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ABSTRACT

We present a practical approach for processing mobile sen-
sor time series data for continual deep learning predictions.
The approach comprises data cleaning, normalization, cap-
ping, time-based compression, and finally classification with
a recurrent neural network. We demonstrate the effective-
ness of the approach in a case study with 279 participants.
On the basis of sparse sensor events, the network continually
predicts whether the participants would attend to a notifi-
cation within 10 minutes. Compared to a random baseline,
the classifier achieves a 40% performance increase (AUC of
0.702) on a withheld test set. This approach allows to forgo
resource-intensive, domain-specific, error-prone feature en-
gineering, which may drastically increase the applicability
of machine learning to mobile phone sensor data.
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1. BACKGROUND AND MOTIVATION

Machine learning can turn our mobile phones into sophis-
ticated sensing and inference tools. Data captured from mo-
bile phones cannot only be used to infer the location or level
of acceleration of our phone, but also high-level informa-
tion about, e.g., the environment, health & well-being, and
emotional states of the phone user |11} |15} |17].

Traditional machine learning classifiers cannot typically
handle raw sensor inputs, such as the level of activity as it
is reported from the acceleration sensor. Therefore, sensor
events have to be converted into features in order to become
a relevant input for the classifier, such as the mean level
of acceleration during a specified time window. Choosing
which features to compute is an inherently time-consuming
and creative task. Other than experience and domain knowl-
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edge, little guidelines exist on how to arrive to the best, or
even to a sufficiently good set of features. Consequently,
during feature extraction, important information may not
be modeled and thus remain unused by the classifier. In
addition, the extracted features may not be generic, in the
sense that reusing them for a related but different task may
be sub-optimal.

Deep learning proposes to solve this problem by learning
the feature sets and the classifier at the same time, in a su-
pervised way, and for a specific domain [2]. A cascade of
neural network layers is employed, where each subsequent
layer can learn more complex information, typically in a hi-
erarchical fashion. The model implicitly identifies and learns
predictive ‘features’ from the available dataset and for the
task at hand.

Deep learning is significantly outperforming state-of-the-
art methods in several domains, such as image classifica-
tion |4, [8]. A number of deep-learning architectures ex-
pect their input to be of a fixed size and format. How-
ever, in the context of mobile phone sensors, events which
are predictive may be sparse and occur at irregular inter-
vals. For example, in some use cases, the events of unlock-
ing the screen or opening an app can be important predic-
tors. These events, however, occur only rarely and asyn-
chronously, making them hard to map into a fixed data for-
mat. Thus, there is no direct way to feed those events into a
network that expects a stable-sized input. Recurrent neural
networks (RNNs) [2| are more suited for variable-length se-
quential data, such as the one produced by mobile sensors.
Nonetheless, they are typically designed for constant rate,
synchronous sequences [3].

According to Lane et al. [10]: “If deep learning could lead
to significantly more robust and efficient mobile sensor in-
ference, it would revolutionize the field by rapidly expanding
the number of sensor apps ready for mainstream usage”. To
achieve that, research is beginning to look into how deep
learning models can deal with sparse and asynchronous se-
quences. For instance, Lee et al. |[13] propose a phased-
triggered RNN that uses a time gate to down-sample and
discretize continuous sensor input, but is not capable of ‘de-
sparsifying’ sparse sensor data. DeepSense [21] is, to our
knowledge, the only work that inputs time series mobile sen-
sor data into an RNN. In this work, the attendance to large
time spans is achieved by using a combination of convolu-
tional and RNN layers. The framework outperformed the
baselines in several tasks (i.e., car tracking, activity recog-
nition, and user identification). Even though the authors did
not report any results with a wide range of mobile sensors,
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they claim that their framework can be directly applied to
almost all other sensors, such as microphone, Wi-Fi signal,
barometer, and light sensor.

In this paper, we propose a pipeline for the practical pro-
cessing of sparse sensor data from mobile phones for the use
in a deep learning classifier. Our goal is to enable continual
predictions on the basis of sensor data streams, i.e., at each
moment in time, the network should allow to make an esti-
mation about the user’s contextual state. The main points
we tackle are:

e Data sparsity. We propose a data format in which
sparse sensor events are represented by positive num-
bers whereas absence of events is represented by zeros.

e Temporal sparsity and asynchrony. To improve perfor-
mance, we propose a time-based compression method,
which reduces the sparsity of the dataset.

e User and class imbalance. We consider and study four
ground truth weighting strategies, used in the training
of our deep learning models.

We demonstrate the effectiveness of our approach in a
case study on a dataset of 279 mobile phone users, where
sensor data and other events are used to continually predict
whether the user will attend timely to a mobile phone noti-
fication. To the best of our knowledge, this is the first work
that describes how to fuse a wide range of mobile sensors to
predict the user’s context using recurrent neural networks.

2. DEEP LEARNING PIPELINE

A deep neural network is a series of fully connected
layers of units (nodes) capable of mapping an input vector
(raw data) into an output vector (e.g., inferred classes). A
major difference with traditional machine learning is that
instead of using manually crafted features as an input, deep
networks are capable of using raw data (e.g., images, audio,
text). An RNN is a specific type of deep network that takes
sequential data as an input . RNNs can be stateful, i.e.,
having an internal memory that allows them to remember
past information. The most-used RNN architecture is the
so-called long short-term memory (LSTM) network [5]. It
has repeatedly proven to be one of the best performing off-
the-shelf approaches to sequence modeling.

2.1 Prediction / Ground Truth

RNNs typically learn from a continual series of events and
ground truth labels. However, in the case of mobile sensor
data, the ground truth labels can be sparse. For instance,
in our case study, the ground truth is the comparably rare
event of attending to a notification (only 1.45% of the sam-
ples include ground truth labels). Thus, it is required that a
prediction is happening continually, while the collected sen-
sor data stream is being aggregated and the model is trained
to do so, even in the absence of continual ground truth at
the learning stage.

2.2 Sensor Data Collection

Mobile sensor data can be categorized into continuous,
where the sampling rate is fixed (e.g., accelerometer, light,
etc.) and event-driven, where new data are reported when
an event occurs (e.g., battery level drops, a notification is
received, etc.). When high precision from continuous sensors
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Figure 1: Example of compressing sensor data.

is not required, these data can be transformed into periodi-
cal, by aggregating the data on custom time intervals (e.g.,
mean and maximum acceleration on every 10 minutes). Ta-
ble[f]describes the periodical and event-driven sensors of our
case study.

2.3 Normalization and Capping

Our input consists of real-valued sensor readings and one-
hot encoded vectors. Before feeding the input into the net-
work, we normalize it by re-scaling all the elements to lie
between 0 and 1. In sensor data, we typically find highly-
skewed, long-tail distributions. We empirically tested dif-
ferent thresholds above which the values are capped, and
ended up using the 95" percentile of the input data.

The time stamp of each data entry can be confusing for the
RNN, as the value constantly increases over time (usually
in epoch format, i.e., milliseconds since 1% January 1970).
Thus, we replace it with the time delta, the time difference in
minutes between the current and the previous sensor event.
By capping the value at 60 minutes, we also avoid outliers
in situations like the device is switched off for some time or
the battery runs out.

2.4 Fusing Sensors and Ground Truth

RNNs are typically designed for synchronous data (e.g.,
audio, text, time series). While some of the sensors are
sampled in regular intervals, most inputs in mobile data
are event-driven. Therefore, they exhibit irregular bursts
(see Table 1| for some examples). Apart from introducing
asynchronicity, event-driven inputs also result in extremely
sparse input vectors.

We organize the data in a form of sensor events, stored in
a two dimensional matrix (Fig. [I)). Each row represents a
sensor event (.S;), whereas each column represents a sensor
measurement (z). Ground truth labels are also represented
as a column in the matrix (y), using w = 0 when a ground
truth label is not available. Since mobile phone sensors can
be asynchronous and event-based, at every time step not all
sensors can possibly provide data and ground truth labels.
Therefore, we represent missing values with 0. To alleviate
the issue of using 0 for both a missing value and a true 0
measurement, we re-scale data to range between 0.05 and 1.

2.5 Structuring the Data for Training

The data is structured along several dimensions:
Input sample: Each sample ¢ contains the input data of
a single instance for a single user: a tuple S; = (x4, ys, ws),
where z; is a sensor data value, y; contains the ground truth
label, and w; contains the weight of this sample, used in the
error or loss function. Notice that not all samples contain a
ground truth label (Fig. [1).



| Sensor

| Description

Screen Orientation

Accelerometer Mean and maximum linear acceleration.
Battery Percentage of the device’s battery drain per hour.
= | Data Network data activity in kb/sec (total received, total transmitted, cellular received, cellular trans-
2 mitted).
.g Light Mean light level in lux.
& Noise Mean noise levels in dB.
Semantic Location | Location visited by the user, classified as Home, Work, Single (visited once), Repeated (visited
regularly), Passing (passed by for a short time), and Unknown.
App Name and category of the app that was opened by the user.
Audio Music Change in audio playback state (Music, No Music).
£ | Audio Source Change in audio output of the device (Speaker, Headphones).
E Charging State Charging state of the device (Charging, Not Charging).
:"Z Notification Post or removal of notification.
g | Notif. Center Event of accessing the device’s notification center.
LE Ringer Change of the ringer mode (Normal, Silent, Vibrate).
Screen Change of the device’s screen state (On, Off, Unlocked).

Change of screen orientation (Portrait, Landscape).

Table 1: Periodical and event-driven sensor data collected by a smartphone device.

Sequences: To train RNNs we need to provide for each user
a time-ordered sequence of input samples. These samples
are used to build an internal state that determines how past
events affect future time slots. They are also used to back-
propagate the error when training the RNN [2]. The number
of steps to perform this back-propagation in time (sequence
length) is a parameter of the model.

Batches: Modern deep learning techniques allow us to train
a network in batches by interleaving multiple sequences to-
gether. Among others, batching allows to further exploit
the power of matrix multiplication on the GPU and to avoid
loading all data into memory at once. The batch size has
implications for the robustness of the error that is propa-
gated in the learning phase [6]. Figure [2| shows an exam-
ple of 3 batches that encode 3 sequences of 5 samples each
(15 samples per batch in total).

User buckets: By using stateful RNNs, the internal RNN
state is kept between two subsequent batches, potentially
allowing it to learn sequences that are larger than the se-
quence length. To do so, we need to make sure that two
subsequent batches interleave the same users with the same
order. Therefore, we assign them into buckets: each bucket
contains all the batches that are required to encode the data
of its users. If the users within a bucket have a different num-
ber of sequences, we zero-pad their data and sort them so
that the minimum zero padding is needed. Figure [2] shows
an example of a single bucket that encodes the data of 3
users.

Prediction: The suggested arrangement into buckets and
batches is only required in the training phase. For predic-
tions we can even provide a single sample of a single user
and the network will make a prediction based on the previ-
ous samples of that user.

3. PERFORMANCE IMPROVEMENTS

3.1 Time-Based Sparse Data Compression

Batching with a single sensor event per sequence sample
has two significant drawbacks: i) sub-optimal training where
each event results in a training sample with very limited in-
formation contained in it, and ii) it is imposing a challenge
to the RNN’s internal states that now have to accommodate
longer sequences to represent the same temporal context.

Therefore, we perform an opportunistic, lossless compres-
sion of the input data: consecutive input samples are com-
bined when there is no clashing information between them.
The time delta for the merged samples is updated to indi-
cate the overall elapsed time. More specifically, data from
a subsequent sample S;+1 can be merged into an existing
sample S; only if all of the following rules are valid for all
given input sensors j (Fig. :

e Si[j] = 0 or Si[j] = Si+1[j]- In other words, we can
only merge the next sample into the current one if the
current value is zero (no existing data) or is equal to
the value of the following sample.

e S;[j] does not contain ground truth (sample weight is
not zero).

e The time delta between the merged samples is not
larger than a threshold T' (we do not set T' in our ex-
periments as our periodical sensors are configured to a
fixed sampling rate of 10 minutes).

While this compression process results in a much denser
input, there are some drawbacks. Firstly, a prediction is
slightly delayed until a compressed sample has been gen-
erated. Smaller T values can be used to shorten this de-
lay. Secondly, the time information about the inter-arrival
time of the compressed events is distorted. Finally, sensors
that trigger multiple times with the same value can be com-
pressed into a single event. However, performing a time-
based compression presents a number of advantages that
outweigh the previous drawbacks:

1. Models train faster. With smaller sequences we have
less samples to feed into the classifier. If those sam-
ples keep the same information (as it is the case), the
process results in faster training times with no perfor-
mance drop.

2. We have less elements in the sequence. This is impor-
tant since the attention to past time spans of current
RNN architectures is limited, a phenomenon known as
the vanishing gradients problem [14]|. Therefore, by
compressing longer time spans into smaller sequences
we can feed more information into the RNN.



Bucket

Batch Batch

Batch
Batch Size
Bucket contains M
3 users

Y
Sequence Length
Number of time-ordered
events per batch, per user

s a.a
3| @ a8

Input Sample

P |

Figure 2: Preparing data for training. Users are first split into buckets and then split into batches where
multiple users are interleaved. Within each batch, a sequence of user data is provided. Some (but not all) of
the samples contain the ground truth that will be used to train the model.

3. The sequence size is so small that we can even think of
not deploying any further processing on the phone (in-
cluding the deep network) and send that information
to a server performing the remaining operations.

3.2 Sample weights

Weights are traditionally used by machine-learning mod-
els to fight class imbalance: instances with significantly fewer
samples typically get higher weights to force the model into
considering them equally. In practice, the weights represent
the contribution of each sample towards the loss function.
However, in our case the weights are not only used to balance
the different labels, but also for a more important task.

As described, most of the generated samples simply con-
tain sensor readings; there are very few samples that con-
tain labeled data. Nevertheless, even if there are unlabeled
sensor readings, all samples should go through the RNN as
this will keep updating the internal RNN states. In other
words, even if we don’t want to make a prediction at time
step t, this sample might affect a future time step ¢ + i.
An additional benefit is that by inputting every sequence,
the network will make a prediction at every input and, in
fact, we want to train the network like this. In the example
of Figure 2] we see that the whole sensor input is passed
through the network but the network only learns from the
highlighted samples.

Therefore, we need a way to indicate to the classifier that
a given sample should be used to update the internal states
(i.e., affect the past memory) but it should not be consid-
ered by the loss function in training time. To do so, we mark
samples without a ground truth label with zeroed weights,
whereas for instances that contain ground truth weights are
calculated based on the number of instances of this label
within each user. We consider 4 different strategies: i) no
weights, therefore we resort to a simple binary indicator
of whether to use the sample or not, ii) inverse frequency
weighting , iii) inverse log-frequency weighting , and
iv) inverse square root frequency weighting.

4. CASE STUDY: PREDICTING REACTIVE-
NESS TO NOTIFICATIONS

Notifications are alerts that try to attract the mobile phone
user’s attention to new content, such as unread emails or so-

cial network activity. While notifications help to avoid miss-
ing important content , they can have substantial neg-
ative effects. They disrupt and impair work performance,
even when they are are not attended . Constant expo-
sure to notifications can negatively affect well-being Eﬂ, as
they induce symptoms of hyperactivity and inattention. At
the same time, notifications are essential for people to keep
up with expectations towards responsiveness . The re-
search community is therefore investigating ways to reduce
the negative effects of notifications. One approach that the
community follows is to predict how reactive a user would
be to a notification to enable intelligent ways of han-
dling them. In this section, we present a case study where
we predict whether a user will react (click or dismiss it) to
a mobile phone notification within a 10 minutes window.

4.1 Data collection

Our dataset contains mobile phone use logs from
279 Android phone users for an average duration of four
weeks during summer 2016. The participants’ ages ranged
from 18 to 66 years (M = 37.7, SD = 11.1), with a balanced
gender split (52.7% female and 47.3% male). The data was
collected through an app which was running in the back-
ground while passively collecting rich sensor data about the
user’s context and phone usage. Participants registered the
app to listen for notification and accessibility events, which
allowed it to log what notifications participants received and
after how much time they opened the corresponding app.

Table [1] presents a list of all sensors used in this study.
Based on the time stamp of each entry, we extracted some
simple information such as the time delta (explained in Sec.,
the day of the week (1-7), the hour of the day (0-23), as
well as a variable that indicates whether the current day is
a working day or not (0-1). Basic demographics such as age
and gender were also self-reported using a questionnaire at
the beginning of the study and included in the dataset.

We computed the ground truth using 1 when a notifica-
tion arrives and the user opens the app that originated the
notification in less than 10 minutes, and 0 if the user ei-
ther removed it from the notification center or just ignored
it. We excluded all system and keyboard type notifications
events from the ground truth, where a consequent action
was not usually required by the user. The resulting dataset
contains over 26 million phone usage events, about 1 mil-
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Figure 3: ROC curve of the test set using the time-
based compressed data and logarithmic weights
(AUC = 0.702).

Valid Test Unknown Test
Frequency 0.679 | 0.681 0.669
Square root of frequency | 0.697 | 0.698 0.667
No weights (binary) 0.706 | 0.700 0.696
Logarithm of frequency 0.713 | 0.702 0.691

Table 2: AUC per weight type using the time-based
compressed data.

Valid Test | Unknown Test
Baseline 0.495 | 0.499 0.511
Uncompressed | 0.688 0.678 0.671
Compressed 0.713 | 0.702 0.691

Table 3: AUCs using logarithmic weights.

lion events after applying the sensor data compression, and
about 388 thousand ground truth labels.

4.2 Data Analysis

For the analysis, we split the 4-week sequential dataset
into training (first two weeks), validation (3" week), known
test (4*" week) and unknown test (4°® week). The differ-
ence between the two test sets is that the unknown test set
includes 22 new users that the model has never seen be-
fore. Following the pipeline explained in Sec. 2} we applied
one-hot encoding to all categorical sensors, replaced all NaN
values with zeros, applied normalization and capping, and
finally applied time-based compression to the dataset.

To implement our model we used Keras v2.0.3 1] with
Theano v0.9 [19]. As an input layer we used a fully-connected
time-distributed linear layer with 50 parametric rectified lin-
ear units [4]. Two stateful LSTMs were used as hidden lay-
ers with 500 units. A final dense layer and a sigmoid acti-
vation function was applied to obtain output probabilities.
We trained our model using standard cross-entropy loss [2]
and the Adam optimizer |7] with default parameters.

As a baseline, we used a probability-based dummy classi-
fier. On the basis of the training set, it determines, for each
user, the probability that a notification of a certain category
will be clicked within 10 minutes. In the prediction phase,
it uses this probability as threshold in a random prediction.

For example, if a user responded to 80% of the WhatsApp
messages within 10 minutes, the prediction will yield about
80% positive predictions.

4.3 Results

In Table [3] we report the area under the curve (AUC) of
the classifier using both the compressed and uncompressed
datasets. The AUC is computed per user and per app cat-
egory, and then averaged. Overall, we achieved an AUC of
0.70 in the test set and 0.69 in the unknown test set. Sim-
ilar accuracies in both test sets suggest that the model is
resilient to users outside the training set, which would be a
very desirable property. By applying the time-based com-
pression, we achieved a 95% size reduction of the dataset
and a 3.5% relative improvement when predicting notifica-
tion attendance. In addition, the model training time im-
proved significantly from 1.3 hours to 2.8 minutes per epoch.
We note that without the normalization and capping part
described in Sec. 2] the model presented some convergence
issues. In Fig. [3]| we report the performance of the classifier
in a Receiver Operating Characteristic (ROC) curve.

In Table [2] we compare the accuracy of the model using
the four considered types of weights (Sec. . Apart from
using the inverse of the frequency, which performed worse,
we do not observe a substantial effect. Logarithmic weight-
ing performed best in validation and test. Binary weights
outperformed the rest in the case of the unknown test. How-
ever, due to its small size (n = 22), the unknown test set
was subject to high variance, preventing us from drawing
clear conclusions.

S.  CONCLUSIONS AND FUTURE WORK

We introduce a practical approach for preparing time se-
ries mobile sensor data for deep learning applications. We
demonstrate its effectiveness in a case study with 279 partici-
pants. An RNN trained on data prepared with our approach

achieved a 40% performance increase with respect to a prob-
abilistic random baseline in the task of predicting whether

a notification would be attended within 10 minutes. We
find that the model generalizes to unknown users without
significant performance loss.

The proposed data processing approach enables running
continual predictions on mobile sensor data streams. The
proposed time-based compression further enables practical
implementations, where the phone collects and compresses
the data, and then sends it to server to run predictions. Fu-
ture work includes the comparison of the performance to
canonical approaches, the improvement of the compression
strategy, and the potential application of more sophisticated
deep learning techniques, such as transfer learning, or un-
supervised learning with the use of generative adversarial
networks.
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