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Abstract
The local computation of Linial [FOCS’87] andNaor and Stockmeyer [STOC’93] studies whether a locally defined distributed
computing problem is locally solvable. In classic local computation tasks, the goal of distributed algorithms is to construct a
feasible solution for some constraint satisfaction problem (CSP) locally defined on the network. In this paper, we consider the
problemof sampling a uniformCSP solution by distributed algorithms in the LOCALmodel, and askwhether a locally definable
joint distribution is locally sample-able. We useMarkov random fields and Gibbs distributions to model locally definable joint
distributions. We give two distributed algorithms based on Markov chains, called LubyGlauber and LocalMetropolis, which
we believe to represent two basic approaches for distributed Gibbs sampling. The algorithms achieve respective mixing times
O(Δ log n) and O(log n) under typical mixing conditions, where n is the number of vertices and Δ is the maximum degree of
the graph. We show that the time bound Θ(log n) is optimal for distributed sampling. We also show a strong Ω(diam) lower
bound: in particular for sampling independent set in graphs with maximum degree Δ ≥ 6. This gives a strong separation
between sampling and constructing locally checkable labelings.

Keywords Distributed sampling algorithms · Local computation · LOCAL model · Gibbs sampling · Markov chain Monte
Carlo

1 Introduction

Local computation and the LOCAL model. Locality of com-
putation is a central theme in the theory of distributed
computing. In the seminal works of Linial [44], and Naor
and Stockmeyer [49], the locality of distributed computation
and the locally definable distributed computing problems are
respectively captured by the LOCAL model and the notion
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of locally checkable labeling (LCL) problems. In the LOCAL
model [49,52], a network of n processors is represented as
an undirected graph, where each vertex represents a proces-
sor and each edge represents a bidirectional communication
channel. Computations and communications are organized
in synchronized rounds. In each round, each processor may
receive amessage of arbitrary size from each of its neighbors,
perform an arbitrary local computation with the informa-
tion collected so far, and send a message of arbitrary size
to each of its neighbors. The output value for each vertex
in a t-round protocol is determined by the local information
within the t-neighborhood of the vertex. The local computa-
tion tasks are usually formulated as labeling problems, such
as the locally checkable labeling (LCL) problems introduced
in [49], in which the distributed algorithm is asked to con-
struct a feasible solution of a constraint satisfaction problem
(CSP) defined by local constraints with constant diameter in
the network. Many problems can be expressed in this way,
including various vertex/edge colorings, or local optimiza-
tions such as maximal independent set (MIS) and maximal
matching.

A classic question for local computation is whether a
locally definable problem is locally computable. Mathemat-
ically, this asks whether a feasible solution for a given local
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CSP can be constructed using only local information. There
is a substantial body of researchworks dedicated to this ques-
tion [2–5,10,24,25,29–31,34,39–42,44,49,54].

The local sampling problem Given an LCL problem
which defines a local CSP on the network, aside from
constructing a feasible solution of the local CSP, another
interesting problem is to sample a uniform random feasible
solution, e.g. to sample a uniform random proper coloring
of the network G with a given number of colors. More
abstractly, given an instance of local CSP which, say, treats
the vertices in the network G(V , E) as variables, a joint dis-
tribution of uniform random feasible solution X = (Xv)v∈V
is accordingly defined by these local constraints. Our main
question is whether a locally definable joint distribution can
be sampled from locally.

Intuitively, sampling could be substantially more difficult
than labeling, because to sample a feasible solution is at
least as difficult as to construct one, and furthermore, the
marginal distribution of each random variable Xv in a jointly
distributed feasible solution X = (Xv)v∈V may already
encapsulate certain amount of non-local information about
the solution space.

Retrieving such information about the solution space (as in
sampling) instead of constructing one solution (as in label-
ing) by distributed algorithms is especially well motivated
in the context of distributed machine learning [14,15,17,32,
50,57,61–63], where the data (the description of the joint
distribution) is usually distributed among a large number of
servers.

Besides uniform distributions, it is also natural to con-
sider sampling from general non-uniform distributions over
the solution space, which are usually formulated as graph-
ical models known as the weighted CSPs [7], also known
as factor graphs [47]. In this model, a probability distribu-
tion called the Gibbs distribution is defined over the space
Ω = [q]V of configurations, in such a way that each con-
straint of the weighted CSP contributes a nonnegative factor
in the probability measure of a configuration in Ω . Due
to Hammersley-Clifford’s fundamental theorem [47, The-
orem 9.3] of random fields, this model is universal for
conditional independent (spatial Markovian) [47, Proposi-
tion 9.2] joint distributions. The conditional independence
property roughly says that fixed a separator S ⊂ V whose
removal “disconnects” the variable sets A and B, given any
feasible configuration XS = σS over S, the configurations
XA over A and XB over B are conditionally independent.

We are particularly interested in a basic class of weighted
local CSPs, namely theMarkov randomfields (MRFs), where
every local constraint (factor) is either a binary constraint
over an edge or a unary constraint on a vertex. Specifi-
cally, given a graph G(V , E) and a finite domain [q] =
{1, 2, . . . , q}, the probability measure μ(σ) of each config-
uration σ ∈ [q]V under the Gibbs distribution μ is defined

to be proportional to the weight:

w(σ) :=
∏

e=uv∈E
Ae(σu, σv)

∏

v∈V
bv(σv), (1)

where {Ae ∈ R
q×q
≥0 }e∈E are non-negative q × q symmetric

matrices and {bv ∈ R
q
≥0}v∈V are non-negative q-vectors,

both specified by the instance of MRF. Examples of MRFs
include combinatorialmodels such as independent set, vertex
cover, graph coloring, and graph homomorphsm, or physical
models such as hardcore gasmodel, Isingmodel, Pottsmodel,
and general spin systems.

1.1 Our results

We give two Markov chain based distributed algorithms for
sampling from Gibbs distributions. Given any ε > 0, each
algorithm returns a random output which is within total vari-
ation distance ε from the Gibbs distribution. Our expositions
mainly focus on MRFs, although both algorithms can be
extended straightforwardly to general weighted local CSPs.

In classic single-site Markov chains for Gibbs sampling,
such as theGlauber dynamics, at each step a variable is picked
at random and is updated according to its neighbors’ cur-
rent states. A generic approach for parallelizing a single-site
sequential Markov chain is to update a set of non-adjacent
vertices in parallel at each step. This natural idea has been
considered in [32], also in a much broader context such
as parallel job scheduling [12] or distributed Lovász local
lemma [11,48]. For sampling from locally defined joint dis-
tributions, it is especially suitable because of the conditional
independence property of MRFs.

Our first algorithm, named LubyGlauber, naturally par-
allelizes the Glauber dynamics by parallel updating vertices
from independent sets generated by the “Luby step” inLuby’s
algorithm [1,46]. It is well known that Glauber dynamics
achieves the mixing rate τ(ε) = O

(
n log

( n
ε

))
under the

Dobrushin’s condition for the decay of correlation [16,35].
By a standard coupling argument, the LubyGlauber algo-
rithm achieves a mixing rate τ(ε) = O

(
Δ log

( n
ε

))
under

the same condition, where Δ is the maximum degree of the
network. In particular, for uniform proper q-colorings, this
implies:

Theorem 1 If q ≥ αΔ for an arbitrary constant α > 2, there
is an algorithm which samples a uniform proper q-coloring
within total variation distance ε > 0 within O

(
Δ log

( n
ε

))

rounds of communications on any graph G(V , E) with
n = |V | vertices and maximum degree Δ, where Δ may
be unbounded.

A barrier for this natural approach is that it will perform
poorly on general graphs with large chromatic number. The
situation motivates us to ask following questions:
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– Is it possible to update all variables in X = (Xv)v∈V
simultaneously and still converge to the correct stationary
distribution μ?

– More concretely, is it always possible to sample almost
uniform proper q-coloring, for a q = O(Δ), on any
graphs G(V , E) with n = |V | vertices and maximum
degree Δ, within O(log n) rounds of communications,
especially when Δ is unbounded?

Surprisingly, the answers to both questions are “yes”.
We give an algorithm, called the LocalMetropolis algorithm,
achieving these goals. This is a bit surprising, since it seems
to fully parallelize a process which is intrinsically sequential
due to the massive local dependencies, especially on graphs
with unbounded maximum degree. The algorithm follows
the Metropolis-Hastings paradigm: at each step, it proposes
to update all variables independently and then applies proper
local filtrations to the proposals to ensure its convergence to
the correct joint distribution. Our main discovery is that for
locally defined joint distributions, the Metropolis filters are
localizable.

The LocalMetropolis algorithm always converges to the
correct Gibbs distribution. The analysis of its mixing time is
more involved. In particular, for uniformly sampling proper
q-coloring we show:

Theorem 2 If q ≥ αΔ for an arbitrary constant α > 2+√2,
there is an algorithm for sampling uniform proper q-coloring
within total variation distance ε > 0 in O

(
log
( n

ε

))
rounds

of communications on any graph G(V , E) with n = |V |
vertices and maximum degree at most Δ ≥ 9, where Δ may
be unbounded.

Neither of the algorithms abuses the power of the LOCAL
model: each message is of O(log n) bits if the domain size
q = poly(n).

Due to the exponential correlation between variables in
Gibbs distributions, the O

(
log
( n

ε

))
time bound achieved in

Theorem 2 is optimal.
After the submission of this paper, two independent

works [21,23] give the same distributed algorithm for
sampling random q-coloring, which improves the Local-
Metropolis algorithm by introducing a step of laziness as
distributed symmetry breaking. This new algorithm achieves
an O(log n) mixing time under the Dobrushin’s condition
q ≥ (2+δ)Δ. Furthermore, for graphs with sufficiently large
maximum degree and girth at least 9, it achieves an O(log n)

mixing time when q ≥ (α∗ + δ)Δ, where α∗ ≈ 1.763 is
the positive root of equation x = e1/x . Another non-MCMC
algorithm named distributed JVV sampler is given in [22],
which successfully samples. For many locally definable joint
distributions, this algorithm successfully samples a config-
uration within polylog(n) rounds in the LOCAL model with
high probability. In particular, this algorithm samples random

q-coloring of triangle-free graphs within O(log3 n) rounds
in the LOCAL model as long as q ≥ (α∗ + δ)Δ. This non-
MCMC sampling algorithm abuses the power of the LOCAL
model by assuming unlimited message-size and local com-
putations.

It is awell known phenomenon that samplingmay become
computationally intractablewhen themodel exhibits the non-
uniqueness phase-transition property, e.g. independent sets
in graphs of maximum degree bounded by a Δ ≥ 6 [27,
28,55,56]. For the same class of distributions, we show the
following unconditional Ω(diam) lower bound for sampling
in the LOCAL model.

Theorem 3 For Δ ≥ 6, there exist infinitely many graphs
G(V , E) with maximum degree Δ and diameter diam(G) =
|V |Ω(1) such that any algorithm that samples uniform inde-
pendent set in G within sufficiently small constant total
variation distance ε requires Ω(diam(G))rounds of com-
munications, even assuming the vertices v ∈ V to be aware
of G.

The lower bound is proved by a now fairly well-
understood reduction from maximum cut to sampling inde-
pendent sets when Δ ≥ 6 [28,55,56]. Specifically, we show
that when Δ ≥ 6 there are infinitely many graphs G(V , E)

such that if one can sample a nearly uniform independent
set in G(V , E), then one can also sample an almost uniform
maximum cut in an even cycle of size |V |Ω(1), which is nec-
essarily a global task because of the long-range correlation.

Theorem 3 strongly separates sampling from labeling
problems for distributed computing:

– In the LOCAL model it is trivial to construct an indepen-
dent set (because ∅ is an independent set). In contrast,
Theorem 3 says that sampling a uniform independent set
is very much a global task for graphs with maximum
degree Δ ≥ 6.

– In the LOCALmodel any labeling problem would be triv-
ial once the network structure G is known to each vertex.
In contrast, the sampling lower bound in Theorem 3 still
holds even when each vertex is aware of G. Unlike label-
ing whose hardness is due to the locality of information,
for sampling the hardness is solely due to the locality of
randomness.

– A breakthrough of Ghaffari et al. [30] shows that any
labeling problem that can be solved sequentially with
local information admits a O(polylog(n))-round ran-
domized protocol in the LOCAL model. In contrast, for
sampling we have an Ω(diam) randomized lower bound
for graphs with nΩ(1) diameter.
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1.2 Related work

The topic of sequential MCMC (Markov chainMonte Carlo)
sampling is extensively studied. The study of sampling
proper q-colorings was initiated by the seminal works of Jer-
rum [37] and independently of Salas and Sokal [53]. So far
the best rapid mixing condition for general bounded-degree
graphs is q ≥ 11

6 Δ due to Vigoda [59]. See [26] for an excel-
lent survey.

The chromatic-scheduler-based parallelization of Glauber
dynamics was studied in [32]. This parallel chain is in fact a
special case of systematic scan for Glauber dynamics [18,19,
35], in which the variables are updated according to a fixed
order.

Empirical studies showed that sometimes an ad hoc “Hog-
wild!” parallelization of sequential sampler might work well
in practice [51] and the mixing results assuming bounded
asynchrony were given in [14,38].

A sampling algorithm based on the Lovász local lemma
is given in [33]. When sampling from the hardcore model
with λ < 1

2
√
eΔ−1 on a graph of maximum degree Δ, this

sampling algorithm can be implemented in the LOCALmodel
which runs in O(log n) rounds.

A problem related to the local sampling is the finitary
coloring [36], in which a random feasible solution is sam-
pled according to an unconstrained distribution as long as the
distribution is over feasible solutions, rather than a specific
distribution such as the Gibbs distribution. Therefore, the
nature of this problem is still labeling rather than sampling.

Our algorithms are Markov chains which randomly walk
over the solution space. A related notion is the distributed
random walks [13], which walk over the network.

Our LocalMetropolis algorithm should be distinguished
from the parallel Metropolis-Hastings algorithm [9] or the
parallel tempering [58], in which the sampling algorithms
makes N proposals or runs N copies of the system in paral-
lel for a suitably large N , in order to improve the dynamic
properties of the Monte Carlo simulation.

Organization of the paper The models and preliminar-
ies are introduced in Sect. 2. The LubyGlauber algorithm
is introduced in Sect. 3. The LocalMetropolis algorithm is
introduced in Sect. 4. And the lower bounds are proved in
Sect. 5.

2 Models and preliminaries

2.1 The LOCALmodel

We assume Linial’s LOCAL model [49,52] for distributed
computation, which is as described in Sect. 1. We further
allow each node in the network G(V , E) to be aware of

upper bounds of Δ and log n, where n = |V | is the num-
ber of nodes. This information is accessed only because the
running time of the Monte Carlo algorithms may depend on
them.

2.2 Markov random field and local CSP

The Markov random field (MRF), or spin system, is a well
studied stochastic model in probability theory and statistical
physics. Given a graphG(V , E) and a set of spin states [q] =
{1, 2, . . . , q} for a finite q ≥ 2, a configuration σ ∈ [q]V
assigns each vertex one of the q spin states. For each edge e ∈
E there is a non-negative q×q symmetric matrix Ae ∈ R

q×q
≥0

associatedwith e, called the edge activity; and for each vertex
v ∈ V there is a non-negative q-dimensional vector bv ∈
R
q
≥0 associated with v, called the vertex activity. Then each

configuration σ ∈ [q]V is assigned a weight w(σ) which is
as defined in (1).

This gives rise to a natural probability distribution μ,
called the Gibbs distribution, over all configurations in the
sample space Ω = [q]V proportional to their weights,
such that μ(σ) = w(σ)/Z for each σ ∈ Ω , where
Z =∑σ∈Ω w(σ) is the normalizing factor. A configuration
σ ∈ Ω is feasible if μ(σ) > 0.

Several natural joint distributions can be expressed as
MRFs:

– Independent sets/vertex covers: When q = 2, all Ae =[
1 1
1 0

]
and all bv =

[
1
1

]
, each feasible configuration cor-

responds to an independent set (or vertex cover, if the
other spin state indicates the set) in G, and the Gibbs
distribution μ is the uniform distribution over indepen-

dent sets (or vertex covers) in G. When bv =
[
1
λ

]
for

some parameter λ > 0, this is the hardcore model from
statistical physics.

– Colorings and list colorings:When every Ae has Ae(i, i)
= 0 and Ae(i, j) = 1 if i 	= j , and every bv is the all-
1 vector, the Gibbs distribution μ becomes the uniform
distribution over proper q-colorings of graph G. For list
colorings, each vertex v ∈ V can only use the colors
from its list Lv ⊆ [q] of available colors. Then we can
let each bv be the indicator vector for the list Lv and Ae’s
are the same as for proper q-colorings, so that the Gibbs
distribution is the uniform distribution over proper list
colorings.

– Physical model: The proper q-coloring is a special case
of the Potts model in statistical physics, in which each
Ae has Ae(i, i) = β for some parameter β > 0 and
Ae(i, j) = 1 if i 	= j . When further q = 2, the model
becomes the Ising model.
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What can be sampled locally? 231

The model of MRF can be further generalized to allow
multivariate asymmetric constraints, by which gives us the
weighted CSPs, also known as the factor graphs. In this
model, we have a collection C of constraints c = ( fc, Sc)
where each fc : [q]|Sc| → R≥0 is a constraint function with
scope Sc ⊆ V . Each configuration σ ∈ [q]V is assigned a
weight:

w(σ) =
∏

c=( fc,Sc)∈C
fc(σ |Sc),

where σ |Sc represents the restriction of σ on Sc. And the
Gibbs distribution μ over all configurations in Ω = [q]V is
defined in the same way proportional to the weights. In par-
ticular, when fc’s are Boolean-valued functions, the Gibbs
distributionμ is the uniform distribution over CSP solutions.

A constraint c = ( fc, Sc) is said to be local with respect
to network G if the diameter of the scope Sc in network G
is bounded by a constant. Local CSPs are expressive, for
example:

– Dominating sets: They can be expressed by having
a “cover” constraint on each inclusive neighborhood
Γ +(v) which constrains that at least one vertex from
Γ +(v) is chosen.

– Maximal independent sets (MISs):AnMIS is a dominat-
ing independent set.

Clearly, theMRF is a special class ofweighted local CSPs,
defined by unary and binary symmetric local constraints with
respect to G.

2.3 Local sampling

The local sampling problem is defined as follows. Let
G(V , E) be a network. Given an MRF defined on G (or
more generally a weighted CSP that is local with respect to
G), where the specifications of the local constraints are given
as private inputs to the involved processors, for any ε > 0
upon termination each processor v ∈ V outputs a random
variable Xv such that the total variation distance between the
distribution ν of the random vector X = (Xv)v∈V and the
Gibbs distributionμ is bounded as dTV (μ, ν) ≤ ε, where the
total variation distance between two distributions μ, ν over
Ω = [q]V is defined as

dTV (μ, ν) =
∑

σ∈Ω

1

2
|μ(σ)− ν(σ )| = max

A⊆Ω
|μ(A)− ν(A)|.

2.4 Mixing rate

Our algorithms are given as Markov chains. Given an irre-
ducible and aperiodicMarkov chain X (0), X (1), . . . ∈ Ω , for

any σ ∈ Ω let π(t)
σ denote the distribution of X (t) condition-

ing on that X (0) = σ . For ε > 0 the mixing rate τ(ε) is
defined as

τ(ε) = max
σ∈Ω

min
{
t : dTV

(
π(t)

σ , π
)
≤ ε

}
,

where π is the stationary distribution for the chain. For for-
mal definitions of these notions for Markov chain, we refer
to a standard textbook of the subject [43]. Informally, irre-
ducibility and aperiodicity guarantees that X (t) converges to
the unique stationary distribution π as t →∞, and the mix-
ing rate τ(ε) tells us how fast it converges.
Notations Given a graph G(V , E), we denote by dv =
deg(v) the degree of v in G, Δ = ΔG the maximum
degree of G, diam = diam(G) the diameter of G, and
dist(u, v) = distG(u, v) the shortest path distance between
vertices u and v in G.

We also denote by Γ (v) = {u | uv ∈ E} the neigh-
borhood of v, and Γ +(v) = Γ (v) ∪ {v} the inclusive
neighborhood. Finallywewrite Br (v) = {u | dist(u, v) ≤ r}
for the r -ball centered at v.

3 The LubyGlauber algorithm

In this section, we analyze a generic scheme for paralleliz-
ing Glauber dynamics, a classic sequential Markov chain for
sampling from Gibbs distributions.

We assume a Markov random field (MRF) defined on
the network G(V , E), with edge activities A = {Ae}e∈E and
vertex activities b = {bv}v∈V , which specifies a Gibbs distri-
bution μ over Ω = [q]V . The single-site heat-bath Glauber
dynamics, or simply the Glauber dynamics, is a well known
Markov chain for sampling from the Gibbs distribution μ.
Starting from an arbitrary initial configuration X ∈ [q]V , at
each step the chain does the followings:

– sample a vertex v ∈ V uniformly at random;
– resample the value of Xv according to the marginal dis-
tribution induced by μ at vertex v conditioning on the
current spin states of v’s neighborhood.

It is well known (see [43]) that the Glauber dynamics is a
reversible Markov chain whose stationary distribution is the
Gibbs distribution μ.

Formally, supposed that σ ∈ [q]V is sampled from μ, for
any v ∈ V , S ⊆ V and τS ∈ [q]S , themarginal distribution at
vertex v conditioning on τS , denoted as μv(· | τS), is defined
as

∀c ∈ [q], μv(c | τS) = Pr[σv = c | σS = τS].
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In the Glauber dynamics, Xv is resampled according to the
marginal distribution μv(· | XΓ (v)). Here XΓ (v) represents
the current spin states of v’s neighborhoodΓ (v). ForMarkov
random field, this marginal distribution can be computed as

∀c ∈ [q],

μv(c | XΓ (v)) =
bv(c)

∏
u∈Γ (v) Auv(c, Xu)∑

a∈[q] bv(a)
∏

u∈Γ (v) Auv(a, Xu)
. (2)

For example, when the MRF is the proper q-coloring,
this is just the uniform distribution over available colors in
[q] which are not used by v’s neighbors. For the Glauber
dynamics to work, it is common to assume that the sum∑

a∈[q] bv(a)
∏

u∈Γ (v) Auv(a, Xu) is always positive, so that

the marginal distributions are well-defined.1

A generic scheme for parallelizing the Glauber dynamics
is that at each step, instead of updating one vertex, the chain
updates a group of “non-interfering” vertices in parallel, as
follows:

– independently sample a random independent set I in G;
– for each v ∈ I , resample Xv in parallel according to the

marginal distribution μv(· | XΓ (v)).

This can be seen as a relaxation of the chromatic-based sched-
uler [32] and systematic scans [19].

A convenientway for generating a random independent set
in a distributed fashion is the “Luby step” inLuby’s algorithm
for distributed MIS [1,46]: each vertex samples a uniform
and independent ID from the interval [0, 1] (which can be
discretized with O(log n) bits) and the vertices v who are
locally maximal among the inclusive neighborhood Γ +(v)

are selected into the independent set I .
The resulting algorithm is called LubyGlauber, whose

pseudocode is given in Algorithm 1.

Algorithm 1: Pseudocode for vertex v ∈ V in
LubyGlauber algorithm
Input: Vertex v ∈ V receives {Auv}u∈Γ (v) and bv as input.

1 initialize Xv to an arbitrary value in [q];
2 for t = 1 through T do
3 sample a real βv ∈ [0, 1] uniformly and independently;
4 if βv > max{βu | u ∈ Γ (v)} then
5 resample Xv according to marginal distribution

μv(· | XΓ (v));

6 return Xv;

1 This property holds automatically for feasible configurations X with
μ(X) > 0, and is only needed when the Glauber dynamics is allowed to
start from an infeasible configuration. For specific MRF, such as proper
q-coloring, this property is guaranteed by the “uniqueness condition”
q ≥ Δ+ 1.

According to the definition of marginal distribution (2),
resampling Xv can be done locally by exchanging neighbors’
current spin states. After T iterations, where T is a threshold
determined for specific Markov random field, the algorithm
terminates and outputs the current X = (Xv)v∈V .

Remark 1 TheLubyGlauber algorithmcanbe easily extended
to sample from weighted CSPs defined by local constraints
c = ( fc, Sc) ∈ C, by simply overriding the definition of
neighborhood as Γ (v) = {u 	= v | ∃c ∈ C, {u, v} ⊆ Sc},
thus Γ (v) is the neighborhood of v in the hypergraph where
Sc’s are the hyperedges and now I is the strongly independent
set of this hypergraph.

3.1 Mixing of LubyGlauber

Let μLG denote the distribution of X returned by the algo-
rithm upon termination. As in the case of single-site Glauber
dynamics, we assume that the marginal distribution (2) is
always well-defined, and the single-site Glauber dynamics is
irreducible among all feasible configurations. The following
proposition is easy to obtain.

Proposition 1 The Markov chain LubyGlauber is reversible
and has stationary distribution μ. Furthermore, under the
above assumption, dTV (μLG, μ) converges to 0 as T →∞.

Proof We prove this for a more general family of Markov
chains, where the “Luby step” is replaced by an arbitrary
way of independently sampling a random independent set I ,
as long as Pr[v ∈ I ] > 0 for every vertex v ∈ V .

Let Ω = [q]V and P ∈ R
|Ω|×|Ω|
≥0 denote the transition

matrix for the LubyGlauber chain. We first show that the
chain is reversible andμ is stationary. Specifically, thismeans
to verify the detailed balance equation:

μ(X)P(X ,Y ) = μ(Y )P(Y , X),

for all configurations X ,Y ∈ Ω = [q]V .
If both X andY are infeasible, thenμ(X) = μ(Y ) = 0 and

the detailed balance equation holds trivially. If X is feasible
and Y is not then μ(Y ) = 0 and meanwhile since the chain
never moves from a feasible configuration to an infeasible
one, we have P(X ,Y ) = 0 so the detailed balance equation
is also satisfied.

It remains to verify the detailed balance equation when
both X and Y are feasible. Let D = {v ∈ V | Xv 	= Yv}
be the set of disagreeing vertices. If D is not an independent
set, then P(X ,Y ) = P(Y , X) = 0 and the detailed balance
equation holds. Suppose that D is an independent set. For
any independent set I ⊇ D, we denote by Pr[X → Y | I ]
the probability that within an iteration the chain moves from
X to Y conditioning on I being the independent set sampled
in the first step. Therefore,
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What can be sampled locally? 233

Pr[X → Y | I ]
Pr[Y → X | I ] =

∏
v∈D bv(Yv)

∏
u∈Γ (v) Auv(Yu,Yv)∏

v∈D bv(Xv)
∏

u∈Γ (v) Auv(Xu, Xv)

= μ(Y )

μ(X)
.

By the law of total probability,

P(X ,Y )

P(Y , X)
=
∑

I⊇D Pr(I )Pr[X → Y | I ]
∑

I⊇D Pr(I )Pr[Y → X | I ]

=
∏

v∈D bv(Yv)
∏

u∈Γ (v) Auv(Yu,Yv)∏
v∈D bv(Xv)

∏
u∈Γ (v) Auv(Xu, Xv)

= μ(Y )

μ(X)
.

Thus, the chain is reversible with respect to the Gibbs distri-
bution μ.

Next, observe that the chain will never move from a feasi-
ble configuration to an infeasible one. Moreover, due to the
assumption that the marginal distribution (2) is always well-
defined, once a vertex v has been resampled, it will satisfy all
local constraints. Therefore, the chain will be feasible once
every vertex has been resampled. Since every vertex v has
positive probability Pr[v ∈ I ] to be resampled, the chain is
absorbing to feasible configurations.

It is easy to observe that every feasible configuration is
aperiodic, since it has self-loop transition, i.e. P(X , X) > 0
for all feasible X . And any move X → Y between feasible
configurations X ,Y ∈ Ω in the single-site Glauber dynam-
ics with vertex v being updated, can be simulated by a move
in the LubyGlauber chain by first sampling an independent
set I � v (which is always possible since Pr[v ∈ I ] > 0)
and then updating v according to X → Y and meanwhile
keeping all v ∈ I\{v} unchanged (which is always possible
for feasible X ). Provided the irreducibility of the single-
site Glauber dynamics among all feasible configurations,
the LubyGlauber chain is also irreducible among all feasible
configurations. Combining with the absorption towards fea-
sible configurations and their aperiodicity, due to theMarkov
chain convergence theorem [43], the total variation distance
dTV (μLG, μ) converges to 0 as T →∞. ��

We then apply a standard coupling argument from [18,
35] to analyze the mixing rate of the LubyGlauber chain.
The following notions are essential to the mixing of Glauber
dynamics.

Definition 1 (influence matrix) For v ∈ V and σ ∈ [q]V , we
write μσ

v = μv(· | σΓ (v)) for the marginal distribution of the
value of v, for configurations sampled from μ conditioning
on agreeingwithσ at all neighbors of v. For vertices i, j ∈ V ,
the influence of j on i is defined as

ρi, j := max
(σ,τ )∈S j

dTV(μσ
i , μτ

i ),

where S j denotes the set of all pairs of feasible configurations
σ, τ ∈ [q]V such that σ and τ agree on all vertices except j .
Let R = (ρi, j )i, j∈V be the n × n influence matrix.

Definition 2 (Dobrushin’s condition) Let α be the total influ-
ence on a vertex, defined by

α := max
i∈V

∑

j∈V
ρi, j .

We say that the Dobrushin’s condition is satisfied if α < 1.

It is a fundamental result that the Dobrushin’s condition is
sufficient for the rapid mixing of Glauber dynamics [16,35,
53], with a mixing rate of τ(ε) = O

(
n

1−α
log
( n

ε

))
. Here we

show that the LubyGlauber chain is essentially a parallel
speed up of the Glauber dynamics by a factor of Θ( n

Δ
).

Theorem 4 Under the same assumption as Proposition 1,
if the total influence α < 1, then the mixing rate of the

LubyGlauber chain is τ(ε) = O
(

Δ
1−α

log
( n

ε

))
.

Consequently, for any ε > 0 the LubyGlauber algorithm

can terminate within O
(

Δ
1−α

log
( n

ε

))
rounds in the LOCAL

model and return an X ∈ [q]V whose distribution μLG is ε-
close to the Gibbs distribution μ in total variation distance.

Remark 2 In fact, Proposition 1 and Theorem 4 hold for a
more general family of Markov chains, where the “Luby
step” could be any subroutine which independently gener-
ates a random independent set I , as long as every vertex has
positive probability to be selected into I . In general, the mix-

ing rate in Theorem 4 is in fact τ(ε) = O
(

1
(1−α)γ

log
( n

ε

))

where γ is a lower bound for the probability Pr[v ∈ I ] for
all v ∈ V .

The following lemma is crucial for relating the mixing
rate to the influence matrix. The lemma has been proved in
various places [14,18,35].

Lemma 1 Let X and Y be two random variables that take
values over the feasible configurations in Ω = [q]V , then
for any i ∈ V ,

E
(X ,Y )

[
dTV

(
μX
i , μY

i

)]
≤
∑

k∈V
ρi,k Pr[Xk 	= Yk].

Proof WeenumerateV asV = {1, 2, . . . , n}. For 0 ≤ k ≤ n,
define Z (k) as that for each j ∈ V , Z (k)

j = X j if j > k and

Z (k)
j = Y j if j ≤ k. In particular, Z (0) = X and Z (n) = Y .

Now, by triangle inequality,

dTV
(
μX
i , μY

i

)
= dTV

(
μZ (0)

i , μZ (n)

i

)

≤
n∑

k=1
dTV

(
μZ (k−1)
i , μZ (k)

i

)
.
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Next, we note that Z (k−1) = Z (k) if and only if Xk = Yk .
Therefore,

dTV
(
μX
i , μY

i

)
≤

n∑

k=1
1{Xk 	= Yk}dTV

(
μZ (k−1)
i , μZ (k)

i

)
.

Since Z (k−1) and Z (k) can only differ at vertex k, it follows
that (Z (k−1), Z (k)) ∈ Sk , and hence,

dTV
(
μX
i , μY

i

)
≤

n∑

k=1
1{Xk 	= Yk} max

(σ,τ )∈Sk
dTV

(
μσ
i , μτ

i

)

=
n∑

k=1
ρi,k1{Xk 	= Yk}.

By linearity of expectation,

E
(X ,Y )

[
dTV

(
μX
i , μY

i

)]
≤
∑

k∈V
ρi,k Pr[Xk 	= Yk].

��
Proof of Theorem 4: Weare actually going to prove a stronger
result: Denoted by I the random independent set on which
the resampling is executed, we write γv = Pr[v ∈ I ] for
each v ∈ V , and assume that for all v ∈ V , γv ≥ γ for
some γ > 0. Clearly, when I is generated by the “Luby
step”, this holds for γ = 1

Δ+1 . We are going to prove that

τ(ε) = O
(

1
(1−α)γ

log
( n

ε

))
.

The proof follows the framework of Hayes [35]. We con-
struct a coupling of the Markov chain (X (t),Y (t)) such that
the transition rules for X (t) → X (t+1) and Y (t) → Y (t+1)
are the same as the LubyGlauber chain. If Pr[X (T ) 	= Y (T ) |
X (0) = σ ∧ Y (0) = τ ] ≤ ε for any initial configurations
σ, τ ∈ Ω , then by the coupling lemma forMarkov chain [43],
we have the mixing rate τ(ε) ≤ T .

The coupling we are going to use is the maximal one-step
coupling of the LubyGlauber chain, which for every vertex
i ∈ V achieves that

Pr
[
X (t+1)
i 	= Y (t+1)

i | X (t),Y (t)
]
= dTV

(
μX (t)

i , μY (t)

i

)
,

where μX (t)

i and μY (t)

i are the marginal distributions as
defined in Definition 1. The existence of such coupling is
guaranteed by the coupling lemma.

Arbitrarily fix σ, τ ∈ Ω = [q]V . For t ≥ 0, define
(X (t),Y (t)) ∈ Ω2 by iterating a maximal one-step coupling
of the LubyGlauber chain, starting from initial condition
X (0) = σ,Y (0) = τ . Due to the well-defined-ness of
marginal distribution (2), we know that once all vertices have
been resampled, the configuration will be feasible and will
remain to be feasible in future.

Let T1 be a positive integer and F denote the event all
vertices have been resampled in chain X and Y in the first T1
steps. By union bound, we have

Pr [¬F] ≤ 2
∑

v∈V
(1− γv)

T1 ≤ 2n(1− γ )T1 , (3)

Next, we assume that X (t),Y (t) are both feasible for t ≥ T1.
We define the vector p(t) ∈ [0, 1]V as

∀ j ∈ V , p(t)
j := Pr

[
X (t)

j 	= Y (t)
j

]
.

By the definition of the LubyGlauber chain, it holds for every
j ∈ V that

p(t+1)
j = (1− γ j )p

(t)
j + γ j · Pr

[
X (t+1)

j 	= Y (t+1)
j | j ∈ I

]
.

(4)

By thedefinitionofmaximal one-step coupling andLemma1,
for t ≥ T1, for any i ∈ V ,

Pr
[
X (t+1)
i 	= Y (t+1)

i | i ∈ I
]

=
∑

σ,τ∈Ω
μ(σ),μ(τ)>0

(
Pr
[
X (t+1)
i 	= Y (t+1)

i | X (t) = σ, Y (t) = τ
]

· Pr
[
X (t) = σ ∧ Y (t) = τ

])

=
∑

σ,τ∈Ω
μ(σ),μ(τ)>0

dTV
(
μσ
i , μτ

i

) · Pr
[
X (t) = σ ∧ Y (t) = τ

]

= E
[
dTV

(
μX (t)

i , μY (t)

i

)]

≤
∑

k∈V
ρi,k · Pr

[
X (t)
k 	= Y (t)

k

]
.

Combined with equality (4), for t ≥ T1 we have

p(t+1) ≤ Mp(t),

where matrix M = (J − Γ )J + Γ R, where Γ is the n × n
diagonal matrix withΓi,i = γi ; J is the n×n identity matrix;
and R = (ρi j ) is the influence matrix. The∞-norm of M is
bounded as

‖M‖∞ = max
i∈V

∑

j∈V
|Mi, j |

≤ max
i∈V {1− (1− α)γi }

≤ 1− (1− α)γ.
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Let T = T1 + T2. By induction, we obtain the component-
wise inequality

p(T ) ≤ MT2p(T1).

Conditioning on that X (T1) and Y (T1) are both feasible, we
have

Pr
[
X (T ) 	= Y (T )

]
≤ ‖p(T )‖1 by union bound

≤ n‖p(T )‖∞ by Hölder’s inequality

≤ n‖MT2p(T1)‖∞
≤ n‖M‖T2∞‖p(T1)‖∞
≤ n (1− (1− α)γ )T2 (5)

For any ε, we choose T1 =
⌈
1
γ
ln
( 4n

ε

)⌉
and T2 =

⌈
1

(1−α)γ
ln
( 2n

ε

)⌉
. Then T = T1+T2 = O

(
1

(1−α)γ
log
( n

ε

))
.

Combining (3) and (5), conditioning on X (0) = σ∧Y (0) = τ

for arbitrary σ, τ ∈ Ω , we have

Pr
[
X (T ) 	= Y (T )

]
≤ Pr[¬F] + Pr

[
X (T ) 	= Y (T ) | F

]

≤ 2n(1− γ )T1 + n (1− (1− α)γ )T2

≤ ε.

This implies that

τ(ε) = O

(
1

(1− α)γ
log
(n

ε

))
.

In particular, if the random independent set I is generated
by the “Luby step", we have γ = 1

Δ+1 , therefore for the
LubyGlauber chain

τ(ε) = O

(
Δ

1− α
log
(n

ε

))
.

��

3.2 Application of LubyGlauber for sampling graph
colorings

For uniformly distributed proper q-coloring of graph G, it is
well known that the Dobrushin’s condition is satisfied when
q ≥ 2Δ+ 1 where Δ is the maximum degree of graph G.

We consider a more generalized problem, the list color-
ings, where each vertex v ∈ V maintains a list Lv ⊆ [q] of
colors that it can use. The proper q-coloring is a special case
of list coloring when everyone’s list is precisely [q]. For each
vertex v ∈ V , we denote by qv = |Lv| the size of v’s list,

and dv = deg(v) the degree of v. It is easy to verify that the
total influence α is now bounded as

α = max
i∈V

∑

j∈V
ρi, j = max

v∈V

{
dv

qv − dv

}
.

Applying Theorem 4, we have the following corollary,
which also implies Theorem 1.

Corollary 1 If there is an arbitrary constant δ > 0 such that
qv ≥ (2 + δ)dv for every vertex v, then the mixing rate of
the LubyGlauber chain for sampling list coloring is τ(ε) =
O
(
Δ log

( n
ε

))
.

4 The LocalMetropolis algorithm

In this section,we give an algorithm thatmay fully parallelize
the sequential process under suitablemixing conditions, even
on graphs with unbounded degree. The algorithm is inspired
by the famous Metropolis-Hastings algorithm for MCMC,
in which a random choice is proposed and then filtered
to enforce the target stationary distribution. Our algorithm,
called theLocalMetropolis algorithm,makes eachvertex pro-
pose independently, and localizes thework of filtering to each
edge.

We are given a Markov random field (MRF) defined on
the network G(V , E), with edge activities A = {Ae}e∈E and
vertex activities b = {bv}v∈V , whose Gibbs distribution isμ.
Starting from an arbitrary configuration X ∈ [q]V , in each
iteration, the LocalMetropolis chain does the followings:

– Propose: Each vertex v ∈ V independently proposes
a spin state σv ∈ [q] with probability proportional to
bv(σv).

– Local filter: Each edge e ∈ E flips a biased coin inde-
pendently, with the probability of HEADS being

Ãe(σu, σv) Ãe(Xu, σv) Ãe(σu, Xv),

where Ãe is the matrix obtained by normalizing Ae as
Ãe = Ae/maxi, j Ae(i, j). We say that the edge passes
the check if the outcome of coin flipping is HEADS.
Then for each vertex v ∈ V , if all edges incident with v

passed their checks, v accepts the proposal and updates
the value as Xv = σv , otherwise v leaves Xv unchanged.

After T iterations, where T is a threshold determined for
specific Markov random field, the algorithm terminates and
outputs the current X = (Xv)v∈V . The pseudocode for the
LocalMetropolis algorithm is given in Algorithm 2.

We remark that in each iteration, for each edge e = uv,
the two endpoints u and v access the same random coin to
determine whether e passes the check in this iteration.
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Algorithm 2: Pseudocode for the LocalMetropolis algo-
rithm
Input: Each vertex v ∈ V receives {Auv}u∈Γ (v) and bv as input.

1 each v ∈ V initializes Xv to an arbitrary value in [q];
2 for t = 1 through T do
3 foreach v ∈ V do
4 propose a random σv ∈ [q] with probability

bv(σv)/
∑

c∈[q] bv(c);

5 foreach e = (u, v) ∈ E do
6 pass the check independently with probability

Ae(σu ,σv)Ae(Xu ,σv)Ae(σu ,Xv)

(maxi, j∈[q] Ae(i, j))
3 ;

7 foreach v ∈ V do
8 if all edges e incident with v pass the checks then
9 Xv ← σv ;

10 each v ∈ V returns Xv ;

Remark 3 The LocalMetropolis algorithm can be naturally
extended to sample from weighted CSPs. The local filtering
now occurs on each local constraint, such that a k-ary con-
straint c = ( fc, Sc) ∈ C passes the checkwith the probability
which is a product of 2k −1 normalized factors f̃c(τ ) for the
τ ∈ [q]Sc obtained from 2k −1 ways of mixing σSc with XSc
except the XSc itself.

4.1 Mixing of LocalMetropolis

LetμLM denote the distribution of X = (Xv)v∈V returned by
the LocalMetropolis algorithm after T iterations.

We need to ensure the chain is well behaved even when
starting from infeasible configurations. Now we make the
following assumption: for all X ∈ [q]V and v ∈ V ,

∑

i∈[q]
bv(i)

∏

u∈Γ (v)

Auv(i, Xu)
∑

j∈[q]
bu( j)Auv(Xv, j)Auv(i, j) > 0,

(6)

which is slightly stronger than the assumption made for the
Glauber dynamics. As in the case of Glauber dynamics, the
property is needed only when the chain is allowed to start
from an infeasible configuration X ∈ [q]V with μ(X) = 0.
For specific MRF, such as graph colorings, the condition (6)
is satisfied as long as q ≥ Δ+1 and q ≥ 3. As before, we fur-
ther assume that the single-site Markov chain2 is irreducible
among feasible configurations.

Theorem 5 The Markov chain LocalMetropolis is reversible
and has stationary distributionμ. Furthermore, under above
assumptions, dTV (μLM, μ) converges to 0 as T →∞.

2 For the MRFs, since the single-site Glauber dynamics has the same
connectivity structure as the natural single-site version of Metropolis
chain,we do not distinguish between themwhen referring to irreducibil-
ity.

Proof Let Ω = [q]V and P ∈ R
|Ω|×|Ω|
≥0 denote the tran-

sition matrix for the LocalMetropolis chain. First, we show
this chain is reversible and μ is stationary, by verifying the
detailed balance equation:

μ(X)P(X ,Y ) = μ(Y )P(Y , X).

If two configurations X ,Y are both infeasible, then μ(X) =
μ(Y ) = 0. If precisely one of X ,Y is feasible, say X is
feasible and Y is not, then μ(Y ) = 0 and X cannot move to
Y since at least one edge cannot pass its check, which means
P(X ,Y ) = 0. In both cases, the detailed balance equation
holds.

Next, we suppose X ,Y are both feasible. Consider amove
in the LocalMetropolis chain. Let C ∈ {0, 1}E be a Boolean
vector that Ce indicates whether edge e ∈ E passes its check.
We call v ∈ V non-restricted by C if Ce = 1 for all e incident
with v and v accepts the proposal; and call v ∈ V restricted
by C if otherwise.

A move in the chain is completely determined by C along
with the proposed configurations σ ∈ [q]V . Let ΩX→Y

denote the set of pairs (σ, C) with which X moves to Y ,
and ΔX ,Y = {v ∈ V | Xv 	= Yv} the set of vertices on which
X and Y disagree. Note that each (σ, C) ∈ ΩX→Y satisfies:

– ∀v ∈ ΔX ,Y : σv = Yv and v is non-restricted by C;
– ∀v /∈ ΔX ,Y : either σv = Xv = Yv or v is restricted by C.

Similar holds for ΩY→X , the set of (σ, C) with which Y
moves to X . Hence:

P(X ,Y )

P(Y , X)
=
∑

(σ,C)∈ΩX→Y
Pr(σ )Pr(C | σ, X)

∑
(σ,C)∈ΩY→X

Pr(σ )Pr(C | σ,Y )
. (7)

In order to verify the detailed balance equation, we construct
a bijection φX ,Y : ΩX→Y → ΩY→X , and for every (σ, C) ∈
ΩX→Y , denoted (σ ′, C′) = φX ,Y (σ, C), and show that

Pr(σ )Pr(C | σ, X)

Pr(σ ′)Pr(C′ | σ ′,Y )
= μ(Y )

μ(X)
. (8)

The detailed balance equation then follows from (7) and (8).

The bijection (σ, C)
φX ,Y�−→ (σ ′, C′) is constructed as follow:

– C′ = C;
– for all v non-restricted by C, since (σ, C) ∈ ΩX→Y it
must hold σv = Yv , then set σ ′v = Xv;

– for all v restricted by C, since (σ, C) ∈ ΩX→Y it must
hold Xv = Yv , then set σ ′v = σv .

It can be verified that the φX ,Y constructed in this way is
indeed a bijection from ΩX→Y to ΩY→X . For any (σ, C) ∈
ΩX→Y and the corresponding (σ ′, C′) ∈ ΩY→X , since C′ =
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C, in the following we will not specify whether v is (non-
)restricted by C or C′ but just say v is (non-)restricted, and
the followings are satisfied:

– ∀v ∈ ΔX ,Y : σv = Yv , σ ′v = Xv and v is non-retricted;
– ∀v /∈ ΔX ,Y : either σv = σ ′v = Xv = Yv or v is restricted

and σv = σ ′v . In both cases, σv = σ ′v .

Then we have:

Pr(σ )

Pr(σ ′)
=
∏

v∈V bv(σv)∏
v∈V bv(σ ′v)

=
∏

v:Xv 	=Yv
bv(σv)∏

v:Xv 	=Yv
bv(σ ′v)

=
∏

v:Xv 	=Yv
bv(Yv)∏

v:Xv 	=Yv
bv(Xv)

=
∏

v∈V bv(Yv)∏
v∈V bv(Xv)

. (9)

Next, for each edge e ∈ E we calculate the ratio Pr(Ce|σ,X)
Pr(C′e|σ ′,Y )

.
There are two cases:

– If Ce = 0 which means e does not pass its check, then

Pr[Ce = 0 | σ, X ] = 1− Ãe(σu , σv) Ãe(Xu , σv) Ãe(σu , Xv)

and

Pr[C′e = 0 | σ ′, Y ] = 1− Ãe(σ
′
u , σ

′
v) Ãe(Yu , σ

′
v) Ãe(σ

′
u , Yv).

And both u and v are restricted by C. By our construction
of the bijection φX ,Y , we have σu = σ ′u , σv = σ ′v , Xu =
Yu , and Xv = Yv . It follows that

Pr[Ce = 0 | σ, X ]
Pr[C′e = 0 | σ ′, Y ] =

Ae(Yu,Yv)

Ae(Xu, Xv)
= 1.

– If Ce = 1 which means e passes its check, then

Pr[Ce = 1 | σ, X ] = Ãe(σu , σv) Ãe(Xu , σv) Ãe(σu , Xv),

and

Pr[C′e = 1 | σ ′, Y ] = Ãe(σ
′
u , σ

′
v) Ãe(Yu , σ

′
v) Ãe(σ

′
u , Yv).

There are three sub-cases according to whether vertices
u and v are restricted:

1. Both u and v are restricted, in which case σu = σ ′u ,
σv = σ ′v , Xu = Yu , Xv = Yv .

2. Precisely one of {u, v} is restricted, say v is restricted
and u is non-restricted, in which case σu = Yu , σ ′u =
Xu , σv = σ ′v , and Xv = Yv .

3. Both u and v are non-restricted, in which case σu =
Yu , σ ′u = Xu , σv = Yv , σ ′v = Xv .

In all three sub-cases, the following identity can be veri-
fied:

Pr[Ce = 1 | σ, X ]
Pr[C′e = 1 | σ ′, Y ] =

Ãe(Yu,Yv)

Ãe(Xu, Xv)
= Ae(Yu,Yv)

Ae(Xu, Xv)
.

Since each edges passes its check independently, we have

Pr(C | σ, X)

Pr(C′ | σ ′,Y )
=

∏

e=uv∈E

Ae(Yu,Yv)

Ae(Xu, Xv)
. (10)

Combining (9) and (10), for every (σ, C) ∈ ΩX→Y and the
corresponding (σ ′, C′) ∈ ΩY→X , we have:

Pr[σ ]Pr[C | σ, X ]
Pr[σ ′]Pr[C′ | σ ′,Y ] =

∏

v∈V

bv(Yv)

bv(Xv)

∏

e=uv∈E

Ae(Yu, Yv)

Ae(Xu, Xv)

= μ(Y )

μ(X)
.

This completes the verification of detailed balance equation
and the proof of the reversibility of the chain with respect to
stationary distribution μ.

Next, observe that the chain will never move from a fea-
sible configuration to an infeasible one since at least one of
the edge will not pass its check. By assumption (6), for all
X ∈ [q]V , no matter feasible or not, and for every v ∈ V
there must be a spin state i ∈ [q] such that with positive
probability v is successfully updated to spin state i . Note
that once a vertex is successfully updated it satisfies and will
keep satisfying all its local constraints. Therefore, the chain
is absorbing to feasible configurations.

It is easy to observe that every feasible configuration is
aperiodic, since it has self-loop transition, i.e. P(X , X) > 0
for all feasible X . In addition, any move X → Y between
feasible configurations X ,Y ∈ Ω in the single-site Markov
chain with vertex v being updated, can be simulated by a
move in the LocalMetropolis chain in which all the ver-
tices u other than v propose their current spin state Xu

and v proposes Yv . Provided the irreducibility of the single-
site Markov chain among all feasible configurations, the
LocalMetropolis chain is also irreducible among all feasi-
ble configurations. Combinining with the absorption towards
feasible configurations and their aperiodicity, due to the
Markov chain convergence theorem [43], dTV (μLM, μ) con-
verges to 0 as T →∞. ��

4.2 Themixing of LocalMetropolis chain for graph
colorings

Unlike the LubyGlauber chain, whose mixing rate is essen-
tially due to the analysis of systematic scans. Themixing rate
of LocalMetropolis chain is much more complicated to ana-
lyze. Here we analyze themixing rate of the LocalMetropolis
chain for proper q-colorings.

Given a graph G(V , E), a q-coloring σ ∈ [q]V is proper
if σu 	= σv for all uv ∈ E . For this special MRF, the Local-
Metropolis chain behaves simply as follows. Starting from
an arbitrary coloring X ∈ [q]V , not necessarily proper, in
each step:
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– Propose: each vertex v proposes a color cv ∈ [q] uni-
formly at random;

– Local filter: each vertex v rejects its proposal if there
is a neighbor u ∈ Γ (v) such that one of the followings
occurs:

1. (v proposed the neighbor’s current color) cv = Xu ;
2. (v and the neighbor proposed the same color) cv =

cu ;
3. (the neighbor proposed v’s current color) Xv = cu ;

otherwise, v accepts its proposal and updates its color Xv

to cv .

The first two filtering rules are sufficient to guarantee
that the chain will never move to a “less proper” coloring.
Although at first glance the third filtering rule looks redun-
dant, it is necessary to guarantee the reversibility of the chain
as well as the uniform stationary distribution.

It can be verified that when q ≥ Δ+ 2, the condition (6)
is satisfied and the single-site Glauber dynamics for proper
q-coloring is irreducible, and hence the chain is mixing due
to Theorem 5. The following theorem states a condition in
the form q ≥ αΔ for the logarithmic mixing rate even for
unbounded Δ and q. This proves Theorem 2.

Theorem 6 If q ≥ αΔ for a constant α > 2+√2, the mix-
ing rate of the LocalMetropolis chain for proper q-coloring
on graphs with maximum degree at most Δ = Δ(n) ≥ 9
is τ(ε) = O(log

( n
ε

)
), where the constant factor in O(·)

depends only on α but not on the maximum degree Δ.

The theorem is proved by path coupling, a powerful engi-
neering tool for coupling Markov chains. A coupling of a
Markov chain on space Ω is a Markov chain (X ,Y ) →
(X ′,Y ′) on space Ω2 such that the transitions X → X ′ and
Y → Y ′ individually follow the same transition rule as the
original chain on Ω . For path coupling, we can construct a
coupled Markov chain (X ,Y ) → (X ′,Y ′) for X ,Y ∈ [q]V
which differ at only one vertex. The chain mixes rapidly if
the expected number of disagreeing vertices in (X ′,Y ′) is
< 1.

4.2.1 An ideal coupling

The 2+√2 threshold in Theorem6 is due to an ideal coupling
in the Δ-regular tree. Let TΔ denote the infinite Δ-regular
tree rooted at v0.We assume that the current pair of colorings
(X ,Y ) disagree only at the root v0 and Xu = Yu /∈ {Xv0 ,Yv0}
for all other vertices u in TΔ.

An ideal coupling can be constructed as follows in a
breadth-first fashion: (1) the root v0 proposes the same ran-
dom color in both chains X ,Y ; (2) each child u of the root
proposes the same random color in both chains unless it pro-
posed one of {Xv0 ,Yv0}, in which case it switches the roles

of the two colors {Xv0 ,Yv0} in the Y chain; (3) for all other
vertices u, it proposes the same random color in both chains
unless its parent proposed different colors in the two chains,
in which case u switches the roles of {Xv0 ,Yv0} in the Y
chain. For this ideal coupling, by a calculation, it can be ver-
ified that for the root v0:

Pr[X ′v0 	= Y ′v0 ] ≤ 1−
(
1− Δ

q

)(
1− 2

q

)Δ

and for any non-root vertex u in TΔ at distance � from v0:

Pr[X ′u 	= Y ′u] ≤
1

q

(
1− 2

q

)Δ−1 ( 2

q

)�−1

= 1

2

(
1− 2

q

)Δ−1 ( 2

q

)�

.

The expected number of disagreeing vertices in (X ′, Y ′) is
then bounded as

Pr[X ′v0 	= Y ′v0 ] +
∑

∈T
u 	=v0

Pr[X ′u 	= Y ′u]

≤ 1−
(
1− Δ

q

)(
1− 2

q

)Δ

+ 1

2

(
1− 2

q

)Δ−1 ∞∑

�=1
Δ�

(
2

q

)�

= 1−
(
1− Δ

q

)(
1− 2

q

)Δ

+ Δ

q − 2Δ

(
1− 2

q

)Δ−1
.

The path coupling argument requires this quantity to be< 1.
For q = α�Δ and Δ → ∞, this quantity becomes 1 −
e−2/α�

(
1− 1

α� − 1
α�−2

)
, which is < 1 if α� > 2+√2.

For general non-tree graphs G(V , E) and arbitrary pairs
of colorings (X ,Y )which disagree at only one vertex, where
X ,Y may not even be proper, we essentially show that the
above special pair of colorings (X ,Y ) on the infinite Δ-
regular tree TΔ represent the worst case for path coupling.
The analysis for this general case is quite involved. We first
state the path coupling lemma with general metric.

Lemma 2 (Bubley and Dyer [6]) Given a pre-metric, which
is a connected undirected graph on configuration space Ω

with positive edge weight such that every edge is a shortest
path, let Φ(X ,Y ) be the length of the shortest path between
two configurations X ,Y ∈ Ω . Suppose that there is a cou-
pling (X ,Y ) → (X ′,Y ′) of the Markov chain defined only
for the pair (X ,Y ) of configurations that are adjacent in the
pre-metric, which satisfies that

E[Φ(X ′,Y ′) | X ,Y ] ≤ (1− δ)Φ(X ,Y ),

for some 0 < δ < 1. Then the mixing rate of the Markov
chain is bounded by

τ(ε) ≤ log(diam(Ω)/ε)

δ
,
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where diam(Ω) denotes the diameter ofΩ in the pre-metric.

We use the following slightly modified pre-metric: A pair
(X ,Y ) ∈ Ω = [q]V is connected by an edge in the pre-
metric if and only if X and Y differ at only one vertex, say v,
and the edge-weight is given by deg(v). This leads us to the
following definition.

Definition 3 For any X ′,Y ′ ∈ Ω , for u ∈ V , we define
φu(X ′,Y ′) = deg(u) if X ′u 	= Y ′u and φu(X ′,Y ′) = 0 if
otherwise; and for S ⊆ V , we define the distance between
X ′ and Y ′ on S as

ΦS(X
′,Y ′) :=

∑

u∈S:X ′u 	=Y ′u
φu(X

′,Y ′).

In addition, we denote Φ(X ′,Y ′) = ΦV (X ′,Y ′).

Clearly, the diameter ofΩ in distanceΦ has diam(Ω) ≤ nΔ.
We prove the mixing rate in Theorem 6 for two separate

regimes for q by using two different couplings. We define
α∗ ≈ 3.634 . . . to be the positive root of α = 2e1/α + 1.

Lemma 3 If q ≥ αΔ+3 for a constant α > α∗, then τ(ε) =
O(log

( n
ε

)
).

Lemma 4 If αΔ ≤ q ≤ 3.7Δ + 3 for 2 + √2 < α ≤ 3.7
and Δ ≥ 9, then τ(ε) = O(log

( n
ε

)
).

Theorem 6 follows by combining the two lemmas.

4.2.2 An easy local coupling for q > 3.6341 + 3

We first prove Lemma 3 by constructing a local coupling
where the disagreement will not percolate outside its neigh-
borhood. Let X ,Y ∈ [q]V two q-colorings, not necessarily
proper. Assume that X and Y disagree only at vertex v0 ∈ V .
The coupling (X ,Y ) → (X ′,Y ′) is constructed as follows:

– Each vertex v ∈ V proposes the same random color in
the two chains X and Y . Then (X ′,Y ′) is determined due
to the transition rule of LocalMetropolis chain.

Next we show the path coupling condition:

E[Φ(X ′,Y ′) | X ,Y ] ≤ (1− δ)Φ(X ,Y ) = (1− δ) deg(v0).

The following technical lemma is frequently applied in
the analysis of this and next couplings.

Lemma 5 If q ≥ aΔ, then for any integer 0 ≤ d ≤ Δ,

d
(
1− a

q

)d ≤ Δ
(
1− a

q

)Δ

.

Proof It is sufficient to show the function d
(
1− a

q

)d
is

monotone for integer 1 ≤ d ≤ Δ:

d

(
1− a

q

)d

− (d − 1)

(
1− a

q

)d−1
=
(
1− a

q

)d−1 (
1− ad

q

)
,

which is nonnegative when q ≥ ad. ��
Proof of Lemma 3. First, observe that if v /∈ Γ +(v0), where
v0 is the vertex at which X and Y disagree, then it always
holds that X ′v = Y ′v , because all vertices inΓ +(v) are colored
the same in X and Y and will propose the same random color
in the twochains due to the coupling.Therefore, it is sufficient
to consider the difference between X ′ and Y ′ in Γ +(v0) and
we have

Φ(X ′,Y ′) = ΦΓ +(v0)(X
′,Y ′).

For each v, let cv ∈ [q] be the uniform random color pro-
posed independently by v, which is identical in both chains
by the coupling.

For the disagreeing vertex v0, it holds that X ′v0 = Y ′v0 if v0
accepts the proposal in both chains, which occurs when cv0 /∈
{Xu,Yu : u ∈ Γ (v0)} and ∀u ∈ Γ (v0), cu /∈ {Xv0 , Yv0 , cv0}.
Since X and Y disagree only at v0, we have

Pr[X ′v0 = Y ′v0 | X ,Y ] ≥
(
1− dv0

q

)(
1− 3

q

)dv0

. (11)

For each u ∈ Γ (v0), since Xu = Yu , the event X ′u 	= Y ′u
occurs only when cu ∈ {Xv0 ,Yv0} and ∀w ∈ Γ (u), cw /∈
{Xu, cu}. Note that to guarantee X ′u 	= Y ′u one must have
cu 	= Xu , thus

∀u ∈ Γ (v0) : Pr[X ′u 	= Y ′u | X , Y ] ≤ 2

q

(
1− 2

q

)du
. (12)

Combining (11) and (12) together and due to linearity of
expectation, we have

E[Φ(X ′,Y ′) | X ,Y ]
=
∑

u∈V
E[φu(X

′,Y ′) | X ,Y ]

=
∑

u∈Γ +(v0)

du Pr[X ′u 	= Y ′u | X ,Y ]

≤ dv0

[
1−

(
1− dv0

q

)(
1− 3

q

)dv0
]

+ 2

q

∑

u∈Γ (v0)

du

(
1− 2

q

)du

≤ dv0

[
1−

(
1− Δ

q

)(
1− 3

q

)Δ

+ 2Δ

q

(
1− 2

q

)Δ
]

,
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where the last inequality is due to the monotonicity stated in
Lemma 5.

The path coupling condition is satisfied when

(
1− Δ

q

)(
1− 3

q

)Δ

− 2Δ

q

(
1− 2

q

)Δ

≥ δ. (13)

For q = α∗Δ and Δ → ∞, then the LHS becomes(
1− 1

α∗
)
e−3/α∗ − 2

α
e−2/α∗ , which is 0 when α∗ is the posi-

tive root of α∗ = 2e1/α
∗ + 1.

Furthermore, forΔ ≥ 1andq ≥ αΔ+3, theLHSbecome:

(
1− 3

q

)Δ
[
1− Δ

q
− 2Δ

q

(
1+ 1

q − 3

)Δ
]

≥
(
1− 3

αΔ+ 3

)Δ
[
1− 1

α
− 2

α

(
1+ 1

αΔ

)Δ
]

≥ e−3/α

α
(α − 2e1/α − 1),

which is a positive constant independent of Δ when α > α∗.
Therefore, when α > α∗, there is a constant δ > 0 which

depends only on α, such that for all Δ ≥ 1 and q ≥ αΔ+ 3,
the inequality (13) is satisfied, which by Lemma 2, gives us
τ(ε) = O

(
log
( n

ε

))
.

4.2.3 A global coupling for (2 + √
2)1 < q ≤ 3.71 + 3

Next, we prove Lemma 4 and bound the mixing rate when
(2 + √2)Δ < q ≤ 3.7Δ + 3. This is done by a global
coupling where the disagreement may percolate to the entire
graph, whose construction and analysis is substantially more
sophisticated than the previous local coupling. Although this
sophistication only improves the threshold for q in Lemma 3
by a small constant factor, the effort is worthwhile because
it helps us to approache the threshold of the ideal coupling
discussed in Sect. 4.2.1 and shows that the infinite Δ-regular
tree TΔ represents the worst case for path coupling. And
curiously, the extremity of this worst case only holds when q
is also properly upper bounded, say q ≤ 3.7Δ+ 3, whereas
the mixing rate for larger q was guaranteed by Lemma 3.

Let v0 ∈ V be a vertex and X ,Y ∈ [q]V any two q-
colorings (not necessarily proper) which disagree only at v0.
The coupling (X ,Y ) → (X ′,Y ′) of the LocalMetropolis
chain is constructed by coupling (cX , cY ), where cX , cY ∈
[q]V are the respective vector of proposed colors in the two
chains X and Y . For each v ∈ V , the (cXv , cYv ) is sampled
from one of the two following joint distributions:

– consistent: cXv = cYv and is uniformly distributed over
[q];

– permuted: cXv is uniform in [q] and cYv = φ(cXv ) where
φ : [q] → [q] is a bijection defined as thatφ(Xv0) = Yv0 ,
φ(Yv0) = Xv0 , and φ(x) = x for all x /∈ {Xv0 ,Yv0}.

Note that for all u 	= v0 we have Xu = Yu , and if further
Xu ∈ {Xv0 ,Yv0}, we say the vertices w ∈ Γ +(u) \ {v0} are
blocked by u, and all other u 	= v0 is unblocked. The spe-
cial vertex v0 is neither blocked nor unblocked. We denote
by Γ B(v) and Γ U (v) the respective sets of blocked and
unblocked neighbors of vertex v and let bv = |Γ B(v)|.

The coupling (cX , cY ) of proposed colors is constructed
by the following recursive procedure:

– Initially, for the disagreeing vertex v0, (cXv0 , c
Y
v0

) is sam-
pled consistently in the two chains.

– For each unblocked u ∈ Γ (v0), the (cXu , cYu ) is sampled
independently (of other vertices) from the permuted dis-
tribution.

– Let S ⊆ V denote the current set of vertices v such that
(cXv , cYv ) has been sampled, and S 	= ⊆ S the set of ver-
tices v with (cXv , cYv ) sampled inconsistently as cXv 	= cYv .
We abuse the notation and use ∂S 	= = {unblocked u /∈
S | ∃uv ∈ E, s.t. v ∈ S 	=} to denote the unblocked
un-sampled vertex boundary of S 	=. If such ∂S 	= is non-
empty, then all u ∈ ∂S 	= sample the respective (cXu , cYu )

independently from the permuted distribution and join
the S simultaneously. Grow S 	= according to the results
of sampling. Repeat this step until the current ∂S 	= is
empty and thus S is stabilized.

– For all remaining vertices v, (cXv , cYv ) is sampled inde-
pendently and consistently.

This procedure is in fact a Galton-Watson branching process
starting from root v0. The blocked-ness of each vertex is
determined by the current X and Y . The S grows from the
root by a percolation of disagreement cXv 	= cYv added in a
breadth-first order.

It is easy to see that each individual cXv or cYv is uniformly
distributed over [q] and is independent of cXu or cYu for all
other u 	= v (although the joint distributions (cXv , cYv ) may
be dependent of each other). Therefore, the (cX , cY ) is a valid
coupling of proposed colors.

A walk P = (v0, v1, . . . , v�) in G(V , E) is called a
strongly self-avoiding walk (SSAW) ifP is a simple path inG
and viv j is not an edge in G for any 0 < i + 1 < j ≤ �. An
SSAW P = (v0, v1, . . . , v�) is said to be a path of disagree-
mentwith respect to (cX , cY ) if (cXvi , c

Y
vi

), vi ∈ P are sampled
in the order along the pathP from i = 0 to �, and cXvi 	= cYvi for
all 1 ≤ i ≤ �. For any specific SSAW P = (v0, v1, . . . , v�)

through unblocked vertices v1, v2, . . . , v�, by the chain rule
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Pr[P is a path of disagreement ]

≤
�∏

i=1
Pr
[
cXvi ∈ {Xv0 ,Yv0}

]
=
(
2

q

)�

. (14)

Proposition 2 For any vertex u 	= v0, the event cXu 	= cYu
occurs only if there is a strongly self-avoiding walk (SSAW)
P = (v0, v1, . . . , v�) from v0 to v� = u through unblocked
vertices v1, v2, . . . , v� such thatP is a path of disagreement.

Proof By the coupling, cXu 	= cYu only when (cXu , cYu ) is sam-
pled from the permuted distribution and it must hold that
{cXu , cYu } = {Xv0 ,Yv0}. This means that u itself must be
unblocked.

At the time when (cXu , cYu ) is being sampled, there must
exist a neighbor w ∈ Γ (u) such that either (1) w = v0
or (2) w ∈ S 	=, which means that cXw 	= cYw, {cXw, cYw} =
{Xv0 ,Yv0} was sampled before (cXu , cYu ), and vertex w is
unblocked. If it is the latter case, we repeat this argument
for w recursively until v0 is reached. This will give us a path
P = (v0, v1, . . . , v�) from v0 to u = v� through unblocked
vertices v1, . . . , v� such that for all 1 ≤ i ≤ �, (cXvi , c

Y
vi

) are
sampled in that order, cXvi 	= cYvi and {cXvi , cYvi } = {Xv0 ,Yv0}.
Thus, P is a path of disagreement through unblocked ver-
tices. Note that this path P = (v0, v1, . . . , v�) must be a
strongly self-avoiding. To the contrary assume that P is not
strongly self-avoiding and there exist 0 ≤ i, j ≤ � such that
i < j−1 and viv j is an edge. In this case, right after cXvi 	= cYvi
being sampled and vi joining S 	=, vi+1 and v j must be both
in ∂S 	= because they are both unblocked un-sampled neigh-
bors of vi then. And due to our construction of coupling, the
(cXvi+1 , c

Y
vi+1) and (cXv j

, cYv j
) are sampled and vi+1, v j join S

simultaneously, which contradict that (cXv j
, cYv j

) is sampled

after (cXvi+1 , c
Y
vi+1) along the path. Therefore, P is an SSAW

through unblocked vertices and is also a path of disagree-
ment. ��

Thecouplednext step (X ′,Y ′) is determinedby the current
(X ,Y ) and the coupled proposed colors (cX , cY ).

Proposition 3 For any vertex u 	= v0, the event X ′u 	= Y ′u
occurs only if cXu , cYu ∈ {Xv0 ,Yv0}. Furthermore, for any
unblocked vertex u 	= v0, the event X ′u 	= Y ′u occurs only if
cXu 	= cYu .

Proof We pick any u 	= v0. Assume by contradiction that
cXu = cYu /∈ {Xv0 , Yv0}. Note that this covers all possible
contradicting cases to that cXu , cYu ∈ {Xv0 ,Yv0}, because
cXu 	= cYu occurs only when cXu , cYu ∈ {Xv0 ,Yv0}.

We then show for every edge uw incident to u, the follow-
ings hold:

cXu = cXw if and only if cYu = cYw, (15)

Xu = cXw if and only if Yu = cYw, (16)

cXu = Xw if and only if cYu = Yw. (17)

With (15), (16) and (17), each edge uw passes the check
in chain X if and only if it passes the check in chain Y .
Combining with the fact that Xu = Yu for all u 	= v0, this
implies X ′u = Y ′u , a contradiction.

We then verify (15), (16) and (17):

– If Xu = Yu ∈ {Xv0 ,Yv0}, then for every neighbor w ∈
Γ (u), either w is blocked or w = v0. In both cases cXw =
cYw is sampled consistently, this implies (15) and (16),
because cXu = cYu and Xu = Yu . And it holds that either
{Xw,Yw} = {Xv0 ,Yv0} (in case of w = v0) or Xw = Yw

(in case ofw 	= v0), this implies (17) because cXu = cYu /∈
{Xv0 ,Yv0}.

– If Xu = Yu /∈ {Xv0 ,Yv0}. For each neighbor w ∈ Γ (u),
it holds that either {cXw, cYw} = {Xv0 ,Yv0} or cXw = cYw,
because the event cXw 	= cYw happens if and only if
{cXw, cYw} = {Xv0 ,Yv0} due to the coupling. Recall that
cXu = cYu /∈ {Xv0 ,Yv0} and Xu = Yu /∈ {Xv0 , Yv0},
this implies (15) and (16). And it holds that either
{Xw,Yw} = {Xv0 ,Yv0} (in case of w = v0) or Xw = Yw

(in case ofw 	= v0), this implies (17) because cXu = cYu /∈
{Xv0 ,Yv0}.

For an unblocked vertex u 	= v0, assume X ′u 	= Y ′u . By
above argument, we must have cXu , cYu ∈ {Xv0 ,Yv0}. We then
show that cXu 	= cYu . By contradiction, we assume cXu = cYu ,
since cXu , cYu ∈ {Xv0 ,Yv0}, the (cXu , cYu ) must be sampled
from the consistent distribution. And since u is unblocked
and u 	= v0, the (cXu , cYu ) is sampled from the consistent
distribution only when for all neighbors w ∈ Γ (u), w 	= v0
(which means Xw = Yw) and cXw = cYw. In summary, Xu =
Yu , cXu = cYu , and Xw = Yw, cXw = cYw for all neighbors
w ∈ Γ (u), which guarantees that X ′u = Y ′u , a contradiction.
Therefore, we also show that for any unblocked u 	= v0,
X ′u 	= Y ′u only if cXu 	= cYu . ��

We then analyze the probability of X ′u 	= Y ′u for each
vertex u ∈ V .

Lemma 6 For the vertex v0 at which the q-colorings X , Y ∈
[q]V disagree,

Pr[X ′v0 = Y ′v0 | X , Y ] ≥
(
1− Δ

q

)(
1− 2

q

)Δ (
1− 1

q − 2

)bv0

.

Proof The event X ′v0 = Y ′v0 occurs if v0 accepts the proposal,
which happens if the following events occur simultaneously:

– cXv0 /∈ {Xu | u ∈ Γ (v0)} (and hence cYv0 /∈ {Yu | u ∈
Γ (v0)} by the coupling cYv0 = cXv0 and the fact that Xu =
Yu for u 	= v0). This occurs with probability at least
q−dv0

q .

123



242 W. Feng et al.

– For all unblocked neighbors u ∈ Γ U (v0), it must have
cXu /∈ {Xv0 , c

X
v0
} and cYu /∈ {Yv0 , c

Y
v0
}. This occurs with

probability at least
(
1− 2

q

)dv0−bv0
conditioning on any

choice of cXv0 = cYv0 .
– For all blocked neighbors w ∈ Γ B(v0), it must have

cXw /∈ {cXv0 , Xv0 ,Yv0} (and hence cYw /∈ {cYv0 , Xv0 ,Yv0} due
to the coupling cYw = cXw ). This occurs with probability at

least
(
1− 3

q

)bv0
conditioning on any choice of cXv0 = cYv0

and independent of unblocked neighbors u ∈ Γ U (v0).

Thus the following is obtained by the chain rule:

Pr[X ′v0 = Y ′v0 | X ,Y ]

≥ q − dv0

q

(
1− 2

q

)dv0−bv0
(
1− 3

q

)bv0

≥
(
1− Δ

q

)(
1− 2

q

)Δ (
1− 1

q − 2

)bv0

,

where the last inequality is due to the monotonicity stated in
Lemma 5. ��
Lemma 7 For any unblocked vertex u 	= v0, it holds that

Pr[X ′u 	= Y ′u | X ,Y ]

≤ 1

q

(
1− 2

q

)du−1 [
2−

(
1− 1

q − 2

)bu
]

×
∑

unblocked SSAWP from v0 to u

(
2

q

)�(P)−1
, (18)

where the sum enumerates all strongly self-avoiding walks
(SSAW) P = (v0, v1, . . . , v�) from v0 to v� = u over
unblocked vertices v1, v2, . . . , v� = u, and �(P) = �

denotes the length of the walk P .

Proof Due to Proposition 3, for unblocked u 	= v0, the event
X ′u 	= Y ′u occurs only if cXu 	= cYu and u accepts its proposal
in at least one chain among X ,Y . Observe that any edge uv

between unblocked vertices u, v either passes the check in
both chains X ,Y or does not pass the check in both chains.
Therefore, the event X ′u 	= Y ′u occurs for an unblocked u 	=
v0 only if the following events occurs simultaneously:

– cXu 	= cYu , which according to Proposition 2, occurs only
if there is a SSAW P = (v0, v1, . . . , v�) from v0 to v� =
u through unblocked vertices v1, . . . , v� such that P is a
path of disagreement;

– for all unblocked neighbors w ∈ Γ U (u), the edge uw

passes the check, which means cXw /∈ {cXu , Xu} (and
meanwhile cYw /∈ {cYu ,Yu} by coupling) for all w ∈
Γ U (u);

– all blocked neighbors w ∈ Γ B(u) passes the check in at
least one chains among X ,Y , which means either cXw /∈
{cXu , Xu} for all w ∈ Γ B(u) or cYw /∈ {cYu ,Yu} for all
w ∈ Γ B(u).

More specifically, these events occur only if:

– there is a SSAW P = (v0, v1, . . . , v�) from v0 to
v� = u through unblocked vertices v1, . . . , v� such that
cXvi ∈ {Xv0 ,Yv0} for 1 ≤ i ≤ � − 1, which occurs with

probability
(
2
q

)�−1
;

– if u ∈ Γ (v0), then cXu = Yv0 (and meanwhile cYu = Xv0}
by coupling), and if u /∈ Γ (v0), cXu ∈ {Xv0 ,Yv0}\{cXv�−1}
(and meanwhile cYu ∈ {Xv0 ,Yv0} \ {cYv�−1} by coupling),

which in either case, occurs with probability 1
q condition-

ing on (cXv�−1 , c
Y
v�−1);

– cXw /∈ {cXu , Xu} (and meanwhile cYw /∈ {cYu ,Yu} by cou-
pling) for all unblocked w ∈ Γ U (u) \ {v�−1}, which
occurs with probability

(
1− 2

q

)du−bu−1
conditioning on

cXu ;
– either cXw /∈ {cXu , Xu} for allw ∈ Γ B(u) or cYw /∈ {cYu , Yu}
for allw ∈ Γ B(u), which occurs with probability at most[
2
(
1− 2

q

)bu −
(
1− 3

q

)bu]
conditioning on (cXu , cYu )

by the principle of inclusion-exclusion.

Take the union bound over all SSAW P = (v0, v1, . . . , v�)

through unblocked vertices v1, . . . , v� = u. Due to the
strongly-avoiding property, it is safe to apply the chain rule
for every P . We have:

Pr[X ′u 	= Y ′u | X , Y ]

≤
∑

unblocked SSAWP from v0 to u

((
2

q

)�(P)−1 ( 1

q

)(
1− 2

q

)du−bu−1

×
[
2

(
1− 2

q

)bu
−
(
1− 3

q

)bu
])

= 1

q

(
1− 2

q

)du−1 [
2−

(
1− 1

q − 2

)bu
]

∑

unblocked SSAWP from v0 to u

(
2

q

)�(P)−1
.

��
Lemma 8 For any blocked vertex u 	= v0, it holds that

Pr[X ′u 	= Y ′u | X ,Y ]

≤ 1

q

(
1− 2

q

)du−1 ∑

SSAW P from v0 to u
with only u blocked

(
2

q

)�(P)−1
, (19)

where the sum enumerates all the strongly self-avoiding
walks (SSAW) P = (v0, v1, . . . , v�) from v0 to v� = u
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through unblocked vertices v1, . . . , v�−1, and �(P) = �

denotes the length of the walk P .

Proof By the coupling, any blocked vertex u ∈ V proposes
consistently in the two chains, thus cXu = cYu . And we have
Xu = Yu for u 	= v0.

We first consider v0’s blocked neighbors u ∈ Γ B(v0).
There are two cases for such vertex u:

– Xu = Yu /∈ {Xv0 ,Yv0}. Since vertex u is blocked, there
must exist a vertex w0 ∈ Γ (u) \ {v0}, such that Xw0 =
Yw0 ∈ {Xv0 ,Yv0}. Without loss of generality, suppose
Xw0 = Yw0 = Xv0 (and the case Xw0 = Yw0 = Yv0

follows by symmetry). By Proposition 3, X ′u 	= Y ′u only
if cXu = cYu ∈ {Xv0 ,Yv0}. Note that if cXu = cYu = Xv0 ,
then the edge uw0 cannot pass the check in both chains,
hence X ′u = Y ′u , a contradiction. So we must have cXu =
cYu = Yv0 , in which case edge v0u cannot pass the check
in chain Y , thus the event X ′u 	= Y ′u occurs only when
u accepts the proposal in chain X , which happens only
if for all w ∈ Γ (u), cXw /∈ {cXu , Xu}. Remember that we
already have cXu = Yv0 	= Xu and note that all vertices
in chain X propose independently, therefore X ′u 	= Y ′u
occurs with probability at most 1

q

(
1− 2

q

)du
.

– Xu = Yu ∈ {Xv0 ,Yv0}. Without loss of generality, sup-
pose Xu = Yu = Xv0 (and the case Xu = Yu = Yv0

follows by symmetry). By Proposition 3, X ′u 	= Y ′u only
if cXu = cYu ∈ {Xv0 ,Yv0}. If cXu = cYu = Xv0 , the pro-
posal and the current color of u are the same in two
chains, hence X ′u = Y ′u , a contradiction. Sowemust have
cXu = cYu = Yv0 , in which case the edge uv0 cannot pass
the check in chain Y , thus event X ′u 	= Y ′u occurs only if
vertex u accepts the proposal in chain X , which happens
only if for all w ∈ Γ (u), cXw /∈ {cXu , Xu} = {Xv0 ,Yv0}.
Remember that we already have cXu = Yv0 and note that
all vertices in chain X propose independently, therefore

X ′u 	= Y ′u occurs with probability at most 1
q

(
1− 2

q

)du
.

Hence, for all u ∈ Γ B(v0), we have:

Pr[X ′u 	= Y ′u | X ,Y ] ≤ 1

q

(
1− 2

q

)du
≤ 1

q

(
1− 2

q

)du−1
.

The walk P = (v0, u) is a strongly self-avoiding walk
(SSAW) from v0 to u with only u blocked. Therefore (19) is
proved for blocked vertices u ∈ Γ B(v0).

Now we consider the general blocked vertices u /∈
Γ +(v0). Assume that X ′u 	= Y ′u .

If u is blocked by itself, i.e. Xu = Yu ∈ {Xv0 ,Yv0}, then
all the vertices w ∈ Γ +(u) are blocked and hence propose
consistently, and for u /∈ Γ +(v0) all neighborsw have Xw =

Yw, so we must have X ′u = Y ′u . Thus Pr[X ′u 	= Y ′u | X , Y ] =
0 and (19) holds trivially.

If otherwise u is not blocked by itself, i.e. Xu = Yu /∈
{Xv0 ,Yv0}, then u must be blocked by one of its neighbors
w0 ∈ Γ (u) such that Xw0 = Yw0 ∈ {Xv0 ,Yv0}. By Proposi-
tion 3, X ′u 	= Y ′u only if cXu = cYu ∈ {Xv0 ,Yv0}. Wemust have
cXu 	= Xw0 , because if otherwise cXu = Xw0 , together with
that cYu = Yw0 which is due to that c

X
u = cYu and Xw0 = Yw0 ,

the edge uw0 cannot pass the check in both chains, giving us
X ′u = Y ′u , a contradiction.

For the following, we assume cXu = cYu ∈ {Xv0 , Yv0}
and cXu 	= Xw0 , therefore cYu 	= Yw0 because cXu = cYu
and Xw0 = Yw0 . We claim that u must have an unblocked
neighbor w∗ ∈ Γ (u) such that cXw∗ 	= cYw∗ because if oth-
erwise for all the vertices w ∈ Γ +(u), the consistencies
cXw = cYw and Xw = Yw hold, giving us X ′u = Y ′u , a con-
tradiction. Therefore, there is a neighbor w∗ ∈ Γ (u) such
that cXw∗ 	= cYw∗ , which by Proposition 2, means that there is
a strongly self-avoiding walk (SSAW) P = (v0, v1, . . . , v�)

from v0 to v� = u through unblocked v1, v2, . . . , v�−1 = w∗
such that P ′ = (v0, v1, . . . , v�−1) is a path of disagreement.
Fix any SSAW P = (v0, v1, . . . , v�) from v0 to v� = u with
only u blocked. By Proposition 2:

– P ′ = (v0, v1, . . . , v�−1) is a path of disagreement with

probability at most
(
2
q

)�−1
.

As argued above, assuming X ′u 	= Y ′u we must have

– cXu ∈ {Xv0 ,Yv0} \ {Xw0} (and cYu = cXu due to the cou-
pling), which occurs with probability 1

q conditioning on
that P ′ is a path of disagreement.

As argued above, we have {cXv�−1 , c
Y
v�−1} = {cXu , Xw0} =

{cYu ,Yw0} = {Xv0 ,Yv0}. Without loss of generality, suppose
cXv�−1 = cXu = cYu and cYv�−1 = Xw0 = Yw0 (and the case

cXv�−1 = Xw0 = Yw0 and cYv�−1 = cXu = cYu follows by
symmetry). Then edge uv�−1 cannot pass the check in chain
X because cXv�−1 = cXu . Then the event X

′
u 	= Y ′u occurs only

if vertex u accepts the proposal in chain Y , which happens
only if

– cYw /∈ {Yu, cYu } for allw ∈ Γ (u)\{v�−1}. Recall thatYu 	=
cYu . Since P is a strongly self-avoiding, we have w /∈ P
for allw ∈ Γ (u)\{v�−1}. And the proposals aremutually
independent in one chain. Condition on previous events,

this probability is at most
(
1− 2

q

)du−1
.

By the union bound over all SSAW P from v0 to u with u
being the only blocked vertex, and the chain rule for every
P , we have
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Pr[X ′u 	= Y ′u | X ,Y ]

≤ 1

q

(
1− 2

q

)du−1 ∑

SSAW P from v0 to u
with only u blocked

(
2

q

)�(P)−1
.

This proves (19). ��
We then verify the path coupling condition: for some con-

stant δ > 0,

E[Φ(X ′,Y ′) | X ,Y ] ≤ (1− δ)Φ(X ,Y ). (20)

By the linearity of expectation,

E[Φ(X ′,Y ′) | X ,Y ]
=
∑

u∈V
E[φu(X

′,Y ′) | X ,Y ]

= dv0 Pr[X ′v0 	= Y ′v0 | X ,Y ]
+

∑

unblocked
u 	=v0

du Pr[X ′u 	= Y ′u | X ,Y ]

+
∑

blocked
w 	=v0

dw Pr[X ′w 	= Y ′w | X ,Y ]

Due to Lemma 6,

E[φv0 (X
′, Y ′) | X , Y ]

= dv0 Pr[X ′v0 	= Y ′v0 | X , Y ]

≤ dv0

[
1−

(
1− Δ

q

)(
1− 2

q

)Δ (
1− 1

q − 2

)bv0

]
. (21)

On the other hand, due to Lemma 7 and Lemma 8,

∑

u 	=v0

E[φu(X
′, Y ′) | X , Y ]

≤
∑

unblocked
u 	=v0

(
du
q

(
1− 2

q

)du−1 [
2−

(
1− 1

q − 2

)bu
]

×
∑

unblocked SSAW
P from v0 to u

(
2

q

)�(P)−1 )

+
∑

blocked
u 	=v0

du
q

(
1− 2

q

)du−1 ∑

SSAW P from v0 to u
with only u blocked

(
2

q

)�(P)−1

≤
∑

unblocked
u 	=v0

(
Δ

q

(
1− 2

q

)Δ−1 [
2−

(
1− 1

q − 2

)bu
]

×
∑

unblocked SSAW
P from v0 to u

(
2

q

)�(P)−1 )

+
∑

blocked
u 	=v0

Δ

q

(
1− 2

q

)Δ−1 ∑

SSAW P from v0 to u
with only u blocked

(
2

q

)�(P)−1
(22)

≤
∑

P from v0
to any u 	=v0

φP , (23)

where the inequality (22) is due to the monotonicity stated
in Lemma 5, and the last sum in (23) enumerates all the
walks P = (v0, v1, . . . , v�) from v0. And for such walk P ,
the quantity φP is defined as that φP = 0 if P is not a
strongly self-avoiding walk (SSAW), and for a SSAW P =
(v0, v1, . . . , v�) from v0 to any v� = u:

φP =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δ
q

(
1− 2

q

)Δ−1 [
2−

(
1− 1

q−2
)bu] ( 2

q

)�−1
(I)

Δ
q

(
1− 2

q

)Δ−1 (
2
q

)�−1
(II)

0 (III)

I : if all v1, . . . , v� are unblocked;
II : if all v1, . . . , v�−1 are unblocked and v� = u is blocked;
III : otherwise.

It is easy to verify the inequality (23) with this definition of
φP .

Given any walk P = (v0, v1, . . . , v�) from v0 such that
all v1, . . . , v� are unblocked, we further define that

ΦP =
(q
2

)�−1 ∑

P ′ extends P
φP ′, (24)

where the sum enumerates all walks (not necessarily strongly
self-avoiding) P ′ = (v0, v1, . . . , v�, v�+1, . . .) with P as its
prefix, including P itself.

Then by the inequality (23) the expected distance except
for v0 can be expressed as:

∑

u 	=v0

E[φu(X
′,Y ′) | X ,Y ]

≤
∑

P from v0
to any u 	=v0

φP

=
∑

u∈Γ (v0)\Γ B (v0)

Φ(v0,u) +
∑

u∈Γ B (v0)

φ(v0,u)

=
∑

u∈Γ (v0)\Γ B (v0)

Φ(v0,u) + Δbv0

q

(
1− 2

q

)Δ−1
. (25)

Here each (v0, u) is a path (of length 1) from v0 to its neighbor
u.

And more importantly, for ΦP we have the following
recurrence. For any walk P = (v0, v1, . . . , v�) from v0
through unblocked vertices v1, . . . , v� = u, if P is not
strongly self-avoiding then ΦP = 0; and if otherwise P is
strongly self-avoiding, then the following recurrence follows
directly from the definition (24) of ΦP :
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ΦP =
(q
2

)�−1
φP +

(q
2

)�−1 ∑

w∈Γ B (u)

φ(P,w)

+ 2

q

∑

unblocked w∈Γ (u)
w 	=v�−1

Φ(P,w)

≤ Δ

q

(
1− 2

q

)Δ−1 [
2−

(
1− 1

q − 2

)bu
+ 2bu

q

]

+ 2

q

∑

unblocked w∈Γ (u)
w 	=v�−1

Φ(P,w), (26)

where (P, w) denotes thewalkP ′ = (v0, v1, . . . , v�, w) that
extends P .

The following lemma essentially states that ΦP is max-
imized when the number of blocked neighbors bu = 0 and
then the value of ΦP is upper bounded by the fixpoint for
this recurrence.

Lemma 9 If 3Δ < q ≤ 3.7Δ + 3 and Δ ≥ 5, then for any
walk P = (v0, v1, . . . , v�) from v0 such that all v1, . . . , v�

are unblocked, it holds that

ΦP ≤ Δ

q − 2Δ+ 2

(
1− 2

q

)Δ−1
.

Proof We prove by induction on the length of the walk.
Let P = (v0, v1, . . . , v�) be a walk from v0 such that all
v1, . . . , v� are unblocked and v� = u. When � is longer than
the longest strongly self-avoiding walk among unblocked
v1, . . . , v�, then P is not a SSAW and thus ΦP = 0.

Assume that the lemma holds for all unblocked walks
longer than �. Then due to the recurrence (26),

ΦP ≤ Δ

q

(
1− 2

q

)Δ−1 [
2−

(
1− 1

q − 2

)bu
+ 2bu

q

]

+ 2

q

∑

unblocked w∈Γ (u)
w 	=v�−1

Φ(P,w)

(I.H.) ≤ Δ

q

(
1− 2

q

)Δ−1 [
2−

(
1− 1

q − 2

)bu
+ 2bu

q

]

+ 2(Δ− bu − 1)Δ

q(q − 2Δ+ 2)

(
1− 2

q

)Δ−1

=
[
1−

(
1− 1

q − 2

)bu
− 4Δ− 4

q(q − 2Δ+ 2)
· bu

+ Δ

q − 2Δ+ 2
· q
Δ

]
Δ

q

(
1− 2

q

)Δ−1
,

which is bounded from above by Δ
q−2Δ+2

(
1− 2

q

)Δ−1
if

(
1− 1

q − 2

)bu
+ 4Δ− 4

q(q − 2Δ+ 2)
· bu ≥ 1.

The inequality holds trivially when bu = 0. It is then suf-
ficient to prove that LHS is monotone on integer bu ≥ 0:

Denoted f (x) =
(
1− 1

q−2
)x + 4Δ−4

q(q−2Δ+2) · x ,

f (bu + 1)− f (bu) = 4Δ− 4

q(q − 2Δ+ 2)
−
(
1− 1

q − 2

)bu ( 1

q − 2

)

(since bu ≥ 0) ≥ 4Δ− 4

q(q − 2Δ+ 2)
− 1

q − 2
,

which is nonnegative for 3Δ − 3 − √9Δ2 − 26Δ+ 17 ≤
q ≤ 3Δ − 3 + √9Δ2 − 26Δ+ 17. In particular this holds
when 3Δ < q ≤ 3.7Δ + 3 and Δ ≥ 5. This completes the
induction. ��
Proof of Lemma 4: Combine (21) and (25), with Lemma 9,
we obtain

E[Φ(X ′, Y ′) | X , Y ]
=
∑

u∈V
E[φu(X

′, Y ′) | X , Y ]

≤ dv0

[
1−

(
1− Δ

q

)(
1− 2

q

)Δ (
1− 1

q − 2

)bv0

]

+ Δ(dv0 − bv0 )

q − 2Δ+ 2

(
1− 2

q

)Δ−1
+ Δbv0

q

(
1− 2

q

)Δ−1
. (27)

We need the following technical inequality:

(
1− Δ

q

)
≤
(
1− Δ

q

)(
1− 1

q − 2

)bv0

+ 2Δ− 2

(q − 2)(q − 2Δ+ 2)
bv0 (28)

The equality holds trivially when bv0 = 0. It is then sufficient
to verify that the RHS is monotone on integer bv0 ≥ 0. We

denote g(x) =
(
1− Δ

q

) (
1− 1

q−2
)x+ 2Δ−2

(q−2)(q−2Δ+2) x , and

g(bv0 + 1)− g(bv0)

= q

(q − 2Δ+ 2)(q − 2)
− 1

q − 2

−
(
1− Δ

q

)(
1− 1

q − 2

)bv0 1

q − 2

≥ q

(q − 2Δ+ 2)(q − 2)
− 1

q − 2
− q −Δ

q(q − 2)
,

which is nonnegative if q
(q−2Δ+2) ≥ 1 + q−Δ

q . This easily

holds for 1
2 (5Δ− 4−√17Δ2 − 32Δ+ 16) ≤ q ≤ 1

2 (5Δ−
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4 + √17Δ2 − 32Δ+ 16). In particular, it holds as long as
Δ ≤ q ≤ 3.7Δ+ 3 and Δ ≥ 9.

With the inequality (28), the RHS in (27) is maximized
when b0 = 0 and hence

E[Φ(X ′, Y ′) | X , Y ]

≤ dv0

[
1−

(
1− Δ

q

)(
1− 2

q

)Δ

+ Δ

q − 2Δ+ 2

(
1− 2

q

)Δ−1]
.

Recall thatΦ(X ,Y ) = dv0 . The path coupling condition (20)
holds when there is a constant δ > 0 such that

(
1− Δ

q

)(
1− 2

q

)Δ

− Δ

q − 2Δ+ 2

(
1− 2

q

)Δ−1
≥ δ. (29)

For q = α�Δ and Δ → ∞, then the LHS becomes

e−2/α�
(
1− 1

α� − 1
α�−2

)
, which equals 0 if α� = 2+√2.

Furthermore, for q ≥ αΔ, the LHS become:

(
1− Δ

q

)(
1− 2

q

)Δ

− Δ

q − 2Δ+ 2

(
1− 2

q

)Δ−1

≥
(
1− 2

q

)Δ (
1− Δ

q
− Δ

q − 2Δ

)

≥
(
1− 2

αΔ

)Δ (
1− 1

α
− 1

α − 2

)

≥
(
1− 2

α

)(
1− 1

α
− 1

α − 2

)

which is a positive constant independent of Δ when α >

α� = 2+√2.
Altogether, by the path coupling Lemma 2, if αΔ ≤ q ≤

3.7Δ + 3 for a constant α > 2 + √2 and Δ ≥ 9, then the
mixing rate is bounded by τ(ε) = O(log

( n
ε

)
). ��

5 Lower bounds

In this section, we show lower bounds for local sampling.
Let G(V , E) be a network, and I an instance of MRF or
weighted local CSP defined on graph G. For example, I =
(G, [q], A, b) for a MRF with edge activities A = {Ae}e∈E
and vertex activities b = {bv}v∈V .

We assume that each vertex v ∈ V may access to an
independent random variableΨv as its source of randomness.
Then a t-round protocol specifies a family of functions�v,I ,
such that for each vertex v ∈ V , the output Xv is produced
as

Xv = �v,I(Ψu, u ∈ Bt (v)),

where Bt (v) = {u ∈ V | dist(u, v) ≤ t} represents the
t-ball centered at v. Let μout denote the distribution of the

output random vector X = (Xv)v∈V . The goal is to have
dTV (μout, μ) ≤ ε, where μ = μI is the Gibbs distribution
defined by the MRF instance I.

Note that in above we allow the protocol �v,I executed
at each vertex v ∈ V to be aware of the instance I of the
MRF. This is much stronger than the original LOCAL model.
In fact, the only locality property we are using to prove our
lower bounds is that for any X = (Xv)v∈V returned by a
t-round protocol:

∀u, v ∈ V :
dist(u, v) > 2t �⇒ Xu and Xv are independent. (30)

The lower bounds implied by this property is due to the local-
ity of randomness.

For many natural MRFs, the Gibbs distributionμ exhibits
the following exponential correlations: There exist constants
δ, η > 0 such that for a path P of length n, any vertices u, v

from the path, there are two spin states σu, σ
′
u ∈ [q] such

that μu(σu) ≥ δ, μu(σ
′
u) ≥ δ for the marginal distribution

μu induced by μ at vertex u and

dTV
(
μv(· | σu), μv(· | σ ′u)

) ≥ ηdist(u,v). (31)

This exponential correlation property is satisfied by many
MRFs, in particular, the proper q-colorings for any constant
q. For MRFs having this property, for any ε > exp(−o(n)),
vertex pairs (u, v) with sufficiently small dist(u, v) =
Ω(log 1

ε
) will contribute at least an ε total variation distance

between Gibbs (σu, σv) and any independent (Xu, Xv). And
due to (30), this gives an Ω(log 1

ε
) lower bound for local

sampling from any MRF satisfying (31), where ε is the total
variation distance.

We then show that the Ω(log n) lower bound holds even
for a constant total variation distance ε. A similar Ω(log n)

lower bound for sampling independent sets is proved inde-
pendently in [33]. Altogether it shows that the O

(
log
( n

ε

))

upper bound in Theorem 2 is optimal.

Theorem 7 Let q ≥ 3 be a constant and ε < 1
3 . Any t-round

protocol that samples uniform proper q-coloring in a path
within total variation distance ε must have t = Ω(log n).

Proof We actually prove the lower bound for all MRFs sat-
isfying a stronger exponential correlation property stated as
follows: There exist constants δ, η > 0 such that for a path
P of length n, for any non-adjacent vertices x, u, v, y in the
path from left to right, any spin states σx , σy ∈ [q], there exist
two spin states σu, σ

′
u ∈ [q] such that μu(σu | σx , σy) ≥

δ, μu(σ
′
u | σx , σy) ≥ δ and

dTV
(
μv(· | σu, σx , σy), μv(· | σ ′u, σx , σy)

) ≥ ηdist(u,v).

(32)
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It can be verified by a simple recursion for marginal proba-
bilities in paths [45] that this property as well as the weaker
correlation property (31) hold for uniformproper q-colorings
in paths for any constant q ≥ 3.

Let P = (w0, w1, . . . , wn−1) be a path of n vertices.

For i = 0, 1, . . . ,m where m =
⌊

n−1
3(2t+1)

⌋
, we denote

xi = w3(2t+1)i ; and for i = 0, 1, . . . ,m − 1, denote
ui = w3(2t+1)i+2t+1, and vi = w3(2t+1)i+2(2t+1). We denote
F = {xi | 0 ≤ i ≤ m} andU = {ui , vi | 0 ≤ i ≤ m−1}, and
let C = F ∪U . We call the vertices in C the centers, and the
vertices in F andU the fixed and unfixed centers respectively.
Note that the pairs (ui , vi ) of consecutive unfixed centers are
separated by the fixed centers xi ’s. Due to the conditional
independence of MRF, conditioning on any particular con-
figurationσF ∈ [q]F of fixed centers, for aσ ∈ [q]P sampled
from the Gibbs distribution μ consistent with σF over F , the
pairs (σui , σvi ) are mutually independent of each other. For
the followings we assume that we are conditioning on an
arbitrarily fixed σF ∈ [q]F .

Let Xui and Xvi be the respective output of ui and vi in a
t-round protocol. Due to the observation of (30), Xui and Xvi

are mutually independent. According to the exponential cor-
relation of (32), by choosing a suitably small t = O(log n),
the total variation distance between (σui , σvi ) and (Xui , Xvi )

is at least exp(−Ω(t)) = n− 1
2 .

We denote Xi = (Xui , Xvi ) and Yi = (σui , σvi ), and
consider the random vector X = (Xi )0≤i≤m−1 and Y =
(Yi )0≤i≤m−1 where Y is sampled conditioning on an arbi-
trarily fixed σF ∈ [q]F . As we argued above, bothX = (Xi )

and Y = (Yi ) are vectors of mutually independent variables,

and dTV (Xi ,Yi ) ≥ n− 1
2 . Therefore, for any coupling of X

and Y , we have

Pr[X 	= Y] = 1−
m−1∏

i=0
Pr[Xi = Yi | ∀ j < i,X j = Y j ]

≥ 1−
(
1− n−1/2

)m
. (33)

Note that in an arbitrary coupling (X ,Y), the pairs (Xi ,Yi )

are not necessarily mutually independent of each other even
though Xi ’s (and Yi ’s) are mutually independent in X (and
in Y). Nevertheless, conditioning on (X j ,Y j ) for j < i
will only affect the joint distribution of (Xi ,Yi ) but not the
marginal distributions of Xi and Yi because of the mutual
independence between Xi ’s (and between Yi ’s). And by the
coupling lemma, we have Pr[Xi = Yi ] ≤ 1−dTV (Xi ,Yi ) ≤
1 − n− 1

2 for any coupling of (Xi ,Yi ). The inequality (33)
follows.

Since (33) holds for any coupling (X ,Y), applying the
coupling lemma again, we obtain that

dTV (X ,Y) ≥ 1−
(
1− n−1/2

)m = 1− o(1), (34)

when t = O(log n) and m = Ω(n/ log n).
Recall that the above Y is sampled conditioning on an

arbitrary configuration σF ∈ [q]F of fixed centers. Now we
consider a σ ∈ [q]P sampled from the Gibbs distribution μ

on the path P and its restrictions σF , σU and σC on F = {xi },
U = {ui , vi } and C = F ∪ U . Also let X be the vector
of values returned by the vertices in P in a t-round proto-
col, and XF , XU and XC its restrictions on the respective
sets of centers. The theorem follows if we can show that
dTV (X, σ ) > 1

3 for our choice of t = O(log n). By defini-
tion of the total variation distance, we have:

dTV (X, σ ) ≥ dTV (XC , σC )

= 1

2

∑

σF∈[q]F

∑

σU∈[q]U

(∣∣μ(σF , σU )

− Pr[XF = σF ∧ XU = σU ]
∣∣
)

= 1

2

∑

σF∈[q]F

∑

σU∈[q]U

(∣∣μ(σF )μ(σU | σF )

− Pr[XF = σF ]Pr[XU = σU ]
∣∣
)

≥
∑

σF∈[q]F
μ(σF ) · 1

2

∑

σU∈[q]U
|μ(σU | σF )− Pr[XU = σU ]|

− 1

2

∑

σF∈[q]F
|μ(σF )− Pr[XF = σF ]| . (35)

Note that

dTV (X, σ ) ≥ dTV (XF , σF )

= 1

2

∑

σF∈[q]F
|μ(σF )− Pr[XF = σF ]| .

If this quantity is greater than 1/3, then we already have
dTV (X, σ ) > 1/3 and the lower bound is proved. If other-
wise, we suppose that

1

2

∑

σF∈[q]F
|μ(σF )− Pr[XF = σF ]| ≤ 1

3
.

Observe that for any σF ∈ [q]F , we have
1

2

∑

σU∈[q]U
|μ(σU | σF )− Pr[XU = σU ]| = dTV (X ,Y)

≥ 1− o(1),

where Y = (Yi = (σui , σvi ))0≤i≤m−1 is sampled condition-
ing on σF and the inequality is due to (34).
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Therefore, the total variation distance in (35) can be fur-
ther bounded as

dTV (X, σ ) ≥
∑

σF∈[q]F
μ(σF )(1− o(1))− 1

3

= 1− o(1)− 1

3
>

1

3
.

��
Next,we state a strongΩ(diam) lower bound for sampling

with long-range correlations.

5.1 AnÄ(diam) lower bound in the non-uniqueness
regime

We consider the weighted independent sets of graphs, the
hardcore model. Given a graph G(V , E) and a fugacity
parameter λ > 0, each configuration σ in

IS(G) =
{
σ ∈ {0, 1}V : ∀(u, v) ∈ E, σuσv = 0

}

indicates an independent set I in G and is assigned a weight
w(σ) = λ|I |. The Gibbs distribution μ = μG is defined over
all independent sets in G proportional to their weights. As
discussed in Sect. 2.2, the model is an MRF.

The hardcore model on graphs with maximum degree Δ

undergoes a computational phase transition at the uniqueness

threshold λc(Δ) = (Δ−1)Δ−1
(Δ−2)Δ , such that sampling from the

Gibbs distribution can be done in polynomial time in the
uniqueness regime λ < λc [20,60] and is intractable unless
NP=RP in the non-uniqueness regime λ > λc [8,28,55,56].

The following theorem states an Ω(diam) lower bound
for sampling from the hardcore model in the non-uniqueness
regime. In particular when λ = 1 the model represents the
uniform independent sets and the non-uniquenessλ > λc(Δ)

holds when Δ ≥ 6, which gives us Theorem 3.

Theorem 8 Let Δ ≥ 3 and λ > λc(Δ). Let ε > 0 be a
sufficiently small constant. For all N > 0 there exists a graph
G on Θ(N ) vertices with maximum degree Δ and diameter
diam(G) = Ω(N 1/11) such that for the hardcore model on
G with fugacity λ, any t-round protocol that samples within
total variation distance ε from theGibbs distributionμ = μG
must have t = Ω(diam(G)).

Wefollow the approaches in [8,27,28,55,56] for the computa-
tional phase transition. The network G = HG is constructed
by lifting a graph H with a gadget G, such that sampling
from the hardcore model on HG with λ > λc(Δ) effectively
samples a maximum cut in H . We choose H to be an even
cycle, inwhich themaximumcut imposes a long-range corre-
lation among vertices. And to sample with such a long-range
correlation, the sampling algorithm must not be local.

Unlike the results of [8,27,28,55,56] which are for com-
putational complexity of approximate counting, here we
prove unconditional lower bounds for sampling in the LOCAL
model. Our lower bound is due to the long-range correlations
in the random max-cut rather than the computational com-
plexity of optimization. Technical-wise, this means that in
addition to show that amax-cut in H is sampled, we also need
that the sampled max-cut is distributed almost uniformly.

5.1.1 The random graph gadget

We now describe the random graph gadget which is essential
to the hardness of sampling. The gadget is constructed in two
steps. For positive integers n, r and Δ, we first describe the
construction of the random bipartite (multi)graph Gr

n :

– Let V+ and V− be two vertex sets with |V+| = |V−| =
n + r , such that V± = U± � W± where

∣∣U±
∣∣ = n and∣∣W±∣∣ = r . Let V = V+ ∪ V−, W = W+ ∪ W− and

U = U+ ∪U−.
– Uniformly and independently sample Δ − 1 perfect

matchings between V+ and V− and then uniformly and
independently sample a perfect matching between U+
and U−. The union of all these matchings gives us the
random bipartite (multi)graph Gr

n , in which every vertex
in U has degree Δ and every vertex in W has degree
Δ− 1.

Now we describe the second part of the construction. Let
0 < θ < ψ < 1/8 be constants. Let r ′ := (Δ −
1)�θ logΔ−1 n�+2�ψ

2 logΔ−1 n�. Note that r ′ = o(n1/4). First, we
sample G from the distribution Gr ′

n . Next, attach k disjoint
(Δ−1)-ary trees of even depth l (with k = (Δ−1)�θ logΔ−1 n�
and l = 2�ψ

2 logΔ−1 n�) to W±, such that every vertex in
W is a leaf of exactly one tree and the trees do not share
common vertices with the bipartite graph G, apart from
the vertices in W . Let T± denote the roots of those trees
(|T+| = |T−| = k), called “terminals”. We denote the fam-
ily of graphs that can be constructed this way by G̃(k, n,Δ).
Note that our construction is still bipartite with sizeΘ(n) and
the terminals in T+ and T− belongs to distinct partitions of
the bipartite graph.

The phase of a configuration σ , denoted as Y (σ ), is
defined as

Y (σ ) :=
{
+ if

∑
v∈U+ σv ≥∑v∈U− σv,

− if
∑

v∈U+ σv <
∑

v∈U− σv.

It is easy to verify that the random bipartite graphGr
n in the

first step is an expander with high probability. The following
proposition was proved in [8].
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Proposition 4 (Lemma 8 & Lemma 9 in [8]) If λ > λc(Δ) =
(Δ−1)Δ−1
(Δ−2)Δ then there exist two constants 0 < q− < q+ < 1

such that the followings hold. Let Q±T denote the product
measure on configurations in {0, 1}T so that the spin states
are i.i.d. Bernoulli with probability q± on T+ and q∓ on T−,
that is:

Q±T (σT ) = (q±)
∑

v∈T+ σv
(
1− q±

)|T+|−∑v∈T+ σv

· (q∓)
∑

v∈T− σv
(
1− q∓

)|T−|−∑v∈T− σv
.

For any δ > 0, there exists sufficiently large constant N0(δ)

such that for all n > N0(δ) the followings hold altogether
with positive probability for G ∼ G̃(k, n,Δ):

– (expander) G is connected with diam (G) = O(log n);
– (balanced phases) PrG [Y (σ ) = ±] ∈ [(1 − δ)/2, (1 +

δ)/2];
– (phase-correlated almost independence) ∀τT ∈ {0, 1}T ,

PrG [σT = τT | Y (σ ) = ±] /Q±T (τT ) ∈ [1− δ, 1+ δ];

where PrG is the probability law for σ sampled from μG.
By the probabilistic method, there exists a G satisfying the

above conditions.

5.1.2 Reduction frommax-cut

Let H be a cycle with m vertices where m > 0 is an even
integer. Fix constants θ = ψ = 1/9 and letG ∈ G̃(2k, n,Δ),
with k = Θ(m10/9) and n = Θ(k1/θ ) = Θ(m10), be the
graph that satisfies the conditions in Proposition 4.

– For each vertex x ∈ H let Gx be a copy of G. We denote
by T±x the respective set of 2k terminals in Gx . Let ĤG

be the disconnected copies of the Gx , x ∈ H .
– For every edge (x, y) ∈ H , add k edges between T+x and

T+y and similarly add k edges between T−x and T−y . This
can be done in such a way that the resulting (multi)graph
HG is Δ-regular.

Definition 4 For each x ∈ H , we write Yx = Yx (σ ) for
the phase of a configuration σ on Gx . Let Y = (Yx )x∈H ∈
{+,−}V (H). Given the phase Y ′ ∈ {+,−}V (H), we define:

ZHG (Y ′) =
∑

σ∈IS(HG )

λ‖σ‖11{Y(σ ) = Y ′},

where

IS(HG) =
{
σ ∈ {0, 1}V (HG ) : ∀uv ∈ E(HG), σuσv = 0

}

is the set of all independent sets in HG . We also use PrHG to
represent the probability law for σ sampled from μHG .

Note that the cycle H has precisely two maximum cuts.
A key property for proving the lower bound is that in the
non-uniqueness regime, sampling from the hardcore model
on graph HG corresponds to sampling a maximum cut in H
almost uniformly.

Theorem 9 Let λ > λc(Δ). Let Y1,Y2 ∈ {+,−}V (H) cor-
respond respectively to the two maximum cuts in H. It holds
that:

PrHG [Y(σ ) = Y1] = PrHG [Y(σ ) = Y2] ≥ 1

2
− o(1). (36)

The theorem is implied by the following lemma, which is
proved by applying a calculation in [55] with the improved
gadget property Proposition 4.

Lemma 10 Let Y ′,Y ′′ ∈ {+,−}V (H) and δ > 0. Suppose
that G satisfies the conditions in Proposition 4. It holds that

PrHG

[Y(σ ) = Y ′]

PrHG [Y(σ ) = Y ′′] ≥
(
1− δ

1+ δ

)2m

(Θ/Γ )k[Cut(Y ′)−Cut(Y ′′)],

whereΘ = (1−q+q−)2 and Γ = (1− (q+)2)(1− (q−)2);
and Cut(Y) = |{(x, y) ∈ E(H) : Yx 	= Yy}| for a Y ∈
{+,−}V (H).

Proof Since the graph ĤG consists of a collection of dis-
connected copies of G, the distribution of a configuration on
ĤG is given by the product measure of configurations on the
(Gx )x∈H . In particular the phases are independent, therefore

ZĤG (Y ′)
ZĤG (Y ′′) =

ZĤG (Y ′)/ZĤG

Z ĤG (Y ′′)/ZĤG

= PrG [Y (σ ) = +]
∑
x∈H

1{Y ′x=+} · PrG [Y (σ ) = −]
∑
x∈H

1{Y ′x=−}

PrG [Y (σ ) = +]
∑
x∈H

1{Y ′′x =+} · PrG [Y (σ ) = −]
∑
x∈H

1{Y ′′x =−}

≥
(
1− δ

1+ δ

)m

. (37)

Note that the ratio ZHG (Y ′)/ZĤG (Y ′) is precisely the prob-
ability of a σ sampled fromμĤG being an independent set in
HG . And due to Proposition 4, conditioning on the phase Y ′
the spins of σ⋃

x∈H Tx are almost independent i.i.d. Bernoulli
with probabilities q+ or q− depending on the phase, there-
fore

ZHG (Y ′)
ZĤG (Y ′) = Pr ĤG

[
σ is an IS in HG | Y(σ ) = Y ′

]

= Pr ĤG

[
∀(u, v) ∈ E(HG) \ E(ĤG), σuσv 	= 1 | Y(σ ) = Y ′

]

≥ (1− δ)m
∑

σ⋃
x∈H Tx

QσT (Y ′)

= (1− δ)mΓ k|E(H)|(Θ/Γ )kCut(Y ′), (38)
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where

QσT (Y ′) =
[
1{∀(u, v) ∈ E(HG) \ E(ĤG), σuσv 	= 1}

×
∏

x∈H
Q

Y ′x
Tx

(σTx )

]
.

Similarly, we can obtain

ZHG (Y ′′)
ZĤG (Y ′′) ≤ (1+ δ)mΓ k|E(H)|(Θ/Γ )kCut(Y ′′). (39)

Combining (37), (38) and (39), we have:

PrHG

[Y(σ ) = Y ′]

PrHG [Y(σ ) = Y ′′] =
ZHG (Y ′)
ZHG (Y ′′)

≥
(
1− δ

1+ δ

)m

(Θ/Γ )k[Cut(Y ′)−Cut(Y ′′)] · ZĤG (Y ′)
ZĤG (Y ′′)

≥
(
1− δ

1+ δ

)2m

(Θ/Γ )k[Cut(Y ′)−Cut(Y ′′)].

��

Proof of Theorem 9: Let Y ′,Y ′′ ∈ {+,−}V (H) such that
Cut(Y ′) > Cut(Y ′′). Let δ > 0, by Lemma 10, we have

PrHG

[Y(σ ) = Y ′]

PrHG [Y(σ ) = Y ′′] ≥
(
1− δ

1+ δ

)2m

(Θ/Γ )k[Cut(Y ′)−Cut(Y ′′)].

Note that for λ > λc(Δ) = (Δ−1)Δ−1
(Δ−2)Δ , we have Θ > Γ .

Thus for k = Θ(m10/9) we have

PrHG

[Y(σ ) = Y ′]

PrHG [Y(σ ) = Y ′′] ≥
(
1− δ

1+ δ

)2m

(Θ/Γ )k ≥ 4m .

Since the size of {+,−}V (H) is at most 2m , it follows that
with probability at least 1 − o(1) the phases Y(σ ) attain
a maximum cut in H . Therefore, we only need to prove
ZHG (Y1) = ZHG (Y2) for the two maximum cuts Y1 and
Y2 in H . By simple calculation, we have

ZHG (Y1)

= ZĤG (Y1) · Pr ĤG

[
σ ∈ IS(HG) | Y(σ ) = Y1

]

= ZĤG (Y1)

· Pr ĤG

[
∀(u, v) ∈ E(HG) \ E(ĤG), σuσv 	= 1 | Y(σ ) = Y1

]

= ZĤG · PrG [Y = +]m/2 · PrG [Y = −]m/2

· Pr ĤG

[
∀(u, v) ∈ E(HG) \ E(ĤG), σuσv 	= 1 | Y(σ ) = Y1

]

and

ZHG (Y2)

= ZĤG (Y2) · Pr ĤG

[
σ ∈ IS(HG) | Y(σ ) = Y2

]

= ZĤG (Y2)

· Pr ĤG

[
∀(u, v) ∈ E(HG) \ E(ĤG), σuσv 	= 1 | Y(σ ) = Y2

]

= ZĤG · PrG [Y = +]m/2 · PrG [Y = −]m/2

· Pr ĤG

[
∀(u, v) ∈ E(HG) \ E(ĤG), σuσv 	= 1 | Y(σ ) = Y2

]
.

By symmetry of the even-length cycle, it holds that

Pr ĤG

[
∀(u, v) ∈ E(HG) \ E(ĤG), σuσv 	= 1 | Y(σ ) = Y1

]

= Pr ĤG

[
∀(u, v) ∈ E(HG) \ E(ĤG), σuσv 	= 1 | Y(σ ) = Y2

]
.

��

5.1.3 Proof of theÄ(diam) lower bound

Now we are ready to prove Theorem 8. Let N be sufficiently
large. We choose an integer n = Θ(N 10/11) and even integer
m = Θ(N 1/11) such that m/2 is odd, so that a gadget G is
constructed to satisfy Proposition 4, and the graph G = HG ,
where H is a cycle of length m, is constructed as described
in Sect. 5.1.2. Note that diam (G) ≥ diam(H) ≥ m/2 and
|V (G)| = Θ(N ), therefore diam (G) = Ω(N 1/11).

Let σ ′ denote the output of a t-round protocol with t ≤
0.49·diam(G) on networkG, whose distribution is denoted as
μt ; and letσ be sampled from the hardcoreGibbs distribution
μ = μG . By contradiction, we assume that dTV (μt , μ) ≤ ε

for sufficiently small constant ε.
Let Y ′,Y ′′ ∈ {+,−}V (H) denote the phases correspond-

ing to the two maximum cuts in the cycle H . Therefore, by
Theorem 9, we have

Pr[Y(σ ) ∈ {Y ′,Y ′′}] ≥ 1− o(1).

We pick u, v ∈ V (G) which satisfy that distG(u, v) =
diam (G). Since G = HG is constructed by replacing each
vertex x in H with Gx which is an identical copy of G, it
must hold that u ∈ Gx , v ∈ Gy for some vertices x, y in
H with distH (x, y) = m/2. And since m/2 is odd, without
loss of generality, we suppose that Y ′x = +,Y ′y = − and
Y ′′x = −,Y ′′y = +. Moreover, for all u′ ∈ Gx , v

′ ∈ Gy , by
the triangle inequality we have:

distG(u, u′)+ distG(u′, v′)+ distG(v′, v)

≥ distG(u, v) = diam (G) .
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Due to Proposition 4, it holds that diam(G) = O(log n), thus
we have:

distG(u′, v′) ≥ diam(G)− O(log n) = (1− o(1))diam (G).

For the σ ′ returned by a t-round protocol where t ≤ 0.49 ·
diam(G), according to the property (30), the σ ′Gx

and σ ′Gy
are

independent of each other, thus the phases of Gx and Gy on
σ ′ are independent of each other:

Pr
[
Yx (σ

′) = + | Yy(σ
′) = −]

= Pr
[
Yx (σ

′) = + | Yy(σ
′) = +] . (40)

On the other hand, since dTV
(
σ ′, σ

) ≤ ε, we have

Pr
[
Yx (σ

′) = + | Yy(σ
′) = −]

= Pr
[
Yx (σ ′) = + ∧ Yy(σ

′) = −]

Pr
[
Yy(σ ′) = −

]

≥ Pr
[
Yx (σ ) = +∧ Yy(σ ) = −]− ε

Pr
[
Yy(σ ) = −]+ ε

(by dTV(σ ′, σ ) ≤ ε)

≥ Pr
[Y(σ ) = Y ′]− ε

Pr
[
Yy(σ ) = −]+ ε

≥ 1/2− o(1)− ε

Pr [Y(σ ) 	= Y ′′]+ ε
≥ 1− 2ε − o(1)

1+ 2ε + o(1)
, (by Theorem 9)

and

Pr
[
Yx (σ

′) = + | Yy(σ
′) = +]

= Pr
[
Yx (σ ′) = + ∧ Yy(σ

′) = +]

Pr
[
Yy(σ ′) = +

]

≤ Pr
[
Yx (σ ) = +∧ Yy(σ ) = +]+ ε

Pr
[
Yy(σ ) = +]− ε

(by dTV(σ ′, σ ) ≤ ε)

≤ Pr
[Y(σ ) /∈ {Y ′,Y ′′}]+ ε

Pr [Y(σ ) = Y ′′]− ε

≤ 2ε + o(1)

1− 2ε − o(1)
. (by Theorem 9)

This implies that

Pr
[
Yx (σ

′) = + | Yy(σ
′) = +] < Pr

[
Yx (σ

′) = + | Yy(σ
′) = −]

by taking ε to be a sufficiently small constant, which contra-
dicts the independence given in (40).

6 Conclusion

In this paper, we study the local sampling problem and ask
a new question about local computation: whether a locally
definable joint distribution can be sampled locally.

On the positive side, we give two distributed sampling
algorithmsLubyGlauber andLocalMetropolis.LubyGlauber

achieves O(Δ log n) mixing time under Dobrushin’s con-
dition and LocalMetropolis may achieve optimal O(log n)

mixing time under a stronger mixing condition. Thus many
locally definable joint distributions can be sampled locally.

On the negative side, we give anΩ(log n) lower bound for
sampling from a broad class of locally defined joint distribu-
tions. Thus the O(log n)-radius can be considered as the new
criteria for being local for distributed sampling algorithms.
Furthermore, we give an Ω(diam) = nΩ(1) lower bound for
sampling weighted independent sets in the non-uniqueness
regime. Since independent set is trivial to construct, this
gives a strong separation between local sampling and local
construction. The lower bounds hold even if every vertex is
aware of the graph structure, which means the hardness for
local sampling is due to the discrepancy between the locality
of randomness in distributed algorithms and the long-range
correlation in the joint distribution from which we want to
sample.
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