
ar
X

iv
:1

70
5.

09
60

9v
1

 [
cs

.D
S]

 2
6

M
ay

 2
01

7

Gossip in a Smartphone Peer-to-Peer Network

Calvin Newport
Georgetown University

Washington, DC
cnewport@cs.georgetown.edu

Abstract

In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently

introduced variation of the classical telephone model modified to better describe the local peer-to-peer

communication services implemented in many popular smartphone operating systems. In more detail, the

mobile telephone model differs from the classical telephone model in three ways: (1) each device can

participate in at most one connection per round; (2) the network topology can undergo a parameterized

rate of change; and (3) devices can advertise a parameterized number of bits about their state to their

neighbors in each round before connection attempts are initiated. We begin by describing and analyzing

new randomized gossip algorithms in this model under the harsh assumption of a network topology that

can change completely in every round. We prove a significant time complexity gap between the case

where nodes can advertise 0 bits to their neighbors in each round, and the case where nodes can advertise

1 bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source,

while the second eliminates this assumption using a pseudorandomness generator we prove to exist with

a novel generalization of a classical result from the study of two-party communication complexity. We

then turn our attention to the easier case where the topology graph is stable, and describe and analyze

a new gossip algorithm that provides a substantial performance improvement for many parameters. We

conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn

a specified fraction of the messages in the system. We prove that our existing algorithms for dynamic

network topologies and a single advertising bit solve this relaxed version up to a polynomial factor faster

(in network size) for many parameters. These are the first known gossip results for the mobile telephone

model, and they significantly expand our understanding of how to communicate and coordinate in this

increasingly relevant setting.

1 Introduction

This paper describes and analyzes new gossip algorithms in the mobile telephone model: an abstraction

that captures the local device-to-device communication capabilities available in most smartphone operating

systems; e.g., as implemented by services such as Bluetooth LE [17], WiFi Direct [4], and Apple’s Multipeer

Connectivity framework [20].

Motivation. Smartphones are a ubiquitous communication platform: there are currently over 3.9 billion

smartphone subscriptions worldwide [2]. Most smartphone communication leverages one-hop radio links to

cell towers or WiFi access points. In recent years, however, the major smartphone operating systems have

included increasingly stable and useful support for local peer-to-peer communication that allows a device to

talk directly to a nearby device (using local radio broadcast) while avoiding cellular and WiFi infrastructure.

The ability to create these local links, combined with the ubiquity of smartphones, enables scenarios in

which large groups of nearby smartphone users run applications that create peer-to-peer meshes supporting

infrastructure-free networking. There are many possible motivations for these smartphone peer-to-peer net-

works. For example, they can support communication in settings where network infrastructure is censored

1

http://arxiv.org/abs/1705.09609v1

(e.g., government protests), overwhelmed (e.g., a large festival or march), or unavailable (e.g., after a disaster

or at a remote event). In addition, in developing countries, cellular data minutes are often bought in blocks and

carefully conserved—increasing interest in networking operations that do not require cellular infrastructure.

To further validate the potential usefulness of smartphone peer-to-peer networks, consider the FireChat

application, which implements group chat using smartphone peer-to-peer services. In the few years since

its initial release, it has been widely adopted in over 120 countries and has been used successfully in mul-

tiple government protests, festivals (e.g., at Burning Man, which is held far from cell towers), and disaster

scenarios [1].

Developing useful applications for this smartphone peer-to-peer setting requires distributed algorithms

that can provide global reliability and efficiency guarantees on top of an unpredictable collection of local

links. As detailed below, the models that describe this emerging setting are sufficiently different from existing

models that new algorithms and analysis techniques are required. This paper addresses this need by describing

and analyzing new gossip algorithms for this important setting.

The Mobile Telephone Model. The mobile telephone model studied in this paper was introduced in recent

work [11, 22]. It is a variant of the classical telephone peer-to-peer model (e.g., [9, 10, 12, 15, 13, 5, 16, 8, 14])

modified to better describe the capabilities and constraints of existing smartphone peer-to-peer services. The

details of the mobile telephone model are inspired, in particular, by the current specifications of Apple’s

Multipeer Connectivity framework [20]: a peer-to-peer service available in every iOS version since iOS 7 that

allows nodes to advertise services, discover nearby advertisers, and attempt to connect to nearby advertisers,

using only local radio broadcast. (The definition of the classical telephone model, and differences between

the classical telephone and mobile telephone model, are detailed and discussed below in the related work

section.)

In more detail, the mobile telephone model abstracts the basic scan-and-connect dynamics of the Multi-

peer framework as follows. Time proceeds in synchronous rounds. In each round, a connected graph describes

the underlying network topology for that round. At the beginning of each round, each device (also called a

node in the following) learns its neighbors in the topology graph (e.g., as the result of a scan). Each device

can then attempt to initiate a connection with a neighbor. Each node can support at most one connection—so

if multiple nodes attempt to connect with the same target, only one connection will succeed. If two nodes

connect, they can perform a bounded amount of reliable communication before the round ends.

We parameterize this model with a tag length b ≥ 0. At the beginning of each round, each node can

choose a tag consisting of b bits to advertise. When performing a scan, each node learns both the ids and

chosen tags of its neighbors (where b = 0 means there are no tags). These tags can change from round to

round. In our previous study of rumor spreading with parameter b = 1 [11], for example, at the beginning of a

given round, each node that already knows the rumor advertises a 1 with its tag, while other nodes advertise a

0. This simplified the rumor spreading task by enabling nodes that know the rumor to only attempt to connect

to nodes that do not. This capability of nodes to use tags to deliver limited information to their neighbors

is motivated by the ability of devices to choose and change their service advertisements in the Multipeer

framework.

We also parameterize the model with a stability factor τ ≥ 1. The underlying network topology must

stay stable for at least τ rounds between changes. For τ = 1, for example, the network topology can change

completely in every round, while for τ = ∞, the topology never changes. There exist finer-grained ap-

proaches for capturing intermediate levels of stability (e.g., T -interval connectivity [19]), but in this paper we

study only the two extreme cases of fully dynamic and fully stable topologies, so our simpler stability factor

definition is sufficient. The need to model topology changes is motivated by the inherently mobile nature of

the smartphone setting.

Results. In this paper, we describe and analyze new algorithms for the gossip problem in the mobile telephone

model with respect to different model parameter and algorithm assumptions. This problem assumes a subset

of nodes start with messages (also called tokens). The goal is to spread these messages to the entire network.

2

Assumptions Algorithm Gossip Round Complexity

Standard Gossip

b = 0, τ ≥ 1 BlindMatch O((1/α)k∆2 log2 n)
b = 1, τ ≥ 1 SharedBit* O(kn)

b = 1, τ ≥ 1 SimSharedBit** O(kn+ (1/α)∆1/τ log6 n)
b = 1, τ =∞ CrowdedBin O((k/α) log6 n)

ǫ-Gossip (0 < ǫ < 1)

b = 1, τ ≥ 1 SharedBit* O
(

n
√
∆ log∆

(1−ǫ)α

)

Figure 1: A summary of gossip and ǫ-gossip round complexity bounds proved in this paper. (In the

ǫ-gossip problem, it is assumed that every node starts with a message, but each node need only learn an ǫ-
fraction of the n total messages.) In the following: n is the network size, k is the number of gossip messages,

α and ∆ are the vertex expansion and maximum degree, respectively, of the network topology graph, b is the

tag length, and τ is the stability factor. All results hold with high probability in n (i.e., at least 1 − 1/n).

Notice, the result for b = 0 and τ ≥ 1 is the best known result even for the easier case of b = 0 and τ = ∞.

(*) The SharedBit algorithm (alone among all algorithms studied) requires shared randomness. (**) The

SimSharedBit algorithm is existential in the sense that it depends on a pseudorandomness generator that we

prove exists in Section 5.

Gossip is fundamental in distributed computing and is considered particularly important for ad hoc networks

such as the smartphone meshes studied in this paper (c.f., the introductory discussion in [23]).

Below (and in Figure 1) we state and discuss our main results. In the following, let n > 1 be the network

size and k, 1 ≤ k ≤ n, be the number of tokens in the system. For a given topology graph, we use α
to describe its vertex expansion (see the model discussion below) and ∆ to describe its maximum degree.1

We assume the topologies are connected. All round complexity results hold with high probability in n (i.e.,

probability at least 1− 1/n).

We start by considering the difficult setting where b = 0 and τ = 1; i.e., nodes cannot use tags and

the network topology graph can change completely in each round. In Section 4, we describe and analyze a

natural strategy for this setting called BlindMatch, which has nodes select neighbors with uniform randomness

to send connection attempts.2 We prove that BlindMatch solves gossip in O((1/α)k∆2 log2 n) rounds. This

bound might seem pessimistic at first glance, but it is known that disseminating even a single message in the

mobile telephone model with this strategy can take Ω(∆2/
√
α) rounds in some networks [22]. Indeed, this

lower bound holds even for the easier assumption that τ = ∞. Accordingly, we do not consider b = 0 and

τ =∞ as a distinct case in this paper. (To provide intuition for why Ω(∆2) rounds are sometimes necessary,

consider two stars centered on u and v, respectively, where each star has around ∆ points and u and v are

connected by an edge. Assume u starts with a gossip message. For v to receive this message two events must

happen: (1) u selects v for a connection; and (2) v accepts u’s connection from all incoming connections in

that round. The first event occurs with probability ≈ 1/∆, and because v can expect a constant fraction of

its neighbors to send it connection attempts in any given round, the second event also occurs with probability

≈ 1/∆.) Our BlindMatch result provides the benchmark against which we attempt to improve with the

algorithms that follow.

In Section 5, we consider the case where b = 1 and τ ≥ 1; i.e., the network can still change completely

in each round, but now nodes can advertise a single bit to their neighbors. We begin by describing and

1If the topology is dynamic, then α is defined as the minimum expansion over all rounds, and ∆ is defined as the largest maximum

degree over all rounds.
2This is essentially the well-known PUSH-PULL strategy from the classical telephone model with the key exception that in our

model if a node receives multiple connection attempts, only one succeeds. As discussed in the related work and Section 4, this

well-motivated model change requires new analysis techniques to understand information propagation.

3

analyzing an algorithm called SharedBit. This algorithm assumes a shared randomness source which is

used to implement (essentially) a random hash function that allows nodes to hash their current set of known

messages to a single bit to be used as their one-bit advertising tag. The key guarantee of this function is that

nodes with the same sets advertise the same bit, and nodes with different sets have a constant probability of

advertising different bits. This helps nodes seek out productive connections with neighbors (e.g., connections

in which at least one node learns something new). We prove that SharedBit solves gossip in O(kn) rounds.

We next seek to eliminate the shared randomness assumption. To do so, we describe SimSharedBit which

solves gossip in O(kn + (1/α)∆1/τ log6 n) rounds, without assuming a shared randomness source. Notice,

because α ≥ 2/n and ∆ ≤ n, this solution is always within log factors of the SharedBit for large k, and for

small k it is still comparable for many values of α, ∆, and/or τ .

The SimSharedBit algorithm depends on a novel generalization of Newman’s Theorem [21]—a well-

known result on public randomness simulation from the study of two-party communication complexity. We

prove that there exists an appropriate pseudorandom number generator that can provide sufficient random-

ness for the SharedBit strategy. We then elect a leader in O((1/α)∆1/τ log6 n) rounds using an algorithm

from [22], and use this leader to disseminate a small generator seed. We note that our generalization of New-

man’s Theorem is potentially of standalone interest as the techniques we introduced can be used to study

pseudorandomness in many different graph algorithm settings.

In Section 6, we consider the impact of topology changes on gossip time. In particular, we consider the

case where b = 1 and τ =∞; i.e., the network topology is stable. We describe and analyze CrowdedBin, an

algorithm that solves gossip in O((1/α)k log6 n) rounds. This algorithm matches or outperforms the O(kn)
round complexity of SharedBit for all α values (ignoring log factors). For well-connected networks (e.g.,

constant α), it performs almost a factor of n faster. These results hint that large increases to stability are more

valuable to gossip algorithms than large increases to tag length (for most of our solutions, increasing b beyond

1 only improves performance by at most logarithmic factors).

The benefit of stable network topologies is that nodes can transmit larger amounts of information about

their current state to their neighbors by using their single bit advertisement tag over multiple rounds. Crowd-

edBin leverages this capability to help nodes efficiently converge on an accurate estimate of k—which is not

known in advance. This process depends on nodes testing guesses by throwing their tokens into a number

of bins corresponding to the current guess, and then seeking/spreading evidence of crowding (as established

by a new balls-in-bins algorithm described in Section 6). Once all nodes learn an appropriate guess of k,

CrowdedBin deploys an efficient parallel rumor spreading strategy to efficiently disseminate the k tokens.

Finally, we consider the ǫ-gossip problem, which is parameterized with a fraction ǫ, 0 < ǫ < 1, assumes

that k = n, and relaxes the gossip problem to require only that every node receives at least nǫ of the n total

tokens. This variation is useful for settings where it is sufficient for nodes to learn enough rumors to complete

the task at hand; e.g., when an algorithm requires responses from only a majority quorum of nodes.

In Section 7, we re-analyze the SharedBit gossip algorithm from Section 5. Deploying a novel argument

based on finding productive “coalitions” of nodes, we show that SharedBit solves ǫ-gossip in O
(

n
√
∆ log∆

(1−ǫ)α

)

rounds. Recall that SharedBit solves regular gossip in O(n2) rounds under the k = n assumption. Therefore,

when ǫ is a constant fraction and the network is well-connected (α is large), SharedBit solves ǫ-gossip up to

a (sub-linear) polynomial factor faster than the standard gossip problem.

Related Work. The mobile telephone model used in this paper was first introduced in a study of rumor

spreading by Ghaffari and Newport [11]. We also recently studied leader election in this same model [22]. As

noted, the mobile telephone model is a variation of the classical telephone model (first introduced by Frieze

and Grimmett [9]) adapted to better describe smartphone peer-to-peer networks. The mobile model differs

from the classical model in two ways: (1) the classical model implicitly fixes b = 0 and (typically) τ = ∞;

and (2) the classical model allows nodes to accept an unbounded number of incoming connections.

It is important to emphasize that most of the well-known bounds in the classical model depend on this

4

assumption of unbounded connections, and removing this assumption requires new analysis techniques; c.f.,

the discussion in [11]. We note that work by Daum et al. [6] (which preceded [11, 22]) also pointed out the

dependence of existing telephone model bounds on unbounded concurrent connections.

A fundamental problem in peer-to-peer networks is rumor spreading, in which a single message must be

disseminated from a designated source to all nodes (this is equivalent to gossip with k = 1). This problem is

well-understood in the classical telephone model, where spreading times are often expressed with respect to

spectral properties of the network topology graph such as graph conductance (e.g., [13]) and vertex expansion

(e.g., [5, 16, 8, 14]). This existing work established that efficient rumor spreading is possible with respect

to both graph properties in the classical model. In [11], we studied this problem in the mobile telephone

model. We proved that efficient rumor spreading with respect to conductance is not possible in the mobile

telephone model, but efficient spreading with respect to vertex expansion is possible. We then proved that

for b = 1 and τ ≥ 1, a simple random spreading strategy solves the problem in O((1/α)∆1/τ polylog(n))
rounds—matching the tight Θ((1/α) log2 n) result from the classical telephone model within log factors for

τ ≥ log∆. In [22], we built on these results to solve leader election in similar asymptotic time.

Though gossip is well-studied in peer-to-peer models (see [23] for a good overview), little is known about

how to tackle the problem in the mobile telephone model, where concurrent connections are now bounded but

nodes can leverage advertising tags.3 Finally, we note that there are application similarities between gossip

in the mobile telephone model and existing reliable multicast solutions for mobile ad hoc (e.g., [18]) and

delay-tolerant (e.g., [3]) networks. These existing solutions, however, tend to be empirically evaluated and

depend on the ability to predict information about link behavior (e.g., predicted link duration or an advance

schedule of when given links will be present).

2 Model and Problem

We describe a smartphone peer-to-peer network using the mobile telephone model. As elaborated in the in-

troduction, the basic properties of this model—including its scan-and-connect behavior, dynamic topologies,

and the nodes’ ability to advertise a bounded tag—are inspired in particular by the behavior of the Apple

Multipeer Connectivity framework for smartphone peer-to-peer networking.

In more detail, we assume executions proceed in synchronous rounds labeled 1, 2, We assume all

nodes start in the same round. We describe a peer-to-peer network topology in each round r as an undirected

connected graph Gr = (V,Er) that can change from round to round, constrained by the stability factor (see

below). We call the sequence of graphs G1, G2, ... that describe the evolving topology a dynamic graph. We

assume the definition of the dynamic graph is fixed at the beginning of the execution.

We assume a computational process (also called a node in the following) is assigned to each vertex in

V , and use n = |V | to indicate the network size. At the beginning of each round r, we assume each node

u learns its neighbor set N(u) in Gr . Node u can then select at most one node from N(u) and send a

connection proposal. A node that sends a proposal cannot also receive a proposal. If a node v does not send a

proposal, and at least one neighbor sends a proposal to v, then v can accept an incoming proposal. There are

different ways to model how v selects a proposal to accept. In this paper, for simplicity, we assume v accepts

an incoming proposal selected with uniform randomness from the incoming proposals. If node v accepts

a proposal from node u, the two nodes are connected and can perform a bounded amount of interactive

communication to conclude the round. We leave the specific bound on communication per connection as a

problem parameter.

3It might be tempting to simply run k parallel instances of the rumor spreading strategy from [11] to gossip k messages, but

this approach fails for three reasons: (1) our model allows only O(1) tokens to be sent per connection per round; (2) each of the k
instances requires its own advertising tag bit, whereas all of our new gossip results focus on the case where b ≤ 1; and (3) nodes do

not know k in advance. Accordingly, most results presented in this paper require substantial technical novelty.

5

Model Parameters. We parameterize the mobile telephone model with two integers, a tag length b ≥ 0 and

a stability factor τ ≥ 1. We allow each node to select a tag containing b bits to advertise at the beginning of

each round. That is, if node u chooses tag bu at the beginning of a round, all neighbors of u learn bu before

making their connection decisions in this round. A node can change its tag from round to round.

We also allow for the possibility of the network topology changing between rounds. We bound the

allowable changes with a stability factor τ ≥ 1. For a given τ , the dynamic graph describing the changing

topology must satisfy the property that at least τ rounds must pass between any changes to the topology. For

τ = 1, the graph can change arbitrarily in every round. We use the convention of stating τ = ∞ to indicate

the graph never changes.

Vertex Expansion and Maximum Degree. Several of our results express time complexity bounds with

respect to the vertex expansion α of the dynamic graph describing the network topology. To define α, we first

review a standard definition of vertex expansion for a fixed static unconnected graph G = (V,E).

For a given S ⊆ V , define the boundary of S, indicated ∂S, as follows: ∂S = {v ∈ V \ S : N(v) ∩ S 6=
∅}: that is, ∂S is the set of nodes not in S that are directly connected to S by an edge in E. Next define

α(S) = |∂S|/|S|. As in [14, 11], we define the vertex expansion α(G) of our static graph G = (V,E) as

follows:

α(G) = min
S⊂V,0<|S|≤n/2

α(S).

Notice that despite the possibility of α(S) > 1 for some S, we always have α(G) ≤ 1. We define the vertex

expansion α of a dynamic graph G1, G2..., to be the minimum vertex expansion over all of the dynamic

graph’s constituent static graphs (i.e., α = min{α(Gi) : i ≥ 1}).
Similarly, we define the maximum degree ∆ of a dynamic graph to be the maximum degree over all of

the dynamic graph’s constituent static graphs.

The Gossip Problem. The gossip problem assumes each node is provided an upper bound4 N ≥ n on the

network size and a unique ID (UID) from [N]. The problem assumes some subset of nodes begins with a

gossip message to spread (which we also call a token). We use k to describe the size of this subset and assume

that k is not known to the nodes in advance. A given node can start the execution with multiple tokens, but

no token starts at more than one node. We treat gossip tokens as comparable black boxes that can only be

communicated between nodes through connections (e.g., a node cannot transmit a gossip token to a neighbor

by spelling it out bit by bit using its advertising tags). If a node begins an execution with a token or has

received the token through a connection, we say that the node owns, knows or has learned that token. We

assume that a pair of connected nodes can exchange at most O(1) tokens and O(polylog(N)) additional bits

during a one round connection.

Solving the Gossip Problem. The gossip problem requires all nodes to learn all k tokens, Formally, we say a

distributed algorithm solves the gossip problem in f(n, k, α, b, τ) rounds, if with probability at least 1− 1/n,

all nodes know all k tokens by round f(n, k, α, b, τ) when executed in a network of size n, with k tokens,

vertex expansion α, tag length b, and stability factor τ . We omit parameters when not relevant to the bound.

Probability Preliminaries. The analyses that follow leverage the following well-known probability results:

Theorem 2.1. For p ∈ [0, 1], we have (1− p) ≤ e−p and (1 + p) ≥ 2p.

Theorem 2.2 (Chernoff Bound: Lower Bound Form). Let Y =
∑t

i=1Xi be the sum of t > 0 i.i.d. random

4For the sake of concision, the results described in the introduction and Figure 1 make the standard assumption that N is a

polynomial upper bound on n, allowing us to replace N with n within logarithmic factors inside asymptotic notation. In the formal

theorem statements for these results, however, we avoid this simplification and leave N in place where used—enabling a slightly

finer-grained understanding of the impact of the looseness of network size estimation on our complexity guarantees.

6

indicator variables X1, X2,..., Xt, and let µ = E(Y). Fix some fraction δ, 0 < δ < 1. It follows:

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 .

Theorem 2.3 (Chernoff Bound: Upper Bound Form). Let Y =
∑t

i=1Xi be the sum of t > 0 i.i.d. random

indicator variables X1, X2,..., Xt, and let µ = E(Y). Fix some value δ > 1. It follows:

Pr(X ≥ (1 + δ)µ) ≤ e−
δµ
3 .

Theorem 2.4 (Chernoff-Hoeffding Bound). Let X1, X2, ..., Xt, be t ≥ 1 i.i.d. random indicator variables.

Let µ = E(Xi) and fix some δ > 0. It follows:

Pr

(

1

t

t
∑

i=1

Xi ≥ µ+ δ

)

≤ e−2δ
2t.

Theorem 2.5 (Markov’s Inequailty). Let X be a nonnegative random variable and a > 0 be a real number.

It follows:

Pr (X ≥ a) ≤ E(X)

a
.

3 Token Transfer Subroutine

An obstacle to solving gossip in the mobile telephone model is deciding which tokens to exchange between

two connected nodes. In more detail, once two nodes u and v with respective token sets Tu and Tv connect,

even if they know Tu 6= Tv, they must still identify at least one token t /∈ Tu ∩ Tv to transfer for this

round of gossip to be useful. Complicating this task is the model restriction that u and v can only exchange

O(polylog(N)) bits before deciding which tokens (if any) to transfer. This is not (nearly) enough bits to

encode a full token set (a simple counting argument establishes that every coding scheme will require Ω(N)
bits for some sets). Therefore, a more efficient routine is needed to implement this useful token transfer.

Here we describe a transfer subroutine that solves this problem and is used by multiple gossip algorithms

described in this paper. This routine, which we call Transfer(ǫ), for an error bound ǫ, 0 < ǫ < 1, is a

straightforward application of an existing algorithmic tool from the literature on two-party communication

complexity. It guarantees the following: if Transfer(ǫ) is called by two connected nodes u and v, with

respective token sets Tu and Tv, and Tu 6= Tv, then with probability at least 1 − ǫ the smallest token t (by a

predetermined token ordering) that is not in Tu ∩ Tv, will be transferred by the node that knows t to the node

that does not. This routine requires u and v to exchange only O(log2 N · log (logNǫ)) controls bits in addition

to token t. It also assumes some fixed ordering on tokens.

Equality Testing. We use one of the many known existing solutions to the set equality (EQ) problem from the

study of two-party communication complexity. In our setting with u and v (described) above, these existing

solutions provide u and v a way to test the equality of Tu and Tv, and they offer the following guarantee: if

Tu = Tv, then u and v will correctly determine their sets are equal with probability 1, else if Tu 6= Tv then

u and v will erroneously determine their sets are equal with probability no more than 1/2. These existing

solutions assume only private randomness and require u and v to exchange no more than O(logN) bits. A

nice property of most such solutions is that each trial is independent. Therefore, if u and v repeat this test c
times, for some integer c ≥ 1, then the error probability drops exponentially fast with c to 2−c. Let us fix one

such equality testing routine and call it EQTest(c), where parameter c ≥ 1 determines how many trials to

execute in testing the equality.

7

The Transfer Subroutine. We now deploy EQTest(ǫ′), for ǫ′ = ⌈log (logNǫ)⌉, as a subroutine to implement

the Transfer(ǫ) routine. In particular, recall that for a given u and v, we can understand Tu and Tv to both

be subsets of the values in [N] (as each node in the network can label each token with its UID from [N] at the

beginning of the execution). Our goal is to identify the smallest location value in [N] that is in Tu ∪ Tv but

not in Tu ∩ Tv. To do so, we can implement a binary search over the interval [N], using EQTest(ǫ′) to test

the equality of the interval in question between u and v. In more detail:

Transfer(ǫ):

a← 1; b← N

while a 6= b

result← EQTest(ǫ′) executed on Tu ∩ [a, ⌊b/2⌋] and Tv ∩ [a, ⌊b/2⌋]
if result = notequal then b← ⌊b/2⌋ else a← ⌊b/2⌋ + 1

transfer token a to the other node if you know token a

The above logic implements a basic binary search over the interval [N] to identify the smallest value in this

interval that is in exactly one of the two sets Tu and Tv. If every call to EQTest succeeds then the search

succeeds and Transfer behaves correctly. There are at most logN calls to EQTest, each of which fails

with probability 2−ǫ
′ ≤ ǫ/ logN . Therefore, by a union bound, the probability that at least one of the logN

calls to EQTest fails is less than ǫ, as claimed. From a communication complexity perspective, each call to

EQTest(ǫ′) requires O(logN ·ǫ′) = O(logN ·log (logN/ǫ)) bits, and we make logN such calls. Therefore,

the total communication complexity is in O(log2N · log (logNǫ)), as claimed.

4 Gossip with b = 0 and τ ≥ 1

Here we consider the most difficult case for gossip in our model: nodes cannot advertise any information to

their neighbors (b = 0), and the network topology graph can change arbitrarily in every round (τ = 1). We

will study the straightforward strategy in which nodes randomly select neighbors for attempted connections

and then use the token transfer routine to select tokens to exchange during successful connections. We will

show this strategy solves gossip in O((1/α)k∆2 log2N) rounds when executed with k tokens in a network

graph with expansion α and maximum degree ∆. This result might seem pessimistically large at first glance,

but as shown in [22], there are networks in which simple blind connection strategies like those implemented

here do require Ω(∆2/
√
α) rounds to spread even a single message.

The BlindMatch Gossip Algorithm. At the beginning of each round r ≥ 1, each node u ∈ V flips a fair

coin to decide whether to be a sender or a receiver in r. If u decides to be a sender, it selects a neighbor

uniformly from among its neighbors in this round and sends it a connection proposal. If u decides to be a

receiver it waits to receive proposals. If two nodes u and v connect, they execute the token transfer subroutine

which attempts to transfer the smallest token in (Tu(r) ∪ Tv(r)) \ (Tu(r) ∩ Tv(r)), assuming such a token

exists.

Analysis. We now prove the below theorem concerning about the performance of the BlindMatch algorithm.

The proof adapts our recent analysis of leader election strategies in the mobile telephone model under the

assumption that b = 0 [22]. The main contribution of this section, therefore, is less technical than it is the

establishment of a baseline against which to compare the other results studied in this paper.

Theorem 4.1. The BlindMatch gossip algorithm solves the gossip problem in O((1/α)k∆2 log2 N) rounds

when executed with tag length b = 0 in a network with stability τ ≥ 1.

Proof. In [22], we study a leader election algorithm called BlindGossip that essentially matches the behavior

8

of BlindMatch. As in BlindMatch, this algorithm has each node in each round flip a coin to decide whether or

not to send or receive, and senders choose a neighbor uniformly to send a connection proposal. If two nodes

connect, they transfer the smallest UIDs they have seen so far in the execution. In [22], we prove that this

strategy will disseminate the smallest UID in the network to all nodes in the network in O((1/α)∆2 log2N)
rounds, with high probability in N . This existing analysis follows the progress of the smallest token in the

network showing that after this many rounds it will have spread to all nodes.

In BlindMatch, by contrast, a connected pair executes the transfer routine to attempt to transfer the small-

est token known by one but not both of the connected nodes. It follows, therefore, that under the assumption

that the transfer routine works correctly every time it is called, BlindMatch will spread the smallest token in

the network to all nodes in the time stated above. Once this has been accomplished, however, we can turn

our attention to the second smallest token (once all nodes know the smallest token, the transfer routine will

always transfer the second smallest when a node that knows the second smallest is connected to a node that

does not). After the above number of rounds, the second smallest token will also have spread. We repeat this

process for all k tokens to get the final O((1/α)k∆2 log2 N) time claimed above.

5 Gossip with b = 1 and τ ≥ 1

Here we describe and analyze two gossip algorithm that now assume b = 1. The first, called SharedBit,

assumes shared randomness, while the second, SimSharedBit, does not. Both solutions offer a substantial

time complexity improvement over the BlindMatch algorithm for many graph parameters.

Discussion: Shared Randomness. For the sake of clarity, we begin by making a strong assumption that

we will subsequently eliminate: the nodes have access to a shared randomness source. In more detail, we

assume at the beginning of the execution a bit string r̂ of length T = O(N3 logN) is selected with uniform

randomness from the space R of all bit strings of this length. All nodes can access r̂. This shared random

string simplifies the description and analysis of an efficient gossip algorithm for the assumptions tackled in

this section. In particular, the key challenge for gossip in this setting is generating useful 1-bit advertising

tags in each round. We would like nodes with the same token set to generate the same bit (so they will

know not to attempt to connect to each other), while pairs of nearby nodes with different token sets to have

a reasonable probability of generating different bits (so they will know a connection would prove useful).

Shared randomness enables this property as each node can associate the same fresh random bit for each token

in a given round, and the bit advertised for a given set can simply consist of the sum of the bits associated

with tokens in the set (mod 2).

Discussion: Eliminating the Shared Randomness Assumption. The assumption of shared randomness

might be unrealistic in some settings. With this in mind, we will then proceed to show how to eliminate

this assumption by simulating public randomness using a much smaller number of private random bits that

disseminate quickly throughout the network. The core strategy of this simulation borrows and expands key

ideas from the proof of Newman’s Theorem (e.g., [21])—a well-known result on public randomness simu-

lation from the study of two-party communication complexity. Our result is existential in the sense that it

establishes that there exists an efficient simulation of our shared randomness that works well enough. An

equivalent formulation of this result in the language of pseudorandomness is that there exists a pseudoran-

dom number generator that can generate the needed number of bits with a seed sufficiently small to fit in our

message size bound.

5.1 Shared Randomness

Here we describe and analyze the SharedBit gossip algorithm.

The SharedBit Gossip Algorithm. Let r̂ be a shared random string of length cN3(⌈logN⌉ + 1) bits. We

9

assume nodes partition r̂ into cN2 groups each consisting of N bundles (one for each id that might show up

in the network) that each contain ⌈logN⌉+ 1 bits. We label these groups 1, 2, ..., cN2 , and label the bundles

within a given group 1, 2, ..., N .

At the beginning of each round r ≤ cN2, node u must decide which bit to advertise to its neighbors (i.e.,

what value to select for bu(r)). If Tu(r) is empty, then u advertises 0 (i.e., bu(r) = 0). Otherwise, node u
calculates its advertisement by first extracting a shared bit from r̂ to assign to each t ∈ Tu(r). In particular,

for each such t ∈ Tu(r), u sets its bit, indicated t.bit, to be the first bit in bundle t of group r from r̂. Node u
then calculates the bit bu(r) to advertise in this round as follows:

bu(r) =





∑

t∈Tu(r)

t.bit



 mod 2.

If bu(r) = 0 then u will receive connection proposals in this round. If bu(r) = 1 and u has at least

one neighbor advertising 0, then u will choose one these neighbors with uniform randomness and send it a

connection proposal. To make this random choice, u uses the random bits in positions 2 to ⌈logN +1⌉ in the

the bundle corresponding to its id in group r of r̂.5

If two nodes u and v connect in round r, they will deploy the token transfer subroutine, with parameter

ǫ = n−ct , for some sufficiently large constant ct ≥ 1 we fix in the analysis. This routine will identify and

transfer the smallest token in (Tu(r)∪ Tv(r)) \ (Tu(r)∩ Tv(r)), without sending more than polylog(N) bits

in the interaction (the bound enforced by our model). Recall, this transfer subroutine is probabilistic and

succeeds in identifying a token to transfer with probability at least 1 − ǫ. Once the algorithm proceeds past

round cN2 it can terminate or fall back to a simpler behavior (such as our algorithm for b = 0), or recycle

back to the beginning of the shared string.

Analysis. Our goal is to prove the following theorem regarding the SharedBit gossip algorithm:

Theorem 5.1. The SharedBit gossip algorithm solves the gossip problem in O(kn) rounds when executed

with shared randomness and tag length b = 1, in a network with stability τ ≥ 1.

To setup our analysis, recall that we define Tu(r) for node u and round r ≥ 1, to be the set of tokens u
knows at the beginning of round r, and use bu(r) to indicate the bit advertised by u in round r. Also recall

that cN2 is the maximum number of rounds for which the shared string r̂ contains bits (our below analysis

will specify the needed lower bound on constant c ≥ 1), and that t.bit, for a given token t and a fixed round,

describes the shared random bit extracted from r̂ and assigned to t in this round.

We begin with the following lemma, which bounds the probabilistic behavior of the advertising tags

generated using a given shared r̂.

Lemma 5.2. Fix two nodes u, v ∈ V , u 6= v, and a round r, 1 ≤ r ≤ cN2. Fix a r − 1 round execution

of SharedBit, and let p = Pr(bu(r) 6= bv(r)) be the probability (defined over the random selection of the

relevant bits in r̂) that u and v generate different advertising bits in round r. If Tu(r) = Tv(r) then p = 0,

else if Tu(r) 6= Tv(r), then p = 1/2.

Proof. If Tu(r) = Tv(r) then by definition of the algorithm bu(r) = bv(r). We turn our attention, therefore,

to the remaining case where Tu(r) 6= Tv(r). In the following, for a given non-empty token set T , define:

advr(T) =

(

∑

t∈T
t.bit

)

mod 2.

5The reason we have u use shared random bits to select the receiver of its proposal is because it will simplify our subsequent

effort to eliminate shared randomness for this algorithm. There are many straightforward ways a node can use (up to) logN bits to

uniformly select a value from a set containing no more than N values.

10

And for the case of an empty set, we define by default advr(∅) = 0. Fix T ′u(r) = Tu(r) \ Tv(r) and

T ′v(r) = Tv(r) \ Tu(r). Let T ′u,v(r) = Tu(r) ∩ Tv(r). It follows:

bu(r) = advr(T
′
u(r)) + advr(T

′
u,v(r)) mod 2

bv(r) = advr(T
′
v(r)) + advr(T

′
u,v(r)) mod 2

Given the above observation, we note that bu(r) = bv(r) if and only if advr(T
′
u(r)) = advr(T

′
v(r)). By

definition, T ′u(r) and T ′v(r) have no values in common and at least one of these sets is non-empty. The bits

used in these sums are all therefore pairwise independent and generated uniformly. The probability that both

these sums are equal is exactly 1/2, and therefore so is the complementary probability of inequality.

We next define the following useful potential function that captures the amount of information spreading

still required in the network to solve gossip after a given round:

∀r ≥ 1 : φ(r) =
∑

u∈V
(k − |Tu(r)|) .

Notice that this function is non-increasing (as nodes never unlearn a token), and once the function eval-

uates to 0, there is no more information to spread and therefore gossip is solved. We now leverage the

definition of potential function φ from above to define what it means for a round to be good with respect to

making progress with the gossip problem:

Definition 5.3. We say a given round r ≥ 1 is good if and only if one of the following two properties is true:

(1) φ(r) = 0; or (2) φ(r + 1) < φ(r).

The following result leverages Lemma 5.2 to formalize the key property that each round of our algorithm

has a reasonable probability of being good by our above definition.

Lemma 5.4. For every round r, 1 ≤ r ≤ cN2, the probability that round r is good is at least 1/4.

Proof. There are two cases depending on the value of φ(r). If φ(r) = 0, then by definition this round is good.

Else if φ(r) > 0, we must consider the probability that at least one node learns a new token in this round.

To do so, fix some token t that is not known by all n nodes at the beginning of r (such a token must exist by

the assumption that φ(r) > 0). Let S be the nodes that know t. Because we assume the network topology is

connected in each round, there must be an edge during round r between a node u ∈ S and a node v ∈ V \ S.

Because t ∈ Tu(r) and t /∈ Tv(r), we know Tu(r) 6= Tv(r). By Lemma 5.2, the probability that

bu(r) 6= bv(r) is 1/2. Assume this event occurs. Also assume bu(r) = 1 and bv(r) = 0 (the opposite case is

symmetric). By the definition of the algorithm, u will attempt to send a proposal in this round and it has at

least one neighbor to choose from to receive this proposal. Let v′ be the neighbor u chooses. Whether or not

v′ = v, we know that v′ advertised 0 in this round. By Lemma 5.2, it follows that v′ has a different token set

than u in this round. Indeed, this must be true of v′ and any node that sends it a proposal in this round.

Now that we have established that v′ receives at least one proposal, we know v′ will form a connection

this round. As we just noted, this connection will be with a node u′ such that Tu′(r) 6= Tv′(r). Therefore, with

high probability in n, the transfer subroutine will successfully identify a missing token to transfer between u′

and v′—reducing φ.

We have just shown that for r to be good in the case where φ(r) > 0, it is sufficient that the following two

events occur: (1) bu(r) 6= bv(r); and (2) the transfer subroutine between u′ and v′ succeeds. The first occurs

with probability 1/2, and the second with high probability, which is at least 1/2 for n > 1 (which must be

true if φ(r) > 0). Both events occur, therefore, with probability at least 1/4—as required.

11

We can now leverage Lemma 5.4 to prove Theorem 5.1. The key argument in the following is that

φ(1) ≤ kn, therefore kn good rounds are sufficient to solve the gossip problem. With high probability,

T = Θ(kn) total rounds is sufficient to achieve this goal—assuming that r̂ is long enough to supply random

bits for T rounds. To assure this holds we fix the constant c in the definition of r̂ to be at least the constant

identified in the analysis below for the definition of T (which turns out to be 32).

Formalizing this intuition, however, requires some care in dealing with potential dependencies between

different rounds with respect to their goodness.

Proof (of Theorem 5.1). The potential function φ measures the number of missing values over the n total

nodes. Each node can miss at most k values. Therefore: φ(1) ≤ kn. Because φ is non-increasing, it is

sufficient to ask how many rounds are required to ensure kn good rounds with high probability. Here we

show that 32kn rounds are more than sufficient. If we fix the constant c used in the definition of r̂ to 32,

therefore, it follows that r̂ is sufficiently long to supply random bits for all 32kn rounds needed for high

probability termination.

Continuing with the proof, let Xr , for each round r ≥ 1, be the random indicator variable that evaluates

to 1 if and only if round r is good. Let Yt, for some round count t ≥ 1, be defined as:

Yt =

t
∑

r=1

Xr.

The Yt variable, in other words, measures the number of good rounds in the first t rounds. By Lemma 5.4,

we know E(Yt) ≥ t/4. Therefore, in expectation, 4kn rounds are sufficient to achieve kn good rounds.

To achieve high probability, however, we cannot simply concentrate on this expectation as there may be

dependencies between different X variables (e.g., the outcome in one round might increase the probability

that the next is good).

Because Lemma 5.4 establishes a lower bound on this probability that holds regardless of the execution

history, we can deploy a stochastic dominance argument to achieve our needed result. In more detail, let

X̂r , for each r ≥ 0, be the trivial random indicator variable that evaluates to 1 with independent probability

1/4. Let Ŷt =
∑t

r=1 X̂r. Clearly, E(Ŷt) = t/4. Because the X̂ variables are pairwise independent, we can

concentrate on this expectation. For example, fix t = 32kn. Applying the Chernoff bound from Section 2

(Theroem 2.2) with δ = 1/2 and µ = E(Ŷt) = t/4 = 8kn, it follows:

Pr(Ŷt ≤ 4kn) ≤ e−
8kn
8 ≤ e−n < 1/n.

That is, for this particular value of t ∈ Θ(kn), the probability that Ŷt is less than kn is small in n. We

now note that for each r ≥ 1, Xr stochastically dominates X̂r. It follows that our above bound on Ŷt holds

for Yt as well—which is sufficient to conclude the proof.

5.2 Eliminating the Shared Randomness Assumption

Here we discuss how to remove the assumption of shared randomness. In more detail, we describe SimShared-

Bit, a variation of SharedBit that does not use shared randomness. We emphasize that this new algorithm is

existential instead of constructive. Formally, it depends on a small set of bit strings, called R′, that we prove

exists but do not explicitly construct. Accordingly, our main theorem statement below references the existence

of a string setR′ for which SimSharedBit is an efficient solution.

The SimSharedBit algorithm adds an additive cost of Õ(∆1/τ/α) rounds to the existing time complexity

of SharedBit. For most combinations of ∆, τ , and α, and k, this additive cost is swamped by the O(kn) time

12

complexity of SharedBit. For the worst-case values of these parameters, this extra cost can make SimShared-

Bit up to a factor of n slower than SharedBit (e.g., when k = 1, α = 1/n, ∆ = n− 1, and τ = 1).

Strategy Summary. The high-level strategy for SimSharedBit is to first elect a leader that disseminates a

seed string that can be used to generate sufficient randomness to run SharedBit. Notice, the number of shared

bits required by SharedBit is much too large to be efficiently disseminated (our model restricts connections

to deliver polylog(N) bits per round, while SharedBit requires Ω(N3) shared bits). The seed selected and

disseminated by the leader, by contrast, is small enough to be fully transmitted over a connection in a single

round. To prove that there exists a randomness generator that can extract sufficient randomness for our

purpose from seeds of this small size, we adapt the technical details of Newman’s Theorem (e.g., [21]) from

the simpler world of two-party communication to the more complicated world of n parties on a distributed

and changing network topology. In more detail, we prove the existence of a multiset R′, containing only

poly(N) bit strings of the length required for SharedBit, that is sufficiently random to guarantee that if a

leader chooses r̂ uniformly from R′, the SharedBit algorithm using shared randomness r̂ is still likely to

solve gossip efficiently. BecauseR′ contains only poly(N) strings, the leader can identify the string it selected

using only polylog(N) bits (this selection is the seed it disseminates)—enabling efficient dissemination of this

information. The existential nature of SimSharedBit is entirely encapsulated in the existence of this setR′.

Below we begin by describing the guarantees of the leader election primitive we will leverage in the SimShared-

Bit algorithm. We then describe the operation of SimSharedBit before proceeding with its analysis.

Leader Election. To elect a leader we can deploy the BitConvergence leader algorithm described in our

recent study of leader election in the mobile telephone model [22]. When run in a network with expansion

α, stability factor τ ≥ 1, and maximum degree ∆, this algorithm guarantees with high probability in N to

solve leader election in O((1/α)∆1/τ polylog(N)) rounds. We emphasize that the algorithm does not require

advance knowledge of α, ∆, or τ—its time complexity adapts to the network in which it is executed.

To provide slightly more detail about this algorithm, in each round, each node identifies a single identifier

to be its candidate leader for that round. To “solve leader election” means that eventually all candidate leaders

in the network have permanently stabilized to the same identifier. As noted in [22], a trivial extension to the

algorithm allows each node to also generate a payload consisting of polylog(N) bits that follows its identifier.

Each node now maintains a variable for its current candidate leader and a variable for that candidate’s payload.

We will leverage this payload in SimSharedBit to carry a pointer to a r̂ value from R′. Finally, we note that

BitConvergence also maintains the useful property that the eventual leader will be the node with the smallest

identifier of all participating nodes. This simplifies our analysis.

The SimSharedBit Gossip Algorithm. We are now ready to describe the SimSharedBit gossip algorithm.

This new gossip algorithm interleaves the BitConvergence leader election algorithm described above with the

logic from SharedBit gossip. In more detail, we will prove below the existence of a multiset R′, containing

poly(N) bit strings, that is “sufficiently random” (a concept we will formalize soon) that it is sufficient for the

nodes in the network to agree on a shared string r̂ sampled from R′, instead of from the space of all possible

strings of the needed length.

In more detail, at the beginning of the execution, each node selects its own string from R′ with uniform

randomness. Assume we have fixed in advance a deterministic unique labeling of the poly(N) strings in R′
with the values 1, 2, ..., |R′|. Each node can therefore refer to the string it selected with its label. Following

the standard conventions of pseudoranomness, we call this label the seed for the string. Notice, each seed can

be described with only polylog(N) bits. We take advantage of this small size by having each node run the

leader election algorithm summarized above with this string stored in its payload. Therefore, once we elect a

leader, all nodes also know its seed.

To interleave gossip and leader election we will treat even and odd rounds differently. In even rounds,

nodes execute the BitConvergence leader election algorithm described above, using their seed as their pay-

load. In odd rounds, nodes execute the SharedBit gossip algorithm. In each odd round, each node uses as the

13

shared string r̂ whatever string from R′ is pointed to by the seed in their current candidate leader’s payload.

In defining R′ below, we will fix the length of strings in this set to be slightly longer than the strings used

by SharedBit, so as to capture the extra rounds required for the network to converge on a single string (the

rounds before this point are potentially wasted with respect to making gossip progress).

Proving the Existence of a Sufficiently Random R′. To prove SimSharedBit solves gossip efficiently with

high probability, we must prove that a shared string sampled uniformly from R′ is sufficiently random that

the SharedBit logic executed in odd rounds will still solve gossip with high probability.

To do so, we begin by establishing some preliminary assumptions and definitions. First, we note that

the string r̂ used by SharedBit consists of tSB = cN2 groups consisting of N bundles that in turn each

contain tb = (⌈logN⌉+ 1) bits. The algorithm consumes bits from one group per round, and the analysis of

SharedBit requires at most tSB rounds worth of shared randomness to terminate with high probability.

For SimSharedBit, we will need to extend this length to account for the early rounds in the execution

when leader election has not yet converged, and therefore we cannot yet guarantee useful progress for the

gossip logic executing in the odd rounds. For the worst case values of α, τ , and n, BitConvergence requires

no more than tBC = O(N2polylog(N)) rounds to converge. Therefore we extend the length of shared bit

strings to consist of tSSB = tSB + tBC = O(N2polylog(N)) groups. This ensures that after leader election

converges we still have at least the full tSB rounds of randomness needed for the analysis of SharedBit to

apply. At the risk of slightly overloading previous notation, we will use R = {0, 1}tSSB ·N ·tb to refer to the

set of all bit strings of length tSSB · N · tb—the maximum size shared string needed to give nodes time to

converge to a leader and then subsequently solve gossip with the leader’s shared string. The shared strings

used in SimSharedBit come from R.

Next, for a given network size n > 1, let G(n) be the set containing every tSB-round dynamic graph

defined over n nodes. That is, if we run our algorithm for tSB rounds in a network of size n, it will be

executed in some dynamic graph G ∈ G(n). Let A(n) be the set containing every assignment of token sets

to the n nodes in a network of size n. We define “assignment” to capture two key pieces of information: (1)

which nodes in the network started with a token; and (2) which of these tokens does each node know at the

moment. Formally, a given A ∈ A(n) can be described as a function from [n] to 2n.6

For each network size n ∈ [2, N], round ℓ ∈ [1, tBC], dynamic graph G ∈ G(n), token assignment

A ∈ A(n), and shared bit string r̂ ∈ R: let Z(n, ℓ,G, A, r̂) be the random indicator variable that evaluates

to 0 if SharedBit solves gossip when run in a network of size n, starting with token assignment A, and

executing for tSB rounds in dynamic graph G, using the shared random bits from groups ℓ to ℓ+ tSB in r̂. It

otherwise evaluates to 1. (In the evaluation of Z , assume that the probabilistic token transfer subroutine used

by SharedBit always works correctly.) Notice, we are using 0 to indicate a positive outcome (gossip works),

and a 1 to indicate a negative outcome (gossip failed).

In other words, Z(n, ℓ,G, A, r̂) answers the following question (with 0 indicating yes) :

If we assume we are in a network of size n, and that leader election converges to a single leader

at round ℓ, and this leader points toward shared string r̂, and that at this point the tokens in the

network are spread according to A: will the SharedBit logic solve gossip sometime in the next

tSB rounds, using the corresponding bits from r̂, assuming the graph evolves as G during this

round interval?

Our analysis of SharedBit tell us that if we select r̂ uniformly fromR, with high probability: Z(n, ℓ,G, A, r̂) =
0. Our goal is to prove that there exists a multiset R′, made up of values from R, such that R′ only contains

poly(N) strings, and yet if we select r̂ uniformly from R′, the probability Z(n, ℓ,G, A, r̂) = 0 remains high.

6This function maps each of the n nodes to some subset of [1, n] indicating the tokens that node knows. The set of nodes that

started with a token according to this assignment is the set of nodes that have a token show up somewhere in the assignment function’s

range.

14

In particular, if ǫ is an upper bound on the small failure probability of SharedBit gossip when run in a setting

with shared randomness, then we show the probability that Z evaluates to 1 when drawing r̂ from our multiset

R′ is at most only a constant factor larger. We formalize this goal with the following lemma. We emphasize

that this setup (analyzing the probability that Z evaluates to 1 with our reduced R′) comes from the proof

of Newman’s Theorem. We are generalizing this approach, however, to account for multiple nodes operating

on a dynamic graph starting from an arbitrary round within a larger interval, with an arbitrary distribution of

gossip tokens:

Lemma 5.5. There exists a multiset R′ of size NΘ(1) containing values from R, such that for every n ∈
[2, N], ℓ ∈ [1, tBC], G ∈ G(n) and A ∈ A(n), it follows:

Pr
r̂←R′

(Z(n, ℓ,G, A, r̂) = 1) < 2ǫ,

where ǫ = N−c (for some constant c ≥ 1) is an upper bound on the failure probability of SharedBit gossip

when executed with shared randomness.

Proof. Fix some network size n ∈ [2, N], leader election termination round ℓ ∈ [1, tBC], G ∈ G(n) and A ∈
A(n). Consider an experiment in which we uniformly select t values r1, r2, ..., rt fromR (with replacement),

where t > 0 is a value defined with respect to N that we fix below. Let Xi be the random indicator variable

defined as Xi = Z(n, ℓ,G, A, ri). That is, Xi = 0 if SharedBit solves gossip using the relevant bits in ri in

G starting with assignment A. By Theorem 5.1 and our definition of tSB (which captures the worst case time

complexity from this theorem), we know Xi = 0 with probability at least 1− ǫ. Therefore:

E(Xi) = 0 · Pr(Xi = 0) + 1 · Pr(Xi = 1) ≤ ǫ.

Note that these random variables X1,X2, ...,Xt are i.i.d. as they are each determined by a random string

selected with uniform and independent randomness with replacement from a common set. It follows that we

can apply a Chernoff-Hoeffding bound (Theorem 2.4 from Section 2) to X1, X2, ..., Xt to prove that their

average value is unlikely to deviate too much from the expected average. In more detail, let µ = E(Xi). This

bound tells us that for any δ > 0:

Pr

(

1

t

t
∑

i=1

Xi ≥ µ+ δ

)

≤ e−2δ
2t.

Fix δ = ǫ and t = Nβ/ǫ2, for a constant β ≥ 1 we will define below. We say for our fixed choice of n,

ℓ, G and A, that a given selection of t strings from R is bad if 1
t

∑t
i=1 Xi ≥ p = 2ǫ. For our fixed values of

δ and ǫ, and our above bound, we know our random choice of strings is bad with probability no more than

e−2N
β
< 2−N

β
. Put another way, for a fixed network size, leader election termination round, dynamic graph

and token assignment, we are very unlikely to have made a bad selection of strings.

Now we consider other values for our parameters. We know there are no more than N choices for n and

c′N2polylog(N) choices for ℓ, for some constant c′ ≥ 1. For a given n, we can bound G(n) as

|G(n)| < (2n
2

)tSB = 2n
2·tSB ≤ 2N

γ

,

for some small constant γ ≈ 4. And to bound A(n), we note:

|A(n)| ≤ (2n)n ≤ 2n
2 ≤ 2N

2

.

The total number of combinations of n, ℓ, G and A values, therefore, is upper bounded by:

15

N · (c′N2polylog(N)) · 2Nγ · 2N2 ≤ c′ · 2logN3+log (polylog(N))+Nγ+N2

≤ 2N
γ·c′′

for some constant c′′ ≥ 1. Given this upper bound value, we fix the constant β used in the definition of t to

be some constant strictly greater than c′′ · γ (say, ⌈c′′ · γ + 1⌉).
We now apply the probabilistic method to prove the existence of a selection of t values from R that is

not bad for any of the possible combinations of network sizes, leader election termination points, graphs and

token assignments. To do, note that the probability of a given selection being bad for a fixed set of parameters

was shown above to be less than 2−N
β

. By applying a union bound over the less than 2N
c′′·γ

combinations

of parameters, the probability that there exists at least one such combination for which our selection is bad is

less than: (2N
c′′ ·γ

) · (2−Nβ
) < 1.

It follows that there exists at least one collection of t values from R that is not bad for every combination

of the relevant parameters. Let us call this multiset of t values R′.
The definition of being not bad for a given graph and assignment is that: 1

t

∑t
i=1 Xi ≤ 2ǫ. It follows that

∑t
i=1 Xi ≤ 2tǫ. From this it follows that at most a 2ǫ fraction of the Xi values evaluate to 1. Therefore, if

we uniformly sample a string ri from R′, the probability that Xi = 0 is at least 1 − 2ǫ, as required by the

lemma statement.

To conclude the proof, we must show that |R′| = t is in poly(N). We earlier fixed: t = Nβ/ǫ2, where

β = Θ(1) and ǫ = N−c for a constant c ≥ 1. It follows that t = Nβ+2c = NΘ(1).

We now leverage Lemma 5.5 to prove our main theorem concerning SimSharedBit:

Theorem 5.6. There exists a bit string multiset R′ of size NΘ(1), such that the SimSharedBit gossip al-

gorithm using this R′ as its source of simulated shared bit strings solves the gossip problem in O(kn +
(1/α)∆1/τ log6N) rounds when executed with tag length b = 1 in a network with stability τ ≥ 1.

Proof. Fix the multiset R′ proved to exist in Lemma 5.5. We now study the performance of SimSharedBit

using this multiset as the source of shared random strings selected by leader candidates.

First, we note that by Theorem 5.1, we know that SharedBit gossip solves gossip in O(kn) rounds

with high probability. In [22], we proved that BitConvergence leader election solves leader election in

O((1/α)∆1/τ log6N) rounds with high probability. In Section 3, we proved that the transfer routine succeeds

with high probability. By a union bound, we can therefore assume that with (slightly less) high probability

the transfer routine works every time it is called in a poly(N) round execution.

Let ǫ be the smallest of these three small failure probabilities. In a given execution of SimSharedBit, it

follows (by a union bound) that the probability that the transfer routine fails at least once, or BitConvergence

fails to elect a leader in the provided time bound, is less than 2ǫ.

Assume neither of these two bad events occur. We now study the probability that SimSharedBit, running

with a r̂ selected uniformly by the node with the smallest ID from the R′, starting from the round right after

leader election succeeds, and runnings on the given dynamic graph for the execution. By Lemma 5.5, the

probability that SimSharedBit fails to solve gossip is also less than 2ǫ.

A final union bound on these two failure probabilities establishes that the probability SimSharedBit gossip

fails is less than 4ǫ, and therefore it succeeds with probability at last 1 − 4ǫ. So long as we set the constant

factors in the time complexity of SharedBit, BitConvergence, and the transfer routine, to ensure that ǫ ≤ 1
4N ,

SimSharedBit succeeds with high probability.

16

6 Gossip with b = 1 and τ =∞

Here we describe and analyze a gossip algorithm that requires only Õ(k/α) rounds when executed with b = 1
and a stable network (where Õ hides polylog(N) factors). Because Ω(k) is a trivial lower bound for gossip

k messages in our model, this algorithm is optimal for larger α. Recall that for τ ≥ 1 our best solution

required O(kn) rounds. This algorithm matches this time for the worst-case α values but then improves over

it as α increases. For constant α, this algorithm performs a factor of n faster (ignoring log factors). These

results indicate that network stability is valuable from a gossip algorithm perspective. Notice, for the sake

of presentation clarity, the algorithm analysis that follows does not attempt to optimize the polylogarithmic

factors multiplied to the leading k/α term.

Discussion: Crowded Bins We call this algorithm CrowdedBin gossip. This name comes from a core behav-

ior in the algorithm in which nodes toss their tokens into a fixed number of bins corresponding to their current

estimate k̂ of k (the number of tokens in the network). Nodes do not know k in advance. Determining this

value is crucial to enabling efficient parallel dissemination of their tokens. Leveraging a new balls-in-bins

analysis, we upper bound the number of tokens in any given bin if the estimate k̂ is sufficiently large. The

nodes therefore search for crowded bins as evidence that they need a larger estimate of k. This mechanism

provides a way to check that a current guess k̂ is too small while only paying a time complexity price relative

to k̂ (as there are only k̂ bins required to check for crowding). Because the sequence of guesses we try are

geometrically increasing, the cost of checking estimates smaller than k will sum up to Õ(k).

Discussion: Spreading Bits versus Spreading Tokens. We also emphasize that the CrowdedBin algorithm

makes a clear distinction between propagating information using the advertising bits and propagating the to-

kens themselves (which are treated as black boxes, potentially large in size, that require a pairwise connection

for transfer). Combining the stability of the network with each node’s ability to advertise a bit to all its neigh-

bors in each round, nodes first attempt to stabilize to a consistent and accurate estimate of k, and a consistent

set of tags describing the network’s tokens. Once stabilized, this information can then support the efficient

spreading of the tokens, link by link, to the whole network.

The PPUSH Rumor Spreading Strategy. The CrowdedBin algorithm uses a simple rumor spreading strat-

egy called PPUSH as a subroutine to help spread tokens once the network has stabilized. This algorithm was

introduced in our earlier study of rumor spreading in the mobile telephone model [11]. PPUSH assumes a

subset of nodes start with a common rumor m, and the goal is to spread m to all nodes. It requires b ≥ 1.

In more detail, the strategy PPUSH works as follows: (1) at the beginning of each round, if a nodes knows

m (i.e., it is informed), it advertises bit 1, otherwise if it does not know m (i.e., it is uninformed), it advertises

bit 0; (2) each informed node that has at least one uninformed neighbor in this round, chooses an uninformed

neighbor with uniform randomness and attempts to form a connection to spread the rumor. In [11], we proved

the following key result about the performance of PPUSH:

Theorem 6.1 (Adapted from [11]). With high probability in N : PPUSH succeeds in spreading the rumor to

all nodes in O(log4 N/α) rounds when executed in the mobile telephone model with b ≥ 1, τ = ∞, and a

topology graph with expansion α.

We will leverage this theorem in our analysis of our gossip algorithm. We also use the following useful

property proved in [11] which relates network diameter to expansion:7

Theorem 6.2 (Adapted from [11]). Fix a connected graph with n nodes, expansion α, and diameter D. It

follows that D = O(log n/α).

7The actual result we proved in [11] is that it is always possible to spread a rumor in O(log n/α) rounds in the mobile telephone

model in a graph with expansion α. The rumor spreading time in a given network can never be smaller than the network diameter,

which provides a trivial lower bound on the problem.

17

6.1 The CrowdedBin Gossip Algorithm

We divide our description of this analysis into several named parts to clarify its presentation. In the following,

we assume each node u ∈ V identifies itself with a tag tu chosen uniformly from the space {1, 2, ..., Nβ},
where β ≥ 2 is constant we fix in our analysis. Let ℓ = β logN be the number of bits needed to describe a

tag. To simplify notation, we assume in the following that N is a power of 2.

Parallelizing Instances. Nodes do not know in advance the value of k (the number of tokens in the system).

They consider logN estimates of k: k1, k2, ..., klogN , where each ki = 2i. The nodes run in parallel a separate

gossip instance for each estimate. We use the notation instance i to refer to the instance corresponding to

estimate ki. In order to run logN instances in parallel, each node uses logN rounds to simulate one round

each of the logN instances. That is, nodes divide rounds into simulation groups consisting of logN rounds.

Round j of simulation group i is used to simulate round i of instance j.

Instance Schedules. Each instance i groups its rounds into blocks containing ℓ + logN rounds each. It

then groups these blocks into bins containing γ logN blocks each, where γ > 1 is a constant we fix in our

analysis below. Finally, it groups the bins into phases consisting of ki bins each. In other words, the schedule

for instance i is made up of phases, where each phase has ki bins, which are each made up of γ logN blocks,

which each contain ℓ+ logN rounds: adding to a total of γ(β + 1)ki log
2 N total rounds per phase.

Initialization. Each node u ∈ V that begins an execution of the CrowdedBin algorithm with a gossip token,

independently selects a bin for its token for each of the logN instances. That is, for each instance i, u selects

a bin bu(i) with uniform independent randomness from {1, 2, ..., ki}. Each node u also maintains, for each

instance i, and each bin j for this instance, a set Tu(i, j) containing the tags it has seen so far for tokens in bin

j in instance i. For each instance i, if node u has a token it initializes Tu(i, bu(i)) = {tu} (i.e., it places its

own tag in the bin it selected for that instance). Node u also maintains a set Qu containing the tokens it has

received so far, where each token in Qu is also labeled with its tag. Finally, each node u maintains a variable

estu, initialized to 1, which describes the current instance node u is participating in.

Participation. Each node will only participate in a single instance at a time, and it will only participate in

complete phases of an instance. In more detail, if some instance i starts a new phase in round r, and some

node u has estu = i at the start of round r, node u is now committed to participate in this full phase of

instance i. As we will detail, its estimate cannot change again until this phase completes.

To participate in a phase of instance i, node u does the following. First, for each bin j, 1 ≤ j ≤ ki, u
orders the tags in Tu(i, j) (if any) in increasing order. It will use the first ℓ rounds of the first block to spell

out the smallest such tag, bit by bit, using its advertising bits (here the assumption that b ≥ 1 is needed). It

will then use the first ℓ rounds of the second block to spell out the second smallest tag, and so on. There are

γ logN total blocks in this bin. If u knows more than this many tags for this bin, it transmits only the first

γ logN . Node u transmits all 0’s during the blocks in this bin for which it has no tags to advertise (here is

where we use the assumption that the smallest possible tag is 1—preventing a block of all 0’s from being

mistaken for a tag.)

During the rounds dedicated to bin j, node u also collects the bits advertised by its neighbors in each

block. If it learns of a tag tv that is not currently in Tu(i, j), it will put it aside and then add it to this set once

the rounds dedicated to bin j in this phase conclude.

We have only so far described what node u does during the first ℓ rounds for each block in our fixed

instance j. During the remaining logN rounds in these blocks, u will attempt to disseminate the actual tokens

corresponding to the tags advertised (here we emphasize the difference between spelling out the bits of a tag

using advertising bits and actually transmitting a token, which requires two nodes to form a connection). In

more detail, u executes the PPUSH rumor spreading strategy discussed above during the last logN rounds of

each block in the current bin. In more detail, for a given block h in this bin, if u advertised tag t in the first

ℓ rounds of this block, and u actually has the token corresponding to tag t in Qu, it executes PPUSH in the

18

remaining rounds of this block using this token as the rumor and advertising 1 (i.e., it runs PPUSH with the

status of an already informed node). Otherwise, node u runs PPUSH advertising 0 (i.e., it runs the PPUSH as

an uniformed node).

Increasing Size Estimates. A core behavior in this algorithm is how nodes upgrade their current estimate of

the value k (stored in estu for each node u). As described above, each node initializes their estimate to 1. As

described below, these estimates can only grow during an execution. We call an increase in this estimate at a

given node an upgrade. There are two events that trigger an upgrade at a given node u.

The first event is that node u sees “activity” on an instance i′ > estu, where estu is its current estimate.

The term “activity” in this context means seeing a 1-bit advertised in an instance i′ round. If this event occurs,

then u knows that some other node has already increased its estimate beyond estu, so u should upgrade its

estimate as well. The second event is that node u fills a bin in its current estimate. That is, there is some bin

j such that |T (estu, j)| ≥ γ logN . We call this event a crowded bin, and u can use this as evidence that estu
does not have enough bins for the number of tags in the system and therefore estu is too small of an estimate

for k. If this event occurs, u will increase estu by 1 (unless estu is already at its maximum value in which

case it will remain unchanged.).

Recall, as specified above, that if a node u increases its estimate estu to a new value, it will complete the

phase of whatever instance it was participating in before switching to the new estimate moving forward. This

restriction simplifies the analysis that follows.

6.2 Analysis

In the following analysis, let D be the diameter of the fixed underlying topology graph. Some of intermediate

results below will reference D. Our final result, however, will be expressed only with respect to α to maintain

comparability to earlier results defined for non-stable networks in which D is not well-defined.

At the beginning of an execution each node randomly assigns a tag from {1, 2, ..., Nβ} to its token, and

then randomly assigns the token to a bin in each of the logN instances. We call the global collection of

these assignments for a given execution a configuration. Fix a configuration. We call a given instance i of

this configuration, 1 ≤ i ≤ logN , crowded, if the configuration has an instance i bin with at least γ logN
unique tags assigned to it. The target instance for our fixed configuration is the smallest instance i that is not

crowded. If every instance is crowded, then we say the target instance is undefined. We begin our analysis by

defining what it means for a configuration to be good with respect to these terms:

Definition 6.3. A configuration is good if and only if it satisfies the following two properties: (1) every token

is assigned a unique tag; and (2) the target instance i is defined, and ki ≤ 2k.

A direct corollary of the above definition is that if a configuration is good, and i is the target, then

ki > k/(γ logN). We now bound the probability that the nodes generate a good configuration. We will show

that increasing the constant β, used to define the space {1, 2, ..., Nβ} from which tags are drawn, and the

constant γ, used to define the number of blocks per bin, increases the high probability that a configuration

is good. To make this argument we begin by proving a non-standard balls-in-bins argument that will prove

useful to our specific algorithm’s behavior.

Lemma 6.4. Fix some constant γ ≥ 9. Assume k balls, 1 ≤ k ≤ N , are thrown into k′ ≥ k bins with

independent and uniform randomness. The probability that at least one bin has at least γ logN balls, is less

than 1/N (γ/3)−2.

Proof. Label the balls 1, 2, ..., k and the bins 1, 2, ..., k′ . Let b1 be bin in which ball 1 is thrown. We now

calculate the expected number of other balls to land in b1. To do so, for each ball i > 1, let X1 be the random

indicator variable that evaluates to 1 if i lands in b1 and otherwise evaluates to 0. Let Yb1 =
∑

1<i≤k Xi

19

be the total number of additional balls to land in b1. By linearity of expectation and the observation that

E(Xi) = 1/k′ ≤ 1/k, it follows that µ = E(Yb1) < 1.

By definition of the process, Xi and Xj are independent for i 6= j. We can therefore apply an upper

bound form of a Chernoff Bound (Theorem 2.4) to concentrate near this expectation. In particular, define

δ = (γ logN − 2)/µ. Notice, δ > (γ logN − 2) > 1. We can therefore apply Theorem 2.4 to Y = Yb1 , and

our above definitions of δ and µ. It follows that:

Pr(Yb1 ≥ (1 + δ)µ) ≤ exp{−(γ logN − 2)/3}
= exp{−((γ/3) logN − 2/3)}
= exp{−((γ/3) lnN log e− 2/3)}

<
e2/3

e(γ/3) lnN

< 2/Nγ/3

≤ 1/Nγ/3−1

Notice, (1+δ)µ = µ+(γ logN−2), and µ = 1/k′ ∈ (0, 1). Therefore, we can interpret the above bound

saying that the probability that b1 has at least γ logN − 1 extra balls is less than 1/Nγ/3−1. When we add

in ball 1, which by definition is also in b1, we get that the probability that b1 has at least γ logN balls is also

less than 1/Nγ/3−1. By symmetry, the same result holds for b2 through bk as well. There are dependencies

between the outcomes in different bins, but we can dispatch this issue by applying a union bound over the

k ≤ N occupied bins, which provdes that the probability at least one bins has more than γ logN balls is less

than N/N (γ/3)−1 = 1/N (γ/3)−2.

Lemma 6.5. Fix some constant c ≥ 1. For a tag space constant β ≥ c+3, and a bin size constant γ ≥ 3c+9,

the nodes generate a good configuration with probability at least 1− 1/N c.

Proof. There are two parts to the definition of good. The first requires each tag to be unique. The probability

that there is at least one collision among the tag chocies, given that no more than N tags are drawn from Nβ

options, can be loosely upper bounded as 1/Nβ−2. If we define β = c+3 then this failure probability is less

than 1/N c+1.

The second part of the definition requires that the target instance is defined and it is not too large compared

to the actual number of tokens, k. Let î = argmin1≤i≤logN{k ≤ ki}. That is, kî is the smallest estimate of

k considered by our algorithm that is at least as large as k. Because our estimates grow by a factor of 2, we

know that kî < 2k. If we can show that kî is not crowded, therefore, it will follow that the target instance i

for this configuration is defined, and i ≤ î: which is sufficient to satisfy the second part of the definition of

good.

To make this argument, we can treat the selection of bins for each token in instance î as a balls in bins

problem. We therefore apply Lemma 6.4 to k and k′ = kî, which tells us that for any constant γ ≥ 9, the

probability that instance î crowded is less than 1/N (γ/3)−2. If we set out bin size constant γ ≥ 3c + 9, this

probability is less than 1/N c+1.

Pulling together the pieces, for β ≥ c+3 and γ ≥ 3c+9, a union bound provides that the probability that

we fail to satisfy at least one of the two parts of the definition of good is less than 2/N c+1 ≤ 1/N c, satisfying

the lemma statement.

Now that we have established that good configurations are likely, we establish the below lemma about

these configurations that follows directly from the definition of good and the mechanism by which our algo-

rithm updates estimates:

20

Lemma 6.6. In an execution with a good configuration with target instance i, no node ever sets its local

estimate to a value larger than i. That is, for all u and all rounds, estu ≤ i.

We now continue our analysis by bounding the time required for all nodes to reach the target instance.

We do so with two arguments: the first concerning the rounds required for nodes to learn of a larger estimate

existing in the system, and the second concerning the rounds required for the largest estimate to increase if it

is still less than the target. For the following results, recall that D is the network diameter.

Lemma 6.7. Fix an execution with a good configuration with target instance i. Assume that at the be-

ginning of round r of this execution the largest estimate in the system is imax ≤ i. By round r′ = r +
O(Dkimax log

3 N) either: the largest estimate in the system is larger than imax, or all nodes have estimate

imax.

Proof. Fix a node u that has estu = imax at the beginning of round r. If u maintains that estimate at the

beginning of its next instance imax phase, then during that phase it will advertise at least one 1-bit (as it has

at least its own tag in one of the bins for this instance). It follows that all u’s neighbors in the underlying

topology will learn that u has estu = imax and will upgrade their estimate to imax, if their estimate is

currently less than this value. We can then repeat this argument for u’s neighbors, then their neighbors, and

so on until either: at least one node adopts a larger estimate than imax (which might impede the application

of this logic), or all nodes adopt imax. If the first event occurs, we satisfy the lemma statement. If the first

event does not occur, the second event will occur after at most diameter D+1 instance imax phases (the extra

phase upper bounds the rounds required between round r and the start of the next instance imax phase). The

number of rounds to complete an instance imax phase can be calculated as: kimax bins times γ logN blocks

per bin times ℓ+logN = O(logN) instance imax rounds per block times logN real rounds for each instance

imax rounds. This product evaluates to O(kimax log
3 N) rounds per instance. Therefore, O(Dkimax log

3N)
rounds are sufficient to guarantee the lemma statement holds.

Lemma 6.8. Fix an execution with a good configuration with target instance i. Assume that at the be-

ginning of round r of this execution the largest estimate in the system is imax < i. By round r′ = r +
O(Dkimax log

3 N) the largest estimate in the system is larger than imax.

Proof. We start by applying Lemma 6.7 to imax and round r. This establishes that by round r′ = r +
O(Dkimax log

3 N) rounds either all nodes have estimate imax, or at least one node has an estimate larger

than imax. If the latter is true than the lemma is satisfied directly at round r′.

Moving forward, therefore, assume all nodes have the same estimate imax by round r′. By assumption,

imax < i. It follows that instance imax has at least one crowded bin. Call this bin j. Let Tj be the tags of the

γ logN smallest tokens assigned to bin j in instance imax in this configuration. Because nodes spell out tags

from order of smallest to largest, we know that any node that knows tags from Tj , will assign each of these

tags a block in any execution of instance imax.

It follows, therefore, that in each execution of an imax phase, if all nodes start that phase with an estimate

of imax, then each of these tags in Tj will spread another hop. Applying the same argument as in the proof

of Lemma 6.7, after at most D executions of imax phases, either at least one node has increased its estimate

to a value larger than imax, or the tokens in Tj will have spread to all nodes in the network. If the latter

event happens, then, by the definition of the algorithm, all nodes will have discovered a crowded bin in

instance imax and will increment their estimate. Either way, the lemma is satisfied. Therefore, by round

r′+O(Dkimax log
3 N) = r+O(Dkimax log

3 N), the conditions of the lemma is satisfied—as required.

The following key result leverages Lemmas 6.7 and 6.8 to bound the total rounds required for all nodes

to permanently stabilize their estimates to the target instance.

21

Lemma 6.9. Fix an execution with a good configuration with target instance i. By round r = O(Dki log
3 N),

every node has estimate i. That is, for every node u, estu = i by round r.

Proof. By the definition of our algorithm, estimates never decrease. By Lemma 6.6, no node will ever adopt

an estimate greater than i. Combined, it follows that we can keep applying Lemma 6.8 to increase the largest

estimate until the largest estimate reaches i. We can then apply a single instance of Lemma 6.7 to ensure all

nodes have this estimate—at which point the lemma will be permanently satisfied.

To bound the time required for these applications of the above lemmas, we leverage our observation that

the largest estimate can only increase. It follows that in the worst case we apply Lemma 6.8 exactly once

for each of the estimates leading up to the target i. Because these estimates form a geometric sequence (e.g.,

2, 4, 8, ...), the total rounds needed for these applications of Lemma 6.8 is upper bounded by:

O(Dk1 log
3N) +O(Dk2 log

3 N) + ...+O(Dki log
3 N) = O

(

(D log3 N)(k1 + k2 + ...+ ki)
)

= O(Dki log
3N)

The final application of Lemma 6.7 to spread estimate i to all remaining nodes once it exists in the system

adds only a single aan additional O(Dki log
3 N) rounds. The lemma statement follows.

The preceding arguments bound the rounds required for useful information to propagate through the

network via the nodes’ advertising bits. We now conclude our proof by turning our attention to the rounds

required for the actual tokens (which must be passed one at a time through pairwise connections) to spread.

We will tackle this problem by picking up where Lemma 6.9 left off: a point at which the system is prepared

for the PPUSH instances executing in the second half of blocks to make consistent progress. We will apply

our bound on PPUSH from Theorem 6.1 to establish the time required for this final propagation. We will then

leverage Theorem 6.2 to replace the network diameter in our complexity with an upper bound expressed with

respect to the network size and expansion.

Theorem 6.10. The CrowdedBin gossip algorithm solves the gossip problem in O((1/α)k log6 N) rounds

when executed with tag length b = 1 in a network with stability τ =∞.

Proof. Assume for now that the configuration is good and i its target instance. Let round r = O(Dki log
3N)

be the round specified by Lemma 6.9 for the network to converge its estimate. That is, every node has the

same estimate i by round r. By definition, no bin is crowded for instance i in a good configuration. It follows

that every tag for every bin in this instance will be spread in every round by the nodes that know that tag in

that round. Following the same propagation arguments used in Lemmas 6.7 and 6.8, after at most D more

phases of instance i, all nodes will know all tags. This requires at most O(Dki log
3 N) rounds. Therefore

by some round r′ = O(Dki log
3 N), the system will have reached a stable state in which every node has the

same estimate i and knows the tag for every token in the system. This information will never again change

so we can turn our attention for the rounds required to finish propagating the actual tokens after this point of

stabilization.

To bound this token propagation time, fix an arbitrary token t with tag q in instance i. Because we assume

the system has stabilized, every node has q assigned to the same block of the same bin in their instance i
phase. It follows that if we append together the last logN rounds from these blocks (i.e., the rounds in which

nodes run PPUSH for the tag described in the first ℓ rounds of the block), we obtain a proper execution of

PPUSH rumor spreading for token t during these rounds. That is, every time we come to the last logN rounds

of q’s block, all nodes are running PPUSH for rumor t, picking up where they left off in the previous instance.

Applying Theorem 6.1 from above, it follows that with high probability in N , O(log4 N/α) rounds are

sufficient for t to spread to all nodes after stabilization. Each phase provides logN rounds of PPUSH, so

O(log3 N/α) phases are sufficient after stabilization.

22

The key observation is that each execution of instance i services all k rumors after stabilization, as each

rumor has its own fixed bin in the instance i phase. Therefore, O(log3 N/α) phases are sufficient to spread

all k rumors in parallel. A union bound establishes that all k ≤ N instances succeed with a slightly reduced

high probability.

From a probability perspective, we know from Lemma 6.5 that the configuration is good with high prob-

ability. We just argued above that if the configuration is good, then with an additional high probability the

tokens will all spread in the stated time, once the system stabilizes. We can increase both high probabilities

to the desired exponent by increasing the constant β and γ used in the definition of crowded bins, and the

constant factor in the time bound for PPUSH. A union bound then shows that both good events occur with

high probability.

From round cost perspective, we established that the time to stabilization is at most O(Dki log
3N)

rounds, while the time to complete propagation after stabilization is at most O(log3N/α) instance i phases,

which each require O(ki log
3N) rounds. The final time complexity is then in: O(Dki log

3 N+(ki log
6N)/α).

By the definition of a good configuration, we know ki ≤ 2k, and by Theorem 6.2, we know D =
O(logN/α). We can therefore simplify this complexity to O((k log6 N)/α) rounds, as required.

7 ǫ-Gossip with b = 1 and τ ≥ 1

In this section we consider ǫ-Gossip: a relaxed version of the gossip problem that is parameterized with some

ǫ, 0 < ǫ < 1 (e.g., as also studied in [7]). In more detail, the problem assumes all n nodes start with a

token. To solve ǫ-gossip there must be a subset S of the n nodes in the system, where |S| ≥ ǫn and for

every u, v ∈ S, u knows v’s token and v knows u’s token. Our goal here is to prove that for reasonably well-

connected graphs and constant ǫ, almost solving gossip can be significantly faster than fully solving gossip.

In particular, we prove that our SharedBit algorithm from before solves ǫ-gossip in O
(

n
√
∆log∆

(1−ǫ)α

)

rounds.

Given that ∆ ≤ n, this is faster than the O(n2) required by SharedBit (for k = n) when ǫ is a constant

fraction and α = ω(log∆/(
√
∆ log∆)).

Preliminaries. We restrict our attention in this analysis to the case where ǫ ≥ 1/2. We can then handle

smaller values for this fraction by applying the below analysis for ǫ = 1/2: a value that (more than) solves

the problems for the smaller fraction, and at a cost of at most an extra constant factor in the time complexity

(i.e., when we replace (1 − ǫ) in the denominator with (1 − 1/2), where ǫ < 1/2 is the actual value we are

analyzing, the stated bound is less than a factor of two larger than what we would get with the smaller ǫ).

A key tool in our analysis is a set that describes the frequency of different token sets owned by nodes

in the network at the beginning of a given round. To do so, let T be the set of tokens in the network. The

definition of ǫ-gossip requires that |T | = n. For each token subset S ⊆ T and round r ≥ 1, we define:

count(S, r) = |{u ∈ V | Tu(r) = S}|,

where Tu(r) is defined the same as in our above SharedBit analysis (i.e., the set of tokens u knows at the

beginning of round r). Therefore, count(S, r) equals the number of nodes with token set S at the beginning

of r. We now use the definition of count to define, for each round r ≥ 1, the following multiset:

F (r) = {(S, q) | (S ⊆ T) ∧ (q = count(S, r)) ∧ (q ≥ 1)}

This multiset contains all the token sets that appear at least once in the network at the beginning of round r,

along with their frequency of occurrence. Finally, we also make use of the following potential function φ,

which was first defined in Section 5.1 to analyze SharedBit gossip:

23

∀r ≥ 1 : φ(r) =
∑

u∈V
(n− |Tu(r)|) .

Our analysis will also leverage two useful lemmas from our earlier study of rumor spreading in the mobile

telephone model [11]. The first lemma is graph theoretic, and accordingly requires two definitions concerning

graph properties. First, for a given graph G = (V,E) and node set S ⊂ V , we define BG(S) to be the bipartite

graph containing all (and only) the edges from E that connect a node in S to a node in V \ S, with a vertex

set consisting of these endpoints. Second, for a given graph H , let ν(H) the edge independence number of

H , which describes the size of a maximum matching on H . We now proceed with our lemma:

Lemma 7.1 (Adapted from [11]). Fix a graph G = (V,E) with |V | = n and vertex expansion α. Fix some

S ⊂ V such that |S| ≤ n/2. It follows that ν(BG(S)) ≥ |S| · (α/4).

The second lemma adapted from [11] is algorithmic in that bounds the performance of a simple random-

ized strategy for approximating a maximum matching in a bipartite graph:

Lemma 7.2 (Adapted from [11]). Fix a network topology graph G = (V,E) with maximum degree ∆. Fix

some subset C ⊂ V . Assume there is a matching M of size m ≥ 1 defined over BG(C). Assume each node

in C randomly chooses a neighbor in BG(C) to send a connection proposal. With constant probability, at

least Ω(m√
∆log∆

) nodes from V \ C that are endpoints in M will receive a connection proposal from a node

in C .

Analysis. Our main strategy is to attempt to identify for each round a coalition of nodes such that: (1) the size

of the coalition is within a target range (ǫ/2)n to ǫn; and (2) no node in the coalition has the same token set as

a node outside the coalition. If we can find such a coalition, the graph property result captured in Lemma 7.1

tells us that there are many edges between coalition and non-coalition nodes (where the definition of “many”

depends on α and ǫ). We can then show that a reasonable fraction of these edges will connect and therefore

reduce φ. We begin this argument by leveraging the above definitions to prove that either we can find such a

coalition or we have already solved the problem.

Lemma 7.3. Fix a round r ≥ 1. One of the following must be true about this round: (1) ǫ-gossip is solved

by the beginning of round r; or (2) there exists a C ⊂ F (r) such that:

(ǫ/2)n ≤
∑

(S,q)∈C
q ≤ nǫ.

Proof. Let qmax = max{q : (∗, q) ∈ F (r)} (i.e., the number of nodes that own the set owned by the most

nodes in r). We consider three cases for qmax and show that all three satisfy our lemma.

The first case is that qmax > nǫ. In this case, we have identified a token set S that is owned by more than

nǫ nodes. Let VS be the set of nodes that own S at the beginning of r. Because every node starts with its

own token in its token set, and no token ever leaves a token set, we know for each u ∈ VS , u’s token is in

S. It follows that every node in VS knows the token of every other node in this set—meaning we have solved

ǫ-gossip and therefore satisfy option (1) from the lemma statement.

The second case is that (ǫ/2)n ≤ qmax ≤ nǫ. In this case, we can set C = {(S, qmax)}, where S is the

set we identified owned by qmax nodes (if more than 1, choose one arbitrarily), and directly satisfy option (2)

from the lemma statement.

The third and final case is that qmax < (ǫ/2)n. In this case, we can apply the following simple greedy

strategy for defining C: keep adding pairs from F (r) to C in decreasing order of q values until
∑

(S,q)∈C q

first grows larger than (ǫ/2)n. By our case assumption, every q value in F is less than (ǫ/2)n. Therefore, the

24

step of the greedy strategy that first pushes us over the (ǫ/2)n threshold must increase this sum to fall within

our target range of (ǫ/2)n and ǫn. That is, the greedy strategy described above will always terminate having

identified a set C that satisfies option (2) from the lemma statement.

Repeatedly applying Lemma 7.3 will provide that in each round either we are done with the ǫ-gossip

problem or we have a large coalition that is likely to generate lots of progress toward solving the problem.

We are now ready to pull together our pieces to prove our main theorem. The main technical contribution of

the below proof is arguing that a large coalition likely generates lots of new token transfers. This claim will

pull from Lemmas 7.2 and 7.1 from above, as well as Lemma 5.2 from the SharedBit analysis in Section 5.1.

Theorem 7.4. Fix some ǫ, 0 < ǫ < 1. The SharedBit gossip algorithm solves the ǫ-gossip problem in

O
(

n
√
∆ log∆

(1−ǫ)α

)

rounds when executed with shared randomness with tag length b = 1 in a network with

stability τ ≥ 1.

Proof. Fix some ǫ that satisfies the theorem statement. Assume w.l.o.g. that ǫ ≥ 1/2 (as argued at the

beginning of this analysis, if ǫ is smaller, we can apply our analysis for ǫ = 1/2 which more than solves the

problem at the cost of only an extra constant factor in the stated time complexity). We begin by focusing on

a single round, then extend the argument to the full execution. In particular, fix a round r, 1 ≤ r ≤ cN2

(i.e., a round for which we still have bits in the shared string r̂ used by SharedBit). Let Gr = (V,E) be the

network topology graph in this round. Assume ǫ-gossip has not finished by the beginning of this round. By

Lemma 7.3, there exists a C ⊂ F (r) such that:

(ǫ/2)n ≤
∑

(S,q)∈C
q ≤ nǫ.

Let VC be the set of nodes that start round r with one of the token sets in C . By our above assumption:

(ǫ/2)n ≤ |VC | ≤ nǫ.

Let q = min{|VC |, |V \ VC |}. It follows that q ≤ n/2. By Lemma 7.1, therefore, there exists a matching

M of size m ≥ (α/4)q in BGr(VC) (the bipartite subgraph of Gr that keeps only edges from E with one

endpoint in VC and one endpoint in V \ VC). For each edge e ∈ M , we define e.c to be the endpoint from e
in VC and e.v to be the endpoint from e in V \ VC . We say an edge e ∈ M is wasted if both endpoints in e
advertise the same bit; i.e., be.c(r) = be.v(r). By the definition of the coalition used in Lemma 7.3, it follows

for each e ∈M it must be the case that Te.c(r) 6= Te.v(r). We can therefore apply Lemma 5.2 which provides

that the probability they advertise different bits is 1/2. The probability that e is wasted is therefore also 1/2.

To argue more precisely about wasted edges we define some random variables. For each e ∈ M , let

Xe be the random indicator variable that evaluates to 1 if e is wasted and otherwise evaluates to 0. Let

Y =
∑

e∈M Xe. By linearity of expectation and our above argument about the probability of wastefulness, it

follows: E(Y) = m/2.

We now want to bound the probability that the actual number of wasted edges is not too much larger

than E(Y). We cannot apply a Chernoff-style bound as there might be dependency between the outcomes of

different edges in M (as they may share tokens, and therefore share random bits used to determine their tag).

To sidestep these issues, we apply Markov’s Inequality (Theorem 2.5 in Section 2) to derive the following:

Pr (Y ≥ (3/2) ·E(Y)) ≤ E(Y)

(3/2) · E(Y)
= 2/3.

Notice that (3/2) · E(Y) = (3/4) ·m. We can therefore reword this result to say that with probability

at least 1/3, at least m/4 edges in M are not wasted. For clarity, we will subsequently refer to an edge from

M that is not wasted as an edge that is primed (as in the edge is primed for the possibility of its endpoints

connecting in a manner that helps spread tokens).

25

Moving forward in this analysis, assume this event occurs, and therefore at least m/4 edges in M are

primed. Let M̂ ⊆M be this set of primed edges. (Notice, because m ≥ 1 and the size of M̂ must be a whole

number, we know M̂ is non-empty under this assumption.)

We want to now apply Lemma 7.2 to the connections described by M̂ . To do so, let Ĉ be the endpoints

in M̂ that advertise a 1 in this round. Let Ĝ be the topology graph Gr for this round modified such that we

remove every node that is not in Ĉ , but neighbors Ĉ and also advertises a 1 (along with their incident edges).

We emphasize two properties of this modification: (1) by definition, no node in M̂ is removed by this step;

(2) it is correct to say that nodes in Ĉ will choose a neighbor from Ĝ uniformly to send a connection proposal,

because the SharedBit algorithm only has nodes that advertise a 1 choose among neighbors that advertise a

0, and we only removed neighbors from Ĉ nodes that also advertised a 1.

We can therefore apply Lemma 7.2 with G = Ĝ, C = Ĉ , and M = M̂ . It follows that with constant

probability, at least Ω(|M̂ |/√∆ log∆) = Ω(m
√
∆ log∆) nodes in M̂ receive a connection proposal from

their neighbor in this matching. Each such node u will subsequently connect with some node v in this round

(though not necessarily its neighbor in M̂). By Lemma 5.2, however, Tu(r) 6= Tv(r) (as each advertised

different bits in r), so each of these connections reduces φ by at least 1.

Combining our probabilistic events from above, it follows that with constant probability, φ(r+1)−φ(r) ≥
δ ∈ Ω(αq√

∆ log∆
), where, as defined above, q = min{|VC |, |V \ VC |}. Let us call a round in which this event

occurs a good round. To bound the number of good rounds until φ reduces to 0 (and the ǫ-gossip problem is

solved, regardless of ǫ), we must first lower bound the size of δ. To do so, we first note that |V \VC | ≥ (1−ǫ)n.

It follows that in the case where q = |V \ VC |, we know q ≥ (1 − ǫ)n. On the other hand, if q = |VC |, we

can apply our assumption that ǫ ≥ 1/2 (see the beginning of this proof) to conclude that q ≥ (1/3)(1 − ǫ)n.

Combined: (1/3)(1 − ǫ)(n) provides a general lower bound on q for all rounds.

We now know that in a good round r:

φ(r + 1)− φ(r) ≥ δ ∈ Ω

(

α(1− ǫ)n√
∆ log∆

)

.

Because φ(1) ≤ n2 and φ can only decrease, it follows that

n2/δ = tgood ∈ O

(

n
√
∆ log∆

α(1− ǫ)

)

good rounds are sufficient to conclude gossip. As established above, the probability of a given round being

good is lower bounded by a constant, regardless of the execution history preceding that round. For each round

r, let Xr be the random indicator variable that evaluates to 1 if and only if r is good. We know Pr(Xr =
1) ≥ p, for the constant probability mentioned above. Therefore, in expectation, tgood/p ∈ Θ(tgood) rounds

are sufficient to achieve tgood good rounds. To obtain a high probability result we cannot directly apply

a Chernoff bound to these indicator variables as they are not necessarily independent. Each Xr , however,

stochastically dominates the trivial random variable X̂r that evaluates to 1 with probability p. We can then

apply a concentration result to the expectation calculated on the X̂ variables to determine that Θ(tgood) rounds

are sufficient, with high probability in n.

Pulling together the pieces, by Lemma 7.3, for each round r, either we have solved ǫ-gossip or we can

find a coalition that provides us a constant probability of r being a good round. With high probability, the

latter can occur at most O(tgood) = O
(

n
√
∆log∆

(1−ǫ)α

)

times before we still solve the problem.

The following corollary follows directly from our analysis in Section 5.2 concerning the elimination of

the shared randomness assumption when solving gossip with SharedBit.

26

Corollary 7.5. Fix some ǫ, 0 < ǫ < 1. There exists a bit string multisetR′, such that the SimSharedBit gossip

algorithm using this R′ solves the ǫ-gossip problem in O
(n
√
∆ log∆

(1−ǫ)α + (1/α)∆1/τ log6 N
)

= Õ
(n
√
∆log∆

(1−ǫ)α
)

rounds when executed with tag length b = 1 in a network with stability τ ≥ 1.

References

[1] FireChat Phone-to-Phone App. http://www.opengarden.com/FireChat.

[2] Latest mobile statistics: key figures (Ericsson Mobility Report).

https://www.ericsson.com/mobility-report/latest-mobile-statistics.

[3] Scott Burleigh, Adrian Hooke, Leigh Torgerson, Kevin Fall, Vint Cerf, Bob Durst, Keith Scott, and

Howard Weiss. Delay-tolerant networking: an approach to interplanetary internet. IEEE Communica-

tions Magazine, 41(6):128–136, 2003.

[4] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano. Device-to-device communications

with wi-fi direct: overview and experimentation. IEEE wireless communications, 20(3):96–104, 2013.

[5] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Rumour spreading and graph conduc-

tance. In Proceedings of the ACM-SIAM symposium on Discrete Algorithms (SODA), 2010.

[6] Sebastian Daum, Fabian Kuhn, and Yannic Maus. Rumor spreading with bounded in-degree. In Inter-

national Colloquium on Structural Information and Communication Complexity (SIRROCO), 2016.

[7] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin Newport. Gossiping in a multi-channel radio

network. In Proceedings of the Symposium on Distributed Computing (DISC), 2007.

[8] Nikolaos Fountoulakis and Konstantinos Panagiotou. Rumor spreading on random regular graphs and

expanders. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-

niques, pages 560–573. Springer, 2010.

[9] Alan M Frieze and Geoffrey R Grimmett. The shortest-path problem for graphs with random arc-

lengths. Discrete Applied Mathematics, 10(1):57–77, 1985.

[10] Alan M Frieze and Geoffrey R Grimmett. The shortest-path problem for graphs with random arc-

lengths. Discrete Applied Mathematics, 10(1):57–77, 1985.

[11] Mohsen Ghaffari and Calvin Newport. How to discreetly spread a rumor in a crowd. In Proceedings of

the International Symposium on Distributed Computing (DISC), 2016.

[12] George Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance. In Proceedings

of the Symposium on Theoretical Aspects of Computer Science (STACS), 2011.

[13] George Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance. In Proceedings

of the Symposium on Theoretical Aspects of Computer Science (STACS), 2011.

[14] George Giakkoupis. Tight bounds for rumor spreading with vertex expansion. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.

[15] George Giakkoupis and Thomas Sauerwald. Rumor spreading and vertex expansion. In Proceedings of

the ACM-SIAM symposium on Discrete Algorithms (SODA), pages 1623–1641, 2012.

[16] George Giakkoupis and Thomas Sauerwald. Rumor spreading and vertex expansion. In Proceedings of

the ACM-SIAM symposium on Discrete Algorithms (SODA), pages 1623–1641. SIAM, 2012.

27

 http://www.opengarden.com/FireChat
https://www.ericsson.com/mobility-report/latest-mobile-statistics

[17] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evaluation of bluetooth low energy:

An emerging low-power wireless technology. Sensors, 12(9):11734–11753, 2012.

[18] Thiagaraja Gopalsamy, Mukesh Singhal, D Panda, and P Sadayappan. A reliable multicast algorithm

for mobile ad hoc networks. In Proceedings of the IEEE International Conference on Distributed Com-

puting Systems (ICDCS), pages 563–570. IEEE, 2002.

[19] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic networks. In

Proceedings of the Symposium on Principles of Distributed Computing (PODC), pages 513–522. ACM,

2010.

[20] David Mark, Jayant Varma, Jeff LaMarche, Alex Horovitz, and Kevin Kim. Peer-to-peer using multipeer

connectivity. In More iPhone Development with Swift, pages 239–280. Springer, 2015.

[21] Ilan Newman. Private vs. common random bits in communication complexity. Information processing

letters, 39(2):67–71, 1991.

[22] Calvin Newport. Leader election in a smartphone peer-to-peer network. In Proceedings of the IEEE

International Parallel and Distributed Processing Symposium (IPDPS), 2017. Full version available on-

line at: http://people.cs.georgetown.edu/˜cnewport/pubs/le-IPDPS2017.pdf.

[23] Devavrat Shah et al. Gossip algorithms. Foundations and Trends in Networking, 3(1):1–125, 2009.

28

http://people.cs.georgetown.edu/~cnewport/pubs/le-IPDPS2017.pdf

	1 Introduction
	2 Model and Problem
	3 Token Transfer Subroutine
	4 Gossip with b=0 and 1
	5 Gossip with b=1 and 1
	5.1 Shared Randomness
	5.2 Eliminating the Shared Randomness Assumption

	6 Gossip with b=1 and =
	6.1 The CrowdedBin Gossip Algorithm
	6.2 Analysis

	7 -Gossip with b=1 and 1

