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Abstract

Distributed minimum spanning tree (MST) problem is one of the most central and funda-
mental problems in distributed graph algorithms. Garay et al. [GKP98, KP98] devised an
algorithm with running time O(D + y/n - log™ n), where D is the hop-diameter of the input n-
vertex m-edge graph, and with message complexity O(m +n°/2?). Peleg and Rubinovich [PR99]
showed that the running time of the algorithm of [KP98§] is essentially tight, and asked if one
can achieve near-optimal running time together with near-optimal message complexity.

In a recent breakthrough, Pandurangan et al. [PRS16] answered this question in the af-
firmative, and devised a randomized algorithm with time O(D + /n) and message complexity
O(m). They asked if such a simultaneous time- and message-optimality can be achieved by a
deterministic algorithm.

In this paper, building upon the work of [PRS16], we answer this question in the affirmative,
and devise a deterministic algorithm that computes MST in time O((D + y/n) - logn), using
O(m -logn + nlogn - log" n) messages. The polylogarithmic factors in the time and message
complexities of our algorithm are significantly smaller than the respective factors in the result
of [PRS16]. Also, our algorithm and its analysis are very simple and self-contained, as opposed
to rather complicated previous sublinear-time algorithms [GKP98, KP98, Elk04b, PRS16].
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1 Introduction

1.1 Background and New Results

Distributed minimum-weight spanning tree (henceforth, MST) problem is one of the most funda-
mental and extensively studied problems in distributed graph algorithms [GHS83, CT85, Gaf85,
Awe87, SB95, GKP98, KP98, PR99, Elk0O4a, Elk04b, FM04, KP08, KKP11, KKT15, PRS16,
MK17]. The seminal work of Gallager et al. [GHS83| gave an algorithm with running time
O(nlogn) and message complexity O(m + nlogn) for the problem, where n = |V| and m = |E|
are the number of vertices and edges of the input graph G = (V, E), respectively. The time com-
plexity was then improved to O(n) [CT85, Gaf85, Awe87, FM04], while still retaining the bound
of O(m + nlogn) on the number of messages.

Garay et al. [GKP98, KP98| devised an algorithm with running time O(D + y/n-log* n), where
D is the hop-diameter (equivalently, unweighted diameter) of G, albeit with message complexity
O(m+n?3/?). Peleg and Rubinovich [PR99] showed a lower bound of Q(y/n) for the problem,! even
when D = O(logn). In the open problems section of their groundbreaking paper they raised the
question of devising a nearly time- and message-optimal algorithm:

“Another research direction is to try to reduce the communication complexity of nearly time optimal
algorithm of [KP98] from O(|E| + n3/?) towards the lower bound of O(|E| + nlogn).

In a recent breakthrough, Pandurangan et al. [PR§16] devised a randomized algorithm with time

complexity O(D + /n) and message complexity O(m). In the Conclusion section of their paper
they write:

“An intriguing open question is whether randomization is necessary to simultaneously achieve time
and message optimality. ¢

In this paper we answer this question, and devise a deterministic algorithm with running time
O((D + y/n) -logn), and message complexity O(|E|-logn + nlogn -log*n). In addition to being
deterministic, our algorithm is also drastically simpler than that of [PRS16].2 Also, the polylog-
arithmic factors in the time and message complexities of our algorithm are significantly smaller
than the respective factors in [PRS16]. (Pandurangan et al. [PRS16] do not specify explicitly
these factors. However, since they are using an algorithm for constructing neighborhood covers
from [Elk04b], and the latter algorithm has running time O(Dlog3 n) and message complexity
O(m -log?n), these factors are definitely incurred by the algorithm of [PRS16]. Also, it is apparent
from their analysis that the \/n term in their time complexity is multiplied by at least log®n.)

We also generalize our result to the CONGEST (blogn) model, for any positive integer pa-
rameter b. In this model the bandwidth of every edge is b edge weights and/or vertex identi-
ties. (See Section 2 for a formal definition.) We show that our algorithm can be implemented in
O((D + /%) - log n) time, using O(|E| + nlogn - log* n) messages.

The lower bound for the time required to compute MST in the CONGEST (blogn) model is

QD + @) [ElkO4a, PR99], i.e., our upper bound is ©(logn)-off the lower bound in the first

10, © and O notations hide factors polylogarithmic in n.
2Though we stress that it heavily builds upon several crucial ideas from [PRS16]; see more details below.



term and @(log3/ 2 n)-off in the second term, for all values of b. (In particular, this is also the gap
in the standard CONGEST model, i.e., when b = 1.)

The lower bound on message complexity, due to Awerbuch et al. [AGPV90], is Q(|E|). The lower
bound of [AGPV90] applies to deterministic algorithms, and also even to randomized comparison-
based algorithms. It also applies to randomized not comparison-based ones, as long as they apply
to the so-called clean network model. In the latter model, at the beginning of the computation
every vertex v knows only its own identity number. On the other hand, if a vertex knows also
(at the beginning of the computation) identities of all its neighbors, then a not comparison-based
randomized algorithm of King et al. [KKT15] achieves message complexity of O(n) (though their
time complexity is not sublinear in n).

Our algorithm is deterministic, comparison-based, and applies to the clean network model.
(Any one of these three properties makes the lower bound of [AGPV90] applicable.) Hence its
message complexity is O(|F|logn + nlogn -log* n) is optimal up to a logn factor in the first term,
and a logn - log" n factor in the second.

1.2 Technical Overview

The sublinear-time MST algorithm of [KP98, GKP98] consists of two phases. In the first phase one
constructs an MST forest, i.e., a collection of vertex-disjoint subtrees of the same fixed MST, that
cover all vertices of the input graph G = (V| E). These subtrees are called fragments. Moreover,
each of these fragments in the algorithm of [KP98] has diameter O(y/n), and there are O(y/n) such
fragments in the forest. The computation of this MST forest requires O(y/n) time: it is done by
an ingenious variant of Boruvka’s algorithm.

At this stage there are only O(y/n) MST edges missing. These are computed by a procedure,
called Pipeline-MST [GKP98]. In this procedure one uses an auxiliary BFS tree 7 of the input
graph G. All candidate edges (i.e., crossing between different fragments) are pipelined towards
the root rt of 7, but the key to efficiency is that every intermediate vertex v of 7 filters out all
candidate edges e that are discovered to be heaviest in some cycle. This (second) phase of the
algorithm of [KP98] is responsible for its large message complexity, and it also involves heavy local
computations.

The recent nearly message-optimal algorithm of [PRS16] also consists of two phases, where the
first phase is the same as in the algorithm of [KP98]. However, on the second phase, the algorithm
of [PRS16] employs a different strategy than that of [KP98]. Rather than using a communication-
heavy Pipeline-MST procedure, they continue merging fragments via a Boruvka-type algorithm.

The problem with merging large-diameter fragments via Boruvka’s algorithm is that a naive
implementation of this merging requires time proportional to the diameter of these fragments.
When D = O(y/n), Pandurangan et al. [PRS16] overcome this problem by maintaining two MST
forests at all times: one is the base forest F (and its fragments are referred to as base fragments),
which was computed at the first phase of the algorithm. Recall that F consists of O(y/n) fragments
of size O(y/n) each. (For a pair of parameters «, 3, an («, 5)-MST forest is an MST forest with at
most « fragments, each of diameter at most 3. The base forest is an (O(y/n), O(y/n))-MST forest.)

The second MST forest F that the algorithm of [PRS16] maintains is obtained by merging some
of the base fragments into fragments of F via Boruvka’s algorithm. To compute the minimum weight
outgoing edge (henceforth, MWOE) of a fragment FeF , the algorithm computes in each base
fragment F' € F a minimum-weight edge ey crossing between V(F) and V' \ V/(F), where F C F,
and ' € F. Then the algorithm upcasts these edges e to the root rt of the auxiliary BFS tree .



The root 7t uses this information to compute the MWOE e of every fragment F e F, and then

to compute a new MST forest F/. The fragments of the latter forest are obtained by merging some
of the fragments of F , via Boruvka’s algorithm.

When D < /n, the procedure described above is both time- and message-efficient. However,
generally, its message complexity is ©(D+/n+n), and this is super-linear for D = w(y/n). To resolve
this issue, [PRS16] employ hierarchies of sparse neighborhood covers [ABCP93, Coh93, Elk04b],
and use them build what they call “communication-efficient fragments and paths” within large-
diameter fragments. This results in a sophisticated and complicated algorithm, with an elaborate
analysis, which incurs quite a few polylogarithmic factors in both time and message complexities,
and requires storing certain non-trivial local data structures in every vertex. Moreover, since
there are currently no known deterministic distributed time- and message-efficient algorithms for
constructing neighborhood covers, the algorithm of [PRS16] resorts to using a randomized algorithm
of [E1k04b]. As a result, the solution of [PRS16] becomes randomized as well.

In this paper we propose a different, and a much simpler solution, for the situation when
D > \/n. Instead of constructing an (O(y/n), O(y/n))-MST forest F as a base forest, we construct
an (O(n/D),O(D))-MST forest. By slightly generalizing and refining the analysis of [KP98, Len16,
PRS16], we show that this can be done in O(D-log* n) time, and with O(|E|-log D+n-log D-log* n)
messages. By doing so we spend more time on the first phase than the algorithms of [KP98, PRS16];
this is however still well within our desired time bounds.

Then we use the algorithm of [PRS16] on top of this base forest, as opposed to using it on top
of an (O(v/n),0(v/n))-MST forest. (Recall that, as was argued above, the latter would have not
been message-efficient.) Now computing a minimum-weight edge e crossing between the vertex
set V(F) of a base fragment F and V \ V(F), where ' € F is the fragment that contains F, can
be done in O(D +n/D) = O(D) time. Even more importantly, upcasting all these edges er to
the root rt of the auxiliary tree 7 requires now just O(D -n/D) = O(n) messages. As a result, the
entire message complexity of our algorithm is near-linear.

As opposed to previous solutions, our entire algorithm and its analysis are ultimately very
simple. In fact, we essentially provide all the details (including those which originate from previous
work) in this extended abstract.

1.3 Related Work

Singh and Bernstein [SB95] devised an MST algorithm with near-optimal message complexity, and
with running time O((A + Diam(MST)) - logn), where A is the maximum degree of the input
graph G = (V, E,w), 3 and Diam(MST) is the hop-diameter of the computed MST of G. The
latter parameter is always greater or equal to D = Diam(G), but for many instances it is smaller
than n.

The current author [Elk04b] devised an MST algorithm with running time O(u(G,w) 4+ /n),
where p(G,w) is a parameter which is never greater than D, and for many instances it is much
smaller than D. There is also a lower bound of Q(u(G,w)) + Q(y/n) for the MST computation
on an input graph (G,w) [Elk04b]. Albeit, the algorithm of [Elk04b] does not detect termination
(unless it is given an estimate of u(G,w) as a part of the input).

Khan and Pandurangan [KP08] devised an O(logn)-approximate MST algorithm with running
time O(D 4 L(G,w)), where L(G,w) is yet another parameter, called local shortest path diameter.

3w: E —RT is a weight function on edges of G.



It may be smaller or larger than D.

Lower bounds on the time required to compute an approximate MST were shown in [Elk04a,
SHK 12, EKNP14]. In particular, [EKNP14] showed such lower bounds even when quantum dis-
tributed communication is allowed. Lower bounds for MST on graphs with constant hop-diameter
D were shown in [LPP06, Elk04a]. MST on graphs with D = 1 (the Congested Cliqgue model)
was studied in [LPPP05, HPP*15, GP16]. In particular, [HPP*15] devised a message-optimal and
time-efficient MST algorithm for this model.

Mahreghi and King [MK17] devised randomized, not comparison-based MST algorithm with
running time O(Diam(MST)), and with O(n) messages. (This algorithm assumes that at the
beginning of the computation, every vertex knows the identities of all its neighbors, i.e., the so-
called KTy model.)

Efficient MST algorithms for planar graphs, and more generally, graphs of bounded genus, were
given in [GH16, HIZ16].

2 Preliminaries

We consider the synchronous CONGEST model of distributed communication. Every vertex v of
an input graph G = (V, E) hosts a processor, and these processors communicate with one another
via O(logn)-size messages in synchronous rounds. All edge weights are assumed to be at most
polynomial in n, or alternatively, the message size can be restricted to O(1) edge weights or/and
identity numbers. In a more general CONGEST (blogn) model, for a parameter b > 1, on every
round every vertex is allowed to send messages of size O(blogn) bits, or alternatively, O(b) edge
weights and /or vertex identities via every edge incident on it.

At the beginning of the communication every vertex v knows its own unique identity number,
denoted Id(v). The running time of an algorithm in this model is the worst-case number of rounds
that it runs. The message complexity of an algorithm is the worst-case overall number of messages
sent throughout an execution of the algorithm. At the end of an execution, every vertex v is
required to know which among the edges incident on it belong to the MST.

We assume that the MST is unique. This assumption is without loss of generality, see, e.g.,
[Pel00], Ch. 5. A connected subtree of the unique MST is called an MST fragment, or simply a
fragment.

We say that a collection {F}y, Fy, ..., F,}, for some positive integer h, is an MST forest, if for
each ¢ € [h], F; is an MST fragment, these fragments are vertex-disjoint, and U?:l V(F;) = V.
For a pair of positive parameters a and /3, we say that an MST forest F is an (a, 3)-MST-forest,
if it contains at most « fragments, each with strong diameter at most 8. (Strong diameter of a
subgraph F' is the maximum distance in F' between a pair of vertices u,v € V(F).) A diameter of
an MST forest F is the maximum diameter of one of its fragments.

We say that an MST forest F' coarsens MST forest F, if for every fragment F' € F, there exists
a fragment F' € F’ that contains it, i.e., V(F) C V(F’) (and, as a result, also E(F) C E(F’),
because F' and F” are subtrees of the same spanning tree).

Boruvka’s algorithm starts from a collection of MST fragments. On each phase it computes the
MWOE of every fragment, and computes the fragments’ graph, whose vertices are the fragments,
and edges are the MWOEs. It then merges each connected component of the fragments’ graph
into a greater fragment, and obtains an MST forest with fewer fragments. In fact, the number of
fragments decreases at least by a factor of 2, and so the number of phases is O(logn). See [Pel00],



Ch. 5, for further details.

For a rooted tree T' and a non-root vertex v in 7', we denote by mr(v) the parent of v in T.
For a vertex v, we denote by Id(v) the identity of the vertex v. For each fragment F', there is a
designated root vertex rtp, and the identity Id(F') of F' is set to be the identity Id(rt) of the root
1.

3 The Algorithm and its Analysis

Based on [GKP98, KP98] (see also [PRS16], Algorithm 1, called Controlled-GHS, and Lemma
1, and Lenzen’s lecture notes [Lenl6], the chapter about MST, Lemmas 6.15-6.17), we show in
Section 4 that for any positive parameter k, an (n/k,O(k))-MST forest F = Fy can be computed
in O(k -log* n) time, and using O(|E|log k + nlog k - log* n) messages. + We refer to Fy as the base
MST forest, and call its fragments base fragments.

The algorithm starts with constructing an auxiliary BES tree 7 for the entire graph G rooted
at a root vertex rt. This step requires O(D) time and O(|E|) messages.

Every base fragment F' has its designated root vertex rp. We need every vertex v of 7 to be
able to route messages from the root 7t of 7 to each of the roots rp of base fragments ' € F,
which belong to the subtree 7, of 7 rooted at v. For this end, we compute intervals I, for each
vertex v € V(7), such that for every pair u, v of vertices in V| their intervals are either disjoint (if
they belong to different branches of 7), or nested if the vertex with a larger interval is an ancestor
in 7 of the vertex with a smaller interval. Given these intervals, when a vertex v needs to route a
message to a root rp of a base fragment F' which belongs to V(7,), it finds a child u of v whose
interval I(u) contains I(rp), and sends the message to this child.

To compute the intervals, we first conduct a convergecast in 7. As a result of this convergecast,
every vertex v knows the size |V (7,)| of its subtree. Then the root rt of 7 assigns itself the interval
I(rt) = [1,n], n = |V(7)| = |V], and assigns its children ug,...,uq, for d = deg(rt), disjoint
intervals I(uy),...,I(uqg) C I(rt), with [I(u;)| = |V (7y,)|, for every i € [d]. (This is possible
because 2?21 |V (7u,)| =n —1=|I(rt)] — 1. Observe also that 7t can learn |V (7,,)|, for all i € [d],
within one round.) Next, each of the children w; assigns (in parallel) disjoint intervals to their
children, etc. Finally, at the end of this process, we conduct a pipelined convergecast during which
the root rt learns the |F| intervals of all the base fragments.

The entire process of computing the intervals requires O(D) time and O(n) messages, while the
final pipelined convergecast requires O(D + |F|) = O(D + n/k) time, and O(D - n/k) messages.

Consider first the case D < y/n. We set k = /n. Suppose we have already conducted j
phases of the Boruvka’s algorithm, starting from o, and obtained a coarsening forest 7}, for some
j=0,1,2,..., of F. We now show how to implement the next phase of Boruvka’s algorithm, and
to construct a coarsening MST forest ;1 of F; (and, consequently, of F too).

We assume that every vertex v knows the identities of both the base fragment F, and the
fragment E, of Fj that it belongs to. Also, for every neighbor u of v, we assume that v knows the
identities of F,, and Fu We also assume that the root rt knows the identities of all base fragments,
and at the beginning of phase j, 7 =0, 1,..., it knows the identities of all fragments of 7}, and for

“In fact, Lemma 6.17 of [Len16] applies this only for k < y/n, but inspecting its proof reveals that it holds for
larger values of k as well. The message complexity of this procedure is not analyzed in [KP98, Lenl6], while its
analysis in [PRS16] provides a slightly weaker bound. For the sake of completeness, we provide a self-contained proof
of this result in Section 4.



each base fragment F' € F, the root knows the identity of the fragment F e F; that coarsens it.
This is argued by induction on j.

To guarantee that the induction base j = 0 holds, after the base MST forest is constructed,
every vertex v updates its neighbors with the identity of F;. This requires O(1) time and O(|E|)
messages. Also, an upcast of |Fy| < n/k identities of base fragments is conducted over the BFS
tree 7 at this stage. This step requires O(D + n/k) time, and O(D - n/k) messages.

In every base fragment F' € F we compute (in parallel in all base fragments) the edge e = (u,v)
of minimum weight that crosses between u € V(F) and v € V\V(F), where F' € Fj is the fragment
that coarsens the base fragment F. This computation requires O(k) = O(y/n) time, and O(n)
messages.

Once this is done, we upcast all these O(n/k) = O(y/n) pieces of information over the auxiliary
BES tree 7 to the root vertex rt of 7. This is done via a pipelined convergecast procedure, in which
every intermediate vertex u of 7 forwards to his parent 7-(u) in 7 only the lightest edge for each
fragment Fe Fj, among edges that were initially stored at one of the vertices z of the subtree 7,
of 7, rooted at u. This step requires O(D + |F;|) time, and O(D - |F;|) messages. (See [Pel00], ch.
3.)

The root rt locally computes the MWOE e, for every fragment Fe Fj. It then locally computes
the fragments’ graph whose vertices are fragments of 7}, and edges are the MWOESs, and computes
the MST forest F11. Specifically, for every base fragment F' € F, the root knew the identity of a
fragment Fe Fj that coarsens it. As a result of the computation that r¢ conducts, it now knows
the identity of a fragment F” € Fj+1 that coarsens F. (Consequently, F’ also coarsens F .) The root
rt then sends |F| messages over T, each message is of the form (F), F’), where F € F, F' € Fit1,
F" coarsens F. Each such a message (F, ') has the destination interval I(rtz) attached to it, and
it is routed along the unique rt — rtp path in 7. The root rtp of the base fragment F' receives
this message, and writes down to itself that it belongs to F'. This (pipelined) downcast requires
O(D + |F]) time, and O(D - |F|) = O(D - n/k) messages. (This is because every one of the |F]|
messages is routed to its destination along a path with at most D edges.)

Next, every root vertex rg of a base fragment F' € F broadcasts the identity Id(ﬁ' ") of their
new (j 4 1)st level fragment F' € F;i to all vertices of F. This requires O(k) time and O(n)
messages. Finally, every vertex v updates its neighbors in G with its new (j + 1)st level’s fragment
identity. This requires O(1) time, and O(|E|) messages. This completes the description of a single
phase of Boruvka’s algorithm.

To analyze the running time and message complexity, observe that for every j =0,1,2,..., we
have |Fj41] < & -|F;|, and so the number of phases ¢ is O(log n) phases. Hence the overall time is

O(D+n/k)+O(k-log*n)+O((D+k+|F|)-logn) = O(D+k+n/k)-logn) = O(y/n-logn). (1)

Similarly, the message complexity is O(|E|logn+nlogn-log* n) for constructing F, O(D-n/k+n)
for computing the intervals, and O(D - n/k + |E| + n) on each consequent phase. As D < k, the
overall message complexity is O(|E|logn + nlogn - log* n).

For D > y/n, we compute the (n/k,O(k))-MST forest F = Fy with parameter £k = D in
O(D -log* n) time, and O(|E|log n+ nlogn -log* n) messages. From this point on, the algorithm is
identical to the one that we have just described. For every j = 0,1, 2,.. ., the jth phase of it requires
O(D+k+|F|)=0(D+k+n/k) =0(D) time, i.e., all phases altogether require O(D logn) time.

The number of messages is O(|E|+n+ D-|F|) on every phase, i.e., O((|E|+n)-log n) messages
in all the ¢ phases. Hence the total message complexity is O(|E|logn + nlogn - log* n).



We summarize this result below.

Theorem 3.1 The deterministic algorithm that was described above computes the minimum span-
ning tree in the CONGEST model, in O((D + +/n)-logn) time, using O(|E|logn+nlogn-log*n)
messages.

Next, we extend the algorithm to the CONGEST (blog n) model, for a positive integer param-
eter b. We first discuss the case of small diameter, i.e., D < \/E , and then proceed to discussing
the complementary case.

In the small-diameter regime, we set k = \/E, ie., D < k. We construct an (n/k,O(k))-MST
forest Fo in O(klog® n) time, using O(|F|log n+nlogn-log* n) messages. The upcast of |Fy| < n/k
identities of base fragments requires O(D + %) time and O(D - n/k) messages. Now consider the
jth phase of the algorithm, for some j = 0,1,2,.... Computing minimum weight crossing edges
in parallel in all base fragments {e = (u,v) | u € V(F),v € V'\ V(F),F e F,F e F;} requires
O(k) time and O(n) messages. Pipelined convergecast of |F;| items requires O(D + ‘Lb") time and
O(D - |F;|) messages. The pipelined downcast of |F| < n/k messages requires O(D + |F|/b) =
O(D+ £) = O(D + /n/b) time, and O(D - |F|) = O(D - n/k) messages. (Note that this downcast
sends each message only along its own root-destination path, rather than broadcasting it to the
entire graph.) Updating neighbors with new fragments’ identities requires O(1) time and O(|E|)
messages. The overall running time of the £ phases is

O <D—|—%> + O(klogn + Dlogn+ |F|-logn) = O ((D—I—k:+ klb) -logn)

_ o(ﬁ.logn> .

This is also the upper bound on the total running time. The overall number of messages used in
the ¢ phases is O((D -n/k+n+ |E|)logn) = O(|E| -logn). Hence the total message complexity is
O(|E|logn 4+ nlogn -log* n).

In the large-diameter regime, i.e., when D > \/E , we set k= D. Constructing F = Fy requires
O(Dlog* n) time and O(|E|logn +nlogn -log* n) messages. Computing minimum weight crossing
edges in all base fragments in parallel requires (on each phase) O(D) time and O(n) messages.
Other than that on phase j, for j = 0,1,...,¢ — 1, we have time O(D + ‘—i') time and O(D - | F|)
messages. Overall, this sums up to

O((D + | F|/b) - logn) = 0((D+Dﬁb) -1ogn) — O(Dlogn)

time, and O((D-n/k+n+|E|)-logn) = O(|E|-log n) messages. Hence the total running time of the
entire algorithm in this case is O(D logn), and its message complexity is O(|E|log n+nlogn-log* n).

Theorem 3.2 For any b > 1, the deterministic algorithm that was described above computes
the minimum spanning tree in CONGEST (blogn) model, in O((D + /n/b) - logn time, using
O(|E|logn + nlogn -log* n) messages.

4 Constructing an MST Forest

For the sake of completeness, we next describe the algorithm (due to [GKP98, KP98, Lenl16]) for
constructing an (n/k,O(k))-MST forest, for an integer parameter &k < n/10. (The constant 10 is



quite arbitrary.) Our version of the algorithm is slightly more general than that in [Lenl6], and
our bounds on its time and message complexities are slightly better than the respective bounds in
[PRS16].

The algorithm runs for ¢ = [log k] phases. At the beginning of a phase i =0,1,2,...,t— 1, the
algorithm has already computed (n/2!=1,6 - 2/)-MST forest F;. The induction base i = 0 holds for
the MST forest of singletons. We next describe a single phase of the algorithm, and show that the
resulting collection F;.1 is an (n/2%,6 - 20+1)-MST forest.

At the beginning of a phase i, every fragment F € F; with diameter at most 2° computes
the edge ep = MWOE(F). We denote the set of fragments F/. This step requires O(2¢) time
and O(n) messages. (Also, at the beginning of each phase, every vertex updates its neighbors
with the identity of its fragment. This requires O(1) time and O(|E|) messages.) Then, for every
er = (u,v),u € V(F),v e V\V(F), a message is sent over ep, and the receiver v writes down u as
a “foreign-fragment” child of itself. (In the special case when (u,v) = MWOE(F,) = MWOE(F,),
with u € V(F,), v € V(F,), the endpoint belonging to a higher-identity fragment becomes the
parent of the other endpoint.)

This defines a candidate fragment graph G. = (F[,&;), whose vertices are the fragments of
F!, and edges are the MWOE edges of these fragments. We then compute a maximal matching
(henceforth, MM) M in G/. (We will soon elaborate on this.) For every pair (F,F’) € M, the
two fragments merge into a single fragment, along the MWOFE edge that connects them. Every
fragment F" € F; \ F/(M) is necessarily connected via its MWOE(F") = €” to either a matched
fragment F' € F/(M), or to a fragment F' € F; \ F, of diameter larger than 2°. In either case,
it now merges with F' along the edge €¢”. Except for the procedure that computes an MM, this
completes the description of the algorithm. The MST forest F;y1 consists now of the resulting
merged fragments, and of those fragments of F; \ F that did not participate in the merging process
described above. (These are the fragments F with diameter Diam(F) > 2!, and such that no
unmatched fragment F’ € F| has its MWOE (u,v) with an endpoint in F.)

Remark: The next two lemmas and their proofs are closely related to that of Lemmas 6.15 and
6.17 in [Lenl6].

Lemma 4.1 Diam(F;11) <6201

Proof: Each new fragment F e Fit1 can be viewed as a subtree of diameter at most 3 in the
fragment graph G; = (F;,&;), whose edge set &; is the set of all the MWOEs of fragments of F;.
Moreover, at most one of the fragments in this subtree may have diameter greater than 2¢. (But,
by induction hypothesis, its diameter is, nevertheless, at most 6 - 2°.) Hence the diameter of Fin
Gisat most 6-204+3-20+3<12-20=6-2F1. |

Lemma 4.2 Fori=0,1,...,t—2, each fragment F € Fiy1 contains at least 2 vertices.

Proof: The proof is by induction on i¢. The base i = 0 holds, as every fragment of F contains at
least one vertex.

By induction hypothesis, every fragment F € F; contains at least 2'~! vertices. Consider a
fragment F € F; with |F| < 2°. Then Diam(F) < 2 too, and hence F' € F/. Thus F merges with
at least one other fragment F’ of F;. (As |F| < 2 < n, F has outgoing edges, and thus has an
MWOE.) Since, by induction hypothesis, |F|,|F’| > 2i1, it follows that the merged fragment has
size at least 2¢. |



Hence |F;| < n/207t. By substituting i = t — 1 = [logk] — 1, we get |F_1| = O(n/k), and
Diam(F;—1) = O(k). By rescaling (setting k' = ¢ - k, for an appropriate constant c¢), we obtain the
desired (n/k,O(k))-MST forest.

Next, we sketch the procedure that computes an MM in the forest G = (F/,&!), and analyze
its time and message complexities. Recall that, by Lemma 4.1, each fragment F' € F! has diameter
0(29).

The first step is to simulate Cole-Vishkin’s 3-vertex-coloring algorithm [CV86] in G.. For this
end, on every step every internal fragment F' € F/ needs to send a message with its current color
to its children in G!. (Initial colors are set as fragments’ identities.) This is implemented in O(2¢)
time, using O(n) messages, in a straightforward manner. Since there are log* n such steps, overall
this computation requires O(2! - log* n) time and O(n - log* n) messages.

Given a 3-vertex-coloring of G/, there are 3 steps. On each step j € {1,2,3}, fragments I’ of
color j that have at least one of their children F” unmatched, insert an edge (F’, F”') connecting
them to such an unmatched child into the matching, and update their parents F' that they became
matched. The second step involves a convergecast in the parent fragment F', during which the root
of F' learns if it still has an unmatched child. Also, every internal vertex v € F learns if one of its
descendents leads to an unmatched child of F' or not.

This entire part of the algorithm can also be implemented in O(2%) time and O(n) messages,
in a straightforward manner. Hence the entire computation of MM on phase ¢ of the algorithm
requires O(2¢ - log*n) time, and O(n - log*n) messages. Thus, the total running time of phase
i is O(2° - log*n), and the number of messages if O(|E| + n - log*n). Summing up over all the
[log k] phases, we obtain running time O(log* n Zzﬂzog k] 21) = O(k-log* n), and message complexity
O(|E| - logk 4+ nlogk - log* n).

We summarize this section in the following theorem.

Theorem 4.3 For an integer parameter k < n/10, the deterministic algorithm described above
computes an (n/k,O(k))-MST forest in time O(k - log* n), using O(|E| - logk + n - logk - log" n)
messages.
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