
1A Layered Architecture for Erasure-Coded
Consistent Distributed Storage

Kishori M. Konwar, N. Prakash, Nancy Lynch, Muriel Médard
Department of Electrical Engineering & Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

{kishori, lynch}@csail.mit.edu, {prakashn, medard}@mit.edu

Abstract

Motivated by emerging applications to the edge computing paradigm, we introduce a two-layer
erasure-coded fault-tolerant distributed storage system offering atomic access for read and write operations.
In edge computing, clients interact with an edge-layer of servers that is geographically near; the edge-layer
in turn interacts with a back-end layer of servers. The edge-layer provides low latency access and
temporary storage for client operations, and uses the back-end layer for persistent storage. Our algorithm,
termed Layered Data Storage (LDS) algorithm, offers several features suitable for edge-computing systems,
works under asynchronous message-passing environments, supports multiple readers and writers, and
can tolerate f1 < n1/2 and f2 < n2/3 crash failures in the two layers having n1 and n2 servers,
respectively. We use a class of erasure codes known as regenerating codes for storage of data in the
back-end layer. The choice of regenerating codes, instead of popular choices like Reed-Solomon codes,
not only optimizes the cost of back-end storage, but also helps in optimizing communication cost of
read operations, when the value needs to be recreated all the way from the back-end. The two-layer
architecture permits a modular implementation of atomicity and erasure-code protocols; the implementation
of erasure-codes is mostly limited to interaction between the two layers. We prove liveness and atomicity
of LDS, and also compute performance costs associated with read and write operations. In a system with
n1 = Θ(n2), f1 = Θ(n1), f2 = Θ(n2), the write and read costs are respectively given by Θ(n1) and
Θ(1) + n1I(δ > 0). Here δ is a parameter closely related to the number of write operations that are
concurrent with the read operation, and I(δ > 0) is 1 if δ > 0, and 0 if δ = 0. The cost of persistent
storage in the back-end layer is Θ(1). The impact of temporary storage is minimally felt in a multi-object
system running N independent instances of LDS, where only a small fraction of the objects undergo
concurrent accesses at any point during the execution. For the multi-object system, we identify a condition
on the rate of concurrent writes in the system such that the overall storage cost is dominated by that of
persistent storage in the back-end layer, and is given by Θ(N).

I. INTRODUCTION

We introduce a two-layer erasure-coded fault-tolerant distributed storage system offering atomic access
[22] for read and write operations. Providing consistent access to stored data is a fundamental problem in
distributed computing. The most desirable form of consistency is atomicity, which in simple terms, gives
the users of the data service the impression that the various concurrent read and write operations take
place sequentially. Our work is motivated by applications to decentralized edge computing, which is an
emerging distributed computing paradigm where processing of data moves closer to the users instead of

A shorter version of this work appears as a regular paper in the ACM Proceedings of Principles of Distributed Computing
(PODC) 2017, DOI: 10.1145/3087801.3087832. The work is supported in part by AFOSR under grants FA9550-13-1-0042,
FA9550-14-1-043, FA9550-14-1-0403, and in part by NSF under awards CCF-1217506, CCF-0939370.

ar
X

iv
:1

70
3.

01
28

6v
2

 [
cs

.D
C

]
 3

0
M

ay
 2

01
7

processing the entire data in distant data centers or cloud centers [4], [12], [23], [28]. Edge computing is
considered to be a key enabler for Internet of Things. In this form of computing, the users or clients
interact with servers in the edge of the network, which forms the first layer of servers. The edge servers
in turn interact with a second layer servers in the back-end, which is either a distant data-center or a
cloud center. Geographic proximity of edge servers to clients permits high speed operations between
clients and the edge layer, whereas communication between the edge and the back-end layer is typically
much slower [23]. Thus, it is desirable whenever possible to complete client operations via interaction
only with the edge layer. The edge servers however are severely restricted in their total storage capacity.
We envisage a system that handles millions of files, which we call objects; the edge servers clearly do
not have the capacity to store all the objects for the entire duration of execution. In practice, at any given
time, only a tiny fraction of all objects undergo concurrent accesses; in our system, the limited storage
space in the edge layer acts as a temporary storage for those objects that are getting accessed. The second
layer of servers provide permanent storage for all the objects for the entire duration of execution. The
servers in the first layer act as virtual clients of the second layer servers.

An important requirement in edge-computing systems is to reduce the cost of operation of the back-end
layer, by making efficient use of the edge layer [28]. Communication between the two layers, and persistent
storage in the second layer contribute to the cost of operation of the second layer. We address both these
factors in our system design. The layered approach to implementing an atomic storage service carries the
advantage that, during intervals of high concurrency from write operations on any one object, the edge
layer can be used to retain the more recent versions of the object that are being (concurrently) written,
while filtering out the outdated versions. The ability to avoid writing every version to the second layer
decreases the overall write communication cost between the two layers. Our architecture also permits the
edge layer to be configured as a proxy cache layer for objects that are frequently read, and thus avoids
the need to read from the back-end layer for such objects.

In this work, we use a recent class of erasure codes known as regenerating codes [9] for storage of
data in the back-end layer. From a storage cost view-point, these are as efficient as popular erasure codes
like Reed-Solomon codes [26]. In our system, usage of regenerating codes, instead of Reed-Solomon
codes, provides the extra advantage of reducing read communication cost when the object needs to be
recreated from the coded data in the cloud layer. Specifically, we rely on class of regenerating codes
known as minimum bandwidth regenerating codes for simultaneously optimizing read and storage costs.

While this may be the first work that explicitly uses regenerating codes for consistent data storage, the
study of erasure codes—like Reed-Solomon codes—in implementations of consistent distributed storage,
is an active area of research by itself [6], [7], [11], [17], [29]. In the commonly used single-layer storage
systems, for several regimes of operation, cost metrics of Reed-Solomon-code based implementations [1],
[6], [11], [17] outperform those of replication based implementations [3]. In comparison with single
layer systems, the layered architecture naturally permits a layering of the protocols needed to implement
atomicity, and erasure code in the cloud layer. The protocols needed to implement atomicity are largely
limited to interactions between the clients and the edge servers, while those needed to implement the
erasure code are largely limited to interactions between the edge and cloud servers. From an engineering
viewpoint, the modularity of our implementation makes it suitable even for situations that does not
necessarily demand a two-layer system.

A. Our Algorithm for the Two-Layer System

We propose the Layered Distributed Storage (LDS) algorithm for implementing a multi-writer, multi-
reader atomic storage service over a two-layer asynchronous network. The algorithm is designed to address
the various requirements described above for edge computing systems. A write operation completes after

2

writing the object value to the first layer; it does not wait for the first layer to store the corresponding
coded data in the second layer. For a read operation, concurrency with write operations increases the
chance of it being served directly from the first layer; otherwise, servers in the first layer regenerate coded
data from the second layer, which are then relayed to the reader. Servers in the first layer interact with
those of second layer via the well defined actions (which we call as internal operations) write-to-L2 and
regenerate-from-L2 for implementing the regenerating code in the second layer. The algorithm is designed
to tolerate f1 < n1/2 and f2 < n2/3 crash failures in the first and second layers, having n1 and n2
servers, respectively. We prove liveness and atomicity properties of the algorithm, and also calculate
various performance costs. In a system with n1 = Θ(n2), f1 = Θ(n1), f2 = Θ(n2), the write and read
costs are respectively given by Θ(n1) and Θ(1) + n1I(δ > 0). Here δ is a parameter closely related to
the number of write or internal write-to-L2 operations that are concurrent with the read operation, and
I(δ > 0) is 1 if δ > 0, and 0 if δ = 0.. Our ability to reduce the read cost to Θ(1), when δ = 0 comes
from the usage of minimum bandwidth regenerating (MBR) codes (see Section II). In order to ascertain
the contribution of temporary storage cost to the overall storage cost, we carry out a multi-object (say N)
analysis, where each of the N objects is implemented by an independent instance of the LDS algorithm.
The multi-object analysis assumes bounded latency for point-to-point channels. We identify conditions on
the total number of concurrent write operations per unit time, such that the permanent storage cost in the
second layer dominates the temporary storage cost in the first layer, and is given by Θ(N). Further, we
compute bounds on completion times of successful client operations, under bounded latency.

B. Related Work

Replication based algorithms for implementing atomic shared memory appears in [3], [13]. The model
in [13] uses a two-layer system, with one layer dedicated exclusively for meta-data, and other layer
for storage. The model is suitable when actual data is much larger than meta-data, and permits easy
scalability of the storage layer. However, clients interact with servers in both layers, and thus is not directly
comparable to our model, where clients only interact with the first layer. Both [3], [13] use quorums for
implementing atomicity; variations of these algorithms appear in practical systems like Cassandra [20].
Replication based algorithms in single-layer systems, for dynamic settings appear in RAMBO [21],
DynaStore [2]. Dynamic setting allow servers to leave and enter the system; these algorithms rely on
reconfiguration of quorums. Erasure-code based implementations of consistent data storage in single
layer systems appear in [1], [6], [11], [17], [29]. Bounds on the performance costs for erasure-code
based implementations appear in [7], [29]. In [5], [10], [15], erasure codes are used in algorithms for
implementing atomic memory in settings that tolerate Byzantine failures. In [11], [14], [18], authors
provide algorithms that permit repair of crashed servers (in a static setting), while implementing consistent
storage. In the content of our work, it is of future interest to develop protocols for recovery of crashed
servers in the second-layer, which implements permanent coded storage.

We rely on regenerating codes which were introduced in [9] with the motivation of enabling efficient
repair of failed servers in distributed storage systems. For the same storage-overhead and resiliency, the
communication cost for repair, termed repair-bandwidth, is substantially less than what is needed by
popular codes like Reed-Solomon codes. There has been significant theoretical progress since the work of
[9]; a survey appears in [8]. Several systems works show usefulness of these codes or their variations in
practical systems for immutable data [19], [24], [27]. In this work, we cast internal read operations by
virtual clients in the first layer as repair operations, and this enables us to reduce the overall read cost.
We rely on code constructions from [25] for the existence of MBR codes needed in our work, and these
codes offer exact repair. A different class of codes known as Random Linear Network Codes [16] permit
implementation of regenerating codes via functional repair. These codes offer probabilistic guarantees,

3

and permit near optimal operation of regenerating codes for any choice of operating point suggested by
[9]. In the context of our work, it will be interesting to find out the probabilistic guarantees that can be
obtained if we use RLNCs instead of the codes in [25].

System Model and definitions appear in Section II. The pseudo code of the LDS algorithm, along with
its description is presented in Section III. In Section IV, we state several properties of the algorithm,
which are tied together to prove its liveness and atomicity properties. Performance cost analysis appears
in Section V. Our conclusions appear in Section VI. Proofs of various claims appear in the Appendix.

II. SYSTEM MODEL AND DEFINITIONS

a) Model of Computation: We assume a distributed storage system consisting of asynchronous
processes of three types: writers (W), readers (R) and servers (S). The servers are organized into two
logical layers L1 and L2, with Li consisting of ni, i = 1, 2 servers. Each process has a unique id, and the
ids are totally ordered. Client (reader/writer) interactions are limited to servers in L1, the servers in L1 in
turn interact with servers in L2. Further, the servers in L1 and L2 are denoted by {s1, s2, . . . , sn1

} and
{sn1+1, sn1+2, . . . , sn1+n2

}, respectively. We assume the clients to be well-formed, i.e., a client issues a
new operation only after completion of its previous operation, if any. The L1-L2 interaction happens via
the well defined actions write-to-L2 and regenerate-from-L2. We will refer to these actions as internal
operations initiated by the servers in L1. We assume a crash failure model for processes. Once a process
crashes, it does not execute any further steps for the rest of the execution. The LDS algorithm is designed
to tolerate fi crash failures in layer Li, i = 1, 2, where f1 < n1/2 and f2 < n2/3. Any number of readers
and writers can crash during the execution. Communication is modeled via reliable point-to-point links
between any two processes. This means that as long as the destination process is non-faulty, any message
sent on the link is guaranteed to eventually reach the destination process. The model allows the sender
process to fail after placing the message in the channel; message-delivery depends only on whether the
destination is non-faulty.

b) Liveness and Atomicity: We implement one object, say x, via the LDS algorithm supporting
read/write operations. For multiple objects, we simply run multiple instances of the LDS algorithm. The
object value v come from the set V ; initially v is set to a distinguished value v0 (∈ V). Reader r requests
a read operation on object x. Similarly, a write operation is requested by a writer w. Each operation at a
non-faulty client begins with an invocation step and terminates with a response step. An operation π is
incomplete in an execution when the invocation step of π does not have the associated response step;
otherwise we say that π is complete. In an execution, we say that an operation (read or write) π1 precedes
another operation π2, if the response step for π1 precedes the invocation step of π2. Two operations are
concurrent if neither precedes the other.

By liveness, we mean that during any well-formed execution of the algorithm, any read or write
operation initiated by a non-faulty reader or writer completes, despite the crash failure of any other client
and up to f1 server crashes in L1, and up to f2 server crashes in L2. By atomicity of an execution, we
mean that the read and write operations in the execution can be arranged in a sequential order that is
consistent with the order of invocations and responses. We refer to [22] for formal definition of atomicity.
We use the sufficient condition presented in Lemma 13.16 of [22] to prove atomicity of LDS.

c) Regenerating Codes: We introduce the framework as in [9], and then see its usage in our work. In
the regenerating-code framework, a file F of size B symbols is encoded and stored across n servers such
that each server stores α symbols. The symbols are assumed to be drawn from a finite field Fq, for some
q. The content from any k servers (kα symbols) can be used to decode the original file F . For repair of
a failed server, the replacement server contacts any subset of d ≥ k surviving servers in the system, and
downloads β symbols from each of the d servers. The β symbols from a helper server is possibly a function

4

of the α symbols in the server. The parameters of the code, say C, shall be denoted as {(n, k, d)(α, β)}.
It was shown in [9] that the file-size B is upper bounded by B ≤

∑k−1
i=0 min(α, (d− i)β). Two extreme

points of operation correspond to the minimum storage overhead (MSR) operating point, with B = kα
and minimum repair bandwidth (MBR) operating point, with α = dβ. In this work, we use codes at the
MBR operating point. The file-size at the MBR point is give by BMBR =

∑k−1
i=0 (d− i)β. We also focus

on exact-repair codes, meaning that the content of a replacement server after repair is identical to what
was stored in the server before crash failure (the framework permits functional repair [9] which we do not
consider). Code constructions for any set of parameters at the MBR point appear in [25], and we rely on
this work for existence of codes. In this work, the file F corresponds to the object value v that is written.

In this work, we use an {(n = n1 + n2, k, d)(α, β)} MBR code C. The parameters k and d are
such that n1 = 2f1 + k and n2 = 2f2 + d. We define two additional codes C1 and C2 that are derived
from the code C. The code C1 is obtained by restricting attention to the first n1 coded symbols of
C, while the code C2 is obtained by restricting attention to the last n2 coded symbols of C. Thus
if [c1 c2 . . . cn1

cn1+1 . . . cn1+n2
], ci ∈ Fαq denotes a codeword of C, the vectors [c1 c2 . . . cn1

] and
[cn1+1 . . . cn1+n2

] will be codewords of C1 and C2, respectively. We associate the code symbol ci with
server si, 1 ≤ i ≤ n1 + n2.

The usage of these three codes is as follows. Each server in L1, having access to the object value v
(at an appropriate point in the execution) encodes v using code C2 and sends coded data cn1+i to server
sn1+i in L2, 1 ≤ i ≤ n2. During a read operation, a server say sj in L1 can potentially reconstruct the
coded data cj using content from L2. Here we think of cj as part of the code C, and cj gets reconstructed
via a repair procedure (invoked by server sj in L1) where the d helper servers belong to L2. By operating
at the MBR point, we minimize the cost that need by the server sj to reconstruct cj . Finally, in our
algorithm, we permit the possibility that the reader receives k coded data elements from k servers in L1,
during a read operation. In this case, the reader uses the code C1 to attempt decoding the object value v.

An important property of the MBR code construction in [25], which is needed in our algorithm, is the
fact the a helper server only needs to know the index of the failed server, while computing the helper
data, and does not need to know the indices of the other d− 1 helpers whose helper data will be used in
repair. Not all regenerating code constructions, including those of MBR codes, have this property that we
need. In our work, a server sj ∈ L1 requests for help from all servers in L2, and does not know a priori,
the subset of d servers that will form the helper servers. As we shall see in the algorithm, the server sj
simply relies on the first d responses that it receives, and considers these as the helper data for repair. In
this case, it is crucial that any server in L2 that computes its β symbols does so without any assumption
on the specific set of d servers in L2 that will eventually form the helper servers for the repair operation.

d) Storage and Communication Costs: The communication cost associated with a read or write
operation is the (worst-case) size of the total data that gets transmitted in the messages sent as part of
the operation. While calculating write-cost, we also include costs due to internal write-to-L2 operations
initiated as a result of the write, even though these internal write-to-L2 operations do not influence the
termination point of the write operation. The storage cost at any point in the execution is the worst-case
total amount of data that is stored in the servers in L1 and L2. The total data in L1 contributes to
temporary storage cost, while that in L2 contributes to permanent storage cost. Costs contributed by
meta-data (data for book keeping such as tags, counters, etc.) are ignored while ascertaining either storage
or communication costs. Further the costs are normalized by the size of v; in other words, costs are
expressed as though size of v is 1 unit.

5

Fig. 1 The LDS algorithm for a writer w ∈ W and reader r ∈ R.

LDS steps at a writer w:
2: get-tag:

Send QUERY-TAG to servers in L1

4: Wait for responses from f1 + k servers, and select max

tag t.
put-data:

6: Create new tag tw = (t.z + 1, w).
Send (PUT-DATA, (tw, v)) to servers in L1

8: Wait for responses from f1+k servers in L1, and terminate

LDS steps at a reader r:
2: get-commited-tag:

Send QUERY-COMM-TAG to servers in L1

4: Await f1 + k responses, and select max tag treq
get-data:

6: Send (QUERY-DATA, treq) to servers in L1

Await responses from f1 +k servers such that at least one

of them is a (tag, value) pair, or at least k of them are (tag,
coded-element) pairs corresponding to some common tag.
In the latter case, decode corresponding value using code
C1. Select the (tr, vr) pair corresponding to the highest tag,
from the available (tag, value) pairs.

8: put-tag:
Send (PUT-TAG, tr) to servers in L1

10: Await responses from f1 + k servers in L1. Return vr

III. LDS ALGORITHM

In this section, we present the LDS algorithm. The protocols for clients, servers in L1 and servers in
L2 appear in Figs. 1, 2 and 3 respectively. Tags are used for version control of object values. A tag t is
defined as a pair (z, w), where z ∈ N and w ∈ W denotes the ID of a writer. We use T to denote the set
of all possible tags. For any two tags t1, t2 ∈ T we say t2 > t1 if (i) t2.z > t1.z or (ii) t2.z = t1.z and
t2.w > t1.w. The relation > imposes a total order on the set T .

Each server s in L1 maintains the following state variables: a) a list L ⊆ T × V , which forms a
temporary storage for tag-value pairs received as part of write operations, b) Γ ⊆ R×T , which indicates
the set of readers being currently served. The pair (r, treq) ∈ Γ indicates that the reader r requested for tag
treq during the read operation. c) tc: committed tag at the server, d) K : a key-value set used by the server
as part of internal regenerate-from-L2 operations. The keys belong to R, and values belong to T ×H.
Here H denotes the set of all possible helper data corresponding to coded data elements {cs(v), v ∈ V}.
Entries of H belong to Fβq . In addition to these, the server also maintains three counter variables for
various operations. The state variable for a server in L2 simply consists of one (tag, coded-element) pair.
For any server s, we use the notation s.y to refer its state variable y. Further, we write s.y|T to denote the
value of s.y at point T of the execution. Following the spirit of I/O automata [22], an execution fragment
of the algorithm is simply an alternating sequence of (the collection of all) states and actions. By an
action, we mean a block of code executed by any one process without waiting for further external inputs.

In our algorithm, we use a broadcast primitive for certain meta-data message delivery. The primitive
has the property that if the message is consumed by any one server in L1, the same message is eventually
consumed by every non-faulty server in L1. An implementation of the primitive, on top of reliable
communication channels (as in our model), can be found in [17]. In this implementation, the idea is that
the process that invokes the broadcast protocol first sends, via point-to-point channels, the message to a
fixed set Sf1+1 of f1 + 1 servers in L1. Each of these servers, upon reception of the message for first time,
sends it to all the servers in L1, before consuming the message itself. The primitive helps in the scenario
when the process that invokes the broadcast protocol crashes before sending the message to all servers.

6

Fig. 2 The LDS algorithm for any server in L1.

LDS state variables & steps at an L1 server, sj :
2: State Variables:

L ⊆ T × V , initially {(t0,⊥)}
Γ ⊆ R× T , initially empty
tc ∈ T initially tc = t0
commitCounter[t] : t ∈ T , initially 0 ∀t ∈ T
readCounter[r]: r ∈ R, initially 0 ∀r ∈ R
writeCounter[t]: t ∈ T , initially 0 ∀t ∈ T
K : key-value set; keys from R, values from T ×H

get-tag-resp (QUERY-TAG) from w ∈ W:
4: send max{t : (t, ∗) ∈ L} to w

put-data-resp (PUT-DATA, (tin, vin)) received:
6: broadcast(COMMIT-TAG, tin) to L1

if tin > tc then
8: L← L ∪ {(tin, vin)}

else
10: send ACK to writer w of tag tin

broadcast-resp (COMMIT-TAG, tin) received:
12: commitCounter[tin]← commitCounter[tin] + 1

if (tin, ∗) ∈ L∧ commitCounter[tin] ≥ f1 + k then
14: send ACK to writer w of tag tin

if tin > tc then
16: tc ← tin

for each γ ∈ Γ such that tc ≥ γ.treq ,
send (tin, vin) to reader γ.r
Γ← Γ− {γ}

18: for each (t, ∗) ∈ L s.t. t < tc //delete older value
L← L− {(t, ∗)} ∪ {(t,⊥)}

initiate write-to-L2(tin, vin) // write vin to L2

20: write-to-L2(tin, vin):
for each sn1+i ∈ L2

22: Compute coded element cn1+i for value v
send (WRITE-CODE-ELEM, (tin, cn1+i) to s

24: write-to-L2-complete (ACK-CODE-ELEM, t) received:
writeCounter[t]← writeCounter[t] + 1

26: if writeCounter[t] = n2 − f2 then
L← L− {(t, ∗)} ∪ {(t,⊥)}

28: get-commited-tag-resp (QUERY-COMM-TAG) from r ∈ R:
send tc to r

30: get-data-resp (QUERY-DATA, treq) from r ∈ R:
if (treq, vreq) ∈ L then

32: send (treq, vreq) to reader r
else

34: if tc > treq ∧ (tc, vc) ∈ L then
send (tc, vc) to reader r

36: else
Γ← Γ ∪ {(r, treq)}

38: initiate regenerate-from-L2(r)

regenerate-from-L2(r):
40: for each s ∈ L2

send (QUERY-CODE-ELEM, r) to s

42: regenerate-from-L2-complete(SEND-HELPER-ELEM, (r, t, hn1+i,j)) recv:
readCounter[r]← readCounter[r] + 1

44: K[r]← K[r] ∪ {(t, hn1+i,j)}
if readerCounter[r] = n2 − f2 = f2 + d then

46: (t̂, ĉj)← regenerate highest possible tag using K[r]
//(⊥,⊥) if failed to regenerate any tag
clear K[r]

48: if ĉj 6= ⊥ ∧ t̂ ≥ γ.treq then // where γ = (r, treq)
send (t̂, ĉj) to r

50: else
send (⊥,⊥) to r

52: put-tag-resp (PUT-TAG, (tin)) received from r ∈ R:
Γ← Γ− {γ′} // γ′ = (r, treq)

54: if tin > tc then
tc ← tin

56: if (tc, vc) ∈ L then
for each γ ∈ Γ s. t. tc ≥ γ.treq

58: send (tc, vc) to reader γ.r,
Γ← Γ− {γ}.

60: initiate write-to-L2(tin, vin)
else

62: L← L ∪ {(tc,⊥)}
t̄← max{t : t < tc ∧ (t, v) ∈ L}
// t̄ =⊥, if none exists

64: for each γ ∈ Γ such that t̄ ≥ γ.treq ,
send (t̄, v̄) to reader γ.r
Γ← Γ− {γ}

for each (t, ∗) ∈ L s.t. t < tc
L← L− {(t, ∗)} ∪ {(t,⊥)}

66: send ACK to r

A. Write Operation

The write operation has two phases, and aims to temporarily store the object value v in L1 such that
up to f1 failures in L1 does not result in loss of the value. During the first phase get-tag, the writer w
determines the new tag for the value to be written. To this end, the writer queries all servers in L1 for
maximum tags, and awaits responses from f1 + k servers in L1. Each server that gets the get-tag request
responds with the maximum tag present in the list L, i.e. max(t,∗)∈L t. The writer picks the maximum

7

Fig. 3 The LDS algorithm for any server in L2 .

LDS state variables & steps at an L2 server sn1+i:
2: State Variables:

(t, c) ∈ T × Fαq , initially (t0, c0)

write-to-L2-resp (WRITE-CODE-ELEM, (tin, cin)) from sj :
4: if tin > t then

(t, c)← (tin, cin)

6: send (ACK-CODE-ELEM, tin) to sj

regenerate-from-L2-resp(QUERY-CODE-ELEM, r) from sj :
8: Compute helper data hn1+i,j ∈ Fβq for repairing cj

send (SEND-HELPER-ELEM, (r, t, hn1+i,j)) to sj

tag, say t, from among the responses, and creates a new and higher tag tw = tag(π).
In the second phase put-data, the writer sends the new (tag, value) pair to all severs in L1, and awaits

acknowledgments from f1 + k servers in L1. A server that receives the new (tag, value) pair (tin, vin) as
a first step uses the broadcast primitive to send a data-reception message to all servers in L1. Note that
this message contains only meta-data information and not the actual value. Each server s ∈ L1 maintains
a committed tag variable tc to indicate the highest tag that the server either finished writing or is currently
writing to L2. After sending the broadcast message, the server adds the pair (tin, vin) to its temporary
storage list L if tin > tc. If tin < tc, the server simply sends an acknowledgment back to the writer, and
completes its participation in the ongoing write operation. If the server adds the pair (tin, vin) to L, it
waits to hear the broadcast message regarding the ongoing write operation from at least f1 + k servers
before sending acknowledgment to the writer w. We implement this via the broadcast-resp phase. It may
be noted that a server sends acknowledgment to writer via the broadcast-resp phase only if it had added
the (tag, value) pair to L during the put-data-resp phase.

B. Additional Steps in broadcast-resp Phase

The server performs a few additional steps during the broadcast-resp phase, and these aid ongoing
read operations, garbage collection of the temporary storage, and also help to offload the coded elements
to L2. The execution of these additional steps do not affect the termination point of the write operation.
We explain these steps next.

Update committed tag tc: The server checks if tin is greater than the committed tag tc, and if so
updates the tc to tin. We note that even though the server added (tin, vin) to L only after checking
tin > tc, the committed tag might have advanced due to concurrent write operations corresponding to
higher tags and thus it is possible that tin < tc when the server does the check. Also, if tin > tc, it cab
be shown that (tin, vin) ∈ L. In other words the value vin has not been garbage collected yet from the
temporary storage L. We explain the mechanism of garbage collection shortly.

Serve outstanding read requests: The server sends the pair (tin, vin) to any outstanding read request
whose requested tag treq ≤ tin. In this case, the server also considers the read operation as being served
and will not send any further message to the corresponding reader. We note this is only one of the various
possibilities to serve a reader. Read operation is discussed in detail later.

Garbage collection of older tags: Garbage collection happens in two ways in our algorithm. We explain
one of those here, the other will be explained as part of the description of the internal write-to-L2 operation.
The server replaces any (tag, value) pair (t, v) in the list L corresponding to t < tc = tin with (t,⊥), and
thus removing the value associated with tags which are less than the committed tag. The combination
of our method of updating the committed tag and garbage collection described here ensures that during
intervals of concurrency from multiple write operations, we only offload the more recent (tag, value) pairs
(after the tags get committed) to the back-end layer. Also the garbage collection described here eliminates

8

values corresponding to older write operations which might have failed during the execution (and thus,
which will not get a chance to get garbage collected via the second option which we describe below).

Internal write-to-L2 operation: The server computes the coded elements {cn1+1, . . . , cn1+n2
} corre-

sponding to value vin and sends (tin, cn1+i) to server sn1+i in L2, 1 ≤ i ≤ n2. In our algorithm, each
server in L2 stores coded data corresponding to exactly one tag at any point during the execution. A server
in L2 that receives (tag, coded-element) pair (t, c) as part of an internal write-to-L2 operation replaces
the local pair (tag, coded-element) pair (t`, c`) with the incoming one if t > t`. The write-to-L2 operation
initiated by server s ∈ L1 terminates after it receives acknowledgments from f1 + d servers in L2. Before
terminating, the server also garbage collects the pair (tin, vin) from its list.

A pictorial illustration of the events that occur as a result of an initiation of a put-data phase by a
writer is shown in Fig. 4.

L1 L2

writer (2) broadcast t

(6) Internal write-to-L2

(3) Add to list if t >tc

(5) Update committed tag,

Garbage collect values for old tags

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

(7) Garbage collect current

value written to L2

Fig. 4. An illustration of the events that occur as a result of
an initiation of a put-data phase by a writer. The illustration is
only representative, and does not cover all possible executions.
In this illustration, the steps occur in the order (1), (2) and so
on. Steps (5), (6), (7) occur after sending ACK to the writer,
and hence does not affect the termination point of the write
operation.

L1

L2

reader

(2) (treq, vreq) in L? Yes

Helper data does not correspond
to common tag, so cannot regenerate

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Cannot serve
from list

(t, h8,3)

Cannot serve
from list (t, h9,5)

(t’, h10,5), t’ > t

Fig. 5. An illustration of the events that occur as a result
of an initiation of a get-data phase by a reader. Once again,
the illustration is only representative, and does not cover all
possible executions. Server s1 responds to the reader using
content from local list, server s3 regenerates successfully,
server s5 fails to regenerate successfully.

C. Read operation

The idea behind the read operation is that the reader gets served (tag, value) pairs from temporary
storage in L1, if it overlaps with concurrent write or internal write-to-L2 operations. If not, servers in
L1 regenerate (tag, coded-element) pairs via regenerate-from-L2 operations, which are then sent to the
reader. In the latter case, the reader needs to decode the value v using the code C1. A read operation
consists of three phases. During the first phase get-commited-tag, the reader identifies the minimum tag,
treq, whose corresponding value it can return at the end of the operation. Towards this, the reader collects
committed tags from f1 + k servers in L1, and computes the requested tag treq as the maximum of these
f1 + k committed tags.

During the second get-data phase, the reader sends treq to all the servers in L1, awaits responses
from f1 + k distinct servers such that 1) at least one of the responses contains a tag-value pair, say

9

(tr, vr), tr ≥ treq or 2) at least k of the responses contain coded elements corresponding to some fixed
tag, say tr such that tr ≥ treq. In the latter case, the reader uses the code C2 to decode the value vr
corresponding to tag tr. If more than one candidate is found for the (tag, value) pair that can be returned,
the reader picks the pair corresponding to the maximum tag. From the servers’ point of view, a server
s ∈ L1 upon reception of the get-data request checks if either (treq, vreq) or (tc, vc), tc > treq is in
its list; in this case, s responds immediately to the reader with the corresponding pair. Otherwise, s
adds the reader to its list Γ of outstanding readers, initiates an internal regenerate-from-L2 operation in
which s attempts to regenerate a tag-coded data element pair (t′, c′s), t

′ ≥ treq via a repair process taking
help from servers in L2. Towards this, the server s contacts all servers in L2, and each server s̄ ∈ L2,
using its state variable (t̄, c̄s), computes and sends the helper data (t̄, h̄s) back to the server s. We note
that the MBR code that we use (from [25]) has the property that h̄s can be uniquely computed given
c̄s and the id of the server s which invokes the regenerate-from-L2 operation. The server s waits for
d+ f2 responses, and if at least d responses correspond to a common tag, say t′, t′ ≥ treq, regenerates
the pair (t′, c′), and sends (t′, c′) back to the reader. It is possible that regeneration fails, and this can
happen in two ways: 1) the server s regenerates a pair (t′′, c′′), however t′′ < treq, 2) among the f2 + d
responses received by the server s, there is no subset of d responses corresponding to a common tag. In
our algorithm, if regeneration from L2 fails, the server s simply sends (⊥,⊥) back to the reader. The
reader interprets the response (⊥,⊥) as a sign of unsuccessful regeneration. We note that irrespective of
if regeneration succeeds or not, the server does not remove the reader from its list of outstanding readers.
In the algorithm, we allow the server s to respond to a registered reader with a tag-value pair, during
the broadcast-resp action as explained earlier. It is possible that while the server awaits responses from
L2 towards regeneration, a new tag t gets committed by s via the broadcast-resp action; in this case,
if t ≥ tc, server s sends (t, v) to r, and also unregisters r from its outstanding reader list. A pictorial
illustration of the events that occur as a result of an initiation of a get-data phase by a writer is shown
in Fig. 5.

In the third phase put-tag, the reader writes-back tag tr corresponding to vr, and ensures that at least
f1 + k servers in L1 have their committed tags at least as high as tr, before the read operation completes.
However, the value vr is not written back in this third phase, and this is important to decrease the read
cost. When a server s ∈ L1 receives the put-tag request for tag tr, it checks if (tr, vt) is in its list. In
this case, the server thinks of the put-tag request simply as a proxy for having encountered the event
commitCounter[tr] = f1 + k during the broadcast-resp phase, and carries out all the steps that it would
have done during the the broadcast-resp phase (except sending an ACK to the writer). However, if the
server sees the tag tr for the first time during the execution, it still updates its committed tag to tr, and
simply adds (tr,⊥) to its list. Further, the server carries out a sequence of steps similar to the case when
(tr, vr) ∈ L (except initiating write-to-L2) before sending ACK to reader. The third phase also helps in
unregistering the reader from the servers in L1.

IV. PROPERTIES OF THE ALGORITHM

We state several interesting properties of the LDS algorithm. These will be found useful while proving
the liveness and atomicity properties of the algorithm. We let Sa ⊂ L1, |Sa| = f1 + k to denote the set of
f1 + k servers in L1 that never crash fail during the execution. The following lemmas are only applicable
to servers that are alive at the concerned point(s) of execution appearing in the lemmas.

For every operation π in Π corresponding to a non-faulty reader or writer, we associate a (tag, value)
pair that we denote as (tag(π), value(π)). For a write operation π, we define the (tag(π), value(π))
pair as the message (tw, v) which the writer sends in the put-data phase. If π is a read, we define the
(tag(π), value(π)) pair as (tr, v) where v is the value that gets returned, and tr is the associated tag. We

10

also define tags, in a similar manner for those failed write operations that at least managed to complete
the first round of the write operation. This is simply the tag tw that the writer would use in put-data
phase, if it were alive. In our discussion, we ignore writes that failed before completion of the first round.

For any two points T1, T2 in an execution of LDS, we say T1 < T2 if T1 occurs earlier than T2 in the
execution. The following three lemmas describe properties of committed tag tc, and tags in the list.

Lemma IV.1 (Monotonicity of committed tag). Consider any two points T1 and T2 in an execution of
LDS, such that T1 < T2. Then, for any server s ∈ L1, s.tc|T1

≤ s.tc|T2
.

Lemma IV.2 (Garbage collection of older tags). For any server s ∈ L1, at any point T in an execution
of LDS, if (t, v) ∈ s.L|T , we have t ≥ s.tc|T .

Lemma IV.3 (Persistence of tags corresponding to completed operations). Consider any successful
write or read operation φ in an execution of LDS, and let T be any point in the execution after φ
completes. For any set S′ of f1 + k servers in L1 that are non-faulty at T , there exists s ∈ S′ such that
s.tc|T ≥ tag(φ) and max{t : (t, ∗) ∈ s.L|T } ≥ tag(φ).

The following lemma shows that an internal regenerate-from-L2 operation respects previously completed
internal write-to-L2 operations. Our assumption that f2 < n2/3 is used in the proof of this lemma.

Lemma IV.4 (Consistency of Internal Reads with respect to Internal Writes). Let σ2 denote a
successful internal write-to-L2(t, v) operation executed by some server in L1. Next, consider an internal
regenerate-from-L2 operation π2, initiated after the completion of σ2, by a server s ∈ L1 such that a
tag-coded-element pair, say (t′, c′) was successfully regenerated by the server s. Then, t′ ≥ t; i.e., the
regenerated tag is at least as high as what was written before the read started.

The following three lemmas are central to prove the liveness of read operations.

Lemma IV.5 (If internal regenerate-from-L2 operation fails). Consider an internal regenerate-from-L2
operation initiated at point T of the execution by a server s1 ∈ L1 such that s1 failed to regenerate any
tag-coded-element pair based on the responses. Then, there exists a point T̃ > T in the execution such
that the following statement is true: There exists a subset Sb of Sa such that |Sb| = k, and ∀s′ ∈ Sb
(t̃, ṽ) ∈ s′.L|T̃ , where t̃ = maxs∈L1

s.tc|T̃ .

Lemma IV.6 (If internal regenerate-from-L2 operation regenerates a tag older than the request
tag). Consider an internal regenerate-from-L2 operation initiated at point T of the execution by a server
s1 ∈ L1 such that s1 only manages to regenerate (t, c) based on the responses, where t < treq. Here treq
is the tag sent by the associated reader during the get-data phase. Then, there exists a point T̃ > T in
the execution such that the following statement is true: There exists a subset Sb of Sa such that |Sb| = k,
and ∀s′ ∈ Sb (t̃, ṽ) ∈ s′.L|T̃ , where t̃ = maxs∈L1

s.tc|T̃ .

Lemma IV.7 (If two Internal regenerate-from-L2 operations regenerate differing tags). Consider
internal regenerate-from-L2 operations initiated at points T and T ′ of the execution, respectively by
servers s and s′ in L1. Suppose that s and s′ regenerate tags t and t′ such that t < t′. Then, there exists
a point T̃ > T in the execution such that the following statement is true: There exists a subset Sb of Sa
such that |Sb| = k, and ∀s′ ∈ Sb (t̃, ṽ) ∈ s′.L|T̃ , where t̃ = maxs∈L1

s.tc|T̃ .

Theorem IV.8 (Liveness). Consider any well-formed execution of the LDS algorithm, where at most
f1 < n1/2 and f2 < n2/3 servers crash fail in layers L1 and L2, respectively. Then every operation
associated with a non-faulty client completes.

Theorem IV.9 (Atomicity). Every well-formed execution of the LDS algorithm is atomic.

11

V. COST COMPUTATION: STORAGE, COMMUNICATION AND LATENCY

In this section we discuss storage and communication costs associated with read/write operations, and
also carry out a latency analysis of the algorithm, in which estimates for durations of successful client
operations are provided. We also analyze a multi-object system, under bounded latency, to ascertain the
contribution of temporary storage toward the overall storage cost. We calculate costs for a system in
which the number of servers in the two layers are of the same order, i.e., n1 = Θ(n2). We further assume
that the parameters k, d of the regenerating code are such that k = Θ(n2), d = Θ(n2). This assumption
is consistent with usages of codes in practical systems.

In this analysis, we assume that corresponding to any failed write operation π, there exists a successful
write operation π′ such that tag(π′) > tag(π). This essentially avoids pathological cases where the
execution is a trail of only unsuccessful writes. Note that the restriction on the nature of execution was
not imposed while proving liveness or atomicity.

Like in Section IV, our lemmas in this section apply only to servers that are non-faulty at the concerned
point(s) of execution appearing in the lemmas. Also, we continue to ignore writes that failed before the
completion of the first round.

Lemma V.1 (Temporary Nature of L1 Storage). Consider a successful write operation π ∈ β. Then,
there exists a point of execution Te(π) in β such that for all T ′ ≥ Te(π) in β, we have s.tc|T ′ ≥ tag(π)
and (t, v) 6∈ s.L|T ′ , ∀s ∈ L1, t ≤ tag(π).

For a failed write operation π ∈ β, let π′ be the first successful write in β such that tag(π′) > tag(π)
(i,e., if we linearize all write operations, π′ is the first successful write operation that appears after π
- such a write operation exists because of our assumption in this section). Then, it is clear that for all
T ′ ≥ Te(π′) in β, we have (t, v) 6∈ s.L|T ′ , ∀s ∈ L1, t ≤ tag(π), and thus Lemma V.1 indirectly applies to
failed writes as well. Based on this observation, for any failed write π ∈ β, we define the termination point
Tend(π) of π as the point Te(π′), where π′ is the first successful write in β such that tag(π′) > tag(π).

Definition 1 (Extended write operation). Corresponding to any write operation π ∈ β, we define
a hypothetical extended write operation πe such that tag(πe) = tag(π), Tstart(πe) = Tstart(π) and
Tend(πe) = max(Tend(π), Te(π)), where Te(π) is as obtained from Lemma V.1.

The set of all extended write operations in β shall be denoted by Πe.

Definition 2 (Concurrency Parameter δρ). Consider any successful read operation ρ ∈ β, and let πe
denote the last extended write operation in β that completed before the start of ρ. Let Σ = {σe ∈
Πe|tag(σ) > tag(πe) and σe overlaps with ρ}. We define concurrency parameter δρ as the cardinality of
the set Σ.

Lemma V.2 (Write, Read Cost). The communication cost associated with any write operation in β is
given by n1 + n1n2

2d
k(2d−k+1) = Θ(n1). The communication cost associated with any successful read

operation ρ in β is given by n1(1 + n2

d) 2d
k(2d−k+1) +n1I(δρ > 0) = Θ(1) +n1I(δρ > 0). Here, I(δρ > 0)

is 1 if δρ > 0, and 0 if δρ = 0.

Remark 1. Our ability to reduce the read cost to Θ(1) in the absence of concurrency from extended
writes comes from the usage of regenerating codes at MBR point. Regenerating codes at other operating
points are not guaranteed to give the same read cost. For instance, in a system with equal number of
servers in either layer, also with identical fault-tolerance (i.e., n1 = n2, f1 = f2), it can be shown that
usage of codes at the MSR point will imply that read cost is Ω(n1) even if δρ = 0.

12

Lemma V.3 (Single Object Permanent Storage Cost). The (worst case) storage cost in L2 at any point
in the execution of the LDS algorithm is given by 2dn2

k(2d−k+1) = Θ(1).

Remark 2. Usage of MSR codes, instead of MBR codes, would give a storage cost of n2

k = Θ(1). For
fixed n2, k, d, the storage-cost due to MBR codes is at most twice that of MSR codes. As long as we focus
on order-results, MBR codes do well in terms of both storage and read costs; see Remark 1 as well.

A. Bounded Latency Analysis

For bounded latency analysis, we assume the delay on the various point-to-point links are upper bounded
as follows: 1) τ1, for any link between a client and a server in L1, 2) τ2, for any link between a server
in L1 and a server in L2, and 3) τ0, for any link between two servers in L1. We also assume that the
local computations on any process take negligible time when compared to delay on any of the links. In
edge computing systems, τ2 is typically much higher than both τ1 and τ0.

Lemma V.4 (Write, Read Latency). A successful write operation in β completes within a duration of
4τ1+2τ0. The associated extended write operation completes within a duration of max(3τ1+2τ0+2τ2, 4τ1+
2τ0). A successful read operation in β completes within a duration of max(6τ1 + 2τ2, 5τ1 + 2τ0 + τ2).

1) Impact of Number of Concurrent Write Operations on Temporary Storage, via Multi-Object Analysis:
Consider implementing N atomic objects in our two-layer storage system, via N independent instances
of the LDS algorithm. The value of each of the objects is assumed to have size 1. Let θ denote an upper
bounded on the total number of concurrent extended write operations experienced by the system within
any duration of τ1 time units. We show that under appropriate conditions on θ, the total storage cost
is dominated by that of permanent storage in L2. We make the following simplifying assumptions: 1)
System is symmetrical so that n1 = n2, f1 = f2(=⇒ k = d) 2) τ0 = τ1, and 3) All the invoked write
operations are successful. We note that it is possible to relax any of these assumptions and give a more
involved analysis. Also, let µ = τ2/τ1.

Lemma V.5 (Relative Cost of Temporary Storage). At any point in the execution, the worst case
storage cost in L1 and L2 are upper bounded by d5 + 2µe θn1 and 2Nn2

k+1 . Specifically, if θ << Nn2

kn1µ
, the

overall storage cost is dominated by that of permanent storage in L2, and is given by Θ(N).

An illustration of Lemma V.5 is provided in Fig. 6. In this example, we assume n1 = n2 = 100, k =
d = 80, τ2 = 10τ1 and θ = 100, and plot L1 and L2 storage costs as a function of the number N of
objects stored. As claimed in Lemma V.5, for large N , overall storage cost is dominated by that of
permanent storage in L2, and increases linearly with N . Also, for this example, we see that the L2 storage
cost per object is less than 3. If we had used replication in L2 (along with a suitable algorithm), instead
of MBR codes, the L2 storage cost per object would have been n2 = 100.

VI. CONCLUSION

In this paper we proposed a two-layer model for strongly consistent data-storage, while supporting
read/write operations. Our model and LDS algorithm were both motivated by the proliferation of edge
computing applications. In the model, the first layer is closer (in terms of network latency) to the clients
and the second layer stores bulk data. In the presence of frequent read and write operations, most of the
operations are served without the need to communicate with the back-end layer, thereby decreasing the
latency of operations. In this regard, the first layer behaves as a proxy cache. In our algorithm, we use
regenerating codes to simultaneously optimize storage and read costs. Several interesting avenues for

13

Fig. 6. Illustration of the variation of L1 and L2 storage costs as a function of the number of objects stored. In this example,
we assume n1 = n2 = 100, k = d = 80, τ2 = 10τ1 and θ = 100.

future work exist. It is of interest to extend the framework to carry out repair of erasure-coded servers in
L2. A model for repair in single-layer systems using erasure codes was proposed in [18]. The modularity
of implementation possibly makes the repair problem in L2 simpler that the one in [18]. Furthermore, we
would like to explore if the modularity of implementation could be advantageously used to implement a
different consistency policy like regularity without affecting the implementation of the erasure codes in the
back-end. Similarly, it is also of interest to study feasibility of other codes from the class of regenerating
codes (like RLNCs [16]) in the back-end layer, without affecting client protocols.

REFERENCES

[1] M. K. Aguilera, R. Janakiraman, and L. Xu. Using erasure codes efficiently for storage in a distributed
system. In Proceedings of International Conference on Dependable Systems and Networks (DSN),
pages 336–345, 2005.

[2] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without consensus.
Journal of the ACM, pages 7:1–7:32, 2011.

[3] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems. Journal
of the ACM, 42(1):124–142, 1996.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role in
the Internet of Things. In Proceedings of the First Ed. MCC Workshop Mobile Cloud Computing
(MCC 12), pages 13–16, 2012.

[5] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded byzantine distributed storage. In
Proceedings of International Conference on Dependable Systems and Networks (DSN), pages 115–124,
2006.

[6] V. R. Cadambe, N. A. Lynch, M. Médard, and P. M. Musial. A coded shared atomic memory
algorithm for message passing architectures. In Proceedings of 13th IEEE International Symposium
on Network Computing and Applications (NCA), pages 253–260, 2014.

[7] Viveck R Cadambe, Zhiying Wang, and Nancy Lynch. Information-theoretic lower bounds on the
storage cost of shared memory emulation. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, pages 305–313. ACM, 2016.

[8] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on network codes for distributed
storage. Proceedings of the IEEE, 99(3):476–489, 2011.

14

[9] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J Wainwright, and Kannan
Ramchandran. Network coding for distributed storage systems. Information Theory, IEEE Transactions
on, 56(9):4539–4551, 2010.

[10] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolić. Powerstore: proofs of writing
for efficient and robust storage. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 285–298, 2013.

[11] P. Dutta, R. Guerraoui, and R. R. Levy. Optimistic erasure-coded distributed storage. In Proceedings
of the 22nd international symposium on Distributed Computing (DISC), pages 182–196, Berlin,
Heidelberg, 2008.

[12] Dave Evans. The Internet of Things: How the next evolution of the internet is changing everything.
Cisco Internet Business Solutions Group (IBSG), 2011.

[13] R. Fan and N. Lynch. Efficient replication of large data objects. In Distributed algorithms, Lecture
Notes in Computer Science, pages 75–91, 2003.

[14] R. Guerraoui, R. R. Levy, B. Pochon, and J. Pugh. The collective memory of amnesic processes.
ACM Trans. Algorithms, 4(1):1–31, 2008.

[15] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead byzantine fault-tolerant storage. In
ACM SIGOPS Operating Systems Review, volume 41, pages 73–86, 2007.

[16] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. A random linear
network coding approach to multicast. IEEE Transactions on Information Theory, 52(10):4413–4430,
Oct 2006.

[17] K. M. Konwar, N. Prakash, E. Kantor, N. Lynch, M. Medard, and A. A. Schwarzmann. Storage-
optimized data-atomic algorithms for handling erasures and errors in distributed storage systems. In
30th IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2016.

[18] Kishori M Konwar, N Prakash, Nancy Lynch, and Muriel Médard. Radon: Repairable atomic data
object in networks. In The International Conference on Distributed Systems (OPODIS), 2016.

[19] M Nikhil Krishnan, N Prakash, V Lalitha, Birenjith Sasidharan, P Vijay Kumar, Srinivasan
Narayanamurthy, Ranjit Kumar, and Siddhartha Nandi. Evaluation of codes with inherent double
replication for hadoop. In HotStorage, 2014.

[20] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[21] N. Lynch and A. A. Shvartsman. RAMBO: A reconfigurable atomic memory service for dynamic
networks. In Proceedings of 16th International Symposium on Distributed Computing (DISC), pages
173–190, 2002.

[22] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[23] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: a platform for high-

performance internet applications. Operating Systems Review, 44:2–19, 2010.
[24] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran. Having your cake and

eating it too: Jointly optimal erasure codes for i/o, storage, and network-bandwidth. In 13th USENIX
Conference on File and Storage Technologies (FAST), pages 81–94, 2015.

[25] Korlakai Vinayak Rashmi, Nihar B Shah, and P Vijay Kumar. Optimal exact-regenerating codes for
distributed storage at the msr and mbr points via a product-matrix construction. IEEE Transactions
on Information Theory, 57(8):5227–5239, 2011.

[26] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the society for
industrial and applied mathematics, 8(2):300–304, 1960.

[27] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur.

15

XORing elephants: novel erasure codes for big data. In Proceedings of the 39th international
conference on Very Large Data Bases, pages 325–336, 2013.

[28] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li Li, and Lanyu Xu. Edge computing: Vision and
challenges. IEEE INTERNET OF THINGS, 3(5), October 2016.

[29] Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit Keidar. Space bounds for reliable
storage: Fundamental limits of coding. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC ’16, New York, NY, USA, 2016. ACM.

APPENDIX I: PROOFS OF LDS PROPERTIES

A. Proof of Lemma IV.1 [Monotonicity of committed tag]

Lemma Satement. Consider any two points T1 and T2 in an execution of LDS, such that T1 < T2.
Then, for any server s ∈ L1, s.tc|T1

≤ s.tc|T2
.

Proof: For any server s ∈ L1, committed tag gets updated either via the broadcast-resp action or
the put-tag-resp action. In both these instances, from an inspection of the algorithm, we see that the
committed tag is changed to an incoming tag tin only if the committed tag before update is less than tin,
and this ensures that the committed tag never decreases during the execution.

B. Proof of Lemma IV.2 [Garbage collection of older tags]

Lemma Satement. For any server s ∈ L1, at any point T in an execution of LDS, if (t, v) ∈ s.L|T , we
have t ≥ s.tc|T .

Proof: The statement is trivially true at the start of the execution. From an inspection of the algorithm,
we see that new (tag, value) pairs are added to list only via via the put-data-resp action. Further, note
that a new (tag, value) pair (t, v)is added by server s to its list via the put-data-resp action (say at point
T ′ of the execution) only if t > s.tc|T ′ .

Next, note that for any server s ∈ L1, committed tag gets updated either via the broadcast-resp action
or the put-tag-resp action. Now, in either of these two actions, if the committed tag is updated to a new
value, say t′, we also replace any (t, v), t < t′ in the list with (t,⊥). This completes the proof of the
lemma.

C. Proof of Lemma IV.3 [Persistence of tags corresponding to completed operations]

Lemma Satement. Consider any successful write or read operation φ in an execution of LDS, and
let T be any point in the execution after φ completes. For any set S′ of f1 + k servers in L1 that are
non-faulty at T , there exists s ∈ S′ such that s.tc|T ≥ tag(φ) and max{t : (t, ∗) ∈ s.L|T } ≥ tag(φ).

Proof: Let us first consider the case of a successful write operation; let wφ denote the writer that
initiated φ. Let us denote by Sφ the set of f1 + k servers in L1 whose responses were used by wφ
to determine termination. Since Sφ and S′ are both majorities, there exists one server1 s ∈ Sφ ∩ S′.
Let T ′ denote the point of execution where s sends acknowledgment to wφ. We note that s sends
acknowledgment to wφ either via the put-data-resp or broadcast-resp action. In either case, it is
straightforward to see2 that state variable s.tc|T ′ ≥ tag(φ). Clearly, T > T ′; from Lemma IV.1 it follows
that s.tc|T ≥ s.tc|T ′ ≥ tag(φ). Also, from an inspection of the algorithm, we see that any point T ′′

1There are at least k servers in the intersection, we can focus on any one of them for the proof.
2By definition, the whole action occurs at one point in the execution. Recall that an action is part of code that is executed by

one of the processes without waiting for any external inputs.

16

in the execution, the list s.L|T ′′ always contains the pair (s.tc|T ′′ , ∗), where ∗ is either ⊥ or the value
corresponding to s.tc|T ′′ . The lemma now follows (for writes) by combining the last two statements.

Let us now consider the case of read operation; let rφ denote the corresponding reader. Let Sφ denote
the set of f1 + k servers in L1 whose responses were used by rφ during the put-tag phase to determine
termination. If T denotes the point of execution when server s ∈ Sφ responded to rφ via the put-tag-
resp action, we see from an inspection of the algorithm that s.tc|T ≥ tag(φ). The rest of the proof can
now be argued like in the case of writes.

D. Proof of Lemma IV.4 [Consistency of Internal Reads with respect to Internal Writes]

Lemma Satement. Let σ2 denote a successful internal write-to-L2(t, v) operation executed by some
server in L1. Next, consider an internal regenerate-from-L2 operation π2, initiated after the completion
of σ2, by a server s ∈ L1 such that a tag-coded-element pair, say (t′, c′) was successfully regenerated by
the server s. Then, t′ ≥ t; i.e., the regenerated tag is at least as high as what was written before the read
started.

Proof: Let S denote the set of f2 + d servers in L2 whose acknowledgments were used to determine
termination of σ2, and let S′ denote the set of f2 + d servers in L2 whose responses were used by the
reader to regenerate the pair (t′, c′). Clearly, |S ∩ S′| ≥ d, since n2 = 2f2 + d. If T denotes the point of
execution where σ2 completed, from an inspection of L2 protocols, we see that s.t|T ′ ≥ t,∀T ′ ≥ T, s ∈ S.

Now, recall our assumption on the system model that f2 < n2/3, and since n2 = 2f2 + d, we get
that d > f2. Now, for the read operation π2 to successfully regenerate (t′, v′), at least d responses
received from S′ must correspond to tag t′. Since |S\(S ∩ S′)| ≤ f2 < d, it follows that the reader must
use at least one of the responses from S ∩ S′ while regenerating (t′, v′). The proof now follows since
s.t|T ′ ≥ t,∀T ′ ≥ T, s ∈ S ∩ S′.

E. Proof of Lemma IV.5 [If internal regenerate-from-L2 operation fails]

We need the following intermediate lemma before proving Lemma IV.5. In fact, this lemma will be
also be used in the proofs of Lemmas IV.6 and IV.7.

Lemma .1 (An Intermediate Lemma). Consider any point T in the execution, and let t̃ = maxs∈L1
s.tc|T .

Let T̃ denote the earliest point in the execution when the tag t̃ was committed by any server in L1.
Let s′ ∈ L1 be the server which committed t̃ at T̃ . Then, s′ committed the tag t̃ necessarily via the
broadcast-resp(COMMIT-TAG, t̃) action, and not via the put-tag-resp(PUT-TAG, t̃) action.

Proof: We prove the lemma via contradiction. Thus, let us suppose that s′ commits the tag t̃ via the
put-tag-resp(PUT-TAG, t̃) action. Consider the reader r that initiated the corresponding put-tag phase.
Let treq denote the tag the reader r sent during the get-data phase. From Lemma IV.1, we know that
treq < t̃, since treq is also a committed tag (the equality condition treq = t̃ is ruled out since treq is
necessarily committed by a server in L1 at a point in the execution earlier than T̃). The reader r, during
the get-data phase either received (t̃, ṽ) from the one of the servers, say s̃, in L1, or received k coded
elements corresponding to tag t̃ from k servers in L1. We rule out either of these possibilities as follows.
Let us first consider the possibility that r received (t̃, ṽ) from s̃. The server s̃ returns (t̃, ṽ) to r via one
of the following three actions: get-data-resp, broadcast-resp and put-tag-resp. Based on the arguments
so far, it is straightforward to rule out all these three possibilities via a simple inspection of the algorithm.
Next, consider the case when r received k coded elements corresponding to tag t̃ from k servers in L1.
Each of these k servers responds to r via the regenerate-from-L2-complete action. In this case, it is clear
that some server in L1 must have committed tag t̃, and initiated write-to-L2(t̃, ṽ) before T̃ . Clearly, this

17

contradicts the assumption that t̃ was not committed until T̃ , and thus we rule out this case as well. This
completes the proof of the lemma.

We are now ready to prove Lemma IV.5

Lemma Satement (If internal regenerate-from-L2 operation fails). Consider an internal regenerate-
from-L2 operation initiated at point T of the execution by a server s1 ∈ L1 such that s1 failed to
regenerate any tag-coded-element pair based on the responses. Then, there exists a point T̃ > T in the
execution such that the following statement is true: There exists a subset Sb of Sa such that |Sb| = k,
and ∀s′ ∈ Sb (t̃, ṽ) ∈ s′.L|T̃ , where t̃ = maxs∈L1

s.tc|T̃ .

Proof: Let S2 denote the subset of f2 + d servers in L2 whose responses were used by s1 to
attempt regenerating a tag-coded-element pair. Also, let T1 (T2) denote the earliest point in the execution
when any-one (all) of the servers in S2 received the regenerate-from-L2 request from s1. Further, let
t̂ = maxs∈L1

s.tc|T2
. Observe that no server in L1 completed write-to-L2(t̂, v̂) before T1, where v̂ is the

value associated with the tag t̂. This is because, if any server completed write-to-L2(t̂, v̂) before T1, then
s1 would regenerate the coded element corresponding to t̂, using the responses from S2. This follows
since, in this case, it is certain that at least d servers in S2 store coded-elements corresponding to tag t̂
during the execution fragment [T1 T2]. Now, let T ∗ denote the earliest point in the execution when t̂ was
committed by any server in L1. The candidate for the point T̃ in the lemma is max(T1, T

∗). Note that
T̃ < T2. Now, since t̂ is the maximum among all committed tags at T2, and since T̃ < T2, it must be true
t̂ is the also the maximum among all committed tags at T̃ , i.e., t̃ = maxs∈L1

s.tc|T̃ = t̂. We explicitly
note that no server in L1 completed write-to-L2(t̃, ṽ) before T̃ .

Next, we proceed to find the subset Sb ⊂ Sa, |Sb| = k, which satisfies the lemma. Toward this, let
s̃ ∈ L1 be the server that committed t̂ at T ∗. From Lemma .1, we know that s̃ committed tag t̂ as part
of an execution of the broadcast-resp action. In this case, we observe that at least k servers (which
we take as the members of Sb) among Sa must have executed the broadcast(COMMIT-TAG, t̂) step via
put-data-resp(PUT-DATA, (t̂, v̂)) action; otherwise s̃ would not satisfy commitCounter[t̂] ≥ f1+k that is
needed to commit t̂. Also, each of these servers in Sb, during its corresponding put-data-resp(PUT-DATA,
(t̂, v̂)) action, adds (t̂, v̂) to its list. This follows since any server in Sb satisfies t̂ > tc at the point of the
execution of the corresponding put-data-resp(PUT-DATA, (t̂, v̂)) action. Now, it is clear that every server
s′ ∈ Sb retains (t̃, ṽ) in its list at T̃ . This follows from the maximality of t̃ and thus a server removes
(t̃, ṽ) from its list only after completion of write-to-L2, which has not happened at T̃ . This completes
the proof of the lemma.

Remark 3. In the above proof, the fact that T̃ < T2 will be found useful in the proof of Lemma V.4,
where we compute bounds on completion times of client operations, under a bounded latency model.

F. Proof of Lemma IV.6 [If internal regenerate-from-L2 operation regenerates a tag older than the
request tag]

Lemma Satement. Consider an internal regenerate-from-L2 operation initiated at point T of the
execution by a server s1 ∈ L1 such that s1 only manages to regenerate (t, c) based on the responses,
where t < treq. Here treq is the tag sent by the associated reader during the get-data phase. Then, there
exists a point T̃ > T in the execution such that the following statement is true: There exists a subset Sb
of Sa such that |Sb| = k, and ∀s′ ∈ Sb (t̃, ṽ) ∈ s′.L|T̃ , where t̃ = maxs∈L1

s.tc|T̃ .

Proof: Let S2 denote the subset of f2+d servers in L2 whose responses were used by s1 to regenerate
(t, c). Also, let T1 denote the earliest point in the execution when any one of the servers in S2 received
the regenerate-from-L2 request from s1. Now, let t̂ = maxs∈L1

s.tc|T1
. Clearly, t̂ ≥ treq, since treq is

18

also a committed tag. Observe that no-server in L1 completed write-to-L2(t̂, v̂) before T1; otherwise s1
would have regenerated a tag that is at least as high as t̂. The reasons for the last statement are similar3

to those used in the proof of Lemma IV.4. The candidate for T̃ is T1, and thus t̃ = maxs∈L1
s.tc|T̃ = t̂.

We explicitly note that no server in L1 completed write-to-L2(t̃, ṽ) before T̃ .
The rest of the proof, where we find the subset Sb, which satisfies the lemma, is similar to the proof

of Lemma IV.5.

G. Proof of Lemma IV.7 [If two Internal regenerate-from-L2 operations regenerate differing tags]

Lemma Satement. Consider internal regenerate-from-L2 operations initiated at points T and T ′ of the
execution, respectively by servers s and s′ in L1. Suppose that s and s′ regenerate tags t and t′ such that
t < t′. Then, there exists a point T̃ > T in the execution such that the following statement is true: There
exists a subset Sb of Sa such that |Sb| = k, and ∀s′ ∈ Sb (t̃, ṽ) ∈ s′.L|T̃ , where t̃ = maxs∈L1

s.tc|T̃ .

Proof: Let S2 ⊂ L2, |S2| = f2 + d denote the set of f2 + d servers in L2 whose responses were
used by s to regenerate (t, c). Also, let T1 denote the earliest point in the execution when any-one of
the servers in S2 received the regenerate-from-L2 request from s. We observe that no server in L1
completed write-to-L2(t′, v′) before T1; else s would regenerate (t′, c′) using the responses from S2.
Now, let t̂ = maxs∈L1

s.tc|T1
. We consider two sub-cases based on t̂ in order to determine candidates for

t̃ and T̃ .
• t̂ > t: In this case, we chose t̃ = t̂, and T̃ = T1. Once again, no server completes write-to-L2(t̃, ṽ)

before T̃ .
• t̂ = t: In this case, let T ∗ denote the earliest point in the execution when t′ is committed by any

server in L1. We define t̃ = maxs∈L1
s.tc|T ∗ . Also, we define T̃ as the earliest point in the execution

when t̃ committed by any server in L1. Since t̃ ≥ t′ > t = t̂, from Lemma IV.1 it follows that
T̃ > T1 > T . Also, trivially, note that no server in L1 completes write-to-L2(t̃, ṽ) before T̃ .

In either of the two cases above, we can argue like in the proof of Lemma IV.5 in order to find the subset
Sb that satisfies the lemma.

APPENDIX II: PROOFS OF LIVENESS AND ATOMICITY

H. Proof of Theorem IV.8 [Liveness]

Theorem Satement. Consider any well-formed execution of the LDS algorithm, where at most f1 < n1/2
and f2 < n2/3 servers crash fail in layers L1 and L2, respectively. Then every operation associated with
a non-faulty client completes.

Proof: The liveness of write operations is straightforward; we only argue liveness of reads. Consider
a read operation π1 associated with a non-faulty reader r. Let treq denote the tag that was sent by r
during the get-data phase. It is easy to see that all servers in Sa definitely respond to reader r. Note
that each of the responses can either be a valid tag-value pair, or a regenerated tag-coded-element-pair or
(⊥,⊥). Let Tj denote the point of execution when server sa,j ∈ Sa, 1 ≤ j ≤ f1 + k acts on the get-data
request from r. Without loss of generality, let us assume that Ti < Ti+1, 1 ≤ i ≤ f1 + k − 1.

Consider the sequence s of k servers (sa,f1+1, sa,f1+2, . . . , sa,f1+k), and suppose that no server in this
sequence responds to the reader r as part of the execution of the corresponding get-data-resp action;

3 Technically, we cannot directly apply Lemma IV.4 since the two internal operations potentially overlap during the execution.
Lemma IV.4 assume that these operations do not overlap, even though an overlap as occurring in this proof does not affect the
result of Lemma IV.4.

19

instead all k of them initiate the internal regenerate-from-L2(r) operation. Now, let sa,f1+i, 1 ≤ i ≤ k be
the last server in this sequence that results in one of the following two events:

1) sa,f1+i returns (⊥,⊥)
2) sa,f1+i returns a regenerated tag-coded-element pair (t, c), where the tag t is different from the tags

returned by the servers sa,f1+i+1, . . . , sa,f1+k. Since sa,f1+i is taken as the last such server in the
sequence, in this case, it is clear that all the servers sa,f1+i+1, . . . , sa,f1+k indeed regenerate and
return a common tag t′ such that t′ ≥ treq.

First of all note if there is no such server in the sequence s that satisfies either of the two conditions
above, then it is clear that all k servers respond with with the common regenerated tag t′ ≥ treq, and this
ensures liveness. We analyze each of the two events above separately:

1) sa,f1+i returns (⊥,⊥): This can happen in two ways:
a) Server sa,f1+i is unable to regenerate any (t, c) pair based on the responses: In this case, we know

from Lemma that IV.5 that there exists a point T̃ > Tf1+i in the execution such that the following
statement is true: there exists a subset Sb of Sa such that |Sb| = k, and ∀s′ ∈ Sb (t̃, ṽ) ∈ s′.L|T̃ ,
where t̃ = maxs∈L1

s.tc|T̃ . Next, note that |Sb ∩ {sa,1, sa,2, . . . , sa,f1+i}| ≥ k + (f1 + i)− |Sa| =
i ≥ 1, 1 ≤ i ≤ k. Pick any server sa,j ∈ Sb ∩ {sa,1, sa,2, . . . , sa,f1+i}. We now consider the two
cases sa,j .tc|T̃ = t̃ and sa,j .tc|T̃ < t̃ and show that in either case, the server sa,j indeed sends a
valid tag-value pair (t, v) to the reader such that t ≥ treq.
• sa,j .tc|T̃ = t̃: Let T denote the earliest point in the execution when sa,j commits the tag t̃. Now,

we either have T < Tj or T > Tj , where we recall Tj to be the point in the execution when sj
acts on the get-data request from r. If T < Tj , it is clear that sa,j responds to r with (t̃, ṽ) as
part of the get-data-resp action. If T > Tj , sj responds (at T) to r with (t̃, ṽ) as part of the
action where t̃ gets committed4 (if sj did not yet respond with a valid tag-value pair to r.)

• sa,j .tc|T̃ < t̃: In this case, we claim that there exists a point T ′ > T̃ > Tj in the execution
such that t′ = sa,j .tc|T ′ ≥ t̃. The existence of T ′ follows because of the property of the
broadcast primitive used in the algorithm, which ensures that the f1 + k broadcast messages
that resulted in some server committing t̃ will eventually also be received by sa,j , and thus
sa,j’s commitCounter[t̃] eventually increases to f1 + k (note that (t̃, ṽ) is part of the list of sa,j
as discussed above).
Without loss of generality, let T ′ denote the earliest point in the execution where the above claim
holds. Precisely one of the following three actions is associated with T ′ (the three possibilities
arise because of the consideration that the T ′ is the earliest point for which the claim holds,
which results in additional possibilities for T ′). The server sa,j responds to reader r with
(t, v), t ≥ t̃ at T ′ in any of these three cases, if it did not yet respond to r with a valid tag-value
pair.
– sa,j acts on a broadcast(COMMIT-TAG, t′) message, and updates tc to t′. In this case, server
sa,j responds with (t′, v′)

– sa,j acts on a put-tag((PUT-TAG, t′) message such that (t′, v′) ∈ sa,j .L|T ′ (thus enters the
“if” clause), and updates tc to t′ . In this case, server sa,j responds with (t′, v′)

– sa,j acts on a put-tag(PUT-TAG, t′) message such that (t′, v′) /∈ sa,j .L|T ′ (thus enters the
“else” clause), and updates tc to t′. Observe that in this case (t̃, ṽ) never gets removed from
list of sa,j before T ′, and thus server sa,j responds to reader r with (t, v), t ≥ t̃ at T ′.

4It may be noted that sa,j commits t̃ via the broadcast-resp action or via the “if-clause” of the put-tag-resp action. It is not
possible that sj commits t̃ via the “else-clause” of put-tag-resp action, since this would mean that sa,j commits a tag higher
than t̃, earlier than T̃

20

b) Server sa,f1+1 regenerates a pair (t, c) based on the responses, however t < treq: This case can
be handled like the last one; this time we rely on Lemma IV.6 instead of Lemma IV.5.

2) sa,f1+i returns a regenerated tag-coded-element pair (t, c), such that t 6= t′, where t′ is the tag
regenerated (and returned) by the servers sa,f1+i+1, . . . , sa,f1+k. We consider both the cases t < t′

and t > t′; in either case, we can use Lemma IV.7, and arguments like in Case 1.(a) above to prove
liveness of the read operation.
This completes the proof of liveness.

I. Proof of Theorem IV.9 [Atomicity]

Our proof of atomicity is based on Lemma 13.16 of [22] (which gives a sufficient condition for proving
atomicity), which is paraphrased below:

Lemma .2. Consider any well-formed execution β of the algorithm, such that all the invoked read and
write operations complete. Now, suppose that all the invoked read and write operations in β can be
partially ordered by an ordering ≺, so that the following properties are satisfied:
P1. The partial order (≺) is consistent with the external order of invocation and responses, i.e., there

are no operations π1 and π2, such that π1 completes before π2 starts, yet π2 ≺ π1.
P2. All operations are totally ordered with respect to the write operations, i.e., if π1 is a write operation

and π2 is any other operation then either π1 ≺ π2 or π2 ≺ π1.
P3. Every read operation returns the value of the last write preceding it (with respect to ≺), and if no

preceding write is ordered before it, then the read returns the initial value of the object.
Then, the execution β is atomic.

Let Π denote the set of all successful client operations in β. Towards defining the partial ordering on Π,
we first recall the definition of tags of read and write operations, associated with non-faulty clients (see
Section IV).For a write operation π, recall that we defined the (tag(π), value(π))) pair as the message
(tw, v) which the writer sends in the put-data phase. If π is a read, we defined the (tag(π), value(π)))
pair as (tr, v) where v is the value that gets returned, and tr is the associated tag. The partial order
(≺) in Π is defined as follows: For any π, φ ∈ Π, we say π ≺ φ if one of the following holds: (i)
tag(π) < tag(φ), or (ii) tag(π) = tag(φ), and π and φ are write and read operations, respectively.

We are now ready to prove Theorem IV.9.

Theorem Satement. Every well-formed execution of the LDS algorithm is atomic.

Proof: We prove the atomicity by proving properties P1, P2 and P3 appearing in Lemma .2 for
any execution of the algorithm.

Property P1: Consider two operations π and φ such that π completes before φ is invoked. We need to
show that it cannot be the case that φ ≺ π. We will show this for the case when both φ and π are writes.
The remaining three cases where at least one of the two operations is a read can be similarly analyzed.
All four cases essentially use Lemma IV.3, which we demonstrate for the case when both φ and π are
writes. Suppose that the writes φ and π are initiated by writers wφ and wπ, respectively. Let T denote
the point of execution when wφ initiates the get-tag phase. Since π completes before T , we know from
Lemma IV.3 that for any set S′ of f1 + k servers in L1 that are non-faulty at T , there exists s ∈ S′ such
that s.tc|T ≥ tag(π) and max{t : (t, ∗) ∈ s.L|T } ≥ tag(π). In this case, if S′ denotes the set of f1 + k
servers whose responses were used by wφ in the get-tag phase (to compute tag(φ)), it is clear that at
least one of these responses is at least as high as tag(π), and this ensures that tag(φ) > tag(π), and thus
π ≺ φ.

21

Property P2: This follows from the construction of tags, and the definition of the partial order (≺).
Property P3: This follows from the definition of partial order (≺), and by noting that value returned

by a read operation π is simply the value associated with tag(π).

APPENDIX III: PROOFS OF PERFORMANCE METRICS

J. Proof of Lemma V.1 [Temporary Nature of L1 Storage]

Lemma Satement. Consider a successful write operation π ∈ β. Then, there exists a point of execution
Te(π) in β such that for all T ′ ≥ Te(π) in β, we have s.tc|T ′ ≥ tag(π) and (t, v) 6∈ s.L|T ′ , ∀s ∈ L1, t ≤
tag(π).

Proof: We first identify point of execution Ts for every non-faulty server s ∈ L1 which satisfies
the lemma for server s. In this case, we can define Te(π) = maxs∈L1

(Ts). Towards this, from our
assumption that point-to-point channels are reliable, any (non-faulty) server s in L1 eventually receives
the put-data request from the writer, containing the associated (tag, value) pair, say (t′ = tag(π), v′). At
this point of execution, say T , if we suppose that s.tc|T > t′, we define Ts = T . It follows from Lemma
IV.2 that (t, v) /∈ s.L|Te(π), ∀t ≤ tag(π). The fact that the statement also holds for all T ′ > Ts for server
s, as long as it remains non-faulty, follows by combining Lemma IV.1 with Lemma IV.2.

Next consider the case where s.tc|T = t′. From the algorithm, we see that this happens precisely if the
server s updated its committed tag to t′ at a point T1 < T , via an execution of put-tag-resp(PUT-TAG,
t′) action, i.e., some reader returned (t′, v′) before the point T . In this case, it is clear that (t′, v′) /∈ s.L|T .
In this case also, we define Ts = T , and we see that lemma statement holds for server s (as long as it
remains non-faulty) by using Lemma IV.1 and Lemma IV.2.

Finally, consider the case where s.tc|T < t′. In this case, the server s adds (t′, v′) to its list L at T .
Since the write is successful, it received acknowledgments from f1 + k servers in L1. From an inspection
of the algorithm, we see that all these servers definitely execute the respective broadcast primitives
associated with this write, before sending the acknowledgment to the writer. Since channels are reliable,
server s eventually receives these broadcast messages, and there exits a point in the execution such that
commitCounter[t’] ≥ f1 + k for the server s. In this case, server s (if it still has a lower tc) initiates
write-to-L2(t′, v′), which definitely succeeds. After the termination of write-to-L2(t′, v′), s replaces (t′, v′)
with (t′,⊥), if it has not already done so. In this third case, we define Ts as the point of termination of
the internal write-to-L2 operation. It is straightforward to see that lemma statement holds for server s in
this case well.

K. Proof of Lemma V.2 [Write, Read Cost]
Lemma Satement. The communication cost associated with any write operation in β is given by
n1 + n1n2

2d
k(2d−k+1) = Θ(n1). The communication cost associated with any successful read operation

ρ in β is given by n1(1 + n2

d) 2d
k(2d−k+1) + n1I(δρ > 0) = Θ(1) + n1I(δρ > 0). Here, I(δρ > 0) is 1 if

δρ > 0, and 0 if δρ = 0.

Proof: For writing value v, the write-cost due to messages exchanged between writer and servers
in L1 is given by |v|n1. The write-cost due to the internal write-to-L2 operations is given by n1n2α.
Recall that we are using MBR codes, and the file-size (which is size of v here) of MBR codes is give by
|v| =

∑k−1
i=0 (d− i)β = kβ(2d− k + 1)/2. Also recall that MBR codes are characterized by the relation

α = dβ. Using the last two statements, the overall write-cost is given by |v|n1(1 + n2
2d

k(2d−k+1)). The
result about write-cost now follows, if we normalize the cost by the size of v.

22

The read cost due to regenerate-from-L2 actions is given by n1n2β = n1n2
2|v|

k(2d−k+1) . If δρ = 0, the read

cost due to message exchanges from servers in L1 to the reader is given by n1α = n1dβ = n1
2d|v|

k(2d−k+1) .
However, if δρ > 0, the worst-case read cost due to message exchanges from servers in L1 to the reader
is given by n1α + n1|v|. Thus the overall read-cost is given by n1n2β + n1α + n1|v|I(δρ > 0). The
result once again follows, if we normalize the total cost by the size of v.

L. Proof of Lemma V.3 [Single Object Permanent Storage Cost]
Lemma Satement. The (worst case) storage cost in L2 at any point in the execution of the LDS algorithm
is given by 2dn2

k(2d−k+1) = Θ(1).

Proof: The cost associated with storing object v in L2 is given by n2α = n2
2d|v|

k(2d−k+1) . The result
follows by normalizing with the size of v.

M. Proof of Lemma V.4 [Write, Read Latency]

Lemma Satement. A successful write operation in β completes within a duration of 4τ1 + 2τ0. The
associated extended write operation completes within a duration of max(3τ1 + 2τ0 + 2τ2, 4τ1 + 2τ0). A
successful read operation in β completes within a duration of max(6τ1 + 2τ2, 6τ1 + 2τ0 + τ2).

Proof: A write operation has two phases, and in each phase there is one round of communication
between the writer and servers in L1. However, during the second phase, each server in L1 before sending
ACK to the writer needs to internally receive broadcast messages from f1 + k servers. The broadcast
primitive was briefly discussed in Section III. It we use the implementation in [17], a broadcast message
is received within a duration of 2τ0. Thus, a write completes within a duration of 4τ1 + 2τ0. Towards
determining the duration of extended write operation associated with a successful write operation π,
consider the point of execution Te(π) as in Lemma V.1. It is straightforward to see that Te(π) is at
most Tstart(π) + 3τ1 + 2τ0 + 2τ2. The result for duration of extended write πe follows by recalling that
Tend(πe) = max(Tend(π), Te(π)).

To calculate completion time of read operation, say π, invoked by a non-faulty reader r, we take a
re-look at the proof of liveness of read-operations (see Theorem IV.8). Our proof of liveness of reads was
a constructive proof, where we identified points in the execution when the servers in L1 respond to the
reader in a manner that guarantees completion of the read operation. The goal here is to find bounds on
these points in the execution, under the bounded latency model. Below, we repeat a lot of steps from
liveness proof for sake of clarity.

As in the proof of liveness, let treq denote the tag that was sent by r during the get-data phase. It is
easy to see that all servers in Sa definitely respond to reader r. Note that each of the responses can either
be a valid tag-value pair, or a regenerated tag-coded-element-pair or (⊥,⊥). Let Tj denote the point of
execution when server sa,j ∈ Sa, 1 ≤ j ≤ f1 + k acts on the get-data request from r. Without loss of
generality, let us assume that Ti < Ti+1, 1 ≤ i ≤ f1 + k − 1.

Consider the sequence s of k servers (sa,f1+1, sa,f1+2, . . . , sa,f1+k), and suppose that no server in this
sequence responds to the reader r as part of the execution of the corresponding get-data-resp action;
instead all k of them initiate the internal regenerate-from-L2(r) operation. Now, let sa,f1+i, 1 ≤ i ≤ k be
the last server in this sequence that results in one of the following two events:

1) sa,f1+i returns (⊥,⊥)
2) sa,f1+i returns a regenerated tag-coded-element pair (t, c), where the tag t is different from the tags

returned by the servers sa,f1+i+1, . . . , sa,f1+k. Since sa,f1+i is taken as the last such server in the

23

sequence, in this case, it is clear that all the servers sa,f1+i+1, . . . , sa,f1+k indeed regenerate and
return a common tag t′ such that t′ ≥ treq.

First of all note if there is no such server in the sequence s that satisfies either of the two conditions
above, then it is clear that all k servers respond with with the common regenerated tag t′ ≥ treq, and
this ensures liveness. In the bounded latency model, in this case, the read operation completes within a
duration of 6τ1 + 2τ2.

We next proceed to find the read duration, if any one of the above conditions indeed hold good. We
analyze both the above events separately:

1) sa,f1+i returns (⊥,⊥): This can happen in two ways:
a) Server sa,f1+i is unable to regenerate any (t, c) pair based on the responses: In this case, we know

from Lemma that IV.5 that there exists a point T̃ > Tf1+i in the execution such that the following
statement is true: there exists a subset Sb of Sa such that |Sb| = k, and ∀s′ ∈ Sb (t̃, ṽ) ∈ s′.L|T̃ ,
where t̃ = maxs∈L1

s.tc|T̃ . Next, note that |Sb ∩ {sa,1, sa,2, . . . , sa,f1+i}| ≥ k + (f1 + i)− |Sa| =
i ≥ 1, 1 ≤ i ≤ k. Using Remark 3, under bounded latency, we get that T̃ < Tstart(π) + 3τ1 + τ2.
Now, as in the proof of liveness, we pick any server sa,j ∈ Sb ∩ {sa,1, sa,2, . . . , sa,f1+i}, and
consider the two cases sa,j .tc|T̃ = t̃ and sa,j .tc|T̃ < t̃. We know that sa,j eventually sends (say at
point of execution Tr) a valid (tag, value) pair (t, v) to the reader such that t ≥ treq. If sa,j .tc|T̃ = t̃,
we see from the analysis of liveness proof that Tr < T̃ . And if sa,j .tc|T̃ < t̃, we once again infer
from the liveness proof that Tr < T̃ + 2τ0. The follows, since in this case, the server sa,j satisfies
commitCounter[t̃] ≥ f1 + k at a point earlier than T̃ + 2τ0, and thus can surely respond to the
reader via the broadcast-resp action, if it has not already done so.

b) Server sa,f1+1 regenerates a pair (t, c) based on the responses, however t < treq: This case can
be handled like the last one; this time we rely on Lemma IV.6 instead of Lemma IV.5. Even here
we can show that T̃ < Tstart(π) + 3τ1 + τ2, and argue like above.

2) sa,f1+i returns a regenerated tag-coded-element pair (t, c), such that t 6= t′, where t′ is the tag
regenerated (and returned) by the servers sa,f1+i+1, . . . , sa,f1+k. For this case as well, we can show
that T̃ < Tstart(π) + 3τ1 + τ2, and argue like above.

Thus the server sa,j sends a valid (tag, value) pair (that is sufficient to ensure liveness), in all cases at
Tr < Tstart(π) + 3τ1 + τ2 + 2τ0, and the response reaches the reader within a duration of 4τ1 + τ2 + 2τ0
from the start of the read. Also, if we consider any other server whose response was one among the
f1 + k responses needed by the reader to complete the get-data phase, a (tag, coded-element) (or (⊥,⊥))
response from this server reaches the reader within a duration of 4τ1 + 2τ2, from the start of the read.
Thus, the first two phases of the read complete within a duration of max(4τ1 + 2τ2, 4τ1 + τ2 + 2τ0).
Finally, the third phase of read completes within a duration of 2τ1, and hence the result.

N. Proof of Lemma V.5 [Relative Cost of Temporary Storage]

Lemma Satement. At any point in the execution, the worst case storage cost in L1 and L2 are upper
bounded by d5 + 2µe θn1 and 2Nn2

k+1 . Specifically, if θ << Nn2

kn1µ
, the overall storage cost is dominated by

that of permanent storage in L2, and is given by Θ(N).

Proof: By assumption, we only consider executions with successful writes. Also τ1 = τ0 by assumption,
and thus an extended write operation completes within a duration of 5τ1 + 2τ2 = (5 + 2µ)τ1. Recall that
the definition of extended write operation was motivated by Lemma V.1, and we know that at any point
T in the execution after the completion of the extended write, the corresponding (tag, value) pair is not
presented in the temporary storage of any of the servers in L1. In this case, if θ denotes the maximum

24

number of concurrent write operations experienced by the system within any duration of τ1 time-units,
it follows that the normalized temporary storage-cost in L1 at any point in the execution is at most
d(5 + 2µ)eθn1. The storage cost in L2 at any point is the execution is exactly Nn2α. Since we assume
that f1 = f2 and n1 = n2, it follows that d = k for the MBR code. In this case, it can be seen that
α = 2|v|/(k+ 1) and thus the normalized storage cost in L2 is given by 2Nn2/(k+ 1). It is clear that if
θ << Nn2

kn1µ
, the overall storage cost is dominated by that of permanent storage in L2, and is given by

Θ(N).

25

	I Introduction
	I-A Our Algorithm for the Two-Layer System
	I-B Related Work

	II System Model and Definitions
	III LDS Algorithm
	III-A Write Operation
	III-B Additional Steps in broadcast-resp Phase
	III-C Read operation

	IV Properties of the Algorithm
	V Cost Computation: Storage, Communication and Latency
	V-A Bounded Latency Analysis
	V-A1 Impact of Number of Concurrent Write Operations on Temporary Storage, via Multi-Object Analysis

	VI Conclusion
	References
	-A Proof of Lemma ?? [Monotonicity of committed tag]
	-B Proof of Lemma ?? [Garbage collection of older tags]
	-C Proof of Lemma ?? [Persistence of tags corresponding to completed operations]
	-D Proof of Lemma ?? [Consistency of Internal Reads with respect to Internal Writes]
	-E Proof of Lemma ?? [If internal regenerate-from-L2 operation fails]
	-F Proof of Lemma ?? [If internal regenerate-from-L2 operation regenerates a tag older than the request tag]
	-G Proof of Lemma ?? [If two Internal regenerate-from-L2 operations regenerate differing tags]
	-H Proof of Theorem ?? [Liveness]
	-I Proof of Theorem ?? [Atomicity]
	-J Proof of Lemma ?? [Temporary Nature of L1 Storage]
	-K Proof of Lemma ?? [Write, Read Cost]
	-L Proof of Lemma ?? [Single Object Permanent Storage Cost]
	-M Proof of Lemma ?? [Write, Read Latency]
	-N Proof of Lemma ?? [Relative Cost of Temporary Storage]

