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Facilitating adoption of Internet technologies and services with
externalities via cost subsidization

STEVEN WEBER, Drexel University

This paper models the temporal adoption dynamics of an abstracted Internet technology or service, where
the instantaneous net value of the service perceived by each (current or potential) user / customer incorpo-
rates three key features: i) user service affinity heterogeneity, i) a network externality, and 7i7) a subscrip-
tion cost. Internet technologies and services with network externalities face a “chicken and egg” adoption
problem in that the service requires an established customer base in order to attract new customers. In this
paper we study cost subsidization as a means to “reach the knee”, at which point the externality drives
rapid service adoption, and thereby change the equilibrium service fractional adoption level from an initial
near-zero level to a final near-one level (full adoption). We present three simple subsidy models and evaluate
them under two natural performance metrics: ¢) the duration required for the subsidized service to reach a
given target adoption level, and i7) the aggregate cost of the subsidy born by the service provide. First, we
present a “two target adoption subsidy” (TTAS) that subsidizes the cost so as to keep the fraction of users
with positive net utility at a (constant) target level until the actual adoption target is reached. Second, we
study a special case of the above where the target ensures all users have positive net utility, corresponding
to a “quickest adoption” subsidy (QAS). Third, we introduce an approximation of QAS, called AQAS, that
only requires the service provider adjust the subsidy level a prescribed number of times. Fourth, we study
equilibria and their stability under uniformly and normally distributed user service affinities, highlighting
the unstable equilibrium in each case as the natural target adoption level for the provider. Finally, we pro-
vide a fictional case study to illustrate the application of the results in a (hopefully) realistic scenario, along
with a brief discussion of the limitations of the model and analysis.
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1. INTRODUCTION

With the Internet fueling the rise of a “network society” [Castells 2009], many Inter-
net technologies and services! realize their value only after reaching a certain level of
adoption. In other words, they exhibit positive externalities, e.g., Metcalfe’s Law. Exter-
nalities are well-known [Katz and Shapiro 1986; Cabral 1990] to affect service adop-
tion, and in particular to create a “chicken-and-egg” problem (i.e., a service requires
customers in order to attract customers) that can often stymie the success of new ser-
vices. This is because, when a new service is offered, most potential adopters see a cost
that exceeds its (low) initial value. This barrier to entry has been used to explain the

1 For conciseness we will use the term services to refer to both.
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A2 S. Weber

difficulties encountered by various Internet security protocols [Ozment and Schechter
2006] as well as by new versions of the Internet itself, i.e., IPv6 [Guérin and Hosana-
gar 2010]. Understanding how to overcome this problem is an important challenge for
any provider wishing to launch a new service with a network externality. Towards this
end, the Internet Architecture Board (IAB) held a workshop on Internet Technology
Adoption and Transition (ITAT) in 2013 to “develop protocol deployment strategies that
enable new features to rapidly gain a foothold and ultimately realize broad adoption.
Such strategies must be informed by both operational and economic factors.”?

In prior work [Weber et al. 2013; Guérin et al. 2014] we investigated service bundling
as a means of overcoming initial adoption inertia. In this work, we analyze the service
adoption dynamics (AD) under a standard diffusion model when the service provider
employs cost subsidization. The model used in both our prior work and in this paper
has in common three key assumptions (see §2 Ass. 1): i) users are heterogeneous, i.e.,
their affinity for the service varies, i:) services exhibit positive externalities, i.e., the
utility perceived by a user is an increasing function of the service adoption level, and
iii) services have a subscription cost, i.e., a user pays a fixed amount per unit time to
participate in the service. There are no additional costs to join the service, nor any con-
tractual requirements that prevent leaving the service at any time. The per-user cost
is assumed to be non-discriminatory, i.e., identical across users, and fixed (exogenous).

This paper is an extension of prior work [Weber and Guérin 2014] on cost subsi-
dization under diffusion AD. That paper studied a constant subsidy under a uniform
affinity distribution, and the main result was an expression for the subsidy duration
and aggregate cost. The key improvements of this paper relative to [Weber and Guérin
2014] include ¢) generalization of the model to an arbitrary affinity distribution, i)
introduction and analysis of three new subsidy models (TTAS, QAS, AQAS), ii:) anal-
ysis of the equilibria and associated stability for general affinity distributions, with
thorough analysis of the uniform and normal case, iv) a case study illustrating the ap-
plicability of the results, and v) a brief study of the impact of nonlinear externalities.

1.1. Related work

Subsidization is a natural solution for such services because it incentivizes adoption
among initial adopters (“innovators” [Bass 1969]), thereby allowing the adoption level
to build up to the “knee”, i.e., the point at which the strength of the externality will
incentivize the later adopters (“imitators”), and the subsidy will no longer be needed
to sustain the service. Subsidization may take many forms; we provide a (necessarily)
selective and brief review of this large topic below.

There is a long-standing awareness of the role of subsidies in realizing more effi-
cient outcomes in “markets” that exhibit positive externalities i.e.,, by demonstrating
the benefits of Pigouvian subsidies [Pigou 1920]. For example, [Chacko and Mitchell
1998] examines the impact of early investments on a firm’s growth rate in the telecom-
munication industry. It identifies that early investments can facilitate the creation
of an initial user base, and lead to greater overall market share. This awareness not
withstanding, most of the focus to-date has been on case studies, e.g., see [McIntyre
and Subramaniam 2009] for a recent review.

There have been some recent efforts on the modeling front, stemming in part from
interest in viral marketing in online (social) networks [Candogan et al. 2012; Hartline
et al. 2008; Swapna et al. 2012; Ajorlou et al. 2014]. These works are closely related to
studies of adoption dynamics in social networks [Kleinberg 2007, Chapter 24], but with
a focus on maximizing revenue rather than adoption. The optimal marketing strategy
in a symmetric network, i.e., a product utility grows in proportion to its number of

2http://www.iab.org/activities/workshops/itat/
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adopters, is investigated in [Hartline et al. 2008] by formulating it as the solution
of a dynamic program. A general network setting is considered in [Candogan et al.
2012] with the important difference of considering a divisible good, so that consump-
tion maximization is the goal. Although we consider a common cost to users, we note
that multiclass (Paris Metro) pricing for heterogeneous users is addressed in [Chau
et al. 2014]. Finally, [Courcoubetis et al. 2016] considers pricing for users with hetero-
geneous affinities, which in their context takes the form of user and subscriber loyalty
to Internet Service Providers (ISPs) and Content Service Providers (CSPs); this issue
is also addressed in [Cho et al. 2016].

Like [Bass 1969], we focus on product adoption among heterogeneous users in the
presence of an externality, but our work differs in that [Bass 1969] studies two classes
with no adoption costs, and no subsidization. Like [Katz and Shapiro 1986], we focus
on subsidies (sponsorship in their paper) with externalities, but our work differs in
that [Katz and Shapiro 1986] looks at equilibrium pricing, whereas our interest is on
adoption dynamics. Like [Hartline et al. 2008], we address optimizing over subsidies,
but [Hartline et al. 2008] considers buyer-specific subsidies and externalities.

Finally, we comment on the past and current role that subsidies have played in the
adoption of Internet technologies and services. A survey of network economics is given
in [Shy 2011]. One of the first and most influential articles establishing the connection
between computer security and economics as a whole is [Anderson 2001] (c.f., [Ander-
son and Moore 2007]); the author, Ross Anderson, founded the annual Workshop on the
Economics of Information Security (WEIS) in 2001, dedicated to exploring this connec-
tion (c.f, [Schneier 2006]), and maintains the “Economics and Security Resource Page”
[Anderson 2016]. As discussed in [Ozment and Schechter 2006], the U.S. Department
of Homeland Security subsidized open source software development for the Domain
Name System Security Extensions (DNSSEC) as a means of facilitating its adoption.
A few years later, [Clayton 2010] proposed government subsidize the cost of remov-
ing malware from end-user computers. More recently, with the rise of social networks,
subsidies are now a standard tool; the example of the smart phone application ride-
sharing service Lyft is discussed in [Edelman 2015]. The subscription subsidy models
used in startup dating websites are discussed in [Wendel 2015].

1.2. Contributions and outline

§2 introduces the basic mathematical model, with a justification of the model assump-
tions in §2.1, and an analysis of the special case of a service with no externality in §2.2.
Prop. 2.4 and Cor. 2.5 establish the uniqueness of the adoption equilibrium in this
case. Although it is not the only plausible scenario, it is natural for a service provider
to consider using a subsidy in a situation with multiple stable equilibria, where the low
initial service adoption level will result in unsubsidized adoption dynamics converging
to the lower equilibrium, but a sufficiently strong subsidy may push the adoption level
high enough to enable convergence to the higher equilibrium. In contrast, multiple
stable equilibria are possible with externalities; it is for this reason we believe it is
most natural to study the use of subsidies for services exhibiting externalities, which
we assume for the rest of the paper. Our two figures of merit are the subsidy duration
and the aggregate cost of the subsidy born by the provider (Def. 2.3), i.e., the instanta-
neous aggregate subsidy cost (the product of the subsidy per user times the number of
users) integrated over the subsidy duration.

63 introduces the two-target adoption subsidy (TTAS), where the subsidy is struc-
tured to maintain a constant fraction of users with positive net utility, until such time
as the target adoption level is achieved. We first establish a necessary condition for
a subsidy to be extremal with respect to aggregate cost (Prop. 3.1 in §3.1), then show
(Prop. 3.4 in §3.2) that the TTAS satisfies this condition, however there is no reason
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to suspect TTAS is optimal. The aggregate cost of a TTAS (Prop. 3.5) shown in Fig. 3
demonstrates the two key performance metrics, the aggregate cost and the subsidy
duration, may or may not be in tension with each other, depending upon parameters.

84 specializes the TTAS to the case when the subsidy is structured so that all users
have positive net utility, which we term a quickest adoption subsidy (QAS). We es-
tablish the nature of the aggregate cost of a QAS as a function of the target adoption
level (Prop. 4.2 in §4.1) and identify parameter regimes where the subsidy cost is al-
ways positive, always negative, and admits a finite maximum, respectively (Fig. 4). As
TTAS (and thus QAS) impose the possibly unrealistic requirement that the provider
instantaneously adjust the subsidy in response to the adoption level, we introduce the
approximate QAS (AQAS) in §4.2, wherein the provider sets a sequence of intermediate
adoption levels and adjusts the subsidy amount in a piecewise constant manner. We
give the aggregate cost of AQAS (Prop. 4.5) as a function of these target parameters,
and study the cost of AQAS over QAS in Fig. 6.

§5. Until now the target adoption level has been chosen exogenously, independent of
the equilibria of the unsubsidized adoption dynamics. The natural context for subsi-
dization of services with externalities, however, is to use the subsidy to bootstrap the
adoption of the service to reach a critical adoption level, at which point the external-
ity is sufficiently strong to drive the adoption level to a high adoption level without
subsidization. Such a strategy, however, requires knowledge of the set of equilibria,
their stability, and their dependence upon the three key model parameters: the affin-
ity distribution, the nominal service cost, and the externality. §5 gives i) the number
of possible equilibria for a general affinity distribution (Prop. 5.1 in §5.1), and i) a
detailed investigation of the equilibria and adoption dynamics under uniformly (§5.2)
and normally (§5.3) distributed affinities, respectively.

§6. A fictional case study is presented with the intention of illustrating the applica-
bility of the preceding content in a plausible scenario of a mobile app / service startup.
First, the idealized continuous-time AD for an infinite population is shown (in App. B)
to connect with the more pragmatic discrete-time AD for a finite population. Second,
the startup holds a trial period with a certain structure in order to estimate key model
parameters such as the externality and the user affinity distribution; it is shown that
these quantities can in fact be estimated. Third, the startup evaluates a suite of pos-
sible subsidies, namely constant subsidies and the three subsidies discussed above
(TTAS, QAS, and AQAS), and simulation results demonstrate their performance.

§7 offers a brief discussion of the limitations anticipated in applying the model and
the analysis to real-world scenarios.

68 holds a brief conclusion.

There are two appendices. In App. A we briefly investigate nonlinear externalities,
since elsewhere we have assumed a linear externality per user, consistent with the
quadratic sum-user utility growth of Metcalfe’s law. App. B holds several longer proofs.

2. MATHEMATICAL MODEL
2.1. Assumptions and justifications

Let z(t) = z(t|t,z) € [0, 1] denote the fraction of the population that has adopted the
service at each time ¢ > ¢ subject to the initial condition z(t) = z. The model cap-
tures AD in a large population of potential users of an Internet service exhibiting the
assumptions in §1, formalized as Ass. 1 below.

ASSUMPTION 1.
(1) The net utility, V = V(x, u), perceived by a randomly selected user when the adop-

tion level is x, the subsidized service cost is ¢ — u, and the externality parameter is
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e, is the random variable V(z,u) = A — v(z,u), where A is the random user affinity
for the service, and v(x,u) = (¢ — u) — ex is the user net cost.

(2) User service affinity heterogeneity is captured by the random variable A, with
a continuous complementary cumulative distribution function (CCDF) Fs(a) =
P(A > a). Affinities are independent and identically distributed (iid).

(3) The service externality is captured by the term ex, where e > 0 is the externality
parameter. We generalize this from (linear) x to nonlinear x(x) in App. A.

(4) The subsidized cost of adoption is ¢ — u where ¢ > 0 is a constant representing the
nominal cost, and u € R is the subsidy amount. Observe i) u < 0 corresponds to a
negative subsidy (an increased service cost), where users pay more than the nominal
cost, and ii) u > c corresponds to a negative cost, where the provider in fact pays
users to join the service. We write both u(x) to represent a subsidy as a function of the
state x and u(t) to represent a subsidy as a function of time t, with the intepretation
clear from context. Setting u = 0 corresponds to unsubsidized dynamics.

(5) The adoption level follows standard diffusion dynamics /[Mahajan and Peterson
1985, Chapter 1, Equation 1], with time-scale parameter v > 0:

&(t) = v f(z(t),u(t) = v(P(V(2(t),u(t) > 0) — x(t)) 1)
where the (positive or negative) net utility at adoption level x and subsidy level u is
f(@,u) = Fa(v(z,u)) — =. (2)

Remark 2.1. Each of the five points in the above assumption are given a corre-
sponding justification below.

(1) Each of the three terms in V(z,u) and v(z, u), namely, A, ¢ — u, and ez, reflects one
of the key assumptions in §1. Linear utility models like V(z, ) are standard in the
network externality literature (e.g., [Bass 1969; Candogan et al. 2012]), although
more general models have been studied (e.g., [Cabral 1990]). Note the net utility,
and each of the three terms comprising it, represent values or costs per unit time.

(2) User affinity heterogeneity in the target population is central to the use of dif-
fusion dynamics in (2); a homogeneous population with fixed affinity a results in
the trivial case where the entire population has positive (negative) net utility for
x Z (c—u—a)/e, respectively. The iid assumption is valid in many populations, but
is also required for tractability.

(3) Metcalfe’s “Law”, which asserts the sum utility over all users of a network service
grows in the square of the size of the user base, means the utility per user grows
linearly, consistent with the ex form of the externality in Ass. 1-3), where e is the
linear growth rate. Metcalfe’s Law is assumed in much, but not all, of the literature
on adoption under externalities. Other dependencies have been argued as more
suitable [Briscoe et al. 2006]; we study this (briefly) in App. A.

(4) The instantaneous subsidized subscription cost ¢ — u focuses our model on services
where the provider charges each user a regular fee to participate (e.g., World of
Warcraft or Angie’s List?). Although one can define an equivalent model with A’ =
A — ¢, we retain c to facilitate investigation of cost subsidization w.

(5) The dynamics in (2) assert the rate of change of the adoption level is proportional to
the difference between the fraction of the population that would adopt at adoption
level z(t), and the fraction of the population that has adopted, i.e., 2(t). This prin-
ciple, admitting a wide class of variants, is standard in the literature, e.g., [Rogers
1962; Bass 1969; Moore 1991].

Swww.angieslist.com, www.warcraft.com
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Equilibria and stability are defined for unsubsidized AD, since they are asymptotic
(in time) quantities, and we focus in this work on finite-duration subsidies.

Definition 2.2. An adoption level z € [0,1] is an (unsubsidized) equilibrium if i(t) =
0 when u = 0, i.e., f(x,0) = 0. The set of equilibria is denoted X. An equilibrium z is
stable if <L f(x,0) < 0. The stable equilibria set is X C X.

An equilibrium occurs when all users with positive (negative) net utility have (not)
adopted the service.

We presume the service provider has in mind a target adoption level, denoted z, with
T € (z,1]. We consider the class of continuous controls, denoted U, with each control
u € U representing a subsidy, for which the adoption level z is driven to the target
adoption level z by some finite time [u] > ¢, i.e., z(t[u]) = z. Following convention, we
place the function argument of functionals in square brackets, as in t[u]. Although it
is clear from the definitions of V(x,u) and v(z, ) that « depends essentially upon the
state z, rather than on the time ¢, we nonetheless alternately denote v = (u(¢),t €
[t,]) as a function of time, and u = (u(z),z € [z,Z]) as a function of the state. We
emphasize that 7 is exogenous, but not . We consider two metrics by which we assess
the performance of the subsidy: the hitting time, ¢[u], and the aggregate provider cost
J[u], both of which, naturally, are to be minimized.

Definition 2.3. The aggregate cost of a subsidy born by the provider for a subsidy
function u with induced adoption level x over the duration [t, t[u]] is

Tl = / (), ult)at 3

for [(x,u) = xu the instantaneous aggregate cost to the provider when subsidy level u
is applied and the adoption level is 2. Changing variables from ¢ to y via dt = da /& =

da/(vf(z, ), yields

yJu] = /CE ch((gi, 7;?) dz. 4)

Multiplying J[u] by v as above makes the aggregate cost independent of v, and we will
often report results in this way.

2.2. Subsidies without externalities
In this section we study the impact of subsidization in the absence of an externality
(e = 0), so the subsidized utility is V(z,u) = A — (¢ — u).

PROPOSITION 2.4. In the absence of an externality (e = 0) and subsidization (u = 0)
(2) has solution

w(t|t,z) = Fa(c) = (Fa(e) —z)e 70, 1 > 1. (5)

The AD with subsidization v = (u(t),t € [t,t]) that depends upon time t and not on the
adoption level x (but is otherwise arbitrary) has solution

t
x(tlt,z) = ze V(-0 4 ye 7t / e Fa(c—u(r))dr, (6)

t
fort <t. Fort > tthe AD are z(t) = x(t

level at the end of the subsidy at time t.

PROOF. With no subsidization the AD (2) are @(t) = vf(z(t),0), and the solution is
obtained by separation of variables. With the subsidy u the AD are &(t) = v f(z(t), u(t)),
and the solution is obtained by integrating factors. O

t,X) for z(t) in (5) and x = z(t|t, z) the adoption
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Table I.
Notation
82 z(tt, x) adoption level at ¢ §3 A= (\(t)) Lagrange multiplier fen.
t,x initial time & adopt. level X € [z,1] TTAS positive net utility frac.
T target adoption level p(x) quantile under F4
u = (u(xz)) subsidy as fen. of state £(x) normalized cost/ext. ratio
u = (u(t)) subsidy as fen. of time 7(x) normalized time ¢[u]
e>0 service externality param. §4 p minimum possible affinity
c>0 nominal service cost a7 T (@) aggregate cost of the QAS
v(z,u) user net cost w intermed. AQAS targets
A~ Fy rand. user service affinity a(x), a; intermed. AQAS subsidies
V(z,u) random user net utility (20) J (w) aggregate cost of the AQAS
@) f(z,u) diffusion term §5 A support of A
¥ time-scale param. for AD (As) concave-convex partition of A
X unsub. adoption equil. set W standard uniform rand. var.
X unsub. stable equil. set 27) x° unstable equilibria
t[u] subsidy end time Z standard normal rand. var.
I(z,u) agg. inst. subsidy cost App. A k(x) nonlinear externality function
3)  Ju aggregate subsidy cost

The importance of this proposition is that it immediately yields the following corollary.

COROLLARY 2.5. In the absence of an externality (e = 0) the unique equilibrium of
both the unsubsidized and subsidized AD in Prop. 2.4is X = {F4(c)}.

Example 2.6. To illustrate Prop. 2.4 and Cor. 2.5, fixt =2 = e = 0, v = 1, and
¢ = 1/2, and suppose affinities are uniformly distributed, i.e., A ~ Uni(0,1). Fig. 1
shows the AD z(t) vs. t under a constant subsidy u with u(¢t) = ¢ for ¢t € [0,¢] and
t € {0,1/2,1,3/2,00}. After the subsidy ends, the AD converge to the equilibrium,
FA (C) = 1/2.

Fig. 1. Ex. 2.6 (§2.2). The AD xz(t) vs. t for no externality (e = 0), with A ~ Uni[0, 1], and full subsidy with
u(t)=c=1/2overt < t,witht € {0,1/2,1,3/2,00}. As soon as the subsidy ends, the adoption level begins
converging to the sole equilibrium F4(c) = 1/2.

Remark 2.7. In the absence of an externality, the resulting unique (stable) equi-
librium X = {F4(c)} means that any finite-time subsidy cannot alter the final equi-
librium level. In the presence of an externality, however, the final equilibrium level
is (in some cases) alterable by a finite-term subsidy (see §5.2 and §5.3). In summary,
subsidies are ineffective in the absence of an externality, and will be shown to be an
effective and natural control mechanism when one is present.
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3. TWO-TARGET ADOPTION SUBSIDIES (TTAS)

In this section we first use Euler’s equation (from the calculus of variations) to estab-
lish a necessary condition for a subsidy to be cost-extremal in §3.1, then we introduce
the class of two-target adoption subsidies, and establish them as extremal, in §3.2.

3.1. A necessary condition for cost-extremal subsidies

The following proposition gives a necessary condition for a subsidy to extremal* with
respect to J[u] in (3).

PROPOSITION 3.1. Suppose the affinity distribution Fa is continuous and differ-
entiable. If the subsidy u is extremal with respect to J[u| then there exists a Lagrange
multiplier function A\ = (\(t),t € [t,t]) (where t = t|u] satisfies x(t[u]) = &) such that, for
each t € [t, 1],

U= exr — YA )

PROOF. We require only an elementary result in the calculus of variations. In par-
ticular, we use [Gelfand and Fomin 1963, Theorem 2] (c.f. the subsequent Remark 1)
giving a necessary condition for u to be extremal in the presence of “finite subsidiary
conditions”, also called non-holonomic constraints, i.e., g(&, z,u) = 0, in our case given
by g(&,z,u) = & — vf(z,u). In particular, the theorem states if u is extremal for J[u]
under g = 0 then there exists a function A (defined above) such that u is extremal for

J[u] = /t (l(z,u) + Ng(z, z,u))dt. (8

The Euler equations for .J[u] are

0 o . 0 0 .
%l(x,u) + /\%g(m, x,u) =0, %l(ﬂt, u) + /\%g(a:,x,u) = 0. 9)
Substitution of %l(m,u) = z, a%l(x,u) = wu, a—ig(j:,x,u) = —vyfa(v(z,u)), and

a%g(x',x,u) = —y(efa(v(z,u)) — 1), where fa(a) = <L Fa(a) is the user affinity PDF,
into the Euler equations gives

x=vyAfalv(z,u)), u="y\efa(v(z,u))—1). (10)
Solving for u gives (7). O

The following subsection establishes a class of subsidies that satisfy this condition.

3.2. Two-target adoption subsidies

We propose a subsidy family, termed the two-target adoption subsidy (TTAS) family,
with parameter xy € (Z,1], where the subsidy is structured such that the fraction
of users with positive net utility is kept constant at x, i.e, v = u(z) is such that
Fy(v(z,u(x))) = x. It is clear from (2) that y > Z is necessary and sufficient to en-
sure x reaches z. If the subsidy were to be continued indefinitely beyond its terminal
time t[u], then z — y as t — oo, so0 x is also the asymptotic adoption level.

Definition 3.2. Given a target adoption level Z > z, the two-target adoption subsidy
(TTAS) with parameter x € (7, 1] and corresponding quantile p = p(x) = F;; ' (x) has

u=u(r)=c—p—enr, (11
which obeys v(x,u(z)) = p and Fa(v(z,u(z))) = x, and thus, by (2), & = v(x — ).

4We emphasize that the condition is necessary to be extremal, i.e., either minimal or maximal; additional
“second-order” conditions are required to establish the functional to be minimal [Gelfand and Fomin 1963].
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The name two-target is apt because one may think of this subsidy as “aiming” for the
“inflated” target x > Z, but stopping once the actual target z is achieved. Observe
the subsidy u is linearly decreasing in the adoption level x, which accords with the
intuition that larger subsidies are appropriate for lower adoption levels, and can be
decreased, eliminated, and even made negative at higher adoption levels, where the
externality strength offsets the higher cost without negatively affecting net utility.

Remark 3.3. Recall Ass. 1 Point 4. Observe u < 0, i.e., the subsidy in fact increases
the nominal cost from ¢ to ¢ — u > ¢, when = > (¢ — p)/e. As z € [z,z], it follows
that these cost increases will occur at some point over the course of the subsidy if
Z > (¢ — p)/e. Next, observe u > ¢, i.e., the subsidy in fact reduces the nominal cost to
below 0, meaning the provider in fact pays users to subscribe, when = < —p/e, which
can only happen if p < 0. These negative costs will occur over the course of the subsidy
if £ < —p/e. The more typical scenario of a “partial subsidy”, i.e,, u € [0, (] for each
t € [t, ], will occur provided

<p<z< P (12)
(&

PROPOSITION 3.4. The TTAS with parameter x € (z,1] satisfies the necessary con-
dition from Prop. 3.1 to be extremal for Ju|. The terminal time t[u], the adoption level
x, the subsidy u, and the Lagrange multiplier function X\ are (recall p = p(x)):

(0] 1) =log === #(t) =x ~ (x ~ 2)
u(t) = (c = p) — ex(t) , YA(t) = 2ex(t) - (c - p) (13)

We emphasize that, although the TTAS satisfies the necessary condition for ex-
tremality, there is no cause to believe the TTAS is itself optimal.

oD

e~ (t=1)

PROOF. The necessary condition u = ex — v\ from Prop. 3.1 for a subsidy to be cost-
extremal combined with the TTAS equation u = ¢ — p — ex from Def. 3.2 has solution

2ex=c—p+y\ 2u=c—p—yA (14)

which highlights the symmetry between (z,u). As © = v(x — z) under the TTAS, it
follows that the dynamics are given by Prop. 2.4, but with y replacing F4(c). That is,
although (5) holds for ¢ = 0 and u = 0, it applies also in this case since the TTAS
ensures F4 = x. The expression for ¢[u] follows by solving z(¢) = Z, the expresion u(t)
follows from « = ¢—p—ex, and the expression for yA(t) follows from vA = 2ex—(c—p). O

The quantities z,u, A\, l(z,u) are shown in Fig. 2. Observe the inverse relationship be-
tween z, u is such that the instantaneous cost /(z,u) has a global maximum at some
time ¢ € (¢, 7). In particular, for ¢ near ¢ the provider pays a large subsidy but only to a
few users, for a moderate aggregate instantaneous cost, while for ¢ near ¢, the provider
pays a very small subsidy to a much larger number of users, for a moderate aggregate
instantaneous cost. In fact, for y small (here, x = 4/5), we see a negative instanta-
neous cost (I < 0) for t > 2, meaning the provider raises the cost above c so as to extract
revenue; the strength of the externality at a high adoption level offsets this high cost
to keep the fraction of users with net positive utility at .

The TTAS has the additional benefit that its aggregate cost can be expressed suc-
cinctly, as given in the following result.

PRrROPOSITION 3.5. The TTAS has aggregate cost

1) = (600 = 00T (0) - (@ - 2)) + 5@ —2?) (15)
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u(t)

Fig. 2. §3.2: Illustration of the adoption dynamics under the two-target subsidy (Prop. 3.4): z(t) (far
left), A(t) (middle left), u(¢) (middle right), and I(z(t),u(t)) (far right) vs. t, for TTAS adoption target
x € {0.80,0.85,0.90,0.95}. Normal affinities (A ~ N(0,1)), witht =0,z =1/10,z =3/4,c=2,e = 4.

where £(x) = (c — p(x))/e and 7(x) = log 3=
Observe 7(x) = v(t[u] — t) for ¢[u] the TTAS terminal subsidy time in Prop. 3.4.
PROOF. Observe [(x,u) = x2(c — p — ex), and thus, by (4) in Def. 2.3,

Vo [T —a)

from which integration and algebra yields (15). O

Plots of the aggregate cost 1.J[u] and normalized terminal time ~([u] —t) = 7(x) vs. x
for various z, with = 1/10, ¢ = 2, and e = 4 are shown in Fig. 3. Several points bear
mention. The qualitative behavior of J[u] as a function of x varies dramatically for
various T, ranging from convex decreasing for small z, convex with internal minimum
for moderate z, and increasing for larger z. The corresponding J-optimal x* is therefore
highly sensitive to Z even for fixed (¢, e). Roughly speaking, x* = 1 (quickest adoption)
is J-optimal for small z, while x* = Z (slowest adoption) is J-optimal for larger z.
In fact, J may even be negative, i.e., the provider earns a net profit from the subsidy,
when 7 is large and x* is sufficiently close to Z. The subsidy duration ¢ is naturally
decreasing in y for each z, and increasing in z. The performance plot of achievable
(J,1) pairs, with y as a parameter, shows that for small Z there is no tension between
J and t (they can both be minimized by selecting a large ), while for large z the two
are in tension. In particular, the provider may profit from the subsidy (J < 0) but at
the expense of a larger adoption time ¢.

On account of the complicated nature of J for the TTAS, and on account of its natural
interest, we investigate in the next section the special case when y = 1.

047%’,[”. . (Tlu] — t) AL (fu) — )
02| 03| 04| 05| 06| or| os| 09 2p
[ 3 hE
02 U,zu ] \
[ 8
‘ —7 : \
02 04 ofs £

ds 1.0
X
R
2F ~
. . ‘ n 1 [~ I
0z 04 06 08 10

0.6 0.7
X 05 05 10

0.8 09
1

Fig. 3. §3.2: Illustration of the aggregate cost born by the provider (Prop. 3.5) and the subsidy duration
(Prop. 3.4) under the TTAS. Left: 2 J[u] vs. x for various Z € {2,...,9}/10. Middle: y([u] —t) vs. x (same set
z). Right: parametric plot of achievable (J, t) pairs as x is swept (same set 7). Normal affinities (A ~ N(0, 1)),
withi =0,z =1/10,c=2,and e = 4.
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4. QUICKEST ADOPTION SUBSIDIES

In this section we specialize the TTAS family to the special case of y = 1, which cor-
responds to minimizing ¢[u], and which we therefore refer to as a quickest adoption
subsidy (QAS). As evident from Fig. 3, such a subsidy may or may not be optimal with
regard to aggregate cost J[u]. A QAS is natural from the perspective of the the service
provider interested in achieving the target adoption level z as soon as possible. In this
section we first establish some properties of aggregate cost of the QAS as a function of
the target z in §4.1, then present an approximate QAS in §4.2.

4.1. Properties of the QAS
Quickest adoption is achievable by finite-cost subsidies under the assumption below.

ASSUMPTION 2. There exists a finite minimum service affinity p with Fa(p) = 1.

The rationale behind this assumption is that it ensures p(x) is finite at y = 1, and
therefore u under the TTAS is finite, as the following definition makes clear. Observe
the normal affinities used in Fig. 2 and Fig. 3 do not satisfy this assumption.

Definition 4.1. Quickest adoption subsidies (QAS) are TTAS with y = 1. They have
finite instantaneous cost u = ¢ — p — ex if p = p(1) is finite, as is true under Ass. 2. [

We view the target adoption level z as the parameter of interest for a QAS, and estab-
lish properties of the aggregate cost J[u] as a function of z in the following proposition.

PROPOSITION 4.2. The QAS has aggregate cost
LIl = T(@) = (- €)@ — ) — (1) + (@ o) an

where {(1) = (c — p)/eand 7(1) = log =< i—. Consider J () over [z,1], noting J (z) =

—For (1) € [z, ] ( ) is convex increasing over [z,1 — /1 — &(1)], concave increasing
over [1 — /1 —£(1),£(1)], with global maximum at T = £(1), and concave decreasing
over [£(1),1]. Moreover J(:E) has a unique root in x, € (£(1),1) such that XJ[u] is
positive over T € [z, x,] and negative over T € [z, 1].

—For (1) > 1: J(Z) is positive and convex increasing over [z, 1]. O

(1) =
—For £(1) < z: J (%) is negative and concave decreasing over [z, 1];
(1) €

PROOF. Specializing Prop. 3.5 to x = 1 yields (17). The two derivatives are

HeW)—2) 0 o 1=
J(@) = (1—9?)2

1—-z 02
The three regimes follow by the signs of the two derivatives as a function of z. O

6 7)) —
%j(x) - (18)

Remark 4.3. The condition (1) < z is equivalent to p 4+ ex — ¢ > 0, which is easily
seen to also denote the condition that the lowest possible net utility in the absence
of subsidiziation, i.e., V satisying V' > V almost surely, is nonnegative, (since V =
p—r(z,0)). Thus £(1) < x represents a service where the entire set of potential users has
a positive net utility at all adoption levels x > z without subsidization. The condition
£(1) > 1 is equivalent to p + el — ¢ < 0, which asserts that the maximum utility
(over x) of the minimum affinity user is negative in the absence of subsidization. Thus,
the service provider desiring quickest adoption dynamics must always subsidize the
service, even at near-full adoption where the externality is strongest, to ensure the
lowest affinity users have positive net utility. (]

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 S. Weber

Fig. 4 illustrates the three behaviors from Prop. 4.2. The curve for £(1) € [z, 1] is posi-
tive (negative) for z < z,. (z > x,), meaning the provider incurs a net cost for moderate
target adoption levels, but reaps a net profit for higher adoption levels. The difference
is on account of the provider being able to recoup incurred expenses in jumpstarting
the adoption of the service once the externality at high adoption levels allows the use
of a negative subsidy while preserving the quickest adoption property.

J(z) 4\

0.04 - 4

s“(]/
S

0.02

0.00

-0.02-

-0.04 -

Fig. 4. §4.1: Illustration of the aggregate cost born by the provider (Prop. 4.2) under the quickest adoption
subsidy (QAS). The three curves show J(Z) vs. Z € [z, 1] for £(1) € {0,1/2,1}, with = 1/10. The curve for
£(1) € [z,1] has an inflection point at 1 — /1 — £(1), achieves its maximum J* at £(1), and has a root at z,.

4.2. Approximate QAS

The TTAS, including the special case of QAS, has the drawback of requiring the
provider instantaneously adjust the subsidy amount to track the adoption level, ac-
cording to u(x(t)) = ¢ — p — ex(t). This may be unrealizable or undesirable for practical
service deployments, which motivates the following discussion of approximate QAS,
hereafter denoted AQAS, where v is updated discretely at each of k target intermedi-
ate adoption levels.

Definition 4.4. The AQAS with parameters (Z,w) employs k intermediate targets
w = (wy,...,wg), wWhere z = wy < wy; < -+ < wx < wgr+1 = Z. The subsidy is set
according to u(x) = (), where i(z) = [(k+ 1)z] € [k+ 1] is the index at adoption level
x, [-] is the ceiling function, and the vector (i, ..., ux+1) has components

U =c—p—ewi1, i€ [k+1]. (19)

As illustrated in Fig. 5, the AQAS subsidy schedule i(z) is a piecewise-constant func-
tion of x that is equal to the actual QAS subsidy schedule u(x) at points w;, for
i € {0,...,k}, and exceeds u(x) at all other points. The key property of the approximate
schedule is that the excess subsidy ensures positive net utility for all potential users,
and therefore quickest adoption. That is, 4(z) > u(z) ensures v(z,4(z)) < v(z,u(z)) =
p, and thus F(v(z,a(z))) > Fa(p) = 1. In essence, the AQAS incurs an additional
aggregate cost in exchange for a simpler subsidy schedule.
Prop. 4.5 gives the aggregate cost of an AQAS.

PROPOSITION 4.5. The (normalized) aggregate cost L.J[u] of an AQAS with inter-
mediate targets w is
b b 1 —w; 1—2

w
i=0 i+l

_(z- w>> . Qo)

1-2
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[

L U3
05

Z w1 w2 T

Fig. 5. §4.2: An approximate quickest adoption subsidy (AQAS) schedule @(x) from Def. 4.4, for k = 2 with
w1 = 1/3 and wa = 2/3. The other parameters are z = 1/10, Z = 9/10,c =2,e =2, p = 0.

where J(w) = 1 J[u] emphasizes the dependence on w. The necessary condition for w to
be extremal, V.J (w) = 0, is the system of k equations
W; — Wi—1 1-— w;

—1 =0 21
].—’LUZ' Ogl—wi+1 ’ ( )

(wiy1 —w;) — (Wi —wi—1) +

for each i € [k]. The Hessian, V?J (w), is tridiagonal with components

0 2w; i — Wi 0? —w;
ST (w) = — 4 T S, = it

= 0 22
1—w; (1 —w;)? 3wi3wi+1j v 1—wip1 < (22)

and as such J(w) is convex for k = 1. O

PROOF. Substitute @(z) into (4) and rearrange as (20): J(w) =

R, k+1 s
é/z 1-z JU Z /wz . da: o Z(f(l) —wi1) <10g 11_711);):1 — (w; — wil))

i=1

The gradient V7 (w) and Hessian are obtained by differentiation of (20) and (21), re-
spectively. The convexity for k = 1 follows from the sign of o (w). O

Remark 4.6. Numerical investigation suggests J(w) is in fact convex in w for gen-
eral k, not just k = 1, but we have thus far been unable to prove this. The well-known
sufficient condition for convexity (i.e., positive definiteness of V27 (w)) is to establish
that V27 (w) is diagonally dominant, and apply the Gershgorin circle theorem. Unfor-
tunately, V27 (w) is not diagonally dominant, as may be seen for the case k = 2:

2w w1 —T w
V2 _ lful)l + (lflwl)2 _17121)2 (23)
j(w) - w2 2wo W — W1
1—’Ll)2 1—’Ll)2 (1—w2)2

Diagonal dominance for the first row requires
0? o? 2 —
3w1 8w13w2 1-— w1 (1 — ’LU1) 1-— w2

but the latter is false for, e.g., (z, w1, w2) = (0,1/2,4/7), where the right side is —2/7. O

(24)

For k = 1 the convexity of the AQAS aggregate cost in the intermediate target w; may
be understood as follows (recall Fig. 4). If w; is near z and far from z then the first
subsidy level i(x) = ¢ — p — ez holds for a smaller range of x, but the second subsidy
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level @(z) = ¢ — p— ew; holds for a larger range of x, and the reverse is true for w; near
to z and far from z. The optimal w} makes the best tradeoff among these two costs.
Selecting wj as a function of (z, z) via (21), yields an optimized AQAS schedule @*,
with optimized (normalized) cost Z.J[a*]. Although wj is not expressible in closed form,
and as such nor is ¢* or J[@*], it is nonetheless easily computed. Fig. 6 (top) plots the
normalized aggregate cost of the QAS (Z.J[u]) and the AQAS (1 J[a*]) vs. the target =
for various £(1). The ratio J[a*]/J[u] (bottom) is the aggregate cost inefficiency of the
optimized AQAS relative to that of QAS. The inefficiency is increasing in z for any £(1).

20

L bl
0.6 0.7 o 02 04 06 08 1.0

Fig. 6. (§4.2) Left: normalized aggregate costs X .J[u] and 2.J[a*] of the QAS (Prop. 4.2, dashed) and the
approximate QAS (AQAS, Prop. 4.5, solid) using an optimized single intermediate target (kx = 1) solving
(21), vs. the target adoption level Z for various values of {(1) € {1/4,...,5/4}. Right: cost ratio J[@*]/J[u]
vs. T, showing cost inefficiency of AQAS over QAS.

5. AFFINITIES AND THEIR EQUILIBRIA

While optimizing the target adoption level z for QAS and AQAS to minimize cost is
a natural objective, the discussion thus far has not incorporated the equilibria associ-
ated with the unsubsidized dynamics. In particular, if the target z lies in the domain
of attraction for a stable equilibria much lower than z, then the adoption level will im-
mediately begin converging towards that point as soon as the subsidy is terminated,
thereby “undoing” the forward progress achieved via the subsidy. The natural use of
the subsidy in the context of services exhibiting externalities is to use the subsidy to
“jump start” the adoption to reach the boundary of the domain of attraction for the
desired adoption level, such that, upon termination of the subsidy, the strength of the
externality will maintain or increase the adoption level. Such an objective requires
knowledge of the set of equilibria, whether or not each equilibrium is stable, and how
the equilibria depend upon the key model parameters: the nominal cost ¢, the exter-
nality parameter e, and the affinity distribution /4. We study this question for general
F4 in §5.1, the uniform distribution in §5.2, and the normal distribution in §5.3.

5.1. General affinities

The support, say A, of any continuous affinity distribution, F4, is an (possibly infinite)
interval, which may be partitioned into & sub-intervals, say Aj, ..., Ak, such that F4 is
alternately convex and concave on successive intervals. Prop. 5.1, illustrated in Fig. 7,
enumerates the number of equilibria, defined in Def. 2.2, found in sub-interval A;.
Consider z7,z3, with 0 < 27 < z2 < 1, as defining an interval [z1, z2] of interest on
the set of possible adoption levels [0, 1]. Next, define F}, F5, with 0 < F} < F5 < 1, where
Fy = Fy(v(z1,0)) and Fy = Fa(v(22,0)), and recall F4(v(z,0)) represents the fraction
of users with positive net affinity in the absence of subsidies, i.e., u = 0. Observe i)
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Fa(a) is a decreasing function of a, but F4(v(z,0)) is an increasing function of z, and
i1) if F4(a) is convex (concave) in a over [v(x2,0),v(z1,0)] then F4(v(z,0)) is concave
(convex) in z over [z, z2).

PROPOSITION 5.1. Consider an adoption interval [z, x2] such that the correspond-
ing affinity interval [v(z2,0),v(z1,0)] is contained entirely in one of the sub-intervals
Ay of Fa, and let [Fy, F>] be the corresponding target adoption interval. There are six
possible orderings of the intervals [z1, 2] and [F1, F»), enumerated below, and, by con-
struction, F4(v(z,0)) is either convex or concave in x over (1, xz2]. Then the number of
equilibria in that interval, each solving F,(v(z,0)) = z, is:

1 2 3 4 n U
(Z) F1 F2 r1 T2 0 0
(ii) | Fy =1 Fy 29/00r2 0
(Z'U) I Fl FQ T2 1 1
(1}) I Fl To FQ 0 Oor?2
(Ui) T, T2 Fl FQ 0 0

The first column is a case label, the next four columns identify the ordering of
{z1, 22, F1,F2} and the last two columns indicate the number of solutions when
Fy(v(z,0)) is concave (N) or convex (U) in x over [x1,x2], respectively. O

PROOF. The proof is essentially by picture. Case (i) and (vi) are trivial. Cases (iii)
and (iv) are similar; consider case (ii7). By Brouwer’s fixed-point theorem there exists
at least one solution. Suppose F4(v(x,0)) is concave in z, and let 2* denote the smallest
element in the set of solutions. This ensures z* is the unique solution since F4(v(z,0))
lies above the chord connecting (z*, 2*) and (x2, F), and this chord lies above the chord
connecting (z*,z*) and (2, z2), and thus there can be no solutions in [z*, z5]. Suppose
F4(v(z,0)) is convex in z, and let z* denote the largest element in the set of solutions.
This ensures z* is the unique solution since F4 (v(x,0)) lies below the chord connecting
(z1,21) and (z*, 2*), and this chord lies below the chord connecting (x1,z;) and (z*, z*),
and thus there is no solution in [z, z*]. -

Cases (i¢) and (v) are similar; consider case (ii). If F4(v(z,0)) is convex in z then
there are no equilibria in [z, 2;] since F4(v(z,0)) lies below the chord connecting
(z1, F1) and (22, F»), and this chord lies below the chord connecting (x1, z1) and (z2, z2).
Suppose next Fy; is concave. Similar arguments establish the set of equilibria to be ei-
ther 0 or 2 when F4(v(z,0)) is concave in z. O

Although the number of equilibria within each subinterval A; of A is between zero
and two, there is no limit on the number of such intervals for an arbitrary distribution
F4, and as such it is difficult to develop a general theory. We therefore address the
concrete examples of uniform and normal affinities in §5.2 and §5.3, respectively.

5.2. Uniform affinities

In this subsection we suppose there exists a,a with ¢ < @ and that user affinities are
uniformly distributed over [a,dl, i.e., A ~ Uni[a,a]. Let W ~ Uni[0, 1] be a standard
uniform random variable with CCDF Fy, (w). We ¢) characterize the set of equilibria X
and stable equilibria A, and i) explicitly solve the unsubsidized (v = 0) AD z(¢) in (2).

Specializing the general AD (2) to the uniformly distributed affinities, standardizing
AviaW = (A—a)/(a—a) ~ Uni0, 1], and writing ¢ for c and ¢’ for e yields f(z,0)+z =

A—a Jd—-€ez—a
> -
a—a

P(A>cd—€ez)=P < —
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;o / B
= Fw (C_ o _e x) = Fw(c—ex) (26)
a—a a-—a

a—a



A:16 S. Weber
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Fig. 7. Illustration of Prop. 5.1. The six cases represent the six orderings of (1, z2, F1, [2). Each case shows
F4(v(=x,0)), both convex (green) and concave (gold), over = € [z1, z2], where equilibria obey F4 (v(z,0)) = z.

where ¢ = (¢ — a)/(@a — a) and e = €'/(a — a). Thus, there is no loss in generality
in restriction to the case ¢ = 0 and a = 1 since, for any (¢, ¢, a,a) tuple, the model
(c,e,0,1) is equivalent. Because of this equivalence we henceforth assume A ~ Uni[0, 1].

Our first result gives the equilibria X (Def. 2.2) as a function of (e, c), shown in
Fig. 8. The (unstable) equilibria z° below is, when 2° € (0,1), the boundary between
the domains of attraction to the stable equilibria at 0 and 1:

-1
o= (27)
e—1
PROPOSITION 5.2. The equilibria under uniform affinities are:
case region X
1 c¢>1Lec>e {0}
2 e<e<1l {z°} (28)

3 l<e<e {0,2°1}

4 ec<lie<e {1}
Besides these main cases, there are “edge cases”: i) X = [0,1] for c = e = 1, ii) X = {0}
fore<c=114ii) X ={1}forc=e< 1, iv) X ={0,1} forl<c=eand c=1 < e All
equilibria are stable, i.e., X = X, except x° in case 3. [

PROOF. See the far left of Fig. 8. From Def. 2.2, X’ are the z-coordinates of the inter-
sections of Fyy (w) and the line segment (c — w)/e on the (w, z) plane. As the adoption
level x obeys 0 < z < 1, it follows that ¢ — e < w < c. It is clear that X # () for all (e, c).
There are four cases for this intersection, as shown in the figure. O

Define

R B 1 r —x°
falt) = £+ - log ( ) (29)

r —x°

as the time ¢ at which x(¢) solving #(¢t) = ~vf(z,0) reaches x (with z(t) = ), for (c —
1)/e <z <c/e,and

Zf’l(a:)zf<c_1‘0,x>,TMm)Ef(Z’O,x) (30)

e

as the time durations required to reach (¢ — 1)/e and c/e, respectively, starting from z,
assuming such times are finite.
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C
20 case 1 c>le>e case3 l1<c<e
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Fig. 8. (§5.2) Left: the set of equilibria X on the (e, c) plane under uniformly distributed affinities. Middle:
z° in the region 1 < ¢ < e. Right: illustration of the four possible intersections of Fyy (w) with the line
segment (c — w)/e over w € [c — e, e]; black circles denote equilibria.

PROPOSITION 5.3. The AD under uniform affinities when 1 < ¢ < e (case 3) are:

ge—’Y(t—ﬁ) xz < e—1
2° 4 (z — x°)ele= (D) cgl <z <z and t—t<Ty (z)
e=1,—(t—t—Ti(2)) el < g < g° d t—t>T(z)
B —e — <z < z° an t>Ti(z
xs(t‘b @) ) gz + (g _ xo>e(e—1)’)’(t—£) 2° <z < g and t—t< To(@) 31)
1—(1-&)et-t-ho@) 20 < g < ¢ and t—t>Th(x)
1—(1—2)e D ¢ <z

The first (last) three subcases hold for x < z°, so xz3(t) — 0 (1) as t — oo, respectively. O

The AD for the remaining three cases from Prop. 5.2 are in Prop. B.1 in App. B,
which also contains the proof of Prop. 5.3. Fig. 9 illustrates the AD for all four cases.

Remark 5.4. As cases 1, 2, and 4 have only one equilibrium, there is no possibility
for a finite-duration subsidy to change the equilibrium adoption level. By contrast,
such a change is possible under case 3 (where X = {0, 1}) provided the initial adoption
level z lies below the boundary z° between the two domains of attraction of the two
stable equilibria, 0 and 1, i.e,, x < (>) z° ensures z(t) — 0 (1), respectively, as t — oo.
This boundary is the natural target adoption level, i.e., = z°, for a subsidy, since the
strength of the externality at adoption level above x° will henceforth drive the adoption
level towards one without requiring a subsidy. O

Fig. 9. (8§5.2): the AD z(t|t, z) vs. t (witht = 0 and z € {1/10,1/3,2/3,9/10}) under uniform affinities, for
the four cases in Prop. 5.3 and Prop. B.1. The only case with multiple equilibria is case 3.

5.3. Normal affinities

Now let affinities be normally distributed, A ~ N(u, o), and first introduce some nota-
tion. Let Q(z) = P(Z > z) be the CCDF of Z ~ AN(0,1) a standard normal, Q~!(q) its
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inverse, ¢(2) = < Q(z) the standard normal PDF, and

q ' (p) = \/—2log(V2mp) (32)

the (positive) inverse of ¢(z) for p € (0,1/+v/27], i.e., z = ¢~ '(p) > 0 obeys q(z) = p.

We now show that it suffices to consider A ~ A/(0,1). Suppose ¢, ¢’ are the nominal
cost and externality. Then, via (2), standardizing A into Z via Z = (A — u)/o, and
defining ¢ = (¢’ — pu)/o and e = ¢’ /o we obtain:

f(x,0)+x =P(A > —x) =P <A LN v N) =Q <c’;,u - e/x) = Q(c—ex).

o o o

(33)
Thus there is no loss in generality in restricting attention to the case y =0and o = 1
since, for any (¢, ¢/, i, o) tuple, we can obtain an equivalent model (¢, e,0,1). Because of
this equivalence we henceforth assume A ~ A/(0,1). Although we will give our results
in terms of the adoption level z, it is often simpler to work with the linear reparame-
terization z = ¢ — ex, with Z = —ei. Our first result is on the number of equilibria as a
function of (e, c), shown in Fig. 10. Define, for ¢ > /27,

ale) = eQ(g™ (1/e)) + ¢ (1/e), cule) = e(1 = Qg (1/e))) —q '(1/e)  (34)
Note ¢;(e) < ¢, (e), and the interval [¢;(e), ¢, (¢)] has width

o(e) =e(1— 2Q(q_1(1/e))) — 2q_1(1/e). (35)

PROPOSITION 5.5. The equilibria set X for normally distributed affinities has car-
dinality: i) |X| = 3 for e > V27 and ¢ € (¢(e),cu(e)), i) |X| = 2 for e > V27 and
c €{cale),cyle)}, and iii) |X| = 1 otherwise. O

The proof is in App. B. The functions ¢;(e), c,(e),0(e) in (34) and (35) are unbounded
as e — oo, with ¢(e) growing approximately like /2log(e), and c,(e),d(e) growing
approximately linearly in e for e¢ large. As such, for any ¢ > 0 and sufficiently large ¢
we recover |X| = 1. Likewise, for any ¢ > 0 and sufficiently large ¢ we recover |X| = 1.

Although it is difficult to explicitly and analytically characterize the exact values of
the equilibria X for an arbitrary point on the (e, ¢) plane, the observations below follow
from Fig. 15, Fig. 10 and the proof of Prop. 5.5. Below, the equilibria are numbered as
T1, T1 < T2, and Ty < Ty < T3, for the three cases |X| € {1, 2, 3}, respectively.

(1) There always exists at least one stable equilibrium.

(2) At (e,¢) = (V2r,\/7/2), T1 = 1/2.

(3) For any (0,¢) 1 = Q(c) = P(A > ¢), consistent with §2.2.

(4) For any (e,0), Z; = 1 since £(t) < 0, ensuring z(t) — ¢ —e.

(5) For any (e, ci(e)), #; is stable and #o = Q(q '(1/e)) is unstable, and for any
(e,cule)), 71 =1 — Q(g*(1/e)) is unstable and Z, is stable.

(6) For any (e,c) with ¢;(e) < ¢ < ¢,(e), equilibria z,, Z3 are stable and Z, is unstable,
with Z; < Q(¢71(1/e)) < Z2 <1 —Q(q71(1/e)) < 3.

(7) For any e, lim.,» Z1 = 0, and lim._,o Z; is the unique solution to Q(z) = —z/e,
which is increasing in e.

(8) For any ¢, lim._, Z1; = 1 and lim,_,o Z; = Q(¢).

These observations are born out in Fig. 10, which shows the numerically computed
equilibria on the (e, ¢) plane. Numerically computed AD are shown in Fig. 11.
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Fig. 10. (§5.3): numerically computed equilibria on the (e, ¢) plane. Left: the number of equilibria | X'| on the
(e, ¢) plane under normally distributed affinities. Multiple equilibria are only possible for sufficiently large
externalities e > /27 and intermediate costs, ¢ € [c;(e), cu(e)]. The four circles are the four (e, c) pairs
for the AD in Fig. 11. Middle: contour plot of the equilibrium adoption level Z1; the visual occlusions in the
region e > /27 and ¢ € [¢;(e), cu(e)] are due to numerical instability from the multiple equilibria in that
region. Right: 3D-plot of the three equilibria ; < T2 < Z3 in that region.
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Fig. 11. (§5.3): AD under normally distributed affinities for the four different (e, c) pairs shown as black
dots in Fig. 10 (left), with initial conditions z € {1/10,1/3,2/3,9/10}.

6. A CASE STUDY

The discrete-time finite-population AD below are motivated by the model discussion
in App. B (see proof for notation). If the fraction z; of the finite population of size N
adopting the service in slot ¢ is governed by the dynamics described in App. B, then

1
Ter1 = 37 GZ[]:V] Oit11(Vi(xe, upp1) > 0) + (1 — 04 141)bs ¢ (36)

The above AD are an accurate approximation of the continuous-time infinite-
population AD in (1) for large N and small time slot duration h, as discussed in App. B.
The following is a fictional example / case study intended to illustrate a potential
application of the preceding content in a (hopefully) realistic scenario. Inspired by re-
cent studies of American communication habits finding that “texting is the dominant
way of communicating for Americans under 50” [Newport 2014; Howe 2015], a new
startup named Texteraction has developed a smart phone service enabling subscribers
to use text communication as a replacement for in-person interactions. When the Tex-
teraction app is active, profile pictures of other users located within speaking range
of one another will appear on the app’s “nearby” list for each user. Selecting a nearby
subscriber will send a “texteraction request” to that person’s phone which, if accepted,
will then initiate a text session between the two parties. The startup selects a small
town of N = 1,000 residents as its initial market, and restricts membership to those
citizens. The startup plans for three phases: i) a trial period (during which citizens are
not charged for the service) for parameter estimation, ii) a subsidy period to drive the
subscriber base to critical mass, and ¢i¢) full unsubsidized service deployment.
Parameter estimation. The objective of the trial period is to enable the startup to
estimate the service externality parameter, e, and the town’s affinity distribution Fj4.
All N citizens participate in the trial, which is conducted over a period of 77 = 10
weeks, with one week per stage. In week ¢t € {1,...,7T;} the “nearby” list for citizen i is
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restricted to only show nearby citizens listed in a randomly selected subset Z; ; C [N] of
size |Z;,| = tN/T1,i.e., arandom subset of size 100 in week one, with the size increasing
by 100 in each week, until in the last week each citizen has access to all N citizens. At
the beginning of the first week, and then at the end of each week of the trial, the users
are asked to rate the app, with each rating intended to reflect their perceived value or
utility of the service. The ratings are collected in the N x (77 + 1) matrix z = (z; ), with
entry z; ; the app rating by citizen i in week ¢ of the trial (z; o the initial rating). Suppose
user utility is linear and obeys Metcalfe’s law, with some noise incurred in reporting
the utility. That is, we assume the ratings take the form z; , = A, + ex; + ¢, 4, where A;
the (unknown) natural affinity for the service by citizen i, x; = ¢t/T (with zy = 0) the
(known) fraction of the subscriber base in week ¢, ¢ the (unknown) externality effect,
and ¢;; ~ N(0,0.) a sequence of iid (in both i and ¢) random variables (unknown)
capturing the error or noise between the “true” utility and the user’s rating.

The externality effect in week ¢ € [T}] for user i € [N], is estimated via a standard
Slope estimator, i.e., éi7t = (Zi,tfzi,t—l)/(xtfxt—l), yleldlng éivt = 6+T1 (Q’,t*ﬁi,t—l) under
the model assumption. The estimate of ¢ by user i is defined as é; = %1 o €[] éit, and

the telescoping error terms yield é; = e + (¢;, 1, — €;0). The user average is defined as

& = § Yic[v) &> and may be computed to equal & = e + 5 Y- ny (€57 — €i0)- It follows

that é ~ N (e, /2/No.), and thus é is an unbiased and consistent estimator of e.

The user affinity distribution F, is also measured from z, with fli’t = 24 — €1y
the estimated affinity of user i in period ¢. Algebra yields A;, = A; + (e — é)z; + €.
The estimate for user i is defined as A; = %1 Zte[m Ai’t, and algebra yields A; =
A+ (1 +1/Th)(e —e)/2 + T% Yierm) €it- As € ~ N(e,\/2/No.) and ¢;; ~ N(0,0), it

follows that Ai ~ N(AZ‘, O'eg(N, Tl)), with g(N, Tl) = \/(1 + 1/T1)2/(2N) + 1/T1. One
might therefore expect the estimator to perform adequately in estimating A; provided
the coefficient of variation is sufficiently small, i.e., the estimator may perform poorly
for users with small natural affinity A;. The empirical distribution £, from (4;,i € [N])
estimates the affinity distribution F4.

The weekly cloud hosting and cellular provider data sharing costs associated with
dynamically maintaining each user’s “nearby” list are found to scale linearly with the
number of users at a cost of $1.50 per user. The management elects to employ a paid
subscription model, passing these costs to the users, i.e., c = 1.5. The empirical affinity
estimate distribution F4 and the estimate ¢ are used to estimate the equilibrium z°
via 1 — Fy(c — é2°) = #° (c.f. Def. 2.2), equivalently, F'4(2°) = (1 — ¢/é) + &°/e.

Simulations of the trial period, its measurements and estimates, were performed.
Set e = 2 and let A; ~ Uni[0, 1] be iid in ¢ € [N]. Note z° = 1/2 from (27). We con-
sidered three different measurement noise levels 0. = {1,1/2,1/4}, yielding estimates
é ={1.975,1.972,2.006} and #° = {0.500,0.497,0.500}, respectively, and empirical user

affinity approximation distributions 4 shown in Fig. 12. The accuracy of £, improves
as o, is reduced, with errors in estimating small or large affinities more pronounced
than for estimating intermediate affinities, as expected. We omit due to space con-
straints a discussion of the estimate of . As accurate measurements of ¢ and F4 are
seen to be possible, we henceforth assume ~, ¢, F4 are now known.

Subsidized deployment. The management uses knowledge of ¢, e, x°, F'4, v to evaluate
the hypothetical performance of various subsidies. The time unit is set at a week, the
time slot duration is set at a day (h = 1/7), and the subsidy phase is set to last for at
most 7' = 90 days. The value of v is set at 1/4, corresponding to users waiting 28 days,
on average, between subscription reassessments (c.f. App. B). The goal of a subsidy
is to reach the fractional adoption level #° = 1/2, corresponding to n® = Nz° = 500
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Fig. 12. Case study (§6): i) estimated user affinities empirical distribution F'4(a) (green), ii) true user
affinities empirical distribution (gold), 7i7) uniform cumulative distribution F4 (a) (blue), iv) line (1 —c¢/é) +
a/é (red) for estimate #°. Measurement noise standard deviation oc = 1 (left), 1/2 (middle), 1/4 (right).

adopters, at which point a subsidy will terminate, and the app will be self-sustaining
at the nominal operating cost of ¢ per user per week. A randomly selected initial set
of ng = 100 (zg = no/N = 0.1) adopters are identified before the start of the subsidy
period. The actual duration of a subsidy « is defined as ¢[u] = max{t € [T] : z; < z°}.

Four different types of subsidies are considered, with simulation results summarized
in Fig. 13. First, six different constant subsidies with subsidy v while z;, < z°, i.e.,
up41 = vl(zy < x°), are evaluated, with v € {$0.35, $0.40, $0.45, $0.60, $1.00, $1.40}. Note
v is the subsidy of the weekly cost ¢ but is adjusted daily, and subscribed users in day ¢
are charged a daily cost of h(c—u;). As evident from the plots, v € {$0.35,$0.40} is insuf-
ficient to change the adoption level, v = $0.45 is on the boundary and depending upon
the realization may or may not achieve z° by T' = 90, while v € {$0.60, $1.00,$1.40} are
sufficient to achieve the target. There is clearly little incentive to choose v = $1.40 over
v = $1.00. The (J, 1) scatter plot shows a tradeoff in (J, ¢) between v € {$0.60, $1.00}.

Second, six TTAS subsidies were studied, with y € {0.5,0.6,0.7,0.8,0.9,1.0}, and
x = 1.0 the QAS. The effect of x on u; is shown in the left plot, with higher x yielding
a shorter duration ¢ to reach n° (middle plot), and the (J,?) scatter plot showing y = 1
(QAS) superior to both x € {0.50,0.75} in both J (slight) and ¢ (significant).

Third, three different AQAS subsidies were studied, with &£ € {1,2, 3}, and the QAS
(x = 1) included for contrast. The intermediate adoption levels were chosen to be w} ~
0.336 for k = 1, w = {7/30,11/30} for k = 2, and w = {2/10,3/10,4/10} for k = 3
(the latter two schedules chosen to divide [z, 2°] into k£ + 1 equal intervals. The AQAS
achieve adoption levels and (¢, J) tradeoffs comparable to that of the QAS, with the
scatter plot showing smaller values of k incurring a slight increase in J, on average.

The management elects the AQAS with k£ = 2, budgeting $600 — 800 for the cost of
the subsidy, and anticipates reaching n° = 500 customers within around three weeks.

7. LIMITATIONS

The previous section has outlined a possible methodology by which the fundamental
model parameters, i.e., the externality, cost, and population affinity distribution, could
conceivably be estimated through a suitable measurement campaign. Although the
measurement campaign we have described is feasible, it is not without both economic
and econometric difficulties. First, the economic costs, including monetary, labor, and
service deployment delay costs, may be substantial, and may well be deemed to exceed
the value of the information acquired by the measurements. Second, the econometric
difficulties are likewise significant, as reliable inference requires synchronization, or at
least coordination, of the various cohorts in order to meaningfully gauge the strength
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Fig. 13. Case study (§6) — performance of four subsidy types. Rows: constant subsidies (top row), TTAS and
QAS (middle row), AQAS and QAS (bottom row). Columns: sample realization of the daily per-user subsidy
to the weekly service cost (left column), sample realization of the daily adoption level (middle column),
scatter plot of subsidy duration vs. total subsidy cost (right column) for M = 100 independent simulations.

of the externality at the various stages of the experiments. The costs incurred in over-
coming the substantial obsctacles required to achieve this synchronization may again
be deemed too high by the service provider.

It is worth emphasizing there are two distinct sources of “error” in seeking to ap-
ply diffusion adoption models to predict a “real-world” response: parameter error and
model error. The measurement campaign described previously seeks to accurately esti-
mate the model parameters, but there is no assurance that the target users will, in all
cases, behave in a manner even approximately consistent with the predictions of the
diffusion adoption model. Perhaps the most obvious deficiency of the diffusion model
is the assumption that the nature of the externality experienced by an individual is
dictated primarily by the fraction of the overall population that has adopted the ser-
vice, rather than capturing the influence of adoption on each user through an influence

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



Facilitating adoption of Internet technologies and services with externalities via cost subsidizationA:23

graph, e.g., [Kempe et al. 2003], or some related model.? The diffusion adoption model,
in all its variants, has long held academic interest because of its effective parsimony —
it is one of the simplest tractable models capable of capturing most (but surely not all)
of the important aspects of “real-world” observed adoption dynamics.

Finally, we mention the practical difficulty in obtaining useful data from real tech-
nology deployments to “validate” the model we have described. One of the inherent
difficulties in model validation in this context is lack of a control and variable. A con-
trol would be a deployment of a service without any subsidy, and a variable would
be a deployment of a service with a subsidy. A scientifically rigorous model validation
would be best accomplished by measuring the adoption level with and without a sub-
sidy in identical environments. Unfortunately this seems almost impossible in almost
any practical setting due to the considerable variability across deployments of services
in different target populations.

8. CONCLUSION

The two-target adoption subsidy (TTAS) allows a cost- and delay- sensitive service
provider to efficiently subsidize customer cost, so as to leverage the impact of the ex-
ternality. A provider focused on delay may consider the special case of the quickest
adoption subsidy (QAS), or, if a finite number of subsidy adjustments are desired, the
approximate QAS (AQAS). Knowledge of equilibria and their stability is essential to
properly set the target adoption level for terminating the subsidy. This requires knowl-
edge of the population’s affinity distribution, which may be estimated using a trial, as
described in the case study. The joint impact of the externality, service cost, and affinity
distribution on adoption delay and aggregate cost motivates careful subsidy design.
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A. NONLINEAR EXTERNALITIES

In this appendix we briefly consider nonlinear externalities. Our presentation in this
section is brief and informal, with the simple intent of providing some intuition for
how more general externalities will affect the previous results. We replace the ex term
in v(z,u) with ex(z), for x positive and increasing, yielding v, (z,u) = (¢ — u) — ex(z).
The adoption dynamics hence become & = vf,(x,u), where f.(z,u) = Fa(v;(z,u)) —
replaces f(z,u) in (2). Finally, X,; denotes the set of equilibria, #,, denotes the subsidy
completion time, and J,[u] denotes the aggregate cost to the provider. In fact, we con-
sider k(z;a) = z°, for @ > 0, and will then use the subscript « instead of x. Observe
k(z;a) >z (< x) for « < 1 (> 1) indicates a super- (sub-) linear externality.

Recall from Def. 2.2 that =, € X, if f.(x.,0) = 0, meaning Fa(vx(zx,0)) = x4,
and thus ex(z,) + F;'(z,) = c. The latter expression makes clear that superlinear
(sublinear) g decreases (increases) the equilibrium z, relative to x, the equilibrium
under a linear externality. For example, for uniform affinities, A ~ Uni[0,1] and « =
k(z; ) above, denote by x (recall (27)) the equilibrium at the boundary between the
0/1 convergence regions, shown in Fig. 14 (left).

o
I

L L L
0.5 1.0 1.5 20

0.0 S S S S S S|
0.0 0.5 1.0 15 2.0

Fig. 14. Left: impact of nonlinear externality x(z;a) = x® on boundary equilibrium z?, (recall (27)): su-
perlinear externalities (o < 1) decrease z2 relative to @ = 1, while sublinear externalities increase it.
Gridlines show 2 R 0.07 and z§ ~ 0.64. Right: impact of nonlinear externality «(z;a) = z on the
normalized aggregate cost, X .J,[u], from (39): superlinear externalities (o < 1) decrease J [u] relative to
a = 1, while sublinear externalities increase it. Gridlines show cost of approximately 0.059, 0.21, and 0.40
at o = 1/2,1, 2, respectively.

Suitable adjustments in the proof of Prop. 3.1 on cost-extremal subsidies, namely,

g 9n(d @ u) = —y(efa(ve(z, w)r(x) = 1) @7

yields the necessary condition for extremality as u, = exr’(z) — v\ instead of (7). If
k'(z) > 1 (< 1) then u, is larger (smaller) than the « for a linear externality.

Finally, making suitable adjustments to Def. 3.2, namely, v,,(z,u) = p requires u, =
¢ — p — ex(x). Combining with the necessary extremality condition for u, has solution:

(a+1Dex*=c—p+7A, (a+ Du=alc—p) — A, (38)

for which (14) is now a special case of the above for a = 1. The corresponding normal-
ized aggregate cost in (16) is now

Y] = / 200 = wl@) g, (39)
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which is shown in Fig. 14 (right) as a function of «. In summary, these results accord
with intuition, namely, that super- (sub-) linear externalities lower (raise) stability
thresholds and decrease (increase) the cost of a subsidy, relative to linear externality,
respectively.

B. PROOFS
Prop. B.1 gives the AD under uniform affinities for the cases not covered in Prop. 5.3.

PROPOSITION B.1. The AD under uniform affinities for cases 1, 2, and 4 are:

1 Ifc>1,c>e¢ the AD are

£677(t7£)

le(tu’ &) = 3’)0 “+ (& — xo)e(e_l)ﬂ/(t_ﬁ) (40)
ezl (t—t=Ti(z))

where the three subcases correspond to i) x < <1, ii) <=1 < zandt—t < Ty (z), and

i) <t <zandt—t> T\ (z), respectively. ‘ ‘
2. If e<c< 1, the AD are
zo(tt, z) = 2° + (z — 2°)e” 177D, (41)
4. If c< 1,c < e, the AD are
1—(1—gz)e D
wa(tlt,z) = § @+ (z — a®)ele (-0 (42)
1-(1-9) e~ (t—t=To(z))

where the three subcases correspond to i) ¢ <z, ii) x < Sandt—t < To(z), and iii)

z<ftandt—t> To(g), respectively.

PROOF OF PROP. B.1. Separation of variables on the AD gives
1

c—w—eFy(w)

The antiderivative of the LHS is

dw = ~dt. (43)

1 —log(c— e —w)
/ —— dw={ —tloglc—e—(1—e)w) , (44)
c—w— eFy(w) —log(c — w)

where the three subcases correspond to i) w < 0, 41) 0 < w < 1, and i) w > 1, respec-
tively. It is necessary to consider each of the four (e, ¢) cases separately; for conciseness
we present only the analysis for case 1 (¢ > 1 and e > 1), as the other cases require a
similar analysis. Let wy = ¢ — ez be the initial value w(t), where x = z(¢). From the
bottom of Fig. 8 it is clear there are two subcases: i) wy € [1,¢] and i) wy € [c — e, 1].
First suppose wy € [1, ¢], corresponding to subcase iii) in (44), where (43) has solution

w(tlt,wy) = c— (c— wo)e*V(t*D, t>t (45)

Second, suppose wy € [c — e, 1], for which subcase ii) of (44) will determine the solution
for t € [t, t,,] and then subcase iii) of (44) will determine the solution for ¢ > ¢,,, where
t,, obeys w(t,) = 1. Over t € [t,,,] the solution of (43) is

w(t) _ c—e . (C —e _ wO) e_(l—e)fy(t—z)7 (46)

1—e 1—e
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and solving w(t,,) = 1 for t,, gives

1 c—1
vt s s (e om) 0

Finally, for ¢t > t,, the solution is again (45), but with initial condition ¢ = ¢, and
wo = 1. Finally, the dynamics for z(¢) are recovered from the solution for w(t) via
z(t) = (c—w(t))/e, z = (c —wp)/e, and z° in (27). D

PrOOF OF PrROP. 5.5. See Fig. 15. For any z, > 0 the tangent line at point
(20, Q(z0)) (black circle) to Q(z) (blue curve) is g1 (z) = —q(z0)z+(Q(z0)+q(20)20) (orange
line) with slope —¢(zy) and g-axis intercept Q(zo) + ¢(z0)z0. The line ¢2(2) = —q(20)z +
(1—Q(20) — q(20)20) (green line) is parallel with the g-axis intercept 1 — Q(z0) — q(20)z0,
and tangent to Q(z) at (—zp,1 — Q(z0)). The horizontal distance between the lines is

Alzg) = 12 2@00) (48)
q(20)
Consider the set of all lines parallel to ¢;(z), parameterized by the horizontal dis-
placement d, denoted L(z9) = {q1(z — d), d € R}, and let X(zp,d) denote the set of
intersections of the line ¢; (z — d) with the curve Q(z). From the figure:

2, de{0,A(z0)}
|X(Zo,d)‘ = { 1, d<QOord> A(Z()) (49)
3, d S (O,A(Z()))

That is, the line ¢»(z) with displacement A(z) is the critical case of displacements with
three intersections with Q(z).

Observe the adoption level interval x € [0, 1] implies the reparameterized adoption
level z = ¢ — ex € [c — e, ¢e]. From Def. 2.2, the set of equilibriais X = {z : (¢ — 2)/e =
Q(2)}; in words, X is the set of intersections of Q(z) with the line segment on the
(z,q) plane of slope —1/e connecting the points (¢ — e,1) and (c,0). Observe X # ()
for all (e,c). Observe the one-to-one correspondence between e € [v/27,00) and z(e)
via z9(e) = ¢~ *(1/e), for ¢~ in (32), i.e., for any 1/e < 1/v/27 there exists a unique
zo0(e) > 0 such that the line ¢; defined by z(e) above has slope —1/e. The line segment
(c—2)/e = (—1/e)z + (c/e) with z-axis intercept ¢ will have three intersections with
Q(z) iff ¢ lies between the z-axis intercepts of the orange and green lines in Fig. 15, i.e.,

Qz0()) Qz0(c))
(&) Gle)) ENE)

which simplifies to ¢ € (¢(e),cyu(e)). Observe (35) and (48) are related via d(e) =
A(z(e)) for zo(e) = ¢ (1/e). O

<e<zle)+ + A(zo(€)), (50)

PROOF OF (36) IN §6. Time unit. Recall from Remark 2.1 (point (1)) in §2.1 that
utilities (including affinities) and costs are measured per unit time. For example, if
the unit is a week then A is the inherent value (in dollars) of the service to a user
per week and c is the subscription cost (in dollars) over a week. The time unit is not
the subscription commitment duration nor the billing period, however, as users are
empowered to adjust their subscription decisions on the finer time scale of the time
slot, and moreover users are assumed to be billed per time slot, as discussed below.
Although the time unit is arbitrary, it naturally determines the range of values, i.e.,
the “effective support size”, of both the affinity distribution F4 and the value of c. In the
case of uniformly distributed affinities, A ~ Uni[q, a|, this effective support size may
naturally be defined as a — a, while in the case of normally distributed affinities, A ~
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Fig. 15. (§5.3): Proof of Prop. 5.5 for the point (20, Q(20)) (black circle); vertical (horizontal) labels denote
vertical (horizontal) lines, respectively.

N (u,0), the effective support size is naturally defined as o. As discussed in §5, in both
these cases there is no loss in generality in scaling the model such that the effective
support size is unity: for uniformly distributed affinities one scales from (a,a, ', ¢’) to
(0,1, ¢, e), and for normally distributed affinities one scales from (u, o, ', e’) to (0,1, ¢, e).
In both these cases the subsequent analysis identified ¢ = 1 as a critical cost per unit
time (with respect to the nature of the equilibria) when the model was scaled to have
a unit effective support size. This model scaling corresponds to selecting a time unit.

Discrete-time finite population AD. Let time be slotted, with time (slots) indexed by
t € N and of duration h time units per time slot, for ~ < 1. The notion of a time
slot is intended to capture the smallest period of time over which users make ser-
vice subscription decisions. That is, we suppose utilities and costs are measured per
unit time, subscription decisions are made per time slot, and there are multiple (1/h)
time slots per unit time. We will show that these discrete-time dynamics approach the
continuous-time dynamics (1) as ~ | 0. Continuing the example where the time unit is
a week, if the time slot duration is set at one day then h = 1/7.

Consider a (fixed) finite population of N € N potential service subscribers, indexed by
i € [N], with heterogeneous random affinities (per time unit) given by the iid sequence
(A;,i € [N]), for A; ~ Fy and i € [N]. Let 2, = & Zfil b;: € [0,1] denote the fraction of
the population that has chosen to adopt the service for time slot ¢, with z, the (given)
initial adoption level, and b;; € {0, 1} the time slot ¢t adoption decision of user i. Thus
(z¢,t € Z4) is the discrete-time adoption process. The following steps are assumed to
happen at the instant between the end of slot ¢ and the beginning of slot ¢ + 1:

— The service controller advertises to the population the value of x; for the (just-ended)
time slot ¢, then computes (on the basis of z;) and advertises to the population a

subsidy level u; 1 (per time unit) for the upcoming time slot.
— Each potential user i € [N] decides whether or not to evaluate her current sub-

scription decision by flipping a coin o; ;41 ~ Ber(hy) € {0,1}, for v € (0,1/h), with
(0i1+1,% € [N],t € N) iid in both (i,¢). Observe each user waits on average 1/(hv)
time slots before reassessing her subscription decision, giving the discrete-time AD
a time scale of 1/~ time units. For example, if v = 1/4 then each user waits on aver-
age 28 days (time slots) or 4 weeks (time units) between subscription reassessments.
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— Each potential user’s estimated utility / perceived value per time unit of the service
for the upcoming time slot ¢ + 1 at this point in time is assumed to equal:

Vi(zt, ue41) = A; + exe — (¢ — upg1), © € [N]. (51)

Note the utility estimates are made on the basis of x; and u;1, as is natural, and

that e has units of dollars per time unit. o ]
— The random user subset Ziy1 = {i € [N] : 05441 = 1} each make subscription deci-

sions b; ++1 = 1(Vi(x¢, ugq1) > 0) for the (about to begin) time slot ¢ + 1.
— The remalmng users ]\7L \LH carry their time ¢ subscription decisions forward to

time ¢t + 1, 1i.e., b;; ) ) ) . ) .
— The service controJﬁ1 r blilS all subscribers for the upcoming time slot, i.e., those with

bi t+1 = 1, the amount h(c — u,4;) for the upcoming time slot ¢ + 1.

Analysis. Under these assumptions the discrete-time AD is given by (36). As i) us41
is a function of z;, and i) x; is in turn a function of b, = (b;+, 7 € [N]), it follows that:

1
i€[N]

As (A;,i € [N]) are iid, the Law of Large Numbers ensures

. 1
]%111\1!.10 N ;\[] 1(%(1’t,ut+1) > 0) = ]E[l(V(:ct, Ut+1) > 0)] = P(V(mt,qu) > 0) (53)

For large but finite N this probability is an approximation of the population average:
E[th+1|bt] ~ h’yIP’(V(xt,ut+1) > O) + (1 — h’y)l’t, (54)

with the understanding that the approximation becomes exact in the limit as N 1 cc.
The above expression may be rearranged as

Ti41 — Tt
E |20 =
B

Observing limyo(zi+1 — x¢)/h = %(t) we recover the continuous-time AD (1) for large
N. For small but finite h we have an accurate approximation of (1). O

bt:| =y (]P)(V(.Tt, Ut+1) > 0) - xt) . (55)
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