
Title Breaking cycles in noisy hierarchies

Authors(s) Sun, Jiankai, Ajwani, Deepak, Nicholson, Patrick K., et al.

Publication date 2017-06-28

Publication information Sun, Jiankai, Deepak Ajwani, Patrick K. Nicholson, and et al. “Breaking Cycles in Noisy

Hierarchies.” ACM, 2017.

Conference details 9th International ACM Web Science Conference 2017, held from June 26 to June 28, 2017 in

Troy, NY (USA)

Publisher ACM

Item record/more

information

http://hdl.handle.net/10197/10131

Publisher's statement © ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version was published in WebSci '17

Proceedings of the 2017 ACM on Web Science Conference, (2017)}

http://doi.acm.org/10.1145/3091478.3091495

Publisher's version (DOI) 10.1145/3091478.3091495

Downloaded 2024-04-18 16:14:15

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A9781450348966&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F10131

Breaking Cycles in Noisy Hierarchies∗

Jiankai Sun
�e Ohio State University

sun.1306@osu.edu

Deepak Ajwani
Nokia Bell Labs, Ireland

deepak.ajwani@nokia-bell-labs.com

Patrick K. Nicholson
Nokia Bell Labs, Ireland

pat.nicholson@nokia-bell-labs.com

Alessandra Sala
Nokia Bell Labs, Ireland

alessandra.sala@nokia-bell-labs.com

Srinivasan Parthasarathy
�e Ohio State University
srini@cse.ohio-state.edu

ABSTRACT
Taxonomy graphs that capture hyponymy or meronymy relation-
ships through directed edges are expected to be acyclic. However,
in practice, they may have thousands of cycles, as they are o�en
created in a crowd-sourced way. Since these cycles represent logical
fallacies, they need to be removed for many web applications. In
this paper, we address the problem of breaking cycles while preserv-
ing the logical structure (hierarchy) of a directed graph as much as
possible. Existing approaches for this problem either need manual
intervention or use heuristics that can critically alter the taxonomy
structure. In contrast, our approach infers graph hierarchy using
a range of features, including a Bayesian skill rating system and
a social agony metric. We also devise several strategies to lever-
age the inferred hierarchy for removing a small subset of edges to
make the graph acyclic. Extensive experiments demonstrate the
e�ectiveness of our approach.

CCS CONCEPTS
•�eory of computation→Network �ows; •Computingmethod-
ologies→ Ontology engineering; •Information systems→ Data
cleaning;

KEYWORDS
Directed Acyclic Graph, Graph Hierarchy, TrueSkill, Social Agony,
Cycle Edges
ACM Reference format:
Jiankai Sun, Deepak Ajwani, Patrick K. Nicholson, Alessandra Sala, and Srini-
vasan Parthasarathy. 2017. Breaking Cycles in Noisy Hierarchies. In Pro-
ceedings of WebSci’17, June 25-28, 2017, Troy, NY, USA., , 10 pages.
DOI: h�p://dx.doi.org/10.1145/3091478.3091495

1 INTRODUCTION
A large number of applications in information science, in �elds
such as AI, semantic web, biomedical informatics, library science
∗�is Work was conducted while the �rst author was doing internship at Nokia Bell
Labs, Ireland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
WebSci’17, June 25-28, 2017, Troy, NY, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4896-6/17/06. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3091478.3091495

and information architecture, rely on ontological knowledge such
as taxonomies and meronomies. Taxonomies capture generaliza-
tion/speci�cation of semantic concepts and categories and meronomies
capture “has a” and “is a part of” relationship. �us, the taxonomy
and meronomy graphs (as well as graphs representing many other
ontological relationships) should ideally be acyclic as cycles repre-
sent logical contradictions.

However, many large ontological knowledge bases are created
either in (i) crowd-sourced way (e.g., Wikipedia categories [39])
or (ii) using automated text analytics tools (e.g, Yago [13, 31]).
�e creation process o�en results in inconsistencies and errors.
As a result, the directed graphs capturing these ontological rela-
tions, can have a large number of cycles. For instance, the popular
skos:broader category1 is not guaranteed to be transitive and ir-
re�exive and, as a result, it has various cycles that can “represent a
potential problem for many web applications” 2. In fact, there exists
a body of work [5, 9, 20, 24, 26, 29, 33, 34, 38, 42] that has identi�ed
and recognized the presence of cycles in the hierarchical relations
as one of the main problems for many web applications dealing
with ontologies, such as United Medical Language System (UMLS)
Metathesaurus graph and DBpedia taxonomy graph. For example,
the unsupervised learning approach proposed by Fossati et al. [9],
to automatically derive a taxonomy for a DBpedia entity from a
prominent subset of the Wikipedia category graph, requires that
the Wikipedia category graph is a directed acyclic graph (DAG),
which can ensure a strict hierarchy. To support these web applica-
tions, there is a need for a principled technique to reduce a directed
graph modeling a hierarchical relationship into a DAG, which only
includes acyclic relationships.

In addition to removing logical contradictions, a DAG with strict
hierarchy, can also bene�t many applications to be computationally
more e�cient. �is is because a DAG supports faster traversals
(e.g., for computing descendants and transitive closure) compared
to general directed graphs.

�e problem of reducing graphs modeling hierarchical relations
into DAGs is also relevant in many other domains. For instance, in
synchronous data�ow (SDF) scheduling (an important problem in
design automation for communication and digital signal processing
systems [14, 15]), the existence of cycles in SDF graphs prevents
or greatly restricts applications of many useful optimization tech-
niques that are available for acyclic SDF graphs, because cyclic data
dependences can cause deadlocks when scheduling tasks.

In this paper, we propose techniques to remove the cycles while
preserving the logical structure (hierarchy) of a directed graph as
1h�ps://www.w3.org/2009/08/skos-reference/skos.html
2h�ps://www.w3.org/TR/skos-reference/#L2484

much as possible. Despite the proliferation of applications relying
on ontologies capturing hierarchical relationships, there is hardly
any solution for this problem that is principled, fast and fully auto-
mated. Existing approaches for this problem fall into the following
categories:

• Simple DFS or BFS based heuristic (e.g., [9, 33, 34, 42]) to
eliminate cycles (e.g., remove back edges in DFS)

• �eoretical solutions that model the problem in terms of
variants of minimum-feedback arc set problem [18] or
other NP-hard optimization problems

• Complex domain-speci�c algorithms (e.g. [24, 26]) that
eliminate cycles based on many criteria, including redun-
dancy and con�dence of sources asserting the relations

While the �rst set of techniques are fast and automated, they are
not principled – the edges removed heavily depend on the order of
traversal, independent of other structural properties (For example
in Figure 1, edge (C,B) will be deleted if DFS starts from node
A, otherwise edge (B,C) will be the back edge). As a result, they
o�en eliminate a large number of edges relevant for the taxonomy
structure. �e second set of techniques have a theoretical basis, but
they are too slow in practice. Also, since minimum feedback arc
set problem is APX-hard [17], one has to rely on approximation
algorithms [8] with poor worst-case guarantees or heuristics (e.g.,
[2, 21, 30]). As such, it is not clear how well these techniques can
preserve the logical structure of taxonomy while removing the
cycles. �e last set of techniques are (i) typically domain-speci�c,
(ii) require signi�cant manual intervention making it di�cult to
scale and (iii) depend on additional information (e.g., number of
sources asserting each relation and con�dence on sources) that is
not easily available.

Figure 1: DFS-based Approach Toy Example

To overcome the above limitations, we propose to remove cycle
edges via graph hierarchy. �e graph hierarchy can be inferred
by a Bayesian skill rating system (TrueSkill) [12] or Social agony
(SocialAgony) [11], without any manual intervention. Several strate-
gies are then devised to remove cycle edges based on their corre-
sponding nodes’ ranking scores in the hierarchy. To summarize,
the key contributions of this article are:

• We address the problem of breaking cycles from directed
graphs, while preserving the underlying hierarchy of the
ontological relation as much as possible. To this end, we
propose an ensemble of strategies, based on inferring the
underlying graph hierarchy, to select edges for removal
from the graph.

• To infer graph hierarchy, we (i) model it as a competition
problem and leverage TrueSkill to solve it and (ii) model
it as the problem of minimizing agony in social networks
and leverage SocialAgony to solve it.

• We show extensive experimental results on real and syn-
thetic data sets demonstrating the e�ectiveness of our ap-
proaches.

�e rest of this article is organized as follows: In section 2, we
describe related work. In section 3, we discuss ways to infer graph
hierarchy and strategies to remove cycle edges via graph hierarchy.
Section 4 reports on our empirical results. Finally, we conclude in
Section 5.

2 RELATEDWORK
We categorize the related work as follows:

2.1 Simple Heuristics Based on BFS or DFS
Owing to their simplicity, speed and domain independence, simple
heuristics based on Depth-First Search (DFS) (e.g., [33, 34, 42]) or
Breadth-First Search (BFS) (e.g., [9]) have been used to remove
cycles. Assuming edges in taxonomy graph point from speci�c to
general concepts, DFS based approaches perform a DFS starting
from the most speci�c concepts (zero in-degree) in the hierarchy
and then remove the back edges. In contrast, a BFS based approach
traverses the graph in a breadth-�rst manner (though still from
the most speci�c concept l) and removes the edges (u,v) with
d (u) ≥ d (v). Here, (u,v) is a directed edge from u to v , and d (u) is
the unweighted distance from l tou that is computed during the BFS
traversal. Note that this can potentially remove many non-cycle
edges as well and even from cycles, it may remove more edges than
is strictly necessary. Take Figure 2 as an example: a BFS will start
from a leaf node A, and will remove non-cycle edge (C,B) and both
cycle edges (D,E) and (E,D).

�e main problem with these heuristics is that there is no intu-
itive or empirical evidence that edges deleted this way are actually
the appropriate edges to be removed. In our experiments, we found
that these heuristics removed a large number of edges that were rel-
evant for the taxonomy hierarchy, based on a manual insepection of
the removed edges. �e selection of edges to remove solely depends
on the order in which the graph is traversed and is independent of
other structural properties of the nodes.

Figure 2: BFS-based Approach Toy Example

2.2 Minimum Feedback Arc Set
�eoretically, one can consider the problem of maximizing the size
of the acyclic subgraph or minimizing the number of edges removed
to make the graph acyclic. �is is the popular minimum feedback
arc set (MFAS) problem and it is on the original list of Richard M.
Karp’s 21 NP-complete problems [18]. In fact, the MFAS problem
is APX-hard: Unless P = NP , the MFAS problem does not have

a polynomial-time approximation scheme (PTAS) [17]. Heuristic
approaches are proposed to gradually build the feedback edge set
by always removing the edge that breaks the most of the remaining
simple cycles(e.g., [21]).

To avoid enumerating all simple cycles of a graph, there exists
a greedy local heuristic method that only uses local information
to make greedy choices [6, 7]. Score functions are de�ned based
on local information (in- and out-degree of nodes). Such score
functions are de�ned as: score (i) = |dini − douti | or score (i) =

max (
d ini
douti
,
douti
d ini

), where score (i) is the score of a node i (a higher
score means node i is more asymmetric regarding to its in- and out-
degrees), and dini (resp. douti) are the in-degree (resp. out-degree)
of node i . �e node with the highest score is selected, then all of
its in- or out-edges are removed, whichever edge set is of smaller
cardinality.

MFAS heuristics (e.g., [6, 7, 21, 27, 35]) do not o�er any guaran-
tees on the number of edges removed and in the worst case, the
gap between the heuristic solution and the optimal solution can be
extremely large. Furthermore, even if an exact algorithm (e.g., [2])
can be used, there is no evidence to suggest that it preserves the
logical hierarchy structure or that minimizing the edges to remove
is the correct objective to optimize for cleaning the ontologies with
hierarchical relations. Take Figure 3 for example, the edge (Program-
ming Language,Computer Science) will be removed according to the
above greedy local heuristic method. However, edges (Computer
Science, Python) and (Computer Science, Java) should be removed
to maintain the correctness of this graph’s logical structure.

Figure 3: Minimum Feedback Arc Set Toy Example

2.3 Domain-speci�c Algorithms
Many other algorithms have been proposed for the problem of
eliminating cycles for speci�c domains. However, these techniques
rely on manual intervention and/or additional information that is
o�en not available.

For UMLS Metathesaurus graph, solutions [24, 26] have been
proposed for eliminating inappropriate edges causing circular hi-
erarchical relations. �e algorithm proposed by Bodenreider [26]
is relatively complex and for complex cycles, it requires manual
intervention [24] by domain experts, which is not scalable. �e
technique by Mougin and Bodenreider [24] uses a set of heuristics
and rules to identify and eliminate all cycles from the UMLS graph.
For example, criteria redundancy (i.e. the number of sources as-
serting each relation) and criteria con�dence can be exploited to

determine relations. However, this information about number and
con�dence of sources is not easily available for many ontological
knowledge bases.

For synchronous data �ow graphs, Bha�acharyya et al. and
Hsu et al. [3, 14, 15] proposed the loose interdependence algorithm
framework (LIAF) to decompose and break cycles. �is framework
relies on a very speci�c property of SDF graphs, namely, that for
each strongly connected component (SCC)3 of the SDF graph, there
exists a set of edges with su�cient delays (an edge in an SDF
graph is associated with a delay that can also be interpreted as the
number of initial tokens) whose removal reduces the number of
nodes in the SCC of the remaining graph. In fact, the algorithm
recursively eliminates such edges to get rid of all cycles in the
input SDF graphs (removed edges become inter-iteration edges).
However, in our scenario of large ontological knowledge graphs, no
such delay measure is known to exist and there is no corresponding
notion of iterations, so these algorithms are not applicable.

Some approaches [20] transform the SCCs in the hierarchical
relationships (broader/narrower, whole/part, generic/speci�c, in-
stance of) into related relationship between the concepts. While
this may be su�cient for some applications, many applications will
end up simply ignoring the related relationship edges and the large
number of corresponding direct and implied relations, leading to
inaccurate results.

3 OUR APPROACH
In this section, we propose graph hierarchy based strategies to
break cycles from a directed graph, while preserving the under-
lying hierarchy of the relations as much as possible. Consider a
ranking function f that assigns a ranking score to each node in
the graph. A higher ranking score implies that the corresponding
node is higher up (e.g., more general) in the hierarchy. Given such
a ranking, the edges which violate the hierarchy (i.e., edges from a
higher/general group to a lower/speci�c group) are potential candi-
dates for removal. �us in our approach, there are two sub-tasks
involved:

• Inferring graph hierarchy (or �nding a ranking function)
• Proposing strategies to select violation edges as candidates

for removal

3.1 Inferring Graph Hierarchy
One way to infer graph hierarchy is through PageRank [28]. �e
relative importance inferred by PageRank is considered as corre-
sponding nodes’ ranking score in the graph hierarchy. However,
nodes’ ranking scores in graph hierarchy are not always consistent
with their PageRank values even in a DAG. Take Figure 4 as an
example, node C has the highest PageRank value, but it is neither
the highest, nor the lowest node in the actual graph hierarchy.

3.1.1 TrueSkill. TrueSkill [12] is a Bayesian skill rating system
which is designed to calculate the relative skill of players from the
set of generated competitions in multi-player games. Liu et al. [22,
23] introduced a two-player and no-draw version of TrueSkill to
estimate question di�culty level in community question answering
3A directed graph is strongly connected if there is a path between all pairs of vertices.
An SCC of a directed graph is a maximal strongly connected subgraph. SCCs can be
detected by the work of Nuutila et al. [25].

Figure 4: Illustrating issues of using PageRank to infer
graph hierarchy (damping parameter d = 0.85)

services. It assumes that the practical performance of each player
in one game follows a normal distributionN (µ,σ 2), where µ is the
average skill of the player and σ means a system’s uncertainty of
the estimated skill level. Intuitively, if a system learns more about
the skill of one player from more data, the standard deviation σ
(uncertainty) will decrease. �e skill of each player will slightly
change a�er each game in TrueSkill. �e measure µ − 3σ is used to
rank players to ensure that top ranked players are highly skilled
with high certainty [12, 22, 23].

We transform a directed graph G = (V ,E) into a multiplayer
tournament with |V | players and |E | competitions. For each edge
(u,v) ∈ E, we consider that u loses the competition between u and
v . Based on the current estimated skill levels of two players (u and
v) and the outcome of a new game between them (edge (u,v)), the
TrueSkill model updates the skill level µ and σ intuitively based
on whether the outcome of the new competition is expected or
unexpected:

• If playerv has a higher skill level than u, then the outcome
of edge (u,v) is expected, and it will cause small updates
in skill level µ and σ .

• If player u has a higher skill level thanv , then the outcome
of edge (u,v) is unexpected, and it will cause large updates
in skill level µ and σ .

As far as we know, we are the �rst one to consider the problem
of inferring graph hierarchy as a competition problem. A node
v’s ranking score in the graph hierarchy inferred by TrueSkill is
de�ned as:

fts (v) = µv − 3σv (1)

3.1.2 Social Agony. Social agony proposed by Gupte et al. [11]
assumes that the existence of a link indicates a rank recommenda-
tion. A linku ⇒ v indicates a recommendation ofv fromu. If there
is no reverse link from v to u, it could indicate that v is higher up
in the hierarchy than u. It’s assumed that in social networks such
as Twi�er, agony can be caused when people follow other people
who are lower in the hierarchy.

Given a network G = (V ,E) which contains cycles, each node
v has a rank r (v). Higher ranking nodes are less likely to connect
to lower ranking nodes. Hence, directed edges that go from higher
ranking nodes are less prevalent than edges that go in reverse
direction. If r (u) > r (v), then edgeu ⇒ v causes agony to the node
u and the amount of agony depends on the di�erence between their
ranks.

�ere are many choices for de�ning agony. �e simplest way is
to de�ne a constant value for any edge that violates the hierarchy.

If it is set as a constant 1, then this problem is equivalent to a
minimum feedback arc set problem as we discussed earlier. A more
practical variant is to penalize the violating edges by the severity of
their violation, which means that edges that respect the hierarchy
receive a penalty of 0 and penalty increase linearly as the violation
becomes more severe. Gupte et al. [11] de�ned the agony to u
caused by edge (u,v) is equal tomax (r (u) − r (v) + 1, 0).

�e agony in the network relative to the ranking r is the sum
of agony on each edge: A(G, r) = ∑(u,v)∈E max(r (u) − r (v) + 1, 0).
Since nodes typically minimize their agony, the problem is changed
to �nd a ranking r that minimize the total agony in the graph:
A(G) = minr ∈Rankinдs (

∑
(u,v)∈E max(r (u) − r (v) + 1, 0)).

Gupte et al. [11] provided an O (nm2) algorithm to minimize the
agony of the graph, which has n vertices and m edges. A faster
discovery algorithm with the computational complexity of O (m2)
was introduced by Ta�i [36, 37].

A node v’s ranking score in the graph hierarchy inferred by
social agony is de�ned as:

faдony (v) = r (v) (2)

3.2 Strategies to select violation edges
In this section, we will introduce strategies to select edges to remove
and break cycles in the graph.

Our �rst strategy is to select the edge which violates the graph
hierarchy the most in a simple cycle (a closed path where no
node appears twice, except that the �rst and last node are the
same). Consider a simple cycle s = (v1,v2, ...,vl ,v1), and let
i = arдmax (f (vi) − f (v(i+1)%l)), then edge (vi ,v(i+1)%l) is the
one which violates the graph hierarchy the most and will be added
to the set of edges to be removed. Note that removal of one edge
in a simple cycle may break many other cycles at the same time,
since the removed edge could be a part of multiple simple cycles.
Hence it is necessary to track all simple cycles that the target edge
is involved in. A major challenge in using this strategy is the time
complexity to �nd all simple cycles in a directed graph. �e time
complexity for �nding all simple cycles introduced by Donald [16]
is O ((|V | + |E |) (|C | + 1)) for |V | nodes, |E | edges and |C | simple
cycles. It can be computationally expensive for large graphs.

To be more e�cient, we propose to simplify the input graph
before using any strategy for selecting edges to break cycles. �e
simpli�cation includes removing self-loops, dividing the graph into
SCCs, and then dropping the trivial SCCs (a trivial SCC consists of
a single node). For a non trivial SCC scci , several heuristic solutions
to reduce scci to a DAG are proposed as follows:

• Forward: Select the node v which has the highest ranking
score f (v) in scci and then remove its all out edges in scci :
{(v,u),∀(v,u) ∈ scci }.

• Backward: Select the node v which has the lowest ranking
score f (v) in scci and then remove its all in edges in scci :
{(u,v),∀(u,v) ∈ scci }.

• Greedy: Select the edge which violates the hierarchy the
most to remove. �e violation of hierarchy on an edge
(u,v) is de�ned asmax (f (u) − f (v), 0).

We iteratively use the above simpli�cation processes and heuris-
tic solutions to break cycles in the graph until the graph becomes

a DAG. It is easy to notice that processes for each SCC are inde-
pendent from each other, and they can be parallelized to improve
e�ciency.

Since each node’s hierarchical ranking score can be inferred by
TrueSkill and Social Agony, we have 6 combinations to remove
cycle edges:

• TS G: Use TrueSkill (TS) to infer the graph hierarchy, and
strategy Greedy is applied to remove cycle edges.

• TS B: Same as TS G, except strategy Backward is applied
to remove cycle edges.

• TS F: Same as TS G, except strategy Forward is applied to
remove cycle edges.

• SA G: Same as TS G, except use Social Agony (SA) to infer
the graph hierarchy.

• SA B: Same as TS B, except use SA to infer graph hierarchy.
• SA F: Same as TS F, except use SA to infer graph hierarchy.

We use a voting schema (H Voting) to ensemble the above 6 ap-
proaches for breaking cycles in a graph. For each cycle edge e , its
voting score is∑m (Im (e)), wherem ∈ {TS G,TS F ,TS B, SA G, SA F ,
SA B} and Im (·) is an indicator function. If edge e is removed by
methodm, Im (e) = 1, otherwise Im (e) = 0. �us, H Voting selects
the edge with the highest voting score for removal.

4 EXPERIMENTS
4.1 Datasets
In this section we describe the datasets used in our experiments.
We experiment not only with real-world datasets but also synthetic
(random) graphs in order to demonstrate the robustness of our
approach.

We use the following real-world graphs:
• arXiv: �e Arxiv HEP-PH citation graph4 is extracted from

arXiv5 and covers all citations from Jan. 1993 to Arpril 2003.
If a paper i cites paper j , the graph contains a directed edge
from i to j.

• EU Email: �e EU email community network graph6 is
generated using email data from a large European research
institution. If a node i sent at least one message to j, then
there is a directed edge from i to j.

• Web Google: �e Google web graph7 is generated by repre-
senting web pages as nodes and hyperlinks between web
pages as directed edges.

• Wiki Vote/Wiki Talk: Wikipedia vote/talk network graph8

contains all the Wikipedia voting/talk data from the incep-
tion of Wikipedia till Jan. 2008. If user i voted/edited the
talk page on/of user j, there is a directed edge from i to j
in the graph.

• Stackover�ow Q2A: �e Stack Over�ow network9 contains
interactions between users and questions on the stack ex-
change web site Stack Over�ow. If user j has answered

4h�ps://snap.stanford.edu/data/cit-HepPh.html
5h�ps://arxiv.org/
6h�ps://snap.stanford.edu/data/email-EuAll.html
7h�ps://snap.stanford.edu/data/web-Google.html
8h�ps://snap.stanford.edu/data/wiki-Vote.html and
h�ps://snap.stanford.edu/data/wiki-Talk.html
9h�ps://snap.stanford.edu/data/sx-stackover�ow.html

user i’s question, there is a directed edge from i to j in the
Stackover�ow Q2A graph.

• DBP 2014, DBP 2015, DBP 2016: �ese three category graphs
from DBpedia10 are extracted from relationships of cate-
gories published in 2014, Oct. 2015, and April. 2016 re-
spectively. If i is a sub-category of category j, there is a
directed edge from i to j in corresponding category graph.

In addition, we also consider two graph datasets that have no
cycle edges: a patent citation graph (Cit-Patents)11 and the NCBI
taxonomy graph (NCBI-Taxo) 12. �e Cit-Patent data set spans from
January 1, 1963 to December 30, 1999, and includes all the utility
patents granted during that period. In the Cit-Patent graph, if a
patent i cites patent j, there is a directed edge from i to j. In NCBI-
Taxo graph, there is a directed edge from more speci�c nodes to
more general nodes. �ere is a self loop for the root node. Hence
the out-degree of each node in NCBI-Taxo graph is 1.
Condensation graphs: For graphs containing cycles such as arXiv,
EU Email, etc., we use their corresponding condensation graphs
in our experiments. �e condensation graph CG of graph G is a
cycle-free graph that is generated by contracting each SCC in G to
a single node. Statistics of these condensation graphs are shown in
Table 1.

Table 1: Statistics of Datasets

Dataset # nodes # edges
Cit-Patents 3,774,768 16,518,948
NCBI-Taxo 1,553,020 1,553,019

arXiv 20,085 130,469
EU-Email 230,795 223,004

Web Google 371,603 519,304
Wiki Vote 5,816 19,540
Gnutella 48,438 55,349

Wiki Talk 2,394,385 5,021,410
Stackover�ow Q2A 2,021,984 3,345,760

DBP 2014 5,502,627 20,854,028
DBP 2015 6,092,789 24,173,109
DBP 2016 6,263,925 25,211,684

Random Graphs: To provide evidence that our techniques are
not merely exploiting structural properties of these particular real-
world graphs, we also generated several random DAGs for our
experiments. �is follows the DAG(n,M) model from the random
graph literature (see e.g., [1]). �e following procedure is applied
to generate a random DAG RG = (N ,M):

• Generate |N | nodes with node ids in the range [1, |N |].
• Randomly select |M | pairs of nodes as edges in M . For

each pair {u,v}, add (u,v) to M if id (u) < id (v) and (v,u)
otherwise.

• Randomly permute the node ids for each node in N , so
that node ids do not imply anything about the order infor-
mation.

10h�p://downloads.dbpedia.org/
11h�ps://snap.stanford.edu/data/cit-Patents.html
12h�ps://www.ncbi.nlm.nih.gov/taxonomy

4.2 Experimental Setup
Since there are few large real taxonomy graphs with ground truth
publicly available, we consider the following set up to evaluate the
di�erent approaches: We consider a large real or synthetic DAG
and introduce cycles in it by inserting edges that violate the partial
ordering induced by the DAG. �e goal for the various approaches
is to identify the set of edges that were inserted. In particular, we
evaluate the performance of di�erent approaches by considering
the set of newly inserted cycle-introducing edges as the ground
truth and computing precision, recall, and F1-score with respect to
this ground truth.

To introduce cycles, we repeatedly perform the following step:
randomly select a node pair (u,v) and if u can reach v in the input
DAG, then we insert the edge (v,u) into the cycle-introducing edge
set T . In some experiments, we also constrain the shortest path
length of u → v to be no larger than a threshold d . Once we have
the required number of edges in T , we insert these edges into the
input DAG. Hence, edges in T are labeled as noisy edges which can
be used for evaluation.
Baselines to Remove Cycle Edges:

�ree baseline approaches are used in our experiments:
• DFS: use DFS to detect and remove back edges
• PR: use PageRank to infer graph hierarchy, and strategy

Greedy is applied to break cycles.
• MFAS: a local greedy implementation of minimum feedback

arc set problem, as described in section 2.
In addition to the precision, recall and F1-score obtained using

the above setup, we also consider auxiliary measures such as the
number of edges removed to make the graph acyclic.

4.3 Experimental Results
First, we consider the general case where there are no constraints
on the length (d) of the cycle. Figure 5 presents our results on
random DAGs (with RG (n,m) representing a random DAG with n
nodes and m edges, where 1K is used as shorthand for 1000). We
inserted 150013 random edges into these graphs to create cycles14,
and the goal is to identify and remove these edges in order to break
the cycles. We observe that the di�erent approaches achieve very
di�erent precision, recall and overall F1 score. Our proposed voting
approach, H Voting, achieves the best F1 score across the entire
range of di�erent random DAGs. Note that our approach is much
more accurate for these graphs than the traditional heuristics based
on DFS and MFAS on random DAGs.

Next, we consider the real-world graphs, and, as before, insert
1, 500 random edges to create cycles. As shown in Figure 6, there is
no consistent winning strategy. While most approaches based on
TrueSkill and Social agony achieve fairly similar performance on
Cit-Patents, TS-B achieves the best F1 score on the tree-like NCBI
taxonomy graph15. We note that H Voting achieves the best F1
score (around 0.9) on the arXiv condensation graph and is among
the top-3 over all se�ings, both in terms of precision and F1. In

13We have tested the performance on a varying number of edges as shown in Section 4.5.
In the interest of space, we report only the performance for 1500 extra edges. Other
se�ings yield similar results.
14�e maximum number of big SCCs generated is 1500
15A�er removal of the only self-loop edge.

contrast, the F1 score of DFS based heuristic is 0.12 for Cit-Patents,
0.17 for NCBI-Taxo and 0.02 for arXiv.

4.4 Number of Edges to be Removed
In addition to precision, recall and F1 score, another important
performance measure is the number of edges removed. Although
there is no empirical evidence that removing fewer edges causes
less damage to the logical hierarchy of the ontological relation, we
still want as few edges to be removed as possible. In particular, this
is the measure that is directly optimized by the minimum feedback
arc set (MFAS) problem.

For brevity, we only report the number of edges that are removed
from graphs RG (3K , 15K), RG (30K , 150K), and RG (10K , 150K) in
Table 2. In these cases, 1500 random edges were inserted to intro-
duce cycles. We note that TS G, SA G, and H Voting remove fewer
edges compared to other approaches. Furthermore, the number of
removed edges is close to 1500, which is the number of edges in the
ground truth. Interestingly, the number of edges removed by TS G,
SA G, and H Voting is considerably smaller than by the greedy
heuristic for MFAS, which is directly minimizing the number of
removed edges. �e results in other se�ings are similar. �e corre-
sponding precision, recall and F1 scores are shown in Figure 5, and
indicate that strategies that remove fewer edges also have higher
F1 scores.

Table 2: # edges to be removed

edges to be removed RG(3K,15K) RG(30K,150K) RG(10K,150K)
DFS 6,057 17,587 54,774
PR 3,337 5,155 8,478

MFAS 2,423 3,378 4,584
TS B 2,431 3,622 3,865
TS F 2,307 3,232 3,736
SA F 2,175 2,077 2,707
SA B 2,193 1,881 2,566
TS G 1,860 1,544 1,597
SA-G 1,691 1,506 1,531

H Voting 1,649 1,502 1,513

4.5 Sensitivity to Number of Noisy Edges
Next, we test the sensitivity of H Voting to the number of noisy
edges in the hierarchical relationship. For this, we consider small
(RG (3K , 15K)), medium (RG (3K , 30K)) and a large (RG (3K , 45K))
random DAGs. Figure 7 shows how the precision (“-p” in leg-
end), recall (“-r”) and F1 (“-f1”) scores vary on these graphs as the
fraction of noisy edges is increased (e.g., a fraction of 0.1 in the
x-axis corresponds to adding 1.5K , 3K , and 4.5K noisy edges in
RG (3K , 15K),RG (3K , 30K), and RG (3K , 45K), respectively, for in-
troducing cycles). As expected, the accuracy scores decrease as the
fraction of incorrect edges is increased. But more importantly, we
�nd that the accuracy of our approaches becomes more robust to
noise as the graph size increases. For instance, when 30% (13.5K)
extra noisy edges are added to RG (3K , 45K), H Voting is still able
to achieve a F1 score of around 0.8 and recall of around 0.9. �is
gives us con�dence that in large real-world graphs, H Voting can
accurately identify the edges to remove, even in scenarios with
large amounts of noise.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(3K,15K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(3K,30K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(3K,45K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(5K,25K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(5K,50K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(5K,75K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(10K,50K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(10K,100K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(10K,150K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(15K,75K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(20K,100K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(30K,150K)

Figure 5: Performance (precision,recall,f-1 score) on di�erent sizes of randomgenerated graphs (path length control parameter
d is unlimited). We can observe that our proposed voting approach,H Voting, achieves the best F1 score across the entire range
of di�erent random DAGs.

4.6 Special case of constrained cycle length
To further understand why the TrueSkill and Social agony based ap-
proaches are more accurate than the traditional heuristics based on
MFAS, DFS or Pagerank, we consider the special case in which cycles
are constrained to be of length at most two. We consider a range

of real-world graphs and insert 1, 500 random edges to introduce
cycles. Note that it is easy to obtain high accuracy in this se�ing,
as even randomly selecting one of the two edges from every simple
cycle achieves an expected 0.5 precision and recall. As expected,
we observe from Figure 8 that generally, most approaches achieve

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Cit-Patents

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9NCBI-Taxo

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9arXiv

Figure 6: Performance (precision,recall,f-1 score) on di�erent datasets’ corresponding graphs (condensation graph for arXiv);
path length control parameter d is unlimited

Figure 7: Sensitivity to Extra Edges Added

0.00 0.05 0.10 0.15 0.20 0.25 0.30

extra edges added (percentage)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pe
rfo

rm
an

ce

Performance on different sizes of graphs

large-f1
large-p
large-r
medium-f1
medium-p
medium-r
small-f1
small-p
small-r

high precision and recall values. However, even here we �nd that
sometimes the accuracy of DFS, Pagerank and MFAS approaches
can be quite poor (e.g., consider DFS and Pagerank on Web Google
graph, DFS on Wiki Talk and PR and MFAS on Stackover�ow Q2A
graphs). On the other hand, TrueSkill, Social Agony and H Voting
approaches consistently achieve promising F1 scores.

Interestingly, there are a few graphs in this special se�ing, where
MFAS based greedy heuristic does outperform the other approaches
slightly (e.g., Web Google) or performs as well as the other ap-
proaches. To understand this, consider Figure 9, where edge (B,A)
is the randomly added edge that generates a SCC in the correspond-
ing graph. A node i’s ratio value is de�ned as r (i) =

d ini
douti

. In
this example r (B) � 1 and r (A) � 1. �en edge (B,A) will be
selected as the edge to be removed based on the local greedy imple-
mentation of MFAS. �e average ratio value of source nodes such
as B in Figure 9 is 14, 13.23, and 13.97 in EU-Email, Web Google
and Wiki Vote graph respectively. And the average ratio value of
target nodes such as A in Figure 9 is 0.076, 0.85, and 0.0664 in
EU-Email, Web Google and Wiki Vote graph respectively. As a re-
sult, the greedy MFAS heuristic correctly picks up edge (B,A) for
removal in many of these graphs. However, in graphs with larger

simple cycles, these heuristics su�er from very poor precision (as
already noted in Section 4.3).
Figure 9: A toy scenario in which MFAS can outperform
other strategies.

4.7 Performance onWikipedia Category Graph
We apply our approach to remove cycle edges in the Wikipedia
category graphs. Note that this is a graph extracted from a 2014
snapshot of the popular skos:broader relationships in DBpedia.
First, we note that even though skos:broader captures the hierar-
chical speci�c/general relationship, it has a large number of cycles
forming many SCCs (c.f. Table 3). �is is because it is created in
a crowd-sourced way and its creators o�en misinterpret the gran-
ularity of concepts. For instance, the concept United Nations can
refer to its headquarter in New York or it can refer to the intergov-
ernmental organization, creating a cycle United Nations→ New
York→ United States of America→ United Nations. �e results
are similar for later snapshots of Wikipedia categories.

Table 3: Statistics of big SCCs in DBpedia

DBpedia 2014
SCCs 534

nodes in SCCs 8,939
edges in SCCs 24,178

nodes in the biggest SCC 6,741
edges in the biggest SCC 20,979

Since we don’t have a good ground truth for edges to remove
in this dataset (there are a large number of cycles destroyed, new

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9EU-Email

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Web_Google

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Wiki_Vote

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Gnutella

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
R
e
c
a
ll

f=0.9Wiki_Talk

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Stackoverflow_Q2A

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9DBP_2014

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9DBP_2015

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9DBP_2016

Figure 8: Performance (precision,recall,f-1 score) on di�erent datasets’ corresponding condensation graphs (path length con-
trol parameter d = 2)

cycles created and many new nodes and edges created from one
snapshot to another), we focus on the number of edges that are
removed by di�erent approaches. We observe from Table 4 that,
similar to the results on random DAGs in Section 4.4, H Voting and
SA G break cycles in DBP 2014 graph by removing considerably
fewer edges compared to other approaches.

5 CONCLUSION
In this paper, we address the problem of breaking cycles while
preserving the logical structure (hierarchy) of the directed graph
as much as possible. We propose approaches that explicitly focus
on inferring the graph hierarchy using TrueSkill and Social Agony.
We leverage this inferred hierarchy using an ensemble approach
to identify the edges to be removed. We show that our approaches

Table 4: # edges to be removed

edges to be removed DBP 2014 Category Graph
MFAS 4,075

PR 3,920
DFS 3,602
TS F 3,030
TS B 2,501
TS G 2,479
SA F 1,737
SA B 1,730

H Voting 1,713
SA G 1,672

achieve signi�cantly be�er accuracy compared to the traditional
heuristics based on DFS and MFAS and at the same time, they are
fast, scalable and fully automated. �us, they can support a large
and growing number of applications that rely on clean ontological
knowledge bases representing hierarchical relations.

Future work. In this study, the issue of breaking cycles from
directed graphs is addressed from a heuristic perspective. An alter-
native is to consider model based approaches to predict the edge in
a SCC that has the highest probability of being removed. �e re-
quired features for the prediction model can be extracted from graph
embedding methods, such as node2vec[10], or low rank representa-
tions of adjacency matrices, decomposed by matrix factorization (a
widely used technique in recommender systems [4, 19, 32, 40, 41]).
Furthermore, other measures, such as deviation to dominant struc-
tural role, and deviation to transitive closure, may also prove to
be very useful both for the heuristic and model-based approaches.
However, signi�cant e�ort is required to compute these measures
for large graphs in a fast and scalable way.

Acknowledgments �is work is supported by the National
Science Foundation of United States under grant CCF-1645599 and
IIS-1550302. All content represents the opinion of the authors,
which is not necessarily shared or endorsed by their respective
employers and/or sponsors.

REFERENCES
[1] Deepak Ajwani and Tobias Friedrich. 2010. Average-case analysis of incremental

topological ordering. Discrete Applied Mathematics 158, 4 (2010), 240–250.
[2] Ali Baharev, Hermann Schichl, and Arnold Neumaier. 2015. An exact method

for the minimum feedback arc set problem. (2015).
[3] Shuvra S Bha�acharyya, Praveen K Murthy, and Edward A Lee. 1996. So�ware

Synthesis from Data�ow Graphs. Vol. 360. Springer Science & Business Media.
[4] Peizhe Cheng, Shuaiqiang Wang, Jun Ma, Jiankai Sun, and Hui Xiong. 2017.

Learning to Recommend Accurate and Diverse Items. In Proceedings of the 26th
International Conference on World Wide Web (WWW ’17). 183–192.

[5] James J Cimino. 1998. Auditing the uni�ed medical language system with
semantic methods. Journal of the American Medical Informatics Association 5, 1
(1998), 41–51.

[6] Peter Eades and Xuemin Lin. 1995. A new heuristic for the feedback arc set
problem. Australasian Journal of Combinatorics (1995), 15–25.

[7] Peter Eades, Xuemin Lin, and William F Smyth. 1993. A fast and e�ective
heuristic for the feedback arc set problem. Inform. Process. Le�. 47, 6 (1993),
319–323.

[8] G. Even, J. (Se�) Naor, B. Schieber, and M. Sudan. 1998. Approximating Minimum
Feedback Sets and Multicuts in Directed Graphs. Algorithmica 20, 2 (1998), 151–
174.

[9] Marco Fossati, Dimitris Kontokostas, and Jens Lehmann. 2015. Unsupervised
Learning of an Extensive and Usable Taxonomy for DBpedia. In Proceedings of the
11th International Conference on Semantic Systems (SEMANTICS ’15). 177–184.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[11] Mangesh Gupte, Pravin Shankar, Jing Li, S. Muthukrishnan, and Liviu I�ode.
2011. Finding Hierarchy in Directed Online Social Networks. In Proceedings of
the 20th International Conference on World Wide Web (WWW ’11). New York, NY,
USA, 557–566.

[12] Ralf Herbrich, Tom Minka, and �ore Graepel. 2007. TrueSkill™: A Bayesian
Skill Rating System. In Advances in Neural Information Processing Systems (NIPS),
P. B. Schölkopf, J. C. Pla�, and T. Ho�man (Eds.). 569–576.

[13] Johannes Ho�art, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.
2013. YAGO2: A spatially and temporally enhanced knowledge base from
Wikipedia. Arti�cial Intelligence 194 (2013), 28–61.

[14] Chia-Jui Hsu and Shuvra S Bha�acharyya. 2007. Cycle-breaking techniques for
scheduling synchronous data�ow graphs. Technical Report.

[15] Chia-Jui Hsu, Ming-Yung Ko, Shuvra S Bha�acharyya, Suren Ramasubbu, and
José Luis Pino. 2007. E�cient simulation of critical synchronous data�ow graphs.
ACM Transactions on Design Automation of Electronic Systems (TODAES) 12, 3
(2007), 21.

[16] Donald B Johnson. 1975. Finding all the elementary circuits of a directed graph.
SIAM J. Comput. 4, 1 (1975), 77–84.

[17] Viggo Kann. 1992. On the approximability of NP-complete optimization problems.
Ph.D. Dissertation.

[18] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. Boston, MA,
85–103.

[19] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for
Recommender Systems. Computer 42, 8 (Aug 2009), 30–37.

[20] Javier Lacasta, Javier Nogueras-Iso, and Francisco Javier Zarazaga-Soria. 2010.
Terminological Ontologies - Design, Management and Practical Applications. Se-
mantic Web and Beyond: Computing for Human Experience, Vol. 9. Springer.

[21] Wooyoung Lee and Dale F Rudd. 1966. On the ordering of recycle calculations.
AIChE Journal 12, 6 (1966), 1184–1190.

[22] Jing Liu, Young-In Song, and Chin-Yew Lin. 2011. Competition-based User
Expertise Score Estimation. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’11). New
York, NY, USA, 425–434.

[23] Jing Liu, �an Wang, Chin-Yew Lin, and Hsiao-Wuen Hon. 2013. �estion Di�-
culty Estimation in Community �estion Answering Services. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing,
85–90.

[24] Bodenreider Olivier Mougin Fleur. 2005. Approaches to Eliminating Cycles
in the UMLS Metathesaurus: Nave vs. Formal. American Medical Informatics
Association Annual Symposium Proceedings (2005), 550–554.

[25] Esko Nuutila and Eljas Soisalon-Soininen. 1994. On Finding the Strongly Con-
nected Components in a Directed Graph. Inf. Process. Le�. 49, 1 (Jan. 1994),
9–14.

[26] Bodenreider Olivier. 2001. Circular Hierarchical Relationships in the UMLS:
Etiology, Diagnosis, Treatment, Complications and Prevention. Proceedings of
the American Medical Informatics Association Symposium (2001), 57–61.

[27] Tatiana Orenstein, Zvi Kohavi, and Irith Pomeranz. 1995. An optimal algorithm
for cycle breaking in directed graphs. Journal of Electronic Testing 7, 1 (1995),
71–81.

[28] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. �e
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[29] Domenico M Pisanelli, Aldo Gangemi, and Geri Steve. 1998. An ontological
analysis of the UMLS Metathesaurus.. In Proceedings of the AMIA symposium.
American Medical Informatics Association, 810.

[30] Youssef Saab. 2001. A Fast and E�ective Algorithm for the Feedback Arc Set
Problem. Journal of Heuristics 7, 3 (May 2001), 235–250.

[31] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. ACM, 697–706.

[32] Jiankai Sun, Shuaiqiang Wang, Byron J. Gao, and Jun Ma. 2012. Learning to
Rank for Hybrid Recommendation. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management (CIKM ’12). 2239–2242.

[33] Osma Suominen and Eero Hyvönen. 2012. Improving the �ality of SKOS
Vocabularies with Skosify. In Proceedings of the 18th International Conference on
Knowledge Engineering and Knowledge Management (EKAW’12). 383–397.

[34] Osma Suominen and Christian Mader. 2014. Assessing and Improving the �ality
of SKOS Vocabularies. Journal on Data Semantics 3, 1 (2014), 47–73. DOI:
h�p://dx.doi.org/10.1007/s13740-013-0026-0

[35] Roberto Tamassia. 2007. Handbook of Graph Drawing and Visualization (Discrete
Mathematics and Its Applications). Chapman & Hall/CRC.

[36] Nikolaj Ta�i. 2014. Faster Way to Agony Discovering hierarchies in directed graphs.
Berlin, Heidelberg, 163–178.

[37] Nikolaj Ta�i. 2015. Hierarchies in Directed Networks. In 2015 IEEE International
Conference on Data Mining. 991–996.

[38] Hahn Udo and Stefan Schulz. 2004. Boosting the Medical Knowledge Infrastruc-
ture��A Feasibility Study on Very Large Terminological Knowledge Bases. Proc
Symp on Engineering of Intelligent Systems (2004).

[39] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[40] Shuaiqiang Wang, Jiankai Sun, Byron J. Gao, and Jun Ma. 2012. Adapting Vector
Space Model to Ranking-based Collaborative Filtering. In Proceedings of the 21st
ACM International Conference on Information and Knowledge Management (CIKM
’12). 1487–1491.

[41] Shuaiqiang Wang, Jiankai Sun, Byron J. Gao, and Jun Ma. 2014. VSRank: A Novel
Framework for Ranking-Based Collaborative Filtering. ACM Trans. Intell. Syst.
Technol. 5, 3, Article 51 (July 2014), 24 pages.

[42] Torsten Zesch and Iryna Gurevych. 2007. Analysis of the Wikipedia Cate-
gory Graph for NLP Applications. In Proceedings of the TextGraphs-2 Workshop
(NAACL-HLT). Association for Computational Linguistics, Rochester, 1–8.

http://dx.doi.org/10.1007/s13740-013-0026-0

