
ar
X

iv
:1

70
5.

03
41

4v
1 

 [
cs

.L
G

] 
 8

 M
ay

 2
01

7

A Distributed Learning Dynamics in Social Groups

L. Elisa Celis∗1, Peter M. Krafft2, and Nisheeth K. Vishnoi3
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Abstract

We study a distributed learning process observed in human groups and other social animals.

This learning process appears in settings in which each individual in a group is trying to decide

over time, in a distributed manner, which option to select among a shared set of options. Specif-

ically, we consider a stochastic dynamics in a group in which every individual selects an option

in the following two-step process: (1) select a random individual and observe the option that

individual chose in the previous time step, and (2) adopt that option if its stochastic quality was

good at that time step. Various instantiations of such distributed learning appear in nature, and

have also been studied in the social science literature. From the perspective of an individual, an

attractive feature of this learning process is that it is a simple heuristic that requires extremely

limited computational capacities. But what does it mean for the group – could such a simple,

distributed and essentially memoryless process lead the group as a whole to perform optimally?

We show that the answer to this question is yes – this distributed learning is highly effective

at identifying the best option and is close to optimal for the group overall. Our analysis also

gives quantitative bounds that show fast convergence of these stochastic dynamics. We prove

our result by first defining a (stochastic) infinite population version of these distributed learning

dynamics and then combining its strong convergence properties along with its relation to the

finite population dynamics. Prior to our work the only theoretical work related to such learning

dynamics has been either in deterministic special cases or in the asymptotic setting. Finally, we

observe that our infinite population dynamics is a stochastic variant of the classic multiplicative

weights update (MWU) method. Consequently, we arrive at the following interesting converse:

the learning dynamics on a finite population considered here can be viewed as a novel distributed

and low-memory implementation of the classic MWU method.

∗This research was supported in part by an SNF Project Grant (205121 163385).
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1 Introduction

A powerful assumption – often leveraged in biology, ecology, and evolutionary psychology in order to reason

about why humans, animals, and other biological organisms behave in certain ways – is to suppose that be-

havior is tuned to alleviate evolutionary pressure. This assumption provides deductive power because once

a behavior is assumed to be optimally or near-optimally solving some problem, one can then attempt to dis-

cover which problem the system might be solving through the computational lens. We study this phenomenon

in the context of social behavior. In particular, we consider a class of distributed social learning dynamics

which are at once conspicuous in daily life, oft discussed in the social science literature, and also empirically

verified; yet are also simple to the point that they appear perhaps suboptimal. Consider the setting consisting

of a social group of N individuals presented with a set of m options of different quality. The quality of each

option is assumed to be an independent random variable whose parameters are unknown to the individuals

and remain fixed over time. At each time step each individual selects one option and observes a stochastic

indicator of that option’s quality. The goal of the individual is to identify the best option.

The distributed learning dynamics then boils down to individuals copying or imitating the behavior of others

in an effort to solve this problem. Such dynamics roughly have the following two steps: At each time step,

each individual independently decides which option to select by first

1. Sampling – observing the choice of a random member of the group at the last time step, and then

2. Adopting – deciding whether or not to adopt the recommended option as a function of the most recent

(stochastic) signal of that option’s quality.

Instances of such two-stage distributed learning dynamics in social settings have been widely proposed and

validated with data in the literature on human choice behavior (e.g., [7, 10, 29, 32, 34]) and animal behavior

(e.g., [40, 43]). They are cognitively simple because individuals need not maintain any history of previous

observations; rather they only use the most recent quality signal of one option. Furthermore, as with many

other distributed protocols observed in nature (e.g., [27,35]), each step requires only limited communication

with other group members. In light of the fact that such distributed learning processes are ubiquitous, the

question arises – why? To answer this, we need to understand the following: What does such a distributed

learning dynamics imply for the group as a whole?

Our Contribution.

We consider a general model that captures a wide variety of distributed learning dynamics in social settings

as defined above (see Section 2.1 for a formal definition) and study two fundamental algorithmic questions:

• do such learning dynamics (despite each individual having a limited memory) have the potential to

successfully converge to the best option for the collective population? and if so,

• how efficient are such dynamics?

We prove that the answer to the first question is yes and provide quantitative bounds for the second in the

most general case in which the population is finite and both the sampling and adopting step are stochastic.

In general, due to the fact that populations are finite and there is stochasticity in both steps, the social learning

dynamics may be chaotic, with no single option dominating, and the popularity of options rising and falling
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over time. However, we prove that social learning leads the population, as a whole, to be competitive – pretty

quickly – as compared to the best strategy in hindsight; i.e., the dynamics have low regret (see section 2.1).

Prior to our work, many instances of such social learning dynamics have been proposed and validated (see,

e.g., [39] for an exposition), and, even though on the surface there seem to be several related processes, the

only theoretical work has been either in deterministic special cases or in the asymptotic setting where both

the size of the population and time goes to infinity; such results (see [12,22] and Section 3) effectively focus

on deriving asymptotic (large deviation) bounds. To the best of our knowledge, ours is the first rigorous

analysis of this distributed learning dynamics in a realistic setting when the size of the group is finite.

Key to our results are the following two realizations which we can use to understand the emergent behavior

of the distributed learning dynamics:

• In the infinite population limit, by rewriting the underlying stochastic equations of the distributed

learning dynamics, the individuals are effectively implementing a stochastic variant of the classic mul-

tiplicative weights update (MWU) method [4] at the group-level.1

• While the finite population distributed learning dynamics can be approximated with its infinite pop-

ulation limit for short times, to ensure that the regret bounds remain valid for longer times, further

new ideas are required. Here, we show how we can appeal to the strong convergence properties of the

infinite population stochastic dynamics to ascertain that the regret remains bounded for all times in the

finite population case.

Computationally, contrasting with typical implementations of the MWU method, in the learning dynamics

we consider, no individual keeps track of the weights. Rather, the popularity of the options in the previ-

ous time step serve as a proxy for weights, and suffice to propel the process forward. Thus, we arrive at

the following interesting conclusion – the learning dynamics in social groups considered here can inform

novel, low-memory, low-communication, distributed implementations of the MWU algorithm in the stochas-

tic setting; perhaps appropriate for low-power devices in distributed settings such as sensor networks or the

internet-of-things.

2 Model, Our Results and Overview

2.1 The Model

The learning environment we consider consists of a set of N individuals repeatedly choosing among m options

during a sequence of T discrete time steps. Each option has an unknown underlying quality, η1 ≥ η2 ≥
·· · ≥ ηm ∈ [0,1], which represents the probability that the option is “good” at any given time step; we let

Rt
j = Bernoulli(η j) be the indicator random variable for the event that option j is good at time t. The goal

of each individual is to select the best option. Now, let X t
i j ∈ {0,1} be the indicator random variable for the

event that individual i chooses to adopt option j at time t. The distributed learning dynamics we consider is

a two-stage model:

1This stochastic process is not to be mistaken with the standard deterministic MWU or its continuous

time limit, the replicator dynamics.
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(1) Sampling. First, individuals select which option to consider, and then they choose whether or not to

adopt that option. To obtain an option to consider at time t + 1, with probability µ individual i selects an

option j ∈ [m] to consider uniformly at random, and with probability (1− µ) individual i selects an option

j ∈ [m] proportional to its current popularity:

Qt
j =

∑N
i=1 X t

i j

∑m
k=1 ∑N

i=1 X t
ik

is the fraction of the population that adopts option j at time t, and we assume Q0
j =

1
m

for all j.2 Note that this

can be implemented in a distributed manner as suggested in the introduction by letting i select a companion

i′ ∈ {1, . . . ,N} uniformly at random, and observing the choice of individual i′ at time t. The parameter µ > 0

is small and represents a fraction of the population which may take independent decisions; its role is to ensure

that the population does not get stuck in a bad option.

(2) Adopting. In the second stage, after choosing an option j to consider, individual i must then decide

whether to commit to this option or to sit out during this time step. Individual i observes the most recent

quality signal associated with j, namely Rt+1
j and decides to adopt the option with probability fi(R

t+1
j ) ∈

{0,1} where fi is a stochastic function such that E[ fi(1)]>E[ fi(0)]. Hence, for each i, we can express fi in

the following form:

fi(R
t+1
j ) =







1 with probability βi if Rt+1
j = 1

1 with probability αi if Rt+1
j = 0

0 otherwise.

Here, αi ≤ βi are parameters of the model and represent how sensitive individuals are to the most recent signal

of goodness as compared to the weight they give to the recommendation. For simplicity in the exposition,

we assume that all fi are identical, and drop the index i. This assumption is not essential for our results – we

omit the details. Thus, the two relevant parameters are 0 ≤ α ≤ β ≤ 1.

Examples of the model. Many instances of social learning in the social sciences and economics literature

can be interpreted as special cases of the distributed learning dynamics introduced above. Here we give

two concrete examples – one direct and one indirect; see more discussion in Section 3. The simplest such

example [31] corresponds exactly to our model when α = 1−β for some β ≥ 1
2

when η1 >
1
2
=η2 = · · ·=ηm.

The authors validate this model using observational data on the decisions of amateur investors on an online

platform in which users are able to copy the actions of others.

Another instance, which takes a bit of explanation, appears in the economics literature [22]. We present it

here because it illustrates two common ways in which more general-looking models, specifically ones with

continuous-valued rewards and reward differences across individuals, can often be reinterpreted in such a way

that our framework applies. The authors consider a learning setting where m = 2 and rewards rt
j are drawn

from a continuous-valued distribution F j. Furthermore, their model incorporates player-specific stochastic

shocks, so that if ε t
i j ∼ G is the size of the shock to player i on option j at time t, then the reward to player i

is rt
j + ε t

i j. The sampling step (1) is similar, except that µ = 0. In the adoption step (2), if player i sampled

2In the absence of prior knowledge, we initialize at the point where all options are equally popular. This

also simplifies the exposition, but is not crucial to our results – our results hold from arbitrary initial condi-

tions.
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player i′, then player i adopts option 1 if rt
1 + ε t

i1 + ε t
i′1 > rt

2 + ε t
i2 + ε t

i′2, and adopts option 2 otherwise. To

convert this to our setting, let Rt
1 (and Rt

2) be the indicator random variable for the event that rt
1 > rt

2 (and

rt
1 < rt

2); this occurs with some probability p (and 1− p) and defines our parameters η1 = p > 1− p = η2.3

Note that in the adoption step, we can replace ε t
i1 + ε t

i′1 − ε t
i2 − ε t

i′2 by a continuous random variable ξ . Then

β = P [ξ > rt
2 − rt

1|rt
1 > rt

2] and α = P [ξ > rt
2 − rt

1|rt
2 > rt

1]. As the ε t
i js are i.i.d., ξ has zero mean and is

symmetric, hence α < β and our results apply. The authors consider the infinite population version of this

model where a constant fraction of the population updates at each time step, and analyze its asymptotic

properties as T → ∞.

2.2 Our Results and Overview

In order to explain our results for the distributed learning dynamics we first need to quantify a measure of

optimality. In the remainder of the paper we let α = 1− β . This just simplifies the reading and has no

impact on the statements of the theorem – the same bounds hold with a dependence on
β
α as opposed to

β
1−β .

Let Qt
j be the random variable which measures the fraction of individuals that chose option j at time t, as

defined above. Wishfully, we might like to prove that as t becomes large, Qt
js, for all j 6= 1 are close to zero

(assuming η1 > η2). However, simple examples show that this may not be the case; the stochastic process is

non-monotone, even when there is a significant gap between η1 and η2, and may step away significantly from

Qt
1 ≈ 1 even for large t. Instead, we consider the average expected performance of the group when compared

to that of the best option:

RegretN(T ) := η1 −
1

T

T

∑
t=1

m

∑
j=1

E[Qt−1
j Rt

j].

As the name suggests, this is nothing but the average regret of this process; namely, the difference between

the group’s expected average reward if all individuals who adopted an option select the optimal j = 1, and

the group’s expected average reward selected according to the distributed learning process up to time T . The

following is the main technical contribution of the paper; see Theorem 4.4 for a formal statement of this

result.

Distributed learning achieves near-optimal regret in a social group. For a range of parameters 1/2 ≤ β ≤
e/(e+1), µ a small constant, N roughly at least m

1/δ 2
and for all T ≥ lnm

δ 2 , RegretN(T ) is at most 6δ where

δ = ln
(

β
1−β

)

. Thus, the closer β is to 1/2, the better the regret.

The proof of the above result relies on the following connection between our distributed learning dynamics

in a finite population and what can be thought of as an infinite population variant of the distributed learning

dynamics. The latter can also be seen as a stochastic variant of the MWU method (see Lemma 4.5) which

we explain below. Consider m experts where expert j generates a stochastic reward Rt+1
j at time t that is 1

with probability η j and 0 otherwise. In this setting, a single player maintains weight W t
j for option j at time

t, which is updated multiplicatively in the following manner:4

3Note that in their model the Rt
1 and Rt

2 are correlated as exactly one of them is 1 in every time step;

however independence across t remains which suffices for our results.
4It is worth noticing the similarity between the weights update (in particular the first term) and that used

in the result of Christiano et al. [18] who developed a variant of the MWU method in the design of a fast

algorithm for a flow problem.
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W t+1
j :=

(

(1−µ)W t
j +

µ

m

m

∑
k=1

W t
k

)

︸ ︷︷ ︸

deterministic sampling

β Rt+1
j (1−β )1−Rt+1

j

︸ ︷︷ ︸

stochastic rewards

and W 0
j = 1 for all j. We arrive at this update equation by the (non-rigorous) thought process that in the

infinite population case, we can replace the stochastic quantities by their expectation in the sampling stage:

in this case, the expected fraction of individuals picking the option j in the sampling stage of the social

learning dynamics is proportional to (1− µ)W t
j +

µ
m ∑m

k=1W t
k . This gives us the first term in the right-hand

side above. The second term is just f (Rt+1
j ) with respect to parameter β . We note that, since the rewards

are stochastic, it is not the standard adversarial MWU setting and, since all the information is known to the

population as a whole, it is also not the standard setting of stochastic bandits.

Even though these weight update equations are arrived at by a heuristic calculation, we can prove that for

short time periods, there is a coupling between the infinite and the finite distributed learning dynamics such

that the stochastic trajectories corresponding to the weights in the infinite population case remain close to

that of the finite population case.

Infinite vs. finite population distributed social learning. If (Pt
j)

m
j=1 is the probability distribution induced

by the weights W t
j after time t for a given sequence of rewards, then for all j, 1− 5t√

N
≤ Pt

j/Qt
j ≤ 1+ 5t√

N
.

The proof of this crucially relies on the fact that µ is strictly positive. On the other hand, the fact that µ > 0

also makes the analysis quite messy. Note that the closeness deteriorates very quickly and, in particular,

the bound becomes uninteresting after about logN time steps. On the other hand, for fixed t, as N → ∞,

the trajectories of the two processes are identical; put another way, the distributed learning process over

infinite populations is identical to the corresponding stochastic MWU method. This is typically the kind

of asymptotic result that exists in the literature. The more interesting and challenging direction is to show

convergence when N is large, but fixed, and T goes to infinity.

In order to leverage this connection between infinite and finite population variants of the distributed learning

dynamics, we first analyze the corresponding regret of the stochastic MWU method, which is defined to be

Regret∞(T ) := η1 −
1

T

T

∑
t=1

m

∑
j=1

E[Pt−1
j Rt

j].

We can establish the following regret bound in this case; see Theorem 4.3.

Infinite population distributed social learning dynamics achieves near-optimal regret. For a range of

parameters 1/2 ≤ β ≤ e/(e+1), µ a small constant, and for all T ≥ lnm
δ 2 , Regret∞(T ) is at most 3δ where

δ = ln
(

β
1−β

)

.

The proof of this obtained by adapting the proof of the MWU method to take into account stochastic rewards.

At this point we would be done except that the closeness between the probability distributions of finite and

infinite distributed learning dynamics holds only for short times – if we run the process for about lnm
δ 2 steps,

then for the probability distributions to be close we would need N ≥ mO(1/δ 2). What about when T ≥ lnm
δ 2 ?

To tackle this problem, we need a new idea. The first observation is that, in fact, the regret bound for the
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infinite population case can be made stronger: roughly, as long as the starting distribution has enough en-

tropy, the regret becomes small in about the same number of steps. Thus, we can break T into epochs of

size approximately lnm
δ 2 and observe that at the beginning of each epoch, each option will have about µ/m

probability – again we need crucially that µ > 0. Thus, we can show convergence starting from such a prob-

ability distribution in
ln(m/µ)

δ 2 iterations. As a consequence, in each epoch, we can bound the regret by about

6δ for slightly larger N. Rewriting it a different way, having a finite population will have an additive error

term of approximately m
1/δ 2

√
N

to the regret obtained by the infinite population. Thus, we rely on the strong

attractive properties of the infinite population stochastic dynamics to obtain quantitative regret bounds for

the finite population social learning dynamics. This contributes to the growing set of connections between

using attractors of dynamical systems to analyze stochastic processes [8, 38, 49, 50]. Details of the proof of

Theorem 4.4 appear in Section 4.3.

3 Related Work

There is a growing body of work in theoretical computer science, and distributed computing theory in particu-

lar, that studies problems arising in the sciences through the computational lens; see, e.g., [1,17,19,27,35,46].

Such studies have also on occasion contributed back to computer science by providing insights into existing

techniques, or giving rise to novel bio-inspired algorithms. Our work touches upon both of these aspects.

Among related studies in the sciences, while dynamics that only have a sampling step [14, 23] or only an

adoption step [30] have been studied, combining both has been shown empirically to result in a better strategy

[34]. Indeed, in line with these observations, one can formally see from our analysis that if we only have

sampling (β = 1−α = 1) or only have adoption (µ = 1), the process does not always converge to the best

option. Hence, both steps of the process seem crucial, and many models in sociology and economics are

such distributed two-step processes [5, 15, 22, 31, 41]. While some models a priori look different, many can

be captured by our formulation; for example, models that have continuous rewards but whose adoption rule

depends on whether the reward is above or below a threshold [11,12,26] can be converted to a binary reward

structure in a standard way. Similarly, differences across individuals can be captured in the functions fi (see

the second example in Section 2.1). While some of these models consider the aggregate popularity of options

over time, many (including models for human behavior, e.g., [31]) consider only the current popularity. In

the economics literature, some similar finite population models have been studied, many of which also fall

into our framework. Their analysis has only been asymptotic as N,T → ∞; such results (see, e.g., [9,12,22])

effectively focus on deriving large deviation bounds. In contrast, the main technical contribution of our work

includes quantitative bounds of the social learning dynamics for finite populations (N < ∞). Asymptotic and

infinite-population results follow as corollaries.

There has been a large body of work on the distributed consensus problem; see for instance [3, 6] and the

references therein. The goal in such problems is for all individuals to agree on a single opinion, and various

distributed dynamics for doing so have been proposed and analyzed. Our setting differs in that there is

additional information – the repeated stochastic signals associated to the quality of each opinion.

In evolutionary game theory, similar-looking deterministic imitator dynamics have been considered (see

[37,44] for an overview). A key difference with this work is the learning environment – we are not attempting

to select a strategy in a game, rather are trying to identify the best option of out a collection. Hence, the reward

of an individual depends on her choice j, while in evolutionary game theory the reward of an individual
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depends on the choices of the entire population. In this setting one can still consider the regret of an individual

(see, e.g., [13]). While fast convergence of similar dynamics has been shown for some special cases (e.g.,

potential games [21] and selfish routing [24]), for general games we cannot expect to always converge quickly

unless PPAD ⊆ P. In fact, it has been shown that in some games, versions of the replicator dynamics may

converge to outcomes that are not optimal, or not even equilibria [26, 42].

The fact that an MWU-like method emerges from a simple distributed behavior of individuals in a social

setting, is somewhat reminiscent of unrelated results that arise in the context of biological evolution [16]

and task allocation among ants [47]. The MWU algorithm [4], or its well-known continuous time limit, the

replicator dynamics [45, 48] can also be seen as a special case of our distributed learning dynamics if we

remove the randomness from both the sampling and adopting steps and the rewards (effectively taking the

process to a deterministic and infinite setting). However, as-is, MWU-type dynamics are different because

each individual must effectively maintain full weights (or a mixed strategy vector) at every time step. Fur-

thermore, the lack of stochasticity and the infinite population setting avoid the key technical hurdles in the

analysis of our model.

Our results suggest that the distributed learning dynamics in finite populations can be viewed as a novel

distributed and approximate implementation of the MWU method. While parallelized implementations for

solving multi-armed bandit problem exist (see, e.g., [2, 25, 28, 33, 36]), in such works each node explicitly

maintains a weight vector on all options. The most distinctive aspect of the distributed MWU interpretation

of the learning dynamics we consider is that no such memory is required – the weights are represented

implicitly by the popularity of the various options, and the sampling and adopting processes require almost

no memory. This difference distinguishes our distributed learning dynamics from prior work on distributed

MWU or bandit methods.

4 Technical Details and Proofs

4.1 Basic Facts

We first recall a few theorems and definitions that will be useful in our proofs.

Theorem 4.1 (Chernoff-Hoeffding bounds [20]). Let Z1,Z2, . . . ,Zn be independent Bernoulli random vari-

ables with mean γi. Let γ := 1
n ∑n

i=1 γi. When 0 < δ ≤ 1, we have P
[∣
∣ 1

n ∑n
i=1 Zi − γ

∣
∣> γδ

]
≤ 2exp

(
−nγδ 2/3

)
.

Definition 4.1. For real numbers A, B, and c ≥ 0, the notation A
c∼ B denotes 1

c
≤ A

B
≤ c.

Fact 4.2. For fixed 0 ≤ δ ≤ 1 and for all 0 ≤ x ≤ 1, eδx ≤ 1+(eδ −1)x.

4.2 The Infinite Population Distributed Learning Dynamics

Consider the following stochastic process: W 0
j := 1 for all 1 ≤ j ≤ m. For t > 0 and for all 1 ≤ j ≤ m

W t+1
j :=

(

(1−µ)W t
j +

µ

m

m

∑
k=1

W t
k

)

β Rt+1
j (1−β )1−Rt+1

j . (1)

This definition parallels the two-step finite population distributed learning dynamics and can be thought of as

an infinite population distributed learning dynamics: W t+1
j is first updated according to W t

j (with weight 1−

8



µ) and with uniform additive factor ∑m
k=1 W t

k/m (with weight µ), and then (stochastically) as the corresponding

function of β and Rt+1
j . The stochasticity is now solely with respect to the Rt

js. Now, consider the following

probability distribution corresponding to these weights, Pt
j :=

W t
j

∑m
k=1 W t

k
, which corresponds to the fraction of

the (infinite) population that has adopted option j at time t.

Let δ := ln
(

β
1−β

)

, and note that we can re-write the above as

W t+1
j := (1−β )

(

(1−µ)W t
j +

µ

m

m

∑
k=1

W t
k

)

eδRt+1
j .

This now takes a more standard form as a multiplicative update; the (1− β ) term can be ignored as it is

cancels out in Pt
j , so the main difference with the standard MWU is the

∑m
k=1 W t

k

m
term that takes up a µ fraction

of the weight. One can think of this as a regularizing term and bears some similarity to what was considered

in the recent breakthrough result on computing flows [18].

Assuming that η1 ≥ η j for all j 6= 1, the optimal strategy for the population is to select option 1. If they did

this, then the average expected gain of the population is η1. On the other hand, the average expected gain of

the population over T iterations while following this stochastic process is 1
T ∑T

t=1 ∑m
j=1E

[

Pt−1
j Rt

j

]

. We now

proceed to understand how the latter compares to the former – in other words, bound the regret of the infinite

population stochastic process. Formally, in the remainder of this subsection, we prove the following result:

Theorem 4.3 (Regret of Infinite Population Distributed Learning Dynamics). Let η1 > η2 ≥ ·· · ≥ ηm, let
1
2
< β ≤ e

e+1
(and hence 0 < δ ≤ 1), and let 6µ ≤ δ 2. Let P0 be the uniform distribution on {1, . . . ,m} and

{Pt}T
t=1 be the probability distributions produced by the infinite population distributed learning dynamics

with stochastic rewards {Rt}T
t=1. Then for T ≥ lnm

δ 2 , the average expected regret after T steps is

Regret∞(T ) = η1 −
1

T
·

T

∑
t=1

m

∑
j=1

E

[

Pt−1
j Rt

j

]

≤ 3δ .

Furthermore, 1
T ∑T

t=1E
[
Pt−1

1

]
≥ 1− 3δ

η1−η2
.

The proof of Theorem 4.3 appears in Section 5

4.3 Main Result: Regret of the Distributed Learning Dynamics in Finite Populations

Theorem 4.4 (Regret of the Distributed Learning Process in Finite Populations). Let η1 > η2 ≥ ·· · ≥ ηm,

let 1
2
< β ≤ e

e+1
(and hence 0 < δ ≤ 1), let 6µ ≤ δ 2, and let δ ′′ :=

√
60m ln N
(1−β)µN

, c := 240m
(1−β)µ , and N is such

that

N

lnN
≥

(

c 4m
µ(1−β)

) 2 ln5

δ 2

δ ′′2 and N10 ≥ 24m lnm

µ(1−β )δ 3
.

Let Q0 be the uniform distribution on {1, . . . ,m} and {Qt}T
t=1 be the probability distributions produced by

the finite population distributed learning dynamics with stochastic rewards {Rt}T
t=1, then for N10

mδ ≥ T ≥ lnm
δ 2 ,

the average expected regret after T steps is η1 − 1
T
·∑T

t=1 ∑m
j=1E

[

Qt−1
j Rt

j

]

≤ 6δ .
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Here, N10 is arbitrary and can be made as large as required at the expense of constants.

In order to prove this result, we first give an analysis which holds for T = lnm
δ 2 , and then show how to leverage

this result for large T .

4.3.1 Small T

To conduct the analysis, we first set up some definitions and which correspond to the two different stages of

the finite population distributed learning process, and show that, in each step, the finite population dynamics

is approximated by the infinite population distributed learning dynamics/MWU stochastic process.

Stage 1. Let Dt
j denote the number of people committed to option j at time t and let Qt

j :=
Dt

j

∑m
k=1 Dt

k
be the

probability distribution capturing the relative popularity of option j at time t. Let S
t+1
j ⊆ [N] denote the set

of people who select j after the first stage in the sampling process in step t + 1 and let St+1
j := |S t+1

j |. Let

Y t+1
i j be the indicator random variable for the event that i chooses j in stage one at time step t +1. Note that

these
{

Y t+1
i j

}N

i=1
are independent conditioned on everything up to time t with

P

[

Y t+1
i j = 1

∣
∣
∣ t
]

=
(

(1−µ)Qt
j +

µ

m

)

≥ µ

m
. (2)

Since St+1
j = ∑N

i=1Y t+1
i j , it follows from linearity of expectation that E

[

St+1
j

∣
∣
∣ t
]

=
(

(1−µ)Qt
j +

µ
m

)

N.

Proposition 4.1. Let t ≥ 0 be fixed. For δ ′ :=
√

30m ln N
µN

≤ 1
2
, with probability at least 1− 2m

N10 (conditioned

on everything up to time t), for all j St+1
j

1+2δ ′
∼

(

(1−µ)Qt
j +

µ
m

)

N. Thus, we deduce that (unconditionally)

with probability 1− 2m
N10 , St+1

j ≥ µN

2m
for all j.

Proof. The proof follows from Chernoff-Hoeffding bound (Theorem 4.1), noting that γ ≥ µ
m

from (2), and

taking a union bound over all j ∈ [m]. For the latter part, note that for any fixed t and for all j, with probability

at least 1− 2m
N10 , St+1

j ≥ 1
1+2δ ′

µN

m
. Since δ ′ ≤ 1

2
, this implies that with probability at least 1− 2m

N10 , we have

St+1
j ≥ µN

2m
.

Stage 2. There are two outcomes for each option j: Rt+1
j = 1 and Rt+1

j = 0. Let Zt+1
i j be the indicator

random variable for the event that i commits to j in stage two of the process. Note that

P

[

Zt+1
i j = 1

∣
∣
∣S

t+1
j ,Rt+1

j , t
]

= β Rt+1
j (1−β )1−Rt+1

j ≥ (1−β ) (3)

if i ∈ S
t+1
j since β ≥ 1/2, and P

[

Zt+1
i j = 1

∣
∣
∣S

t+1
j ,Rt+1

j , t
]

= 0 otherwise. Let Dt+1
j = ∑ j∈S

t+1
j

Zt+1
i j . It

follows from linearity of expectation that E
[

Dt+1
j

∣
∣
∣S

t+1
j ,Rt+1

j , t
]

= St+1
j β Rt+1

j (1−β )1−Rt+1
j .

Proposition 4.2. Let t ≥ 0 be fixed. For δ ′′ :=
√

60m ln N
(1−β)µN

≤ 1
2
, with probability greater than 1− 4m

N10 (condi-

tioned on everything up to time t,S t+1
j ,Rt+1

j ), for and all j Dt+1
j

1+2δ ′′
∼ St+1

j β Rt+1
j (1−β )1−Rt+1

j .

10



Proof. The proof again follows from Chernoff-Hoeffding bound (Theorem 4.1), noting that γ ≥ 1−β from

(3), and taking a union bound over all j ∈ [m]. Here we have also used proposition 4.1 that St+1
j ≥ µN

2m
for

large enough N for all j with probability at least 1− 2m
N10 .

Combining proposition 4.1 and proposition 4.2 we obtain the following.

Proposition 4.3. Let t ≥ 0 be fixed. Let δ ′′ :=
√

60m ln N
(1−β)µN

. With probability greater than 1− 6m
N10 (conditioned

on everything up to time t,Rt+1
j ) Dt+1

j

1+6δ ′′
∼

(

(1−µ)Qt
j +

µ
m

)

Nβ Rt+1
j (1−β )1−Rt+1

j .

Proof. Follows directly from proposition 4.1 and proposition 4.2 and noting that δ ′ ≤ δ ′′ ≤ 1
2
. Thus

(1+2δ ′)(1+2δ ′′)≤ 1+2δ ′+2δ ′′+4δ ′δ ′′ ≤ 1+6δ ′′.

Now we establish a relationship between the probability distributions Pt and Qt . Note that both processes

start with P0 = Q0. Let δt := 5tδ ′′.

Lemma 4.5. There is a coupling such that Pt
j

1+δt∼ Qt
j with probability at least 1− 6tm

N10 for all choices of {Rt
j}s.

Proof. As suggested by our notation, we couple Pt
j and Qt

j so that the realizations of the Rt
js is the same in

both processes for all j and all t.

The proof proceeds by induction on t. The statement holds when t = 0 as, by definition, P0 = Q0. Assume

it holds for t. Thus, with probability at least 1− 6tm
N10 , Pt

j

1+δt∼ Qt
j. Let us condition on this event. Recall that

Pt+1
j =

(

(1−µ)Pt
j +

µ
m

)

β Rt+1
j (1−β )1−Rt+1

j

∑m
k=1

(
(1−µ)Pt

k +
µ
m

)
β Rt+1

k (1−β )1−Rt+1
k

.

Thus, with probability at least 1− 6tm
N10 ,

Pt+1
j

(1+δt)
2

∼

(

(1−µ)Qt
j +

µ
m

)

β Rt+1
j (1−β )1−Rt+1

j

∑m
k=1

(
(1−µ)Qt

k +
µ
m

)
β Rt+1

k (1−β )1−Rt+1
k

.

Here we used induction for both the numerator and the denominator. From proposition 4.2, we know that

Dt+1
j

1+6δ ′′
∼

(

(1−µ)Qt
j +

µ

m

)

Nβ Rt+1
j (1−β )1−Rt+1

j

for all j with probability at least 1− 6m
N10 . Thus, we obtain that with probability at least 1− 6(t+1)m

N10

Pt+1
j

(1+δt)
2(1+6δ ′′)2

∼
Dt+1

j

∑m
k=1 Dt+1

k

= Qt+1
j .

Now note that, assuming that δt = 5tδ ′′ ≤ 1 and δ ′′ ≤ 1
40

,

(1+δt)
2(1+6δ ′′)2 ≤ (1+3δt)(1+13δ ′′)≤ 1+3δt +13δ ′′+39δ ′′δt ≤ 1+4δt +13δ ′′ ≤ 1+5t+1δ ′′ = 1+δt+1

for t ≥ 2. For t = 1 the bound can be checked by a direct calculation.
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Hence, for any fixed set of Rt
js, the trajectories Pt and Qt remain close. Thus, using Theorem 4.3 and

Lemma 4.5, we obtain that η1 −
(
1+5T δ ′′) 1

T ∑T
t=1 ∑m

j=1E

[

Qt−1
j Rt

j

]

− 6T 2m
NT

≤ lnm
δT

+2δ . Here, the first neg-

ative term in the left hand side of the equation occurs when Lemma 4.5 applies and the second negative term

is when it does not. Rearranging, we obtain η1 − 1
T ∑T

t=1 ∑m
j=1E

[

Qt−1
j Rt

j

]

≤ lnm
δT

+2δ +5T δ ′′+ 6mT
N10 . Since

δ ′′ :=
√

240m ln N
(1−β)µN

≤
√

c lnN
N

for c = 240m
(1−β)µ . Thus, when T = lnm

δ 2 , 5T δ ′′ ≤ m
ln5

δ 2
√

c lnN√
N

. Hence, when N is such

that

N

lnN
≥ cm

2 ln5

δ 2

δ ′′2 and N10 ≥ 6m lnm

δ 3
, (4)

then

RegretN(T ) = η1 −
1

T

T

∑
t=1

m

∑
j=1

E

[

Qt−1
j Rt

j

]

≤ 5δ . (5)

This concludes the proof of Theorem 4.4 when T = lnm
δ 2 .

4.3.2 Large T

For large T we need one new ingredient; here we focus on this additional aspect. We first need a slight

generalization of Theorem 4.3 to handle P0 that are not uniform. This is similar to the version of MWU with

restricted distributions as in Theorem 2.4 in [4].

Theorem 4.6 (Regret of Infinite Population Distributed Learning Dynamics with Nonuniform Start). Let

η1 ≥ η2 ≥ ·· · ≥ ηm, let 1
2
< β ≤ e

e+1
(and hence 0 < δ ≤ 1), and let 6µ ≤ δ 2. Let P0

j ≥ ζ for all j ∈
{1, . . . ,m} and {Pt}T

t=1 be the probability distributions produced by the MWU process with stochastic re-

wards {Rt}T
t=1. Then for T ≥ ln(1/ζ)

δ 2 , the average expected regret after T steps is Regret∞(T ) = η1 − 1
T
·

∑T
t=1 ∑m

j=1E

[

Pt−1
j Rt

j

]

≤ 3δ .

The proof closely follows from that of Theorem 4.3, and we omit the details.

Similarly, the results in Section 4.3.1 for small T follow analogously with nonuniform start. This just requires

us to chose N slightly bigger in particular, instead of (4), we would need N such that N
lnN

≥
c

(
1
ζ

) 2 ln5

δ 2

δ ′′2 and N10 ≥
6ln m
ζδ 3 . This gives that the regret of the finite population distributed learning dynamics is at most 5δ when T =

ln(1/ζ)
δ 2 . We now complete the proof of Theorem 4.4 for large T , by breaking the time into epochs consisting

of
ln(1/ζ)

δ 2 time steps. In each epoch, we couple an infinite population distributed learning dynamics with the

finite population distributed learning dynamics such that the starting points are identical at the beginning of

each epoch, and both observe the same sequence of rewards Rt
js.

It remains to lower bound ζ appropriately. From proposition 4.3, it follows that for any t, with probability at

least 1− 6m
N10 , for all j Qt

j ≥
µ(1−β)

4m
. We let ζ := µ(1−β)

4m
, and hence our epochs are of length

ln
(

4m
µ(1−β)

)

δ 2 . This

gives us regret η1 − 1
T ∑T

t=1 ∑m
j=1E

[

Qt−1
j Rt

j

]

≤ 5δ + Tm
N10 . The additive term of Tm

N10 is precisely due to the

fact that with probability 6m
N10 , the above inequality will not be satisfied, in which case the regret could be at

most 1 for that epoch. Finally, note that N10 is arbitrary and can be made as large as required at the expense

of constants. This concludes the proof of Theorem 4.4.
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5 Proof of Theorem 4.3

Let us define the potential function ΦT := ∑m
j=1W T

j , and recall that eδ = β
1−β . Then,

ΦT =
m

∑
j=1

W T
j

= (1−β )
m

∑
j=1

(

(1−µ)W T−1
j +

µ

m

m

∑
k=1

W T−1
k

)

eδRT
j

= (1−β )ΦT−1
m

∑
j=1

(

(1−µ)PT−1
j +

µ

m

)

eδRT
j

0≤RT
j ≤1 , Fact 4.2

≤ (1−β )ΦT−1
m

∑
j=1

(

(1−µ)PT−1
j +

µ

m

)(

1+(eδ −1)RT
j

)

= (1−β )ΦT−1

(

1+(eδ −1)
m

∑
j=1

(

(1−µ)PT−1
j +

µ

m

)

RT
j

)

0≤RT
j ≤1

≤ (1−β )ΦT−1

(

1+µ(eδ −1)+ (1−µ)(eδ −1)
m

∑
j=1

PT−1
j RT

j

)

.

Now, we let δ ′ := (1−µ)(eδ−1)
1+µδ and obtain that

ΦT
δ≤eδ−1

≤ (1−β )(1+µ(eδ −1))ΦT−1

(

1+
(1−µ)(eδ −1)

1+µδ

m

∑
j=1

PT−1
j RT

j

)

1+δ ′x≤eδ ′x

≤ (1−β )(1+µ(eδ −1))ΦT−1eδ ′ ∑m
j=1 PT−1

j RT
j

Φ0=m

≤ (1−β )T (1+µ(eδ −1))T me
δ ′ ∑T

t=1 ∑m
j=1 Pt−1

j Rt
j .

On the other hand,

ΦT ≥ (1−β )T (1−µ)T eδ ∑T
t=1 Rt

1 .

Combining the lower bound and upper bound and taking logarithms we obtain

δ
T

∑
t=1

Rt
1 ≤ lnm+T ln

(

1+µ(eδ −1)

1−µ

)

+δ ′
T

∑
t=1

m

∑
j=1

Pt−1
j Rt

j.

Thus,

δ
T

∑
t=1

Rt
1 −δ ′

T

∑
t=1

m

∑
j=1

Pt−1
j Rt

j ≤ lnm+T ln

(

1+µ(eδ −1)

1−µ

)

.

Now, for µ ≤ 1
2

we know that 1
1−µ ≤ 1+2µ . Also, 1+µ(eδ −1)≤ 1+µ(e−1). Thus, as µ ≤ 1

2
,

1+µ(eδ −1)

1−µ
≤ (1+(e−1)µ)(1+2µ)≤ 1+(e+1)µ +2(e−1)µ2 ≤ 1+2eµ ≤ 1+6µ .

13



Hence, using the inequality ln(1+ x)≤ x for all x ≥ 0, we obtain

ln

(

1+µ(eδ −1)

1−µ

)

≤ 6µ .

Further, using the fact that eδ −1 ≤ δ +δ 2 for 0 ≤ δ ≤ 1, which is implied by the assumption that β ≤ e
1+e

,
it can be seen that

δ ′ =
(1−µ)(eδ −1)

1+µδ
≤ (1−µ)δ (1+δ )

1+µδ
≤ δ (1+δ ).

Therefore,

δ

(
T

∑
t=1

Rt
1 − (1+δ )

T

∑
t=1

m

∑
j=1

Pt−1
j Rt

j

)

≤ lnm+6µT.

Note that ∑T
t=1 ∑m

j=1 Pt−1
j Rt

j ≤ T , hence, the above implies that

δ

(
T

∑
t=1

Rt
1 −

T

∑
t=1

m

∑
j=1

Pt−1
j Rt

j

)

≤ lnm+(δ 2 +6µ)T.

Taking expectations and dividing by T δ we obtain the following regret bound.

η1 −
1

T
·

T

∑
t=1

m

∑
j=1

E

[

Pt−1
j Rt

j

]

≤ lnm

δT
+

(

δ +
6µ

δ

)

.

Assuming 6µ ≤ δ 2 we obtain

η1 −
1

T
·

T

∑
t=1

m

∑
j=1

E

[

Pt−1
j Rt

j

]

≤ lnm

δT
+2δ .

Thus, for T ≥ lnm
δ 2 , we obtain the desired bound

Regret∞(T )≤ 3δ .

From this we can derive the lower bound on the probability that the best option j = 1 is selected as stated in

the second part of the theorem. Firstly, it follows (as Rt
j is independent of Pt−1

j ) that for all T ≥ 1

η1 −
1

T
·

T

∑
t=1

m

∑
j=1

η jE

[

Pt−1
j

]

≤ lnm

δT
+2δ .

Thus,

η1

(

1− 1

T
·

T

∑
t=1

E

[
Pt−1

1

]

)

− η2

T
·

T

∑
t=1

m

∑
j=2

E

[

Pt−1
j

]

≤ lnm

δT
+2δ .

From this we obtain

(η1 −η2)

(

1− 1

T
·

T

∑
t=1

E

[
Pt−1

1

]

)

≤ lnm

δT
+2δ ,

and consequently for T ≥ ln m
δ 2 ,

1

T

T

∑
t=1

E

[
Pt−1

1

]
≥ 1− 3δ

η1 −η2

.

This completes the proof.
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6 Conclusion and Future Work

In this work we study a fundamental distributed learning dynamics prevalent in various social and biological

contexts and provide the first convergence and regret bounds for it in the finite population setting. The

connection between this learning dynamics and the MWU method suggests a novel distributed and essentially

memoryless implementation of the MWU method. Another interpretation of our result comes by looking at

the infinite population limit of the distributed learning dynamics; while an individual can be effectively

solving a stochastic multi-armed bandit problem, the population as a whole is solving a full-information

version of the problem, and hence can be very efficient on the group-level.

Several important directions remain open. The first is to extend our results to the social network setting

where individuals can only sample in step (1) from their neighbors. The question here would be whether,

and to what extent, the efficiency of the group remains as a function of the network topology. It would also

be interesting to explore the distributed learning algorithms when the parameters controlling the quality of

the options (ηis) are allowed to change, or when there is dependence across options and time (e.g., when

the options represent stocks). Lastly, we note that as an algorithm designer, if we were to implement these

learning dynamics as a distributed approximation to the stochastic version of MWU method, we can optimize

β to attain the usual O
(√

lnm/T
)

regret; in the distributed learning dynamics, we are constrained by the

behavior of the group – the regret bound will only be as good as the β they use. This naturally raises the

question of whether human groups match the ideal values for β , perhaps in a context-specific manner, to

achieve good regret bounds.
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