
Life Beyond Set Agreement
David Yu Cheng Chan

Department of Computer Science

University of Toronto

10 King’s College Road

Toronto, Ontario M5S3G4, Canada

davidchan@cs.toronto.edu

Vassos Hadzilacos

Department of Computer Science

University of Toronto

10 King’s College Road

Toronto, Ontario M5S3G4, Canada

vassos@cs.toronto.edu

Sam Toueg

Department of Computer Science

University of Toronto

10 King’s College Road

Toronto, Ontario M5S3G4, Canada

sam@cs.toronto.edu

ABSTRACT
The set agreement power of a shared objectO describesO ’s ability to

solve set agreement problems: it is the sequence (n1,n2, . . .,nk , . . .)
such that, for every k ≥ 1, usingO and registers one can solve the k-
set agreement problem among at most nk processes. It has been

shown that the ability of an object O to implement other objects

is not fully characterized by its consensus number (the first compo-

nent of its set agreement power) [1, 3, 14]. This raises the following

natural question: is the ability of an object O to implement other

objects fully characterized by its set agreement power? We prove

that the answer is no: every level n ≥ 2 of Herlihy’s consensus

hierarchy has two objects that have the same set agreement power

but are not equivalent, i.e., at least one cannot implement the other.

We also show that every level n ≥ 2 of the consensus hierarchy

contains a deterministic object On with some set agreement power

(n1,n2, . . . ,nk , . . .) such that being able to solve the k-set agree-
ment problems among nk processes, for all k ≥ 1, is not enough to

implement On .

KEYWORDS
asynchronous system, shared memory, set agreement, consensus

hierarchy

1 INTRODUCTION
Background and Motivation. The most widely studied problem

in distributed computing is consensus [8] and its natural general-

ization, k-set agreement [5]. With the k-set agreement problem,

each process has a proposal value and must decide on one of the

proposed values such that there are at most k distinct decision

values.

In this paper we consider distributed systems where asynchro-

nous processes may apply operations to wait-free shared objects

and fail by crashing [10]. The k-set agreement number of a shared

objectO is the largest integer nk such that instances ofO and regis-

ters can solve the k-set agreement problem among nk processes, or

it is∞ if instances ofO and registers can solve the k-set agreement

problem among any number of processes. Since 1-set agreement
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is just consensus, the 1-set agreement number of an object is its

consensus number [10]. The set agreement power of an object O
is the infinite sequence (n1,n2, . . .,nk , . . .) where nk is the k-set
agreement number of O for all k ≥ 1.

1
Thus (n1,n2, . . .,nk , . . .) de-

scribes the objectO ’s ability to solve set agreement problems among

various numbers of processes: for all k ≥ 1, O can solve the k-set
agreement problem among n processes if and only if n ≤ nk .

Herlihy showed that instances of any object with consensus

number n, together with registers, can implement in a wait-free

manner any object that can be shared by up to n processes [10]. The

consensus number of an object, however, does not fully characterize

its ability to implement other objects: there are objects O and O ′

that have the same consensus number but instances of O , together

with registers, cannot implementO ′ in a wait-free manner [1, 3, 14].

Since the consensus number of an object is only the first component

of its set agreement power, this raises the following natural question:

does the set agreement power of an object fully characterize its

ability to implement other objects? To formulate this question more

precisely, we define two objects to be equivalent if each can be

implemented from instances of the other and registers in a wait-

free manner. The question then is: are two objects equivalent if and

only if they have the same set agreement power?

Our Result. In this paper, we show that the answer is no. In fact,

we prove the following stronger result: every level n ≥ 2 of the

well-known consensus hierarchy [10] contains a pair of objects

that have the same set agreement power but are not equivalent.
2

We also show that every level n ≥ 2 of the consensus hierarchy

contains a deterministic object On with some set agreement power

(n1,n2, . . . ,nk , . . .) such that being able to solve the k-set agree-
ment problems among nk processes, for all k ≥ 1, is not enough to

implement On .

2 ROADMAP OF THE PROOF
In Section 3, we introduce the n-pseudo-abortable consensus (n-PAC)
object, which is a non-abortable and deterministic version of the

abortable n-DAC object introduced in [9].

In Section 4, we consider the n-DAC problem defined in [9],

and prove that for n ≥ 2 the (n + 1)-DAC problem can be solved

using (n + 1)-PAC objects, but cannot be solved using n-consensus
objects, registers, and a strong version of 2-set agreement objects,

1
In [7], k -set agreement number and set agreement power are called k -set-consensus
number and set consensus power.

2
Recall that an object O is at level n of the consensus hierarchy if instances of the

object and registers can solve consensus among n, but not n + 1, processes, i.e., the
consensus number ofO is n.
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denoted 2-SA objects. This implies:

for n ≥ 2, the (n + 1)-PAC object cannot be implemented

using n-consensus objects, registers, and 2-SA objects.
(1)

In Section 5, we introduce a combination of an n-PAC object and

anm-consensus object, called the (n,m)-PAC object, and show that

for allm ≥ 2, (n,m)-PAC is at levelm of the consensus hierarchy.

In particular, for all n ≥ 2, the (n + 1,n)-PAC object, denoted On , is

at level n of this hierarchy. By definition On is at least as strong as

the (n + 1)-PAC object, therefore, by (1):

for n ≥ 2, On cannot be implemented using

n-consensus objects, registers, and 2-SA objects.
(2)

Finally, in Section 6, for all n ≥ 2 we construct an object O ′n such

that: (a) O ′n has the same set agreement power as On , and (b) O ′n
can be implemented by n-consensus objects, registers, and 2-SA

objects. By (2) and (b):

On cannot be implemented by O ′n objects and registers. (3)

So every level n ≥ 2 of the consensus hierarchy has two objects,

namely, On and O ′n , that are not equivalent to each other, even

though they have the same set agreement power.

Let (n1,n2, . . . ,nk , . . .) be the set agreement power of On . By

construction, the set agreement power ofO ′n is (n1,n2, . . . ,nk , . . .)
as well. Thus, O ′n and registers can solve the k-set agreement prob-

lem among nk processes, for all k ≥ 1. By (3), this implies that

the deterministic object On cannot be implemented from arbitrary

solutions to the k-set agreement problems among nk processes, for

all k ≥ 1, and registers.

3 PSEUDO-ABORTABLE CONSENSUS
OBJECTS

In [9], Hadzilacos and Toueg introduced n-DAC objects that behave

like n-consensus objects except for one key difference: operations

can nondeterministically abort without taking effect as long as the

following conditions are satisfied

• Every operation that aborts is concurrent with another op-

eration.

• No crashed process may cause infinitely many aborts.

In this section, we define n-pseudo-abortable consensus (n-PAC)
objects that behave similarly ton-DAC objects, but are deterministic

and not abortable. Intuitively, for all n ≥ 1, the n-PAC object simu-

lates an n-DAC object by supporting two operations: propose(v, i)
and decide(i), where i is an integer in [1..n] that we call the la-
bel of the operation. A process can use these two operations to

simulate a propose(v) operation on an n-DAC object by first ap-

plying a propose(v, i) operation and then applying a decide(i)
operation with the same label i on the n-PAC object. Whenever

a propose(v, i) operation is performed on an n-PAC object, the

object simulates the invocation of a propose operation with valuev
on the i-th port of the simulated n-DAC object, and returns done.3

Whenever a decide(i) operation is performed, the n-PAC simulates

the completion of the propose operation on the i-th port of the

simulated n-DAC object, and returns the response.

3
The n-DAC has n ports through which operations are applied; in contrast, our n-PAC
object has no ports.

Thus the propose and decide operations form matching pairs,

with each decide operation needing a previous propose operation

with the same label. If a decide(i) operation is performed with-

out a matching propose(−, i) operation performed beforehand, the

n-PAC object becomes permanently upset. Similarly, if a pair of

propose(−, i) operations are performed without a decide(i) in be-

tween, the n-PAC object becomes permanently upset. Intuitively,

this is because two operations were invoked concurrently on port i
of the n-DAC object.

A (sequential) history of an n-PAC object is a sequence of pro-

pose and decide operations applied to that object. We say that the

history of an n-PAC object is legal if for all i ∈ [1..n], the his-

tory of operations with label i performed on the object is either

empty or begins with a propose operation and alternates between

propose and decide operations. Thus an n-PAC object becomes

upset if and only if its history is not legal. For convenience, we say

a propose(−, i) operation on then-PAC object decides a valuev ′ if it
has a matching decide(i) operation that returnsv ′. Once an n-PAC
object becomes upset, it returns the special value ⊥ to all decide

operations but still returns done to all propose operations.
4

To simulate the fact that an n-DAC object can abort when oper-

ations are concurrent, an n-PAC object that is not upset behaves as

follows: if there is an operation between a propose operation and

its matching decide operation, then the decide operation returns ⊥.

So intuitively, an n-PAC object returns ⊥ if it is upset or if it detects

a concurrent operation.

We now describe the n-PAC object more precisely. The state of

such an object consists of:

• A boolean upset, initially false.
• An array V [1..n], initially all nil. Intuitively, V [i] = v if the

last operation with label i is a propose(v, i) operation.
• A variable L, initially nil. Intuitively, L = i if the last opera-
tion is propose(−, i).
• A variable val, initially nil. Intuitively, val contains the con-

sensus value.

The sequential behaviour of the n-PAC object is given by Algo-

rithm 1.

From the above description, it is clear that the sequential specifi-

cation of n-PAC can be formally given in terms of a set of states,

a set of operations, a set of responses, and a state transition rela-

tion. For brevity, we omit this formal definition here. The n-PAC
object is linearizable [11], i.e., the operations propose(−,−) and

decide(−) are atomic. Thus, we consider only sequential histories

of this object.

An n-PAC object is upset if its variable upset = true.

Observation 3.1. If an n-PAC object is upset at some time, it

remains upset thereafter.

In the full paper we show the following properties of n-PAC
objects.

Lemma 3.2. An n-PAC object is upset at time t if and only if the

history of all operations that have been performed on the object by

time t is not legal.

4
We assume that processes do not propose the special values ⊥ and nil.
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Algorithm 1 Sequential specification of the n-PAC object

1: procedure propose(v, i) { 1 ≤ i ≤ n }

2: if V [i] , nil then upset← true
3: if upset = false then
4: L← i
5: V [i] ← v

6: return done

7: procedure decide(i) { 1 ≤ i ≤ n }

8: if V [i] = nil then upset← true
9: if upset = true then return ⊥
10: if L , i then
11: temp← ⊥

12: else
13: if val = nil then val← V [i]

14: temp← val

15: L← nil

16: V [i] ← nil

17: return temp

Lemma 3.3. If an n-PAC object is not upset at time t , then for all

i ∈ [1..n],

V [i] =


v if, at time t , the last operation with

label i is a propose(v, i) operation.
nil otherwise.

Lemma 3.4. If an n-PAC object is not upset at time t ,

L =

{
i if, at time t , the last operation is propose(−, i).
nil otherwise.

Theorem 3.5. An n-PAC object satisfies the following properties:

(a) Agreement: If a decide operation returns a value v , ⊥, and
another decide operation returns a value v ′ , ⊥, then v = v ′.

(b) Validity: If a decide operation returns a value v , ⊥, then a

propose operation proposes v and decides v .
(c) Nontriviality: A decide operation op returns ⊥ if and only if

either (i) the n-PAC object is upset before op, or (ii) there is

no operation before op, or the last operation before op is not a

propose operation with the same label.

4 THE N -DAC PROBLEM
In [9], Hadzilacos and Toueg introduced the n-DAC problem, where

n ≥ 2 processes start with binary inputs and are supposed to de-

cide on a binary value; in addition, one of the n processes is a

distinguished process p that can abort instead of deciding. An algo-

rithm solves the n-DAC problem if every execution of the algorithm

satisfies the following properties:

• Agreement: If a process q decides v and a process q′ de-
cides v ′, then v = v ′.
• Validity: If a process decidesv , then some process that does

not abort has input v .
• Termination:
(a) If the distinguished process p takes infinitely many steps,

then p eventually decides or aborts.

(b) If any process q , p takes infinitely many steps solo (i.e.,

not interleaved with steps of other processes), then q even-

tually decides.

• Nontriviality: If p aborts, then some process q , p took at

least one step.

Algorithm 2 Solving the n-DAC problem using a single n-PAC D

Code executed by the distinguished process p:
1: D .propose(vp ,p)
2: temp← D .decide(p)
3: if temp , ⊥ then
4: decide temp

5: else abort

Code executed by each process q , p:
6: while true do
7: D .propose(vq ,q)
8: temp← D .decide(q)
9: if temp , ⊥ then
10: decide temp

11: break

It is easy to solve the n-DAC problem with an n-PAC object:

the processes numbered 1 to n execute Algorithm 2, where p is

the distinguished process, and vq is the initial value of process q
(1 ≤ q ≤ n). The proof of the following theorem is straightforward

and is given in the full paper.

Theorem 4.1. For all n ≥ 2, the n-DAC problem can be solved

using a single n-PAC object.

We now define the strong 2-set agreement object, denoted 2-SA,

that is designed to solve the 2-set agreement problem among any fi-

nite number of processes. The state of the 2-SA object is a set state,

initially empty. The 2-SA object supports the propose(v) operation,
which adds v to state if state contains fewer than 2 elements,

and returns a value arbitrarily selected from state. Consequently,

a 2-SA object responds to operations with at most two distinct

values, corresponding to the first two distinct values proposed to

the object.
5

Algorithm 3 gives the sequential behaviour of the 2-SA object.

Algorithm 3 Sequential specification of the 2-SA object

1: procedure propose(v)
2: if |state| < 2 then state← state ∪ {v}

3: return arbitrary value from state

From the above, it is clear that the sequential specification of

2-SA can be formally given in terms of a set of states, a set of

operations, a set of responses, and a state transition relation. The

2-SA object is linearizable, i.e., its propose(−) operation is atomic.

5
This object is “strong” because the 2-set agreement problem does not have this

restriction: with the 2-set agreement problem, processes can decide any two of the

proposed values.
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It is straightforward to see that the 2-SA object solves the 2-set

agreement problem among any finite number of processes, as re-

quired. A fortiori, the 2-SA object solves the k-set agreement prob-

lem among n processes for all k ≥ 2 and all n ≥ 1.

In [9], it was shown that for all n ≥ 2, the (n + 1)-DAC prob-

lem cannot be solved using n-consensus objects and registers. We

strengthen this result by showing the following:

Theorem 4.2. For all n ≥ 2, the (n + 1)-DAC problem cannot be

solved using n-consensus objects, registers, and 2-SA objects.
6

Proof. In the following, we use the bivalency technique intro-

duced by Fischer et al. [8], and we assume the reader is familiar

with the associated terminology. In particular, a configuration C
is v-valent (for v ∈ {0, 1}) if starting from C no process can de-

cide v = 1 − v; C is univalent if it is either 0-valent or 1-valent;

and C is bivalent if it is not univalent [8, 10].

Assume, for contradiction, that there exists an algorithm A that

solves the (n + 1)-DAC problem among n + 1 processes using only

n-consensus objects, registers, and 2-SA objects. Let I be the initial
configuration where the input of the distinguished process p is 1

and the input of every other process is 0.

The following standard claim still holds for the (n + 1)-DAC

problem:

Claim 4.2.1. No configuration reachable from an I is both 0-valent
and 1-valent.

Proof. Suppose a configuration C reachable from an I is both
0-valent and 1-valent. There are n + 1 > 1 processes, so some

process q is not the distinguished process p. By Termination (b) of

the (n + 1)-DAC problem, there exists a finite q-solo history H such

that H is applicable to C and q decides some value v ∈ {0, 1} in
H (C). Then, since q decides v in H (C), H (C) is not v-valent, where
v = 1−v . ThusC is also notv-valent, contradicting our assumption

that C is both 0-valent and 1-valent. �
Claim 4.2.1

Claim 4.2.2. If p aborts in a configurationC that is reachable from

initial configuration I , then C is 0-valent.

Proof. Suppose, for contradiction, that p aborts in a configura-

tion C that is reachable from I , but C is not 0-valent. Then, there is

a finite history H , applicable toC , such that some process decides 1

in H (C). Since p aborts in C , p also aborts in H (C), since aborting
is irrevocable. Since C is reachable from I , so is H (C). This violates
the Validity property of the (n + 1)-DAC problem, since p is the

only process with input 1 in I . �
Claim 4.2.2

The above claim immediately implies:

Observation 4.2.3. If p aborts or decides in a configuration C
that is reachable from initial configuration I , then C is univalent.

Claim 4.2.4. I is bivalent.

6
Recall that an n-consensus object solves consensus among n but not n + 1 processes.
A precise specification of the n-consensus object as a deterministic linearizable object,

for n ≥ 2, is given in [12, 13]: for the first n propose operations, the n-consensus
object returns the value of the first propose operation, and it returns a special value ⊥

to any subsequent propose operation.

Proof. Starting from I , let p run solo until it either decides or

aborts, which eventually happens by Termination (a). By Nontrivi-

ality, since p is the only process that takes steps, p does not abort.

Furthermore, since p is the only process that takes steps, p does not

know the input of any other process. Thus by Validity, p decides its

own input 1, so I is not 0-valent.
Starting from I , let a processq , p run solo until it decides, which

eventually happens by Termination (b). Since q is the only process

that takes steps, q does not know the input of any other process.

Thus by Validity, q decides its own input 0, so I is not 1-valent.
Since I is neither 0-valent nor 1-valent, I is bivalent. �

Claim 4.2.4

Claim 4.2.5. There is a bivalent configurationC ′ that is reachable
from I such that for every history H that is applicable to C ′ and ends
with a step of the distinguished process p, H (C ′) is univalent.

Proof. Suppose, for contradiction, that the claim is false. In

other words, for every bivalent configuration C ′ that is reachable
from I , there is a history H such that H is applicable to C ′, H ends

with a step ofp, andH (C ′) is bivalent. SinceH (C ′) is itself a bivalent
configuration that is reachable from I , a straightforward induction

can be used to construct an infinite history that contains infin-

itely many steps of p but never reaches a univalent configuration.

Thus from Observation 4.2.3, p takes infinitely many steps without

deciding or aborting, violating Termination (a). �
Claim 4.2.5

Claim 4.2.6. There is a configuration C reachable from I , a pro-
cess q , p, and steps ep , e

′
p of p and eq of q, such that ep and eqe

′
p

are applicable to C , ep (C) is v-valent and eqe
′
p (C) is v-valent for

some v ∈ {0, 1}.

Proof. Let C ′ be a configuration as in Claim 4.2.5. Let fp be a

step of p that is applicable toC ′. By Claim 4.2.5, fp (C
′) is univalent.

Let v ∈ {0, 1} be such that fp (C
′) is v-valent.

Subclaim 4.2.6.1. There is a finite p-free history H and a step f ′p
of p such that H f ′p is applicable to C ′, and H f ′p (C

′) is v-valent.

Proof. Since C ′ is bivalent, there is a configuration C ′′ that is
reachable from C ′ such that some process decides v in C ′′, and so

C ′′ is v-valent. Let H ′ be a history such that C ′′ = H ′(C ′). There
are two cases:

Case 1. H ′ is p-free.
Then let H = H ′, and f ′p be a step of p applicable to C ′′ =

H (C ′). SinceC ′′ isv-valent, so is f ′p (C
′′) = H f ′p (C

′). ThusH

is a finite p-free history and f ′p is a step of p such that H f ′p
is applicable to C ′, and H f ′p (C

′) is v-valent as wanted.

Case 2. H ′ is not p-free.
Then let H be the longest p-free prefix of H ′, and let f ′p be

the step of p in H ′ immediately after H . Thus H f ′p is a prefix

of H ′. Since f ′p is a step of p and H f ′p is applicable to C ′,

by Claim 4.2.5, H f ′p (C
′) is univalent. Then, since H f ′p is a

prefix ofH ′ andH ′(C ′) = C ′′,C ′′ is reachable fromH f ′p (C
′).

Finally, sinceC ′′ andH f ′p (C
′) are both univalent, andC ′′ isv-

valent and reachable fromH f ′p (C
′),H f ′p (C

′) is alsov-valent.
�

Subclaim 4.2.6.1

Subclaim 4.2.6.2. The history H of Subclaim 4.2.6.1 is not empty.
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Proof. Suppose, for contradiction, that H is empty. Thus there

are two steps of p, fp and f ′p , such that fp (C
′) isv-valent and f ′p (C

′)

is v-valent. Since processes are deterministic, fp and f ′p are steps

by p on the same object O . Since fp (C
′) and f ′p (C

′) have opposite

valence, O must be nondeterministic. Since the algorithm uses

only n-consensus objects, registers, and 2-SA objects, and both

n-consensus objects and registers are deterministic, O is a 2-SA

object. Thus the steps fp and f ′p of p are propose operations on

the 2-SA object O . Furthermore, since p is deterministic, the value

proposed by p in fp is the same as in f ′p . From the sequential

specification of the 2-SA object (Algorithm 3), the state of the 2-SA

object only records values that are proposed to it, not values that

it returns. Thus the state of O is the same in fp (C
′) as in f ′p (C

′).

Consequently, fp (C
′) and f ′p (C

′) differ only in the state of p.

Now, let q be a process other than p. By Termination (b), there

exists a finite q-solo history Ĥ such that Ĥ is applicable to fp (C
′)

and q decides in Ĥ . Since fp (C
′) and f ′p (C

′) differ only in the

state of p, Ĥ is also applicable to f ′p (C
′). Thus q decides the same

value in fpĤ (C
′) as in f ′p Ĥ (C

′), contradicting the fact that fp (C
′)

and f ′p (C
′) are univalent configurations with opposite valence.

�
Subclaim 4.2.6.2

LetH be a history as in Subclaim 4.2.6.1. By Subclaim 4.2.6.2, it is

a non-empty history H = h1h2. . .hk , where h1, h2, . . ., hk are steps

of processes that are not p. LetC0,C1, . . .,Ck be the configurations

such that C0 = C ′ and Ci = hi (Ci−1) for all i , 1 ≤ i ≤ k . For
each i , 0 ≤ i ≤ k , we now define a step hp,i of p applicable to Ci .
Let hp,0 = fp , hp,k = f ′p , and for 0 < i < k , let hp,i be any step of p
that is applicable to Ci .

By Claim 4.2.5, hp,i (Ci ) is univalent for all i , 0 ≤ i ≤ k . Since
hp,0(C0) = fp (C

′), hp,0(C0) is v-valent. Then, since hp,k (Ck ) =
H f ′p (C

′), hp,k (Ck ) is v-valent. Thus, there is some i , 0 ≤ i < k ,

such that hp,i (Ci ) is v-valent and hp,i+1(Ci+1) is v-valent. Let C =
Ci , and let q , p be the process that executes step hi+1, eq =
hi+1, ep = hp,i , and e ′p = hp,i+1. Then we have that ep and eqe

′
p

are applicable to C , ep (C) is v-valent, and eqe
′
p (C) is v-valent, as

wanted. �
Claim 4.2.6

Let configurationC , process q, steps ep , e
′
p , and eq , andv ∈ {0, 1}

be as in Claim 4.2.6. Thus,

ep (C) is v-valent, while eqe
′
p (C) is v-valent. (4)

Since processes are deterministic, ep and e
′
p access the same objectX

and eq accesses some object Y .

Claim 4.2.7. X = Y .

Proof. Suppose, for contradiction, that X , Y . Then the step eq
of q that is applicable toC is also applicable to ep (C). There are two
cases:

Case 1. ep = e ′p .
Then ep and eq commute at C; i.e., epeq and eqep are both

applicable to C , and epeq (C) = eqep (C) = eqe
′
p (C). Since

epeq (C) has the same valence as ep (C), this contradicts (4).
Case 2. ep , e ′p .

Since ep , e ′p , X is a nondeterministic object, i.e., a 2-SA

object. Furthermore, since processes are deterministic, the

value proposed by p to the 2-SA object X is the same in ep as

in e ′p . Then, since eq is an operation on Y , X , the state of X

is the same in epeq (C) as in eqe
′
p (C). Consequently, epeq (C)

and eqe
′
p (C) differ only in the state of p.

By Termination (b), there exists a finite q-solo history Ĥ such

that Ĥ is applicable to epeq (C) and q decides in epeqĤ (C).

Since epeq (C) and eqe
′
p (C) differ only in the state of p, Ĥ is

also applicable to eqe
′
p (C). Thus q decides the same value

in epeqĤ (C) as in eqe
′
pĤ (C) contradicting (4). �

Claim 4.2.7

Claim 4.2.8. X is not a register.

Proof. Suppose, for contradiction, that X is a register. There

are two cases to consider:

Case 1. ep is a read step.

Since processes are deterministic, e ′p is also a read step.

Since ep is a read ofX , the state of registerX is the same inC
as in ep (C). Thus, since eq is applicable to C , it is also appli-

cable to ep (C). Thus the configurations epeq (C) and eqe
′
p (C)

are identical except possibly in the state of p. By Termina-

tion (b), there is a finite q-solo history H such that H is

applicable to epeq (C) and q decides in epeqH (C).
Since epeq (C) and eqe

′
p (C) are identical except possibly in the

state of p, and H contains no steps of p, H is also applicable

to eqe
′
p (C). Therefore q decides the same value in epeqH (C)

as in eqe
′
pH (C). This contradicts (4).

Case 2. ep is a write step.

Since processes are deterministic, e ′p = ep . Thus both ep
and e ′p write the same value into register X , and so config-

urations ep (C) and eqe
′
p (C) are identical, except possibly in

the state of q. By Termination (a), there is a finite p-solo
historyH such that p aborts or decides some valueu ∈ {0, 1}
in epH (C).
Since ep (C) and eqe

′
p (C) are identical, except possibly in the

state of q, and H contains no steps of q, H is also applicable

to eqe
′
p (C). Therefore p aborts in both epH (C) and eqe

′
pH (C),

or p decides the same value u ∈ {0, 1} in both epH (C) and
eqe
′
pH (C). If p aborts, then, by Claim 4.2.2, both epH (C)

and eqe
′
pH (C) are 0-valent; if p decides u ∈ {0, 1}, then

both epH (C) and eqe
′
pH (C) are u-valent. This contradicts (4).

�
Claim 4.2.8

Claim 4.2.9. X is not an n-consensus object.

Proof. Suppose, for contradiction, that X is an n-consensus ob-
ject. Let e ′q be any step of q that is applicable to ep (C). From (4), the

configuration Cv = epe
′
q (C) and Cv = eqe

′
p (C) have valence v and

v , respectively. Note that the consensus object X is the only object

whose state in Cv may differ from its state in Cv . Furthermore,

since Cv and Cv are configurations reached from C via steps of p
and q on X , each process that is not p or q has the same state inCv
as in Cv .

Let q′ be a process that is not p or q; q′ exists, since there

are n + 1 > 2 processes. Let R be the set of n − 2 processes that are
not p, q or q′ (if n = 2 the set R is empty). We construct a history

H that is applicable to Cv as follows. Starting from Cv , let each
process r ∈ R (in some arbitrary order), run solo until it is about to
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perform an operation on X : this must happen because r , p, so by

Termination(b), when r runs solo it must eventually decide some

value, but r cannot distinguish between the univalent configura-

tions Cv and Cv with opposite valence without accessing X . Note

that in history H , no process performs an operation on X , which is

the only object whose state in Cv may differ from its state in Cv .
Thus H is also applicable to Cv , each process r ∈ R has the same

state in H (Cv ) as in H (Cv ), and X is the only object whose state in

H (Cv ) may differ from its state in H (Cv ).
Starting from H (Cv ), let each process r ∈ R take one step (in

some arbitrary order), and let C ′v be the resulting configuration.

Similarly, starting from H (Cv ), let each process r ∈ R take one step

(in some arbitrary order), and let C ′v be the resulting configura-

tion. Note that from the construction of H , every process r ∈ R is

about to perform an operation on X at H (Cv ) and H (Cv ). Thus X
is the only object whose state in C ′v may differ from its state in C ′v .

Furthermore, in both C ′v and C ′v , at least n operations have been

performed on X (because every process, except possibly q′, has
performed at least one operation on X ). Since X is an n-consensus
object, after n operations have been performed on it, X is no longer

useful in differentiating between configurations C ′v or C ′v : more

precisely, any operation that is applied to X after reaching config-

urations C ′v or C ′v returns the special value ⊥. Note also that C ′v
and C ′v are configurations with opposite valence.

Starting from C ′v , let q
′
take steps solo until it decides some

value u ∈ {0, 1} (since q′ , p, q′ must decide by Termination(b)),

and let Hq′ be this solo history of q′. Since: (a) X is the only object

whose state may differ between C ′v and C ′v , and (b) after reaching

configurations C ′v or C ′v , the n-consensus object X returns ⊥ to

every operation, the solo history Hq′ of q
′
is also applicable to C ′v .

Thus q decides u in both Hq′(C
′
v ) and Hq′(C

′
v ), contradicting the

fact that C ′v and C ′v have opposite valence. �
Claim 4.2.9

Claim 4.2.10. X is not a 2-SA object.

Proof. Suppose, for contradiction, thatX is a 2-SA object. Thusp
and q are both invoking propose operations on X . Let vp and vq be

their respective proposal values. Since processes are deterministic,

e ′p also proposes vp .

Subclaim 4.2.10.1. There exists a value v̂ such that v̂ is inX .state
in both ep (C) and eqe

′
p (C).

Proof. If X .state is not empty at C , we are done, since values
are never removed from X .state. Otherwise, X .state contains vp
in both ep (C) and eqe

′
p (C). �

Subclaim 4.2.10.1

Now, let q′ be a process other than p and q; q′ exists, since there
are n + 1 > 2 processes. Let v̂ be a value as in Subclaim 4.2.10.1,

and let Ĥ be the finite history where, starting from ep (C), q
′
runs

solo while X responds to all operations with v̂ , until q′ decides,
which eventually happens by Termination (b). Since the state of q′

is the same in ep (C) as in eqe
′
p (C), and v̂ is in X .state in eqe

′
p (C),

this q′-solo history Ĥ is also applicable to eqe
′
p (C). Thus q

′
decides

the same value in both epĤ (C) and eqe
′
pĤ (C). This contradicts (4).

�
Claim 4.2.10

By Claims 4.2.8, 4.2.9, and 4.2.10, X is not an n-consensus ob-
ject, register, or 2-SA object, contradicting our assumption that

Algorithm A uses only such objects. �
Theorem 4.2

Theorems 4.1 and 4.2 imply:

Theorem 4.3. For all n ≥ 2, (n + 1)-PAC objects cannot be imple-

mented using n-consensus objects, registers, and 2-SA objects.

5 (N ,M)-PAC IS AT LEVELM OF THE
CONSENSUS HIERARCHY

In this section, we first define a “boosted” version of the n-PAC ob-

ject: for all n ≥ 1 andm ≥ 1, the (n,m)-PAC object is a combination

of an n-PAC object P and anm-consensus objectC . The (n,m)-PAC
object supports three operations:

• proposeC(v), which redirects the operation propose(v) toC
and returns the response.

• proposeP(v, i), which redirects the operation propose(v, i)
to P and returns the response.

• decideP(i), which redirects the operation decide(i) to P and

returns the response.

Note that for all n ≥ 1 and m ≥ 1, (n,m)-PAC objects are de-

terministic, since both n-PAC objects andm-consensus objects are

deterministic.

Observation 5.1. For all n ≥ 1 andm ≥ 1,

(a) An (n,m)-PAC object can be implemented using an n-PAC
object and anm-consensus object.

(b) An (n,m)-PAC object can implement an n-PAC object.

(c) An (n,m)-PAC object can implement anm-consensus object.

We now show that form ≥ 2, (n,m)-PAC objects are at levelm
of the consensus hierarchy.

Theorem 5.2. For all n ≥ 1 andm ≥ 2, (n,m)-PAC objects and

registers cannot be used to solve the (m + 1)-consensus problem.

Proof. By Observation 5.1(a), the (n,m)-PAC object can be im-

plemented using an n-PAC object and anm-consensus object. Thus

it suffices to show that, for all n ≥ 1 and m ≥ 2, the (m + 1)-

consensus problem cannot be solved using only n-PAC objects,

m-consensus objects, and registers.

As in the proof of Theorem 4.2, we use the bivalency technique

and terminology introduced in [8]. Assume, for contradiction, that

there exists a wait-free algorithm A that solves binary consensus

amongm + 1 processes using onlym-consensus objects, registers,

and n-PAC objects. We omit the proofs of Claims 5.2.1 to 5.2.5 since

they are standard.

Claim 5.2.1. The algorithm has an initial bivalent configura-

tion Cinit.

Claim 5.2.2. There is a bivalent configuration C
bi
, reachable from

Cinit, such that if any process takes a step, the resulting configuration

is univalent.

Claim 5.2.3. At C
bi
, allm + 1 processes are about to perform an

operation on the same object D.

Claim 5.2.4. D is not a register.

Claim 5.2.5. D is not anm-consensus object.
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It remains to show that D is not an n-PAC object. To do so, we

use the following two claims.

Claim 5.2.6. There does not exist a pair of reachable univalent

configurations C and C ′ with opposite valence such that (i) there is a

process that has the same state in C as in C ′, (ii) there is an n-PAC
object D that is upset in both C and C ′, and (iii) every object other

than D has the same state in C as in C ′.

Proof. Suppose, for contradiction, that there exists such a pair

of configurations C and C ′. Let p denote the process with the same

state in C as in C ′, and let D denote the n-PAC object that is upset

in both C and C ′. Since C and C ′ have opposite valence, process
p must be undecided in both C and C ′. Consider a run R starting

fromC wherep takes steps solo until it decides (this must eventually

happen by the Termination property of the consensus problem).

Since D is upset inC , all decide operations by p on D in R return ⊥.

Furthermore, all propose operations by p return done. Since p has

the same state in C as in C ′, and D is upset in both C and C ′, it
is clear that there is an identical p-solo run R′ that starts from C ′.
Thusp decides the same value in both R and R′, contradicting thatC
and C ′ have opposite valence. �

Claim 5.2.6

Claim 5.2.7. There does not exist a pair of reachable univalent

configurations C and C ′ with opposite valence such that (i) there are

two processes that have the same state in C as in C ′, and (ii) with

the possible exception of a single n-PAC object D, every object has the

same state in C as in C ′.

Proof. Suppose, for contradiction, that such a pair exists. Let q0
and q1 denote the two processes that have the same state in C as

in C ′. Since C and C ′ have opposite valence, processes q0 and q1
must be undecided in bothC andC ′. Let D denote the n-PAC object

whose state may be different in C than in C ′.
Construct a run R starting from C as follows:

(1) First let q0 take steps solo until it is about to perform a

decide(i) operation on D for some label i .
This must eventually happen, since D is the only object

whose state in C is not the same as its state in C ′, and all

propose(−,−) operations on D return the value done re-

gardless of the state of D.
(2) Then let q1 take steps solo until it is about to perform a

decide(i ′) operation on D for some label i ′.
By the same argument, this must eventually happen.

Since q0 and q1 have the same state in C as in C ′, and propose

operations on D always return done, it is clear that there is an

identical run R′ that starts from C ′.
Let C

clash
and C ′

clash
denote the configurations resulting from R

and R′ respectively. Since R is identical to R′, (i) q0 and q1 have
the same state in C

clash
as in C ′

clash
, and (ii) all objects except pos-

sibly D have states that are the same in C
clash

as in C ′
clash

. Note

that q0 and q1 are about to perform a decide(i) operation and a

decide(i ′) operation on D, respectively, in both C
clash

and C ′
clash

.

Furthermore, since they began from C and C ′ respectively, C
clash

andC ′
clash

are univalent configurations with opposite valence. There

are two cases:

Case 1. i = i ′.
Consider the following configurations:

• The configurationC reached fromC
clash

by letting first q0
and then q1 perform their decide(i) operations.

• The configuration C
′
reached from C ′

clash
by letting first

q0 and then q1 perform their decide(i) operations.
Since C

clash
and C ′

clash
are univalent configurations with

opposite valence,C andC
′
are univalent configurations with

opposite valence. However, since two decide(i) operations
were performed consecutively on the n-PAC object D, D is

upset in bothC andC ′. Furthermore, when going fromC
clash

toC and also when going fromC ′
clash

toC
′
, q1 received⊥ for

its decide(i) operation because either this decide operation

upsets D or D was already upset. Consequently, q1 has the

same state in C as in C
′
. In other words, C and C

′
are a pair

of reachable univalent configurations with opposite valence

such that (i) there is a process, namely q1, that has the same

state in C as in C
′
, (ii) there is an n-PAC object, namely D,

that is upset in both C and C
′
, and (iii) every object other

than D has the same state in C as in C
′
. This contradicts

Claim 5.2.6.

Case 2. i , i ′.
From the sequential specification of ann-PAC objectD (given

in Algorithm 1), it is clear that a decide(i) operation on D
returns ⊥ if either D is upset, or i is not equal to the value

of the variable D.L of the state of D.
Consider the state of D in configuration C

clash
. If D is upset,

then bothq0 andq1 can perform their decide operations onD
and receive⊥. Now suppose thatD is not upset inC

clash
, and

consider the value ofD.L inC
clash

. Since i , i ′, eitherD.L , i
or D.L , i ′. Without loss of generality, suppose that D.L , i .
Let q0 perform decide(i). SinceD.L , i , q0 receives the reply
⊥ from D. Moreover, from the sequential specification of D
shown in Algorithm 1, q0’s decide operation either causes D
to become upset, or it sets D.L to nil. Now let q1 perform
decide(i ′) on D. Since either D is upset or D.L = nil , i ′,
q1 also receives the reply ⊥ from D.
From the above, we conclude that starting from configuration

C
clash

, there is an order in which q0 and q1 can each perform

their decide operation such that they both receive ⊥ from D.

Let C be the resulting configuration.

By a symmetric argument, starting from C ′
clash

, there is an

order in which q0 and q1 can each perform their decide

operation such that they both receive ⊥ from D. Let C
′
be

the resulting configuration.

Since C
clash

and C ′
clash

are univalent configurations with

opposite valence,C andC
′
are univalent configurations with

opposite valence. Furthermore, since q0 and q1 have the

same state in C
clash

as in C ′
clash

, and both q0 and q1 receive

the same response in going from C
clash

to C as in going

fromC ′
clash

toC
′
, they also have the same state inC as inC

′
.

In other words, C and C
′
are a pair of reachable univalent

configurations with opposite valence such that (i) there are

two processes, namely q0 and q1, that have the same state

in C as in C
′
, and (ii) with the possible exception of a single
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n-PAC object, namely D, every object has the same state

in C as in C
′
.

Let C1 = C and C ′
1
= C ′. Since we have proven that Case 1

never occurs, a straightforward induction on Case 2 allows

us to construct for all j > 1 a pair of reachable univalent

configurations Cj and C
′
j with opposite valence such that

(i) there are two processes, namely q0 and q1, that have the
same state in Cj as in C ′j (so they are both undecided in

Cj and in C ′j ), (ii) with the possible exception of a single

n-PAC object, namely D, every object has the same state

in Cj as in C ′j , and (iii) Cj and C ′j are reached from Cj−1
andC ′j−1, respectively, via runs in which both q0 and q1 take

at least one step. Thus, this induction constructs runs in

which both q0 and q1 take infinitely many steps without

ever deciding — a violation of the Termination property of

consensus. �
Claim 5.2.7

Claim 5.2.8. D is not an n-PAC object.

Proof. Suppose, for contradiction, D is an n-PAC object. Recall

that by Claim 5.2.3, at C
bi
, allm + 1 processes are about to perform

an operation on D.

Subclaim 5.2.8.1. AtC
bi
, every process is about to perform a decide

operation on D.

Proof. Suppose, for contradiction, that some process p0 is about
to perform a propose operation onD atC

bi
. Without loss of general-

ity, suppose the resulting configurationC0 is 0-valent. By Claim 5.2.2,

there must exist another processp1 such that ifp1 takes a step atCbi
,

the resulting configuration C1 is 1-valent. Consider the 1-valent

configuration C ′
1
reached by having p0 take a step at C1. Since pro-

pose operations always return done, p0 has the same state in C0

as in C ′
1
. Furthermore, since there are at leastm + 1 > 2 processes,

there exists a process p2 that is neither p0 nor p1, and since p2
has not taken any steps since C

bi
, p2 has the same state in C0 as

in C ′
1
. Thus C0 and C

′
1
are a pair of reachable univalent configura-

tions with opposite valence such that: (i) there are two processes,

namely p0 and p2, that have the same state in C0 as in C
′
1
, and (ii)

with the possible exception of a single n-PAC object, namely D,

every object has the same state in C0 as in C ′
1
. This contradicts

Claim 5.2.7. �
Subclaim 5.2.8.1

Subclaim 5.2.8.2. If a process performs a decide operation on D

at C
bi
, the reply of D is not ⊥.

Proof. Suppose, for contradiction, that a process p0 performs

a decide operation on D at C
bi
and receives ⊥ from D. Let C0 be

the resulting configuration. Without loss of generality, suppose

that C0 is 0-valent. By Claim 5.2.2, there exists another process p1
such that if p1 takes a step at C

bi
, the resulting configuration C1

is 1-valent. By Subclaim 5.2.8.1, this step of p1 is a decide operation
on D, so either it sets D .L ← nil, or D is upset in C1. Consider

the 1-valent configuration C ′
1
reached by having p0 perform its

decide operation at C1. Since either D .L = nil, or D is upset

in C1, process p0 receives ⊥ for this decide operation. Thus p0 has
the same state in C0 as in C ′

1
. The rest of the proof is now as in

Subclaim 5.2.8.1. �
Subclaim 5.2.8.2

Recall that a decide(i) operation on D returns ⊥ if either D is

upset, or i is not equal to the value of the variableD .L of the state of
D. Consequently, from Subclaim 5.2.8.1 and Subclaim 5.2.8.2, every

process is about to perform a decide(i) operation at C
bi
, such that

i = D .L in C
bi
. So, from Claim 5.2.2, there exist two processes p0

and p1 such that if p0 performs decide(i) at C
bi
, the resulting con-

figuration C0 is 0-valent, and if p1 performs decide(i) at C
bi
, the

resulting configuration C1 is 1-valent. Consider the following con-

figurations:

• The 0-valent configuration C ′
0
reached from C

bi
by first let-

ting p0 and then p1 perform their decide(i) operations.
• The 1-valent configuration C ′

1
reached from C

bi
by first let-

ting p1 and then p0 perform their decide(i) operations.

Since two consecutive decide operations with the same label i
were performed, D is upset in both C ′

0
and C ′

1
. Furthermore, since

there are m + 1 > 2 processes, there exists a process p2 that is

neither p0 nor p1, and since p2 has not taken any steps since C
bi
,

p2 has the same state in C ′
0
as in C ′

1
. Thus C ′

0
and C ′

1
are a pair of

reachable univalent configurations with opposite valence such that

(i) there is a process, namely p2, that has the same state in C ′
0
as in

C ′
1
, (ii) there is an n-PAC object, namely D, that is upset in bothC ′

0

andC ′
1
, and (iii) every object other thanD has the same state inC ′

0

as in C ′
1
. This contradicts Claim 5.2.6. �

Claim 5.2.8

By Claim 5.2.4, Claim 5.2.5, and Claim 5.2.8, D is neither an

m-consensus object, nor an n-PAC object, nor a register. This con-

tradicts that algorithm A uses only such objects. �
Theorem 5.2

By Observation 5.1(c) and Theorem 5.2, we have:

Theorem 5.3. For all n ≥ 1, m ≥ 2, (n,m)-PAC objects are at

levelm of the consensus hierarchy.

6 SET AGREEMENT POWER DOES NOT
DETERMINE OBJECT EQUIVALENCE

We now prove the main result of this paper. This proof relies

on (n,k)-SA objects, which allow up to n processes to solve the k-
set agreement problem [2, 6]. With an (n,k)-SA object, each of n
processes can apply a propose(v) operation and receive a value

that satisfies the (n,k)-set agreement problem requirements.

Definition 6.1. For each n ≥ 2, letOn be the (n+1,n)-PAC object.

We now define an object O ′n that “embodies” the set agreement

power of On . Let n ≥ 2, and (n1,n2, . . .,nk , . . .) be the set agree-
ment power of On . Let Cn be the collection of (nk ,k)-SA objects

for all k ≥ 1, i.e., Cn =
⋃∞
k=1{(nk ,k)-SA}. The objectO

′
n combines

all the set agreement objects in Cn as follows: for all k ≥ 1, O ′n
supports the propose(v,k) operation, which redirects the opera-

tion propose(v) to the (nk ,k)-SA object of Cn , and returns that

object’s response. Note that, by construction and the definition of

set agreement power, O ′n has the same set agreement power as On ,

namely, (n1,n2, . . .,nk , . . .).
By Theorem 5.3, we have:

Observation 6.2. For each n ≥ 2, On has consensus number n.

From Theorem 4.3 and Observation 5.1(b), we also have:
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Observation 6.3. For each n ≥ 2, On cannot be implemented by

n-consensus objects, registers, and 2-SA objects.

Lemma 6.4. For eachn ≥ 2,O ′n can be implemented byn-consensus
objects and 2-SA objects.

Proof. Let n ≥ 2 and (n1,n2, . . .,nk , . . .) be the set agreement

power of On . Recall that O
′
n can be implemented by the objects

in Cn =
⋃∞
k=1{(nk ,k)-SA}. By Observation 6.2, On has consensus

number n, so n1 = n. Thus the (n1, 1)-SA object in Cn can be

implemented by an n-consensus object. In addition, for all k ≥
2, the (nk ,k)-SA object in Cn can be implemented by the 2-SA

object. So every object in the collection Cn =
⋃∞
k=1{(nk ,k)-SA}

can be implemented by an n-consensus object or a 2-SA object.

Thus O ′n can be implemented by n-consensus objects and 2-SA

objects. � Lemma 6.4

Theorem 6.5. For all n ≥ 2, On cannot be implemented by O ′n
objects and registers.

Proof. Let n ≥ 2. Suppose, for contradiction, that On can be

implemented byO ′n objects and registers. So, by Lemma 6.4,On can

be implemented by n-consensus objects, 2-SA objects, and registers

— contradicting Observation 6.3. �
Theorem 6.5

By Observation 6.2, On is at level n of the consensus hierarchy.

Since O ′n has the same set agreement power as On , it is also at

level n of the consensus hierarchy. So by Theorem 6.5, we have:

Corollary 6.6. In every level n ≥ 2 of the consensus hierarchy,

there is a pair of objects, namely On and O ′n , that have the same set

agreement power but are not equivalent.

Corollary 6.7. In every level n ≥ 2 of the consensus hierarchy,

there is a deterministic object, namely On , that has set agreement

power (n1,n2, . . . ,nk , . . .) but cannot be implemented from arbitrary

solutions to the k-set agreement problems among nk processes, for all

k ≥ 1, and registers.

Proof. Let n ≥ 2 and consider the objects On and O ′n . Let
(n1,n2, . . .,nk , . . .) be the set agreement power of On , and there-

fore of O ′n as well. So O ′n objects and registers can solve the k-set
agreement problem among nk processes for all k ≥ 1. Suppose, for

contradiction, thatOn can be implemented from arbitrary solutions

of the k-set agreement problems among nk processes, for all k ≥ 1,

and registers. Thus On can be implemented from O ′n objects and

registers — contradicting Theorem 6.5. �
Corollary 6.7

7 A RELATED RESULT
Qadri posed the following question in [13]: can (m + 1)-consensus
objects and registers implement every deterministic object at level

m of the consensus hierarchy? Using PAC objects, we show that the

answer is no. In fact, we show the following more general result:

Theorem 7.1. For allm ≥ 2 andn ≥ m+1, levelm of the consensus

hierarchy contains a deterministic object, namely the (n + 1,m)-PAC
object, that cannot be implemented using n-consensus objects and
registers.

Proof. Letm ≥ 2 and n ≥ m + 1. Consider the deterministic

object (n + 1,m)-PAC, which by Theorem 5.3, is at levelm of the

consensus hierarchy. We claim that the (n+1,m)-PAC object cannot

be implemented using n-consensus objects and registers. Suppose,

for contradiction, that the (n+1,m)-PAC object can be implemented

using n-consensus objects and registers. By Observation 5.1(b), the

(n + 1,m)-PAC object can solve the (n + 1)-DAC problem, thus the

(n + 1)-DAC problem can be solved using n-consensus objects and
registers — contradicting Theorem 4.2. �

Theorem 7.1

8 CONCLUSION
This paper proves that the set agreement power of an object does

not fully characterize its ability to implement other objects: every

level n ≥ 2 of the consensus hierarchy has objects that have the

same set agreement power but are not equivalent (Corollary 6.6).

The paper also shows that every level n ≥ 2 of the consensus

hierarchy has a deterministic object, namelyOn , with set agreement

power (n1,n2, . . . ,nk , . . .) such that being able to solve the k-set
agreement problems among nk processes, for all k ≥ 1, is not

enough to implementOn (Corollary 6.7). This result seems to refute

a conjecture mentioned in [7], namely that the “computational

power” of a deterministic object can be captured by its set agreement

power.

We say that an objectO is equivalent to its set agreement power if

O is equivalent to the collection of objects C =
⋃∞
k=1{(nk ,k)-SA},

where (n1,n2, . . .,nk , . . .) is the set agreement power of O . Corol-
lary 6.6 implies that there are objects that are not equivalent to

their set agreement power. Consider now the subset R of objects

that are equivalent to their set agreement power. In other work [4],

we use a result of [7] to prove that the restriction of Herlihy’s hi-

erarchy to R is robust in the following sense [12]: in R, for every

positive integer n, any set of objects with consensus number at

most n cannot be used to implement any object with consensus

number n′ > n. In fact, we prove the following a more general re-

sult: roughly speaking, for any integer ℓ ≥ 1, if we classify objects

in R based on the first ℓ components of their set agreement power

sequence (i.e., if we place in the same class all the objects whose

set agreement powers are identical for the first ℓ components), we

obtain a classification that is also robust.

In [4] we also prove that the universeU of all shared-memory

objects contains uncountably many objects with distinct computa-

tional power: the equivalence relation between objects (defined in

Section 1) partitionsU into uncountably many equivalence classes.

Thus, the computational power of objects cannot be fully described

by a countable scheme such as a finite vector of integers.
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