. �e existence, and complexity, of root-
�nding algorithms for univariate polynomials over K depends on
the nature of K. In this paper, we assume that K is such that we
can �nd roots in K of a degree n polynomial in K[y] in time RK(n),
for some function RK : Z≥0 → R; the underlying algorithm may
be deterministic or randomized. For instance, if K = Fq , we can
take RK(n) ∈ O∼(n) using either a Las Vegas algorithm (in which
case the runtime can be more precisely stated as O∼(n log(q)) [19,
Cor. 14.16]), or a deterministic one (with for instance a runtime
O∼(nk2√p), where we write q = pk , p prime [17]).

We now state our main result: we separate the cost of the root-
�nding part of the algorithm, which may be randomized, and the
rest of the algorithm which is deterministic.

Theorem 1.2. �ere is an algorithm which solves Problem 1 us-
ing O∼(dn) deterministic operations in K, together with an extra
O(dRK(n)) operations, where n = deg(Q).

A cost in O∼(dn) is essentially optimal for Problem 1. Indeed, if
Q = (y − f1) · · · (y − fn ), for some power series f1, . . . , fn such that
fi − fj is a unit for all i , j, then the roots of Q to precision d are
all the power series of the form fi + x

dK[[x]], for some i . In this
case, solving Problem 1 involves computing all fi mod xd , which
amounts to dn elements in K.

Previous work. When the discriminant of Q ∈ K[[x]][y] has x-
valuation zero, or equivalently, when ally-roots ofQ |x=0 are simple
(as in the example above), our problem admits an obvious solution:
�rst, compute all y-roots of Q |x=0 in K, say y1, . . . ,y` , for some
` ≤ n, where n = degQ . �en, apply Newton iteration to each of
these roots to li� them to power series roots f1, . . . , f` of precision
d ; to go from precision say d/2 to d , Newton iteration replaces fi
by

fi −
Q(fi )

Q ′(fi )
mod xd ,

where Q ′ ∈ K[[x]][y] is the formal derivative of Q . �e bo�leneck
of this approach is the evaluation of all Q(fi ) and Q ′(fi ). Using an
algorithm for fast multi-point evaluation in the ring of univariate



polynomials over K[[x]]/(xd ), these evaluations can both be done
in O∼(dn) operations in K. Taking all steps into account, we obtain
the roots f1, . . . , f` modulo xd using O∼(dn) operations in K; this
is essentially optimal, as we pointed out above. In this case, the
total time for root-�nding is RK(n).

�us, the non-trivial cases of Problem 1 arise when Q |x=0 has
multiple roots. In this case, leaving aside the cost of root-�nding,
which is handled in a non-uniform way in previous work, we are
not aware of an algorithm with a cost similar to ours. �e best cost
bounds known to us are O∼(n2d), obtained in [1] and with this cost
estimate being showed in [13], and O∼(nd2), obtained in [4].

When Q |x=0 has multiple roots, a natural generalization of our
problem consists in computing Puiseux series solutions of Q . It is
then customary to consider a two-stage computation: �rst, com-
pute su�ciently many terms of the power series / Puiseux series
solutions in order to be able to separate the branches, then switch
to another algorithm to compute many terms e�ciently.

Most algorithms for the �rst stage compute the so-called singular
parts of rational Puiseux expansions [7] of the solutions. �ey are
inspired by what we will call the Newton-Puiseux algorithm, that is,
Newton’s algorithmic proof that the �eld of Puiseux series K〈〈x〉〉 is
algebraically closed when K is algebraically closed of characteristic
zero [12, 20]. In the case of Puiseux series roots, one starts by
reading o� the leading exponent γ of a possible solution on the
Newton polygon of the input equationQ ∈ K〈〈x〉〉[y]. �e algorithm
then considers Q̂ = Q(xγy)/xs ∈ K〈〈x〉〉[y], where s is the valuation
at x ofQ(xγy). Ify1, . . . ,y` are they-roots of Q̂ |x=0, then these give
the xγ terms of the Puiseux series roots of Q . For each i we then
replace Q with Q(xγ (yi + y))/x

s ′ , where s ′ is the valuation at x of
Q(xγ (yi +y)). �is allows us to compute the terms of the solutions
one by one. �e best algorithms to date [14, 15] use an expected
number of O∼(n2ν + n3 + n2 log(q)) operations in K, if K = Fq and
where ν is the valuation of the discriminant of Q . �ese algorithms
are randomized of the Las Vegas type, since they rely on Las Vegas
root-�nding in Fq [y].

In the second stage, given the singular parts of the solutions, it
becomes for instance possible to apply Newton iteration, as in [9].
If Q is actually in K[x][y], one may alternatively derive from it
a linear recurrence with polynomial coe�cients satis�ed by the
coe�cients of the solutions we are looking for; this allows us to
compute them at precision d usingO(dn) operations, that is, in time
genuinely linear in n,d [5, 6] (keeping in mind that in both cases,
we may need to know about ν terms of the solutions before being
able to switch to the faster algorithm). We will discuss a similar
observation in the context of our algorithm, in Section 4.

Using ideas akin to the Newton-Puiseux algorithm, Berthomieu,
Lecerf, and �intin gave in [4] an algorithm that computes roots
of polynomials in L[y], for a wide class of local rings L. In the
particular case L = FqJxK with q = ps , the expected runtime of
their algorithm isO∼(nd2 +n log(q)+nd log(k)/p) operations in Fq .

Let us �nally mention algorithms for polynomial factorization
over local �elds. Using the Montes algorithm [10], it is proved in [3]
that one can compute a so-called OM-factorization of a degree n
polynomial Q in Fq 〈〈x〉〉[y] at precision d using O∼(n2ν + nν2 +
nν log(q)), where ν is the valuation of the discriminant of Q ; the
relation to basic root sets, de�ned below, remains to be elucidated.

Sudan’s and Guruswami-Sudan’s algorithms for the list-decoding
of Reed-Solomon codes [8, 18] have inspired a large body of work,
some of which is directly related to Problem 1. �ese algorithms
operate in two stages: the �rst stage �nds a polynomial in K[x ,y]
with some constraints; the second one �nds its factors of the form
y − f (x), for f in K[x].

�e Newton-Puiseux algorithm can easily be adapted to compute
such factors; in this context, it becomes essentially what is known as
the Roth-Ruckenstein algorithm [16]; its cost is inO(d2n2), omi�ing
the work for univariate root-�nding.

In the context of Sudan’s and Guruswami-Sudan’s algorithms,
we may actually be able to use Newton iteration directly, by ex-
ploiting the fact that we are looking for polynomial roots. Instead
of computing power series solutions (that is, the Taylor expansions
of these polynomial roots at the origin), one can as well start from
another expansion point x0 in K; if the discriminant of Q does not
vanish at x0, Newton iteration applies. If K is �nite, one cannot
exclude the possibility that all x0 in K are roots of Q ; if needed, one
may then look for x0 in an extension of K of small degree. Augot
and Pecquet showed in [2] that in the cases appearing in Sudan’s
algorithm, there is always a suitable x0 in K.

However, for example for the Wu list decoding algorithm [21] or
for the list-decoding of certain algebraic geometry codes [13], one
does seek truncated power series roots. In this case, one may use
Alekhnovich’s algorithm [1, App.], which is a divide and conquer
variant of the Roth-Ruckenstein algorithm. It solves Problem 1 us-
ing nO (1)O∼(d) operations in K plus calls to univariate root-�nding;
the re�ned analysis in [13] gives the runtime O∼(n2d + nd logq).

Outline. We start by giving properties about the structure of the
set of roots in Section 2. We will see in particular how R(Q,d) can
be described recursively as the �nite union of set of roots at a lower
precision for shi�s ofQ , that is, polynomials of the formQ(f +xty).
From this, we will be able to derive a divide-and-conquer algorithm
which is essentially Alekhnovich’s.

�e reason why the runtime of this algorithm is quadratic in n
is the growth of the (sum of the) degrees of these shi�s. Having
in mind to control this degree growth, we conclude Section 2 with
the de�nition of so-called reduced root sets, for which we establish
useful degree properties.

In Section 3, we detail a fast algorithm for the computation of
a�ne factors, which are polynomials having the same roots as the
shi�s but which can be computed more e�ciently thanks to the
degree properties of our reduced root sets. Finally, in Section 4, we
incorporate this into the divide and conquer approach, leading to
our fast power series roots algorithm.

2 STRUCTURE OF THE SET OF ROOTS
Recall the notation of Problem 1. In the following analysis, we
consider knowing Q to arbitrary precision, i.e. Q ∈ K[[x]][y]. For
convenience, we also de�ne for any d ≤ 0 that R(Q,d) = K[[x]].
First, we introduce basic notation.

• vx : K[[x]][y] \ {0} → Z≥0 denotes the valuation at x , that
is, vx (Q) is the greatest power of x which divides Q , for
any nonzero Q ∈ K[[x]][y].

• For Q ∈ K[[x]][y], we write Q |x=0 for the univariate poly-
nomial in K[y] obtained by replacing x by 0 in Q .



• We denote by Sd = K[[x]]/(xd ) the ring of power series in
x over K truncated at precision d .
• To avoid confusion, deg(·) stands for the degree of some

polynomial in y over K, over K[[x]], or over Sd , whereas
the degree of polynomials inK[x] is denoted using degx (·).

�e next lemma follows from the above de�nitions, and shows
that we can focus on the case vx (Q) = 0.

Lemma 2.1. Let Q ∈ K[[x]][y] be nonzero and let d ∈ Z>0. If
Q |x=0 = 0, then R(Q,d) = R(x−sQ, d − s), where s = vx (Q).

Now, we will focus on a compact way of representing root sets,
and we will see that R(Q,d) always admit such a representation
even though it is usually an in�nite set. Similar representations
are also behind the correctness and the e�ciency of the algo-
rithms of Roth-Ruckenstein [16], of Alekhnovich [1, App.], and
of Berthomieu-Lecerf-�intin [4, Sec. 2.2]. To support the divide-
and-conquer structure of our algorithm, we further describe how
these representations compose.

Definition 2.2. Let Q ∈ K[[x]][y] be nonzero and let d ∈ Z>0. A
basic root set of Q to precision d is a �nite set of pairs (fi , ti )1≤i≤` ,
each in K[x] × Z≥0, such that:

• vx (Q(fi + x
tiy)) ≥ d for 1 ≤ i ≤ `,

• we have the identity

R(Q,d) =
⋃

1≤i≤`

{
fi + x

tiK[[x]]
}
.

For d ≤ 0, we de�ne the unique basic root set of Q to precision d as
being {(0, 0)}; note that it satis�es both conditions above.

We remark that the �rst restriction on being a basic root set is
key: for instance, Q = y2 + y ∈ F2[[x]][y] has R(Q, 1) = F2[[x]]. But
{(0, 0)} is not a basic root set because it does not satisfy the �rst
property; rather a basic root set is given by expanding the �rst
coe�cient: {(0, 1), (1, 1)}.

At precision d = 1, one can easily build a basic root set of Q
which has small cardinality:

Lemma 2.3. Let Q ∈ K[[x]][y] be such that Q |x=0 , 0, and let
y1, . . . ,y` be the roots of Q |x=0. �en, (yi , 1)1≤i≤` is a basic root set
of Q to precision 1.

Proof. Take i in {1, . . . , `} and write the Taylor expansion of
Q(yi + xy) as Q(yi + xy) = Q(yi ) + xRi (y), for some Ri ∈ K[[x]][y].
Since both terms in the sum have valuation at least 1, we obtain
that si = vx (Q(yi + xy)) is at least 1. Furthermore, we remark that

R(Q, 1) = { f ∈ K[[x]] | Q(f ) = 0 mod x}

= { f ∈ K[[x]] | Q |x=0(f0) = 0},
where f0 is the constant coe�cient of f . �us, R(Q, 1) is the set of
f ∈ K[[x]] whose constant coe�cient is in {y1, . . . ,y`}. �

Proposition 2.4. Let Q ∈ K[[x]][y] be such that Q |x=0 , 0 and
let d ′,d be in Z≥0, with d ′ ≤ d . Suppose thatQ admits a basic root set
(fi , ti )1≤i≤` to precision d ′. Suppose furthermore that, for 1 ≤ i ≤ `,
Q(fi + x

tiy)/xsi admits a basic root set (fi, j , ti, j )1≤j≤`i to precision
d − si , where si = vx (Q(fi + xtiy)). �en, a basic root set of Q to
precision d is given by

(fi + fi, jx
ti , ti + ti, j )1≤j≤`i ,1≤i≤` .

Proof. For 1 ≤ i ≤ `, let Qi = Q(fi + x
tiy)/xsi . �en, for all

i, j, from the de�nition of basic root sets, we have

vx
(
Q(fi + fi, jx

ti + xti+ti, j )
)
= vx

( (
xsiQi

)
|y=fi, j+x

ti, j y

)
≥ si + (d − si ).

�is proves that the �rst property of De�nition 2.2 holds.
For the second property, we prove both inclusions leading to the

identity R(Q,d) = ∪i, j { fi + xti fi, j + xti+ti, jK[[x]]}.
First, consider some f ∈ R(Q,d); since d ′ ≤ d , f is in R(Q,d ′),

so we can write f = fi + xtiд, for some i in {1, . . . , `} and д in
K[[x]]. �en, Q(f ) = xsiQi (д) = 0 mod xd , and so д ∈ R(Qi ,d − si ).
�is implies that д ∈ fi, j + x

ti , jK[[x]] for some j.
Now consider a power series д ∈ R(Qi ,d − si ) for some i . �is

means that Qi (д) = 0 mod xmax(0,d−si ), so that Q(fi + xtiд) =

xsiQi (д) = 0 mod xd , and therefore fi + x
tiд is in R(Q,d). �

We now deduce, by induction on d , that anyQ ∈ K[[x]][y] admits
a �nite basic root set to precision d for any d ∈ Z≥0. By Lemma 2.1
we can reduce to the case where vx (Q) = 0 and Q |x=0 , 0. �e
claim is readily seen to be true for d ≤ 0 (take {(0, 0)}) and d = 1
(Lemma 2.3). Suppose the claim holds for all d ′ < d , for some d ≥ 2;
we can then apply this property to d − 1, obtaining a basic root
set (fi , ti )1≤i≤` of Q to precision d − 1. We know that, with the
notation of Proposition 2.4, si ≥ d − 1 holds for all i , so in particular
si ≥ 1, and thus d − si < d . �en, applying again the induction
property to each of (Qi ,d − si )i , the conclusion of Proposition 2.4
establishes our claim.

�ese results can be used to build basic root sets recursively,
by either applying Lemma 2.3 iteratively or using Proposition 2.4
in a divide-and-conquer fashion with Lemma 2.3 applied at the
leaves. As discussed in Section 1, this recursive approach is similar
to the Newton-Puiseux algorithm. �ese iterative and divide and
conquer solutions to Problem 1 are known in coding theory as
the Roth-Ruckenstein algorithm [16] and the Alekhnovich algo-
rithm [1, App.]. Below, we describe the la�er algorithm in detail
(Algorithm 1), since our new algorithm runs along the same lines
(Algorithm 4). We will not further discuss the correctness or com-
plexity of Algorithm 1, but rather refer to [1, App.] or [13, App. A].

Algorithm 1 : DnCSeriesRoots [1]
Input: d ∈ Z>0 and Q ∈ Sd [y] with Q |x=0 , 0.
Output: A basic root set of Q to precision d .

1 if d = 1 then
2 (yi )1≤i≤` ← roots of Q |x=0 ∈ K[y]
3 return (yi , 1)1≤i≤`
4 else
5 (fi , ti )1≤i≤` ← DnCSeriesRoots(Q mod x dd/2e , dd/2e)
6 (Qi )1≤i≤` ← (Q(fi + x

tiy) mod xd )1≤i≤`
7 (si )1≤i≤` ← (vx (Qi ))1≤i≤`
8 for 1 ≤ i ≤ ` do
9 if si ≥ d then

10 (fi,1, ti,1) ← (0, 0) and `i ← 1
11 else
12 (fi j , ti j )1≤j≤`i ← DnCSeriesRoots(x−siQi ,d − si )

13 return (fi + xti fi, j , ti + ti, j )1≤j≤`i ,1≤i≤` .



�e next step is to prove that there are special, small basic root
sets, and that these also compose in a way similar to Proposition 2.4.
In order to formulate this, we �rst introduce a generalization of
root multiplicity to our se�ing.

Definition 2.5. Let (f , t) ∈ K[x]×Z>0 be such that f is nonzero
and f = д + ft−1xt−1 for some д ∈ K[x] with degx (д) < t − 1. For
Q ∈ K[[x]][y] \ {0}, we consider the polynomial of valuation zero

R = Q(д + xt−1y)/xvx (Q (д+x
t−1y)) ∈ K[[x]][y].

�en, the root multiplicity of (f , t) in Q is the root multiplicity of
ft−1 in R |x=0 ∈ K[y].

Note that if ft−1 is not a root of R |x=0, the root multiplicity of
(f , t) is 0. Also, if t = 1, so that f = f0 is in K, and ifQ |x=0 , 0, the
root multiplicity of (f0, 1) is simply the multiplicity of f0 in Q |x=0.

Definition 2.6. Let Q ∈ K[[x]][y] be such that Q |x=0 , 0 and
let d be in Z. Suppose that (fi , ti )1≤i≤` is a basic root set of Q at
precision d . �en, we say that (fi , ti )1≤i≤` is a reduced root set, if
the following holds:

• either d ≤ 0,
• or d > 0, and all the fi ’s are nonzero, and the following points are

all satis�ed, where for 1 ≤ i ≤ `, we write si = vx (Q(fi + xtiy)),
Qi = Q(fi + x

tiy)/xsi , and we write mi for the root multiplicity
of (fi , ti ) in Q :
(1) mi ≥ 1 for 1 ≤ i ≤ `,
(2) deg(Qi |x=0) ≤ mi for 1 ≤ i ≤ `, and
(3)

∑
1≤i≤`mi ≤ deg(Q |x=0).

It follows from the restrictions (1) and (3) that ` ≤ deg(Q |x=0).
Mimicking the structure of the �rst half of the section, we now
prove the existence of reduced root sets for d = 1 and then give a
composition property. �e next lemma is inspired by [1, Lem. 1.1].

Lemma 2.7. Let Q ∈ K[[x]][y] be such that Q |x=0 , 0. �e basic
root set of Q to precision 1 de�ned in Lemma 2.3 is reduced.

Proof. Let y1, . . . ,y` be the roots of Q |x=0, and, for 1 ≤ i ≤ `,
let si = vx (Q(yi +xy)), Qi = Q(yi +xy)/x

si , and letmi be the root
multiplicity of yi in Q |x=0.

�e inequalitiesmi ≥ 1, for 1 ≤ i ≤ `, and
∑
imi ≤ deg(Q |x=0)

are clear. Consider now a �xed index i; it remains to prove that
deg(Qi |x=0) ≤ mi . �ere are P ∈ K[y] and R ∈ K[[x]][y] such that
P(yi ) , 0 and Q = (y − yi )

mi P(y) + xR. �en

xsiQi = Q(yi + xy) = (xy)
mi P(yi + xy) + xR(yi + xy) .

�e right-hand side reveals the following:
• Any monomial xαyβ in xsiQi satis�es α ≥ β , and hence

deg(Qi |x=0) ≤ si .
• xsiQi contains the term (xy)mi P(yi ), since this appears in
(xy)mi P(yi + xy) and it cannot be cancelled by a term in
xR(yi+xy) since all monomials there have greater x-degree
than y-degree.

�ese two points imply deg(Qi |x=0) ≤ si ≤ mi . �

�e following theorem is exactly the statement of Proposition 2.4
except that “basic” has been replaced by “reduced”.

Theorem 2.8. Let Q ∈ K[[x]][y] be such that Q |x=0 , 0 and let
d ′,d be in Z≥0, with d ′ ≤ d . Suppose that Q admits a reduced root
set (fi , ti )1≤i≤` to precision d ′. For i = 1, . . . , `, suppose furthermore
that Q(fi + xtiy)/xsi admits a reduced root set (fi, j , ti, j )1≤j≤`i to
precision d − si , where si = vx (Q(fi + xtiy)). �en a reduced root set
of Q to precision d is given by

(fi + fi, jx
ti , ti + ti, j )1≤j≤`i ,1≤i≤` .

Proof. By Proposition 2.4 it is clear that the speci�ed set is a
basic root set, and we should verify the additional restrictions of
De�nition 2.6. Introduce for each i, j

Qi, j = Q(fi + fi, jx
ti + xti+ti, jy)/xsi, j = Qi (fi, j + x

ti, jy)/xsi, j ,

where Qi = Q(fi + x
tiy)/xsi and si, j = vx (Qi (fi, j + x

ti, jy)).
Consider �rst for some i the case d − si ≤ 0. �en `i = 1

and (fi,1, ti,1) = (0, 0), and so the root multiplicity mi,1 of (fi +
fi,1xti , ti + ti,1) in Q ismi which is positive by assumption. Also
Qi, j = Qi so deg(Qi, j |x=0) = deg(Qi |x=0) which is at most mi =

mi,1 by assumption. Finally,
∑
jmi, j =mi,1 =mi . We will collect

the la�er fact momentarily to prove the third item of the reduced
root de�nition.

Consider next an i where d − si > 0. In this case ti, j > 0 for all
1 ≤ j ≤ `i , and the root multiplicity of (fi + fi, jx

ti , ti + ti, j ) in Q
equals the root multiplicitymi, j of (fi, j , ti, j ) inQi which is positive
by assumption. �e assumptions also ensure that deg(Qi, j |x=0) ≤
mi, j , and

∑
jmi, j ≤ deg(Qi |x=0) ≤ mi .

�us, the two �rst restrictions on being a reduced root set is
satis�ed for each element. All that remains is the third restriction:
but using our previous observations, we have

∑
i
∑
jmi, j ≤

∑
imi

and this is at most deg(Q |x=0) by assumption. �

To solve Problem 1 we will compute a reduced root set using
Lemma 2.7 and �eorem 2.8. Note that it follows that a reduced root
set is essentially unique: apart from possible redundant elements
among the fi , non-uniqueness would only be due to unnecessarily
expanding a coe�cient in a root (f , t), that is, replace that root
by the |K| roots (f + axt , t + 1)a∈K. Of course this could only be
an issue if K is �nite and if deg(Q |x=0) is very large. Our algo-
rithm as well as previous ones are computing the “minimal” set
of reduced roots. According to �eorem 2.8, the total number of
�eld elements required to represent this minimal set cannot exceed
d deg(Q |x=0) ≤ d deg(Q).

3 AFFINE FACTORS OF THE SHIFTS
�e appendix A of [13] gives a careful complexity analysis of Al-
gorithm 1, and proves that it runs in time O∼(dn2 + dnRK), where
n = deg(Q). �e main reason why the cost is quadratic in deg(Q)
is that all the shi�ed polynomials Qi = x−siQ(fi + x

tiy) can have
large degree, namely up to deg(Q). �us, merely representing the
Qi ’s may use a number of �eld elements quadratic in deg(Q).

Nonetheless, we are actually not interested in these shi�s them-
selves, but only in their reduced root sets. �e number of these
roots is well controlled: the shi�s have altogether a reduced root
set of at most deg(Q |x=0) elements. Indeed, by de�nition, we know
that deg(Qi |x=0) is at most the multiplicity mi of the root (fi , ti ),
and the sum of these multiplicities is at most deg(Q |x=0).



�e di�culty we face now is that we want to e�ciently compute
reduced root sets of the shi�s without fully computing these shi�s.
To achieve this, we compute for each shi� Qi a factor of it which
has the same roots and whose degree is deg(Qi |x=0) ≤ mi , without
entirely computing Qi itself. We design a fast algorithm for comput-
ing these factors, by using ideas from [11, Algo. Q], in which we
also incorporate fast modular reduction techniques so as to care-
fully control the quantity of information we process concerning
the shi�s.

�e next result formalizes the factorization we will rely on. It is
a direct consequence of the Weierstrass preparation theorem for
multivariate power series [22, VII.§1. Cor. 1 of �m. 5].

Theorem 3.1. Let Q ∈ K[[x]][y] be such that Q |x=0 , 0. �en,
there exist unique A,B ∈ K[[x]][y] such that Q = AB, A is monic and
B |x=0 ∈ K \ {0}.

In the case at hand, one may as well derive existence and unique-
ness of A and B (together with a slow algorithm to compute them)
by writing their unknown coe�cients as A = a0(y) + xa1(y) + · · ·
B = b0 + xb1(y) + · · · , with b0 in K \ {0} and all ai ’s (i ≥ 1) of
degree less than that of a0. Extracting coe�cients of x0,x1, . . . , we
deduce that the relation Q = AB de�nes the ai ’s and bi ’s uniquely.

In what follows, A is called the a�ne factor of Q . Remark that if
we start from Q in Sd [y], we can still de�ne its a�ne factor as a
polynomial in Sd [y], by reducing modulo xd the a�ne factor of an
arbitrary li� of Q to K[[x]][y] (the construction above shows that
the result is independent of the li�).

Our algorithm will compute the a�ne factors (Ai )1≤i≤` of the
shi�s (Qi )1≤i≤` at some prescribed precision d in x , having as
input Q and the shi�ing elements (fi + xtiy)1≤i≤` . A factorization
Qi = AiBi can be computed modulo any power xd of x from the
knowledge of Qi by means of Hensel li�ing [11, Algo. Q], doubling
the precision at each iteration. However, the above-mentioned
degree bounds indicate that neither the shi�s (Qi )i nor the cofactors
(Bi )i may be computed modulo xd in time quasi-linear in deg(Q)
and d : the key of our algorithm is to show how to compute the
a�ne factorsAi at precisiond directly fromQ within the prescribed
time bounds. (Hensel li�ing factorization techniques were also
used in [4], but in a context without the degree constraints that
prevent us from computing the shi�s Qi ). Herea�er, A quoB and
A remB denote the quotient and the remainder in the division of
the polynomial A by the monic polynomial B.

�e input of the algorithm is the polynomial Q known modulo
xd , as output, we compute the a�ne factors Ai of the shi�s at
respective precisions d −si , together with the valuation si ; if si ≥ d ,
we detect it and return (0,d). �e initialization consists in comput-
ing the a�ne factors of the x-constant polynomials (Qi |x=0)1≤i≤` .
If these polynomials are known, this is straightforward: the a�ne
factor ofQi |x=0 is itself divided by its leading coe�cient, which is a
nonzero constant from K. It turns out that computing these polyno-
mials is not an issue; remark that the sum of their degrees is at most
m1+ · · ·+m` ≤ deg(Q). Explicitly, we �rst compute the remainders
(Q(fi + x

tiy) remymi+1)i via fast modular reduction techniques;
then, we can both retrieve the valuations (si )i = (vx (Q(fi +xtiy)))i
(or, more precisely, s∗i = min(si ,d)), and, when si < d , the x-
constant terms of Qi = x−siQ(fi + x

tiy) to carry out the initializa-
tion step (Line 1 to Line 11 in Algorithm 3).

Before continuing to describe the algorithm, we detail one of
its main building blocks (Algorithm 2): the fast computation of
simultaneous shi�ed remainders via multiple modular reduction.

Algorithm 2 : Shi�edRem
Input: a commutative ringA, a polynomial Q ∈ A[y], and triples
(Ai , fi , ri )1≤i≤` ∈ A[y] × A × A, with the Ai ’s monic.

Output: the remainders Q(fi + riy) remAi for 1 ≤ i ≤ `.
1 (Āi )1≤i≤` ← (

∑
0≤j≤δi r

δi−j
i ai, jy

j )1≤i≤`
2 where (Ai )1≤i≤` = (

∑
0≤j≤δi ai, jy

j )1≤i≤` with ai,δi = 1
3 (Âi )1≤i≤` ← (Āi (y − fi ))1≤i≤`
4 (R̂i )1≤i≤` ← (Q rem Âi )1≤i≤`
5 (Ri )1≤i≤` ← (R̂i (fi + riy))1≤i≤`
6 return (Ri )1≤i≤`

Proposition 3.2. Algorithm 2 is correct and uses

O∼(deg(Q) + deg(A1 · · ·A`))

operations in A.

Proof. Let i ∈ {1, . . . , `}. Since Âi is monic, the remainder
R̂i = Q rem Âi is well-de�ned, and Q = Pi Âi + R̂i with deg(R̂i ) <
deg(Q) and Pi ∈ A[y]. �en, we have

Q(fi + riy) = Pi (fi + riy)Âi (fi + riy) + R̂i (fi + riy)

= Pi (fi + riy)Āi (riy) + Ri (y)

= Pi (fi + riy)r
δ
i Ai (y) + Ri (y),

which ensures Ri = Q(fi + riy) remAi (y), hence the correctness.
Concerning the cost bound, the polynomial Āi is computed using

at most 2δi multiplications in A, where δi = deg(Ai ), and then
Âi is computed by fast shi�ing using O∼(δi ) operations in A [19,
�m. 9.15]. �e conclusion follows, since fast remaindering can
be used to compute all remainders (R̂1, . . . , R̂`) simultaneously in
O∼(deg(Q) + δ1 + · · · + δ`) operations in A. Indeed, we start by
computing the subproduct tree in O∼(δ1 + · · · + δ`) operations [19,
Lem. 10.4], which gives us in particular the product Â1 · · · Â` . �en,
we compute the remainder R̂ = Q rem Â1 · · · Â` , which can be done
in O∼(deg(Q) + δ1 + · · · + δ`) operations in A using fast division
[19, �m. 9.6]. Finally, the sought R̂i = R̂ mod Âi are computed
by going down the subproduct tree, which costs O∼(δ1 + · · · + δ`)
operations in A [19, Cor. 10.17]. �

Now, let us describe how we implement the Hensel li�ing strat-
egy to manage to compute the sought a�ne factors without fully
computing the shi�s. In addition to the a�ne factors, we will make
use of partial information on the inverse of the cofactor: we com-
pute this inverse modulo the a�ne factor. Let 1 ≤ i ≤ ` and assume
that we have computed, at precision K ,

• the a�ne factor Ai ∈ SK [y] of Qi mod xK ,
• Ci = B−1

i remAi ∈ SK [y], where Bi ∈ SK [y] denotes the
cofactor such that AiBi = Qi mod xK .

Note that Bi is invertible as a polynomial of SK [y] since by de�ni-
tion Bi |x=0 ∈ K \ {0}. �us, our requirement is that the inverse of
Bi coincides with Ci when working modulo Ai .



Algorithm 3 : A�ineFacOfShi�s
Input: a precision d ∈ Z>0, a polynomial Q ∈ Sd [y] such that

Q |x=0 , 0, and triples (fi , ti ,mi )1≤i≤` ⊂ Sd × Z>0 × Z>0.
Output: (Ai , si )1≤i≤` with (Ai , si ) = (0,d) if Q(fi + xtiy) = 0

in Sd [y], and otherwise si = vx (Q(fi + xtiy)) < d and
Ai ∈ Sd−si [y] is the a�ne factor of Qi = x−siQ(fi + xtiy)
at precision d − si .

Requires: mi is such that Ai = 0 or deg(Ai ) ≤ mi , for 1 ≤ i ≤ `.
1 I ← (1, . . . , `) /* list of not yet computed factors */
2 (Ri )1≤i≤` ← Shi�edRem(Sd ,Q, (y

mi+1, fi ,xti )1≤i≤`)
3 /* Process trivial a�ne factors */
4 for 1 ≤ i ≤ ` such that Ri = 0 do
5 (Ai , si ) ← (0,d), and remove i from I
6 /* Set valuations and compute a�ne factors mod x */
7 for i ∈ I do
8 si ← vx (Ri )
9 R̄i ∈ K[y] ← (x

−siRi ) |x=0
10 Ci ∈ K \ {0} ← inverse of the leading coe�cient of R̄i
11 Ai ∈ S1[y] ← Ci R̄i

12 /* Each iteration doubles the precision */
13 for 1 ≤ k ≤ dlog2(d)e do
14 for i ∈ I such that d − si ≤ 2k−1 do
15 remove i from I
16 K ← 2k−1; (δi )i ∈I ← (min(K ,d − si − K))i ∈I
17 /* Li� the a�ne factors (Ai )i to precisions δi + K */
18 (Ri )i ∈I ← Shi�edRem(Sd ,Q, (Āi , fi ,x

ti )i ∈I ),
19 where Āi is Ai li�ed into Sd [y]
20 (Ai> ∈ Sδi [y])i ∈I ← ((x

−si−KRiCi ) remAi )i ∈I ,
21 with x−si−KRi , Ci , and Ai truncated at precision δi
22 (Ai ∈ Sδi+K [y])i ∈I ← (Ai + x

KAi>)i ∈I

23 /* Find the cofactor inverses (Ci )i at precisions δi + K */
24 (Si )i ∈I ← Shi�edRem(Sd ,Q, (Ā

2
i , fi ,x

ti )i ∈I ),
25 where Āi is Ai li�ed in Sd [y]
26 (Ci ∈ Sδi+K [y])i ∈I ← (((x

−si Si ) quoAi )−1 remAi )i ∈I ,
27 with x−si Si and Ai truncated at precision δi + K
28 return (Ai , si )1≤i≤`

Now, we want to �nd similar polynomials when we increase the
precision to 2K . �e main point concerning e�ciency is that we
will be able to do this by only considering computations modulo
the a�ne factors Ai and their squares; remember that we control
the sum of their degrees. In the algorithm, we increase for each
i the precision from K to K + δi , which is taken as the minimum
of 2K and d − si : in the la�er case, this is the last iteration which
a�ects Ai , since it will be known at the wanted precision d − si .

First, we use fast remaindering to get Ri = Q(fi +xtiy) remAi at
precision d in x , simultaneously for all i (see Line 18); this gives us
Qi remAi = x−siRi remAi at precisiond−si , and thusK+δi . Since
Ai is the a�ne factor of Qi at precision K , Qi remAi is divisible
by xK .

We then look for Ai> ∈ Sδi [y] such that Âi = Ai +x
KAi> is the

a�ne factor ofQi at precisionK+δi ; to ensure that Âi is still monic,
we require that deg(Ai>) < deg(Ai ). �us, we can determine Ai>

by working modulo Ai : having

(Ai + x
KAi>)(Bi + x

KBi>) = Qi ,

at precision K +δi , for some Bi> ∈ Sδi [y], implies that the identity

Ai>Bi = x−KQi

holds modulo Ai and at precision δi . Multiplying by Ci = B−1
i on

both sides yields

Ai> = (x
−KQiCi ) remAi = (x

−K−siRiCi ) remAi .

�erefore, Line 20 and Line 22 correctly li� the a�ne factor of Qi
from precision K to precision K + δi .

From now on, we work at precision K +δi , and, as in the pseudo-
code, we denote by Ai the a�ne factor obtained through the li�-
ing step above (that is, Ai ← Âi ). Besides, let Ci now denote
the cofactor inverse at precision K + δi : Ci = B−1

i remAi , where
Bi ∈ SK+δi [y] is the cofactor such that Qi = AiBi . Our goal is to
compute Ci , without computing Bi but only Bi remAi .

We remark that the remainder Si = Q(fi + x
tiy) remA2

i (as in
Line 24) is such that x−si Si = Qi remA2

i = Ai (Bi remAi ); x−si Si is
known at precision d − si ≥ K + δi . �us,

(x−si Si ) quoAi = Bi remAi ,

and therefore Ci can be obtained as

Ci = B−1
i remAi = ((x

−si Si ) quoAi )−1 remAi .

�is shows that Line 26 correctly computes Ci at precision K + δi .

Proposition 3.3. Algorithm 3 is correct and uses

O∼
(
d(deg(Q) +m1 + · · · +m`)

)
operations in K.

Proof. �e correctness follows from the above discussion. Con-
cerning the cost bound, we will use the following degree prop-
erties. Since Ai is monic, we have the degree bound deg(Ai ) =
deg(Ai |x=0) ≤ mi for all i and at any iteration of the loop; and since
Ci is always computed modulo Ai , we also have deg(Ci ) < mi .

�e cost of the initialization (Line 1 to Line 11) is dominated
by the computation of shi�ed remainders at Line 2, which costs
O∼(d(deg(Q) +m1 + · · · +m`)) operations in K according to Propo-
sition 3.2. �e same cost bound holds for each call to Shi�edRem at
Line 18 or Line 24, since we have deg(Ai ) ≤ mi and deg(A2

i ) ≤ 2mi .
At both Line 20 and Line 26, the degrees of Ri , Ci , and Ai are

at most mi ; besides, we have δi ≤ d and δi + K ≤ 2d . �us, the
quotient and remainder computations use O∼(d(m1 + · · · +m`))

operations in K according to [19, �m. 9.6].
Finally, at Line 26 we are performing the inversion of the polyno-

mial ((x−siRi ) quoAi ) modulo Ai ; it is invertible in Sδi+K [y]/(Ai )
since its x-constant coe�cient is a nonzero �eld element. As a con-
sequence, this this inversion can be done in O∼((δi + K) deg(Ai ))
�eld operations using Newton iteration [19, �m. 9.4], and alto-
gether Line 26 costs O∼(d(m1 + · · · +m`)) operations in K.

Summing these cost bounds over the dlog2(d)e iterations yields
the announced total cost bound. �



4 FAST SERIES ROOTS ALGORITHM
In this section, we describe our fast algorithm for solving Problem 1.
As explained above, it follows the divide and conquer strategy of
Algorithm 1, with the main modi�cation being that we incorporate
the fast computation of the a�ne factors of the shi�s (Algorithm 3).
�is leads to a be�er e�ciency by yielding more control on the
degrees of the polynomials that are passed as arguments to the
recursive calls. Besides, we also propagate in recursive calls the
information of the multiplicities of the roots, which is then used as
an input of Algorithm 3 to specify the list of degree upper bounds
for the a�ne factors.

We start with a lemma which states that taking a�ne factors
preserves reduced root sets.

Lemma 4.1. Let Q be in K[[x]][y], with Q |x=0 , 0, and let A ∈
K[[x]][y] be its a�ne factor. �en, any reduced root set ofA at precision
d is a reduced root set of Q at precision d .

Proof. �e claim follows from the factorization Q = AB, with
B |x=0 ∈ K \ {0}. Indeed, as a result, B(P) is a unit in K[[x]][y] for
any P in K[[x]][y], hence R(Q,d) = R(A,d) for any d ; similarly, for
any (f , t), Q(f + xty) and A(f + xty) have the same valuation, say
s , and Q(f + xty)/xs and A(f + xty)/xs di�er by a constant factor.
In particular, if {(fi , ti )}i is a basic root set of A, it is a basic root
set of Q , and the multiplicities of (fi , ti ) in A and Q are the same.
�is implies that if {(fi , ti )}i is in fact a reduced root set of A, it
remains so for Q . �

We continue with a procedure that operates on polynomials in
K[[x]][y], without applying any truncation with respect to x : as
such, this is not an algorithm over K, as it de�nes objects that are
power series in x , but it is straightforward to prove that it outputs
a reduced root set. Remark that this procedure uses a�ne factors at
“full precision”, that is, in K[[x]][y], so Algorithm 3 is not used yet.

Algorithm 4 : SeriesRoots∞
Input: d ∈ Z>0 and Q ∈ K[[x]][y] such that Q |x=0 , 0.
Output: List of triples (fi , ti ,mi )1≤i≤` ⊂ K[x]×Z≥0×Z>0 formed

by a reduced root set of Q to precision d with multiplicities.
1 if d = 1 then
2 (yi ,mi )1≤i≤` ← roots with multiplicity of Q |x=0 ∈ K[y]
3 return (yi , 1,mi )1≤i≤`
4 else
5 (fi , ti ,mi )1≤i≤` ← SeriesRoots∞(Q, dd/2e)
6 (si )1≤i≤` ← (vx (Q(fi + x

tiy))1≤i≤`
7 (Ai )1≤i≤` ← (A�neFactor(Q(fi + xtiy)/xsi ))1≤i≤`
8 for 1 ≤ i ≤ ` do
9 if si ≥ d then

10 (fi,1, ti,1,mi,1) ← (0, 0,mi ) and `i ← 1
11 else
12 (fi, j , ti, j ,mi, j )1≤j≤`i ← SeriesRoots∞(Ai ,d − si )

13 return (fi + xti fi, j , ti + ti, j ,mi, j )1≤j≤`i ,1≤i≤` .

Proposition 4.2. Algorithm 4 is correct.

Proof. We prove this by induction on d ≥ 1. By Lemma 2.7, the
algorithm is correct for the induction base case d = 1. Take d > 1,

and assume that the algorithm is correct for all d ′ < d . �en, we
obtain a reduced root set (fi , ti ) from the �rst recursive call, so in
particular the valuations si are at least equal to d ′ ≥ 1. �is shows
that d − si < d , so the second recursive call is made at a lower
precision, and the procedure terminates.

By induction, in all cases, (fi, j , ti, j )1≤j≤`i is a reduced root set of
Qi to precision d −si : this is obvious when si ≥ d , and follows from
Lemma 4.1 when si < d . �eorem 2.8 implies that (fi + xti fi, j , ti +
ti, j )1≤j≤`i ,1≤i≤` is a reduced root set ofQ to precision d . We verify
that the integersmi, j are the associated multiplicities as we did in
the proof of that theorem. �

Next, we describe a similar algorithm, where we maintain the
input polynomial with degree less than d in x (when it is the case,
we say that it is reduced modulo xd ). To di�erentiate this version
from the previous one and facilitate proving the correctness, we
add a superscript ∗ to the objects handled here when they di�er
from their counterpart in Algorithm 4. Remark that we do not
claim that the output forms a reduced root set of Q∗, merely a basic
root set; we also do not claim that the mi ’s in the output are the
corresponding multiplicities.

Algorithm 5 : SeriesRootsTrc

Input: d ∈ Z>0 and Q∗ ∈ K[[x]][y] reduced modulo xd such that
Q∗
|x=0 , 0.

Output: List of triples (fi , ti ,mi )1≤i≤` ⊂ K[x]×Z≥0×Z>0 formed
by a basic root set of Q∗ to precision d .

1 if d = 1 then
2 (yi ,mi )1≤i≤` ← roots with multiplicity of Q∗

|x=0 ∈ K[y]

3 return (yi , 1,mi )1≤i≤`
4 else
5 (fi , ti ,mi )1≤i≤` ← SeriesRootsTrc(Q∗ remx dd/2e , dd/2e)
6 (A∗i , s

∗
i )1≤i≤` ← A�ineFacOfShi�s(Q∗,d, (fi , ti ,mi )1≤i≤`)

7 for 1 ≤ i ≤ ` do
8 if s∗i = d then
9 (fi,1, ti,1,mi,1) ← (0, 0,mi ) and `i ← 1

10 else
11 (fi, j , ti, j ,mi, j )1≤j≤`i ← SeriesRootsTrc(A∗i ,d −s

∗
i )

12 return (fi + xti fi, j , ti + ti, j ,mi, j )1≤j≤`i ,1≤i≤` .

Proposition 4.3. Algorithm 5 is correct.

Proof. We claim that for d > 0 and any Q and Q∗ in K[[x]][y]
such that Q∗ = Q remxd , the outputs of SeriesRoots∞ (Q,d) and
SeriesRootsTrc (Q∗,d) are the same. Before proving this claim,
remark that it implies the correctness of Algorithm 5: we know that
this output is a reduced, and thus basic, root set of Q to precision d .
Since Q and Q∗ are equal modulo xd , one veri�es easily that this
output is thus a basic root set of Q∗ to precision d as well.

We prove the claim by induction on d . If d = 1, the result is clear,
as we compute the same thing on both sides.

For d > 1, since Q∗ remx dd/2e = Q remx dd/2e , the induc-
tion assumption shows that (fi , ti ,mi )1≤i≤` as computed in either
SeriesRoots∞ or SeriesRootsTrc are the same.



�e a�ne factors of the shi�s ofQ andQ∗ di�er, but they coincide
at the precision we need. Indeed, the equality Q = Q∗ mod xd

implies that for all i , Q(fi + xtiy) = Q∗(fi + xtiy) mod xd . In
particular, if si < d , these two polynomials have the same valuation
si , and Q(fi + xtiy)/xsi = Q∗(fi + xtiy)/xsi mod xd−si , which
implies that their a�ne factors are the same modulo xd−si . If
si ≥ d , then Q∗(fi + x

tiy) vanishes modulo xd .
Remark that the assumption of Algorithm 3 is satis�ed: for all i ,

mi is the multiplicity of (fi , ti ) inQ ; the de�nition of a reduced root
set then implies that deg(Qi |x=0) ≤ mi , so that the same degree
bounds holds for the a�ne factors of Q∗(fi + xtiy)/xsi . As a result,
for i such that si ≥ d , Algorithm 3 returns (0, s∗i ) = (0,d), whereas
if si < d , it returns (A∗i , si ), where A∗i is the truncation modulo
xd−si of the a�ne factor Ai of Qi . In the �rst case, the polynomials
(fi,1, ti,1,mi,1) are the same in both algorithms; in the second case,
this is also true, by induction assumption. Our claim follows. �

Proof of Theorem 1.2. To conclude the proof of �eorem 1.2,
it remains to estimate the cost of Algorithm 5. Let T (n,d) denote
the cost of Algorithm 5 on input d and Q of degree n = deg(Q). If
d = 1, then T (n, 1) = RK(n). Otherwise, the cost is given by the
following recursion:

T (n,d) = T (n,d/2) + S(n,d, (n1, . . . ,n`)) +
∑̀
i=1

T (ni ,d − si ) ,

where S(n,d, (n1, . . . ,n`)) is the cost of A�ineFactorsOfShi�s and
ni = deg(A∗i ). �e degrees of the polynomials A∗i , in Algorithm 5,
and Ai , in Algorithm 4, are the same, except for those cases where
si ≥ d and A∗i is actually zero. By de�nition of a reduced root set,
we have ∑

i
deg(Ai ) ≤ deg(Q |x=0) ≤ n,

which thus implies
∑
i ni ≤ n, and S(n,d, (n1, . . . ,n`)) ∈ O∼(dn).

Note also that si ≥ d/2 by the correctness of SeriesRootsTrc. Since
T (n,d) is at least linear in n, we then get

∑
i T (ni ,d−si ) ≤ T (n,d/2).

�is gives the upper bound

T (n,d) ≤ 2T (n,d/2) +O∼(nd),

from which we deduce that T (n,d) = O∼(nd) +O(dRK(n)). �

Finally, we point out an optimization, which is not necessary
to establish our main result, but useful in practice: once the a�ne
factor of a shi� has degree 1, there is no need to continue the
recursion (the a�ne factor being monic, we can just read o� its
root from its constant coe�cient). �is is the analogue of the
situation described in the introduction, when we know enough
terms of the solution to make it possible to apply Newton iteration
without further branching.
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