
ACM SIGSOFT Software Engineering Notes vol 24 no 1 January 1999 Page 21

A C M Fellow Profile
L. P e t e r D e u t s c h

Please elaborate on the work leading up to your achieving the
distinction of ACM Fellow:
The greatest part of my career has been concerned with im-
proving the ease of using computers and the ease of developing
quality software. This desire led me into a variety of activi-
ties related to programming languages, interpreters, compil-
ers, and tools.

What is the best reference to your work?
There is no single good reference, since most of my work took
the form of working systems rather than publications. I was
a substantial contributor to Interlisp and to ParcPlace (now
ObjectShare) Smalltalk (now VisualWorks). My two best
published papers were my Ph.D. thesis, published by Xerox
PARC in 1971, and the paper I co-authored in the 1984 ACM
POPL.

What are your current research interests ?
I have been doing engineering in industry since 1991 and
wouldn't say I have research interests per se at the moment.
However, I continue to be deeply interested in tools and lan-
guages that support the productive creation of high-quality
software, and specifically in the area of machine-checkable,
formally stated properties of programs.

What are your current outside interests?
Assuming you mean outside software engineering, I enjoy
traveling, singing, square dancing, writing music, and cheap
ethnic restaurants.

What was the greatest influence on you?
Lisp, which made me aware that software could be close to
executable mathematics; Smalltalk, which made me aware of
the synergy between language, tools, and libraries in software
productivity; and the PDP-1 time-sharing project at MIT in
the early 1960s, which introduced me to interactive comput-
ing. In terms of people, I would say Danny Bobrow, for being
a mentor and collaborator when I was in high school and col-
lege; Robert Floyd, for the 1971 IFIP paper tha t motivated
my Ph.D. work; and Edsger Dijkstra, for insisting that soft-
ware is mathematics.

What was your greatest influence ?
I think I have had two significant influences on the world of
software. The 1984 POPL paper is the most widely cited
reference for what is now called J IT compilation. The other
influence has been through my Ghostscript software, which
both has been of tremendous practical benefit and also has
an innovative licensing approach. Beyond that , I have no idea
to what extent the various tools and implementation tech-
niques I contributed to the Interlisp and Smalltalk systems
have affected the industry.

Who do you think has made the greatest impact on software
engineering?
I think the greatest impact on software engineering has come
from the development of bet ter languages. I would hesitate to
choose between John Backus, for FORTRAN, and Thompson

and Ritchie, for C.

Which computer-related areas are most in need of investment
by government, business or education?
The government desperately needs to be bet ter educated so
that it can start to undo the deleterious effects of software
patents (by reversing the error of interpretation by the courts
that allowed them in the first place) and of Microsoft's desk-
top hegemony (by understanding that seamlessly interoper-
able software does not require single-sourcing the entire col-
lection, and that interoperability without a requirement of
timely, free, and open documentation of interfaces makes cre-
ative competition impossible). Beyond that , see my advice
below.

What advice do you have for computer science/software engi-
neering students?

1. Good software requires the ability to think formally
(mathematically), even more than other kinds of en-
gineering. Make sure you have some exposure to asser-
tions, proofs, and analysis of algorithms, and tha t you
use them enough to understand what they are good for.

2. On the other hand, so-called "formal methods" of soft-
ware development processes are vastly overrated: don ' t
hesitate to challenge them if they get in your way.

3. Documentation and readability are as important to soft-
ware quality in the long run as speed of creation, correct
functioning, and performance are in the short run: make
sure you have the time to do a good job on them.

What is the most often-overlooked risk in software engineer-
ing?
That as a system grows over time, it will become too complex
or disjointed to understand or make work reliably.

What is the most-repeated mistake in software engineering?
Underestimating the t ime or effort required to complete a
project.

Do you have any other comments on software engineering?
"Software engineering ~' is something of an oxymoron. It 's very
difficult to have real engineering before you have physics, and
there isn't anything even close to a physics for software -
an account of elementary objects in terms tha t can be used
to usefully describe and understand the composites tha t are
built out of them, including the emergent properties of those
composites. If the individual statements of programming lan-
guages are the elementary particles, s tandard libraries are the
building materials: we have the s tandard C libraries (which
are at about the conceptual level of things like clay, rock,
and wood), a rich but proprietary (single-source, hidden-
construction) array of single-source libraries from Microsoft,
and the emerging Java standard libraries, none of which have
the formal specifications that are needed to make them good
building materials.

Thank you!

- profiled by Ron Finkbine, Ph.D. [finkbine~hanover.edu]

http://crossmark.crossref.org/dialog/?doi=10.1145%2F308769.308771&domain=pdf&date_stamp=1999-01-01

