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Abstract
Recently we presented TTC, a domain-specific compiler for tensor
transpositions. Despite the fact that the performance of the gener-
ated code is nearly optimal, due to its offline nature, TTC cannot
be utilized in all the application codes in which the tensor sizes
and the necessary tensor permutations are determined at runtime.
To overcome this limitation, we introduce the open-source C++
library High-Performance Tensor Transposition (HPTT). Similar
to TTC, HPTT incorporates optimizations such as blocking, multi-
threading, and explicit vectorization; furthermore it decomposes
any transposition into multiple loops around a so called micro-
kernel. This modular design—inspired by BLIS—makes HPTT
easy to port to different architectures, by only replacing the hand-
vectorized micro-kernel (e.g., a 4 × 4 transpose). HPTT also of-
fers an optional autotuning framework—guided by performance
heuristics—that explores a vast search space of implementations
at runtime (similar to FFTW). Across a wide range of differ-
ent tensor transpositions and architectures (e.g., Intel Ivy Bridge,
ARMv7, IBM Power7), HPTT attains a bandwidth comparable to
that of SAXPY, and yields remarkable speedups over Eigen’s ten-
sor transposition implementation. Most importantly, the integration
of HPTT into the Cyclops Tensor Framework (CTF) improves the
overall performance of tensor contractions by up to 3.1×.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; G.4 [Mathematical Software]:
Parallel and vector implementations; I.1 [Symbolic and Algebraic
Manipulation]: Languages and Systems—Special-purpose alge-
braic systems

Keywords multidimensional transposition, High-Performance
Computing, vectorization, tensors, autotuning

1. Introduction
Tensors, or multidimensional arrays, are ubiquitous in various sci-
entific fields such as machine learning [1, 24], quantum chemistry
calculations [2, 8], multidimensional Fourier transforms [5, 16] and
climate simulations [4]. The manipulation of tensors, via opera-
tions such as transposition, contraction,1 completion, and factor-

1 A tensor contraction is the generalization of a matrix-matrix multiplica-
tion.
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ization, are performance critical tasks. This work introduces a high-
performance library for tensor transpositions.

Transpositions are preparatory tasks that play a role within
many other operations. For instance, tensor contractions can be
cast in terms of general matrix-matrix multiplications (GEMM),
an operation for which there exist numerous highly-optimized im-
plementations (e.g., BLIS, OpenBLAS, MKL); however, the ap-
proach is only useful in combination with an efficient and flexible
tensor transposition kernel. Despite the unfavourable memory ac-
cess patterns that arise in high-dimensional transpositions, recent
work [12, 20, 21, 26] demonstrated that a domain-specific com-
piler, such as our Tensor Transposition Compiler (TTC), is capable
of generating highly-efficient routines, both for CPUs and acceler-
ators, for a given transposition and problem sizes. While TTC de-
livers good performance, it is only applicable to transpositions for
which the size and the required permutations are known at com-
pile time. To overcome this issue, we designed High Performance
Tensor Transposition (HPTT), an open-source C++ library for
transpositions of the form

BΠ(i1i2...iN ) ← α×Ai1i2...iN + β × BΠ(i1i2...iN ), (1)

where A and B are N -dimensional tensors, Π(i1i2...iN ) denotes
an arbitrary permutation of the indices i1, i2, ..., iN , and α and β
are scalars. This form enables HPTT to transpose A into B, and
also to scale either of the operands.

Throughout this publication we adopt the Fortran memory lay-
out. Thus, storing the tensor indices from left to right; given an
N -dimensional tensor Ai1i2...iN , i1 and iN respectively are the
fastest-varying (also known as stride-1) and slowest-varying in-
dices.

The remainder of this paper is structured as follows. Section 2
outlines related work. The design and structure of HPTT are dis-
cussed in Sec. 3, while Sec. 4 contains a performance evaluation,
with a breakdown of the used optimization techniques. Conclusions
are drawn in Sec. 5.

2. Related Work
Two-dimensional tensor transposition (i.e., matrix transposition)
is a well studied operation, including optimizations for blocking,
vectorization, unrolling, and software prefetching [3, 6, 11, 13, 14,
25]. The same optimizations are investigated in the context three-
dimensional out-of-place tensor transpositions on CPUs [10, 22].

The optimization of arbitrary-dimensional tensor transpositions
has gained more interest in recent years [12, 20, 21, 26].

Wei et al. [26] presented a code generator which “uses exhaus-
tive global search”, explores blocking, in-cache buffers to avoid
conflict misses, loop unrolling, software prefetching and vectoriza-
tion. While their implementation exhibits good performance on the
selected architectures, neither parallelization, nor different loop or-
ders have been considered.
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Our previous work on the Tensor Transposition Compiler
(TTC) [20, 21] relied on code generation to yield a nearly-optimal
implementations for any given tensor transposition.

Lyakh et al. [12] designed a generic multidimensional transpose
algorithm and evaluated it across different architectures (e.g., Intel
Xeon, Intel Xeon Phi, AMD and NVIDIA K20X). Despite the fact
that their algorithm outperforms a naive baseline implementation,
the results suggest that there still exists a noticeable performance
gap to the bandwidth attained by a direct copy.

The recently released CUDA Tensor Transpose (cuTT) li-
brary [9] provides high-performance tensor transpositions for
NVIDIA GPUs. Despite the fact the HPTT and cuTT target dif-
ferent architectures, both libraries use similar concepts (e.g., an
FFTW-like autotuning approach based on plans). Given the differ-
ent platforms targeted by cuTT and HPTT, these libraries comple-
ment each other well.

3. High-Performance Tensor Transpositions
HPTT is an open-source2 high-performance C++ library for out-
of-place tensor transpositions running on shared-memory systems.
It inherits its key design principle from TTC: any tensor transposi-
tion is decomposed into independent 2D tensor transpositions; each
of these 2D transpositions is then computed by a so-called macro-
kernel that is again broken down into loops around a (smaller)
micro-kernel (see Section 3.2 for details). This design—inspired
by BLIS [23]—allows HPTT to be easily ported to different archi-
tectures because only the micro-kernel needs be manually imple-
mented via vector intrinsics. Like TTC, HPTT still exhibits desir-
able properties such as (optional) autotuning (Section 3.1), multi-
threading support (Section 3.2), and explicit vectorization (Sec-
tion 3.2), yielding high performance across a wide range of tensor
transpositions and architectures.

The key differences with respect to TTC are the following: First
and foremost, HPTT does not require recompilation for different
tensor transpositions and sizes; this makes HPTT applicable to
scenarios where those parameters can only be determined at run-
time (e.g., within CTF [18] or Eigen [7]). Second, HPTT is able to
search for different parallelization strategies (see Section 3.2) and
it avoids the search for different blocking sizes (see Section 3.2).
Finally, in contrast to TTC, HPTT needs to perform the autotun-
ing at runtime. To this end, we adopted a recursive design—much
like BLIS [23]—which takes an additional parameter that encodes
the execution process for any given tensor transposition, henceforth
called plan.3

3.1 Plan-Creation and Autotuning

1 // corresponds to i1
2 Plan *i1 = new Plan(0 /*start*/, 6 /*end*/, 1 /*inc*/,
3 1 /*strideA*/, 4 /*strideB*/, NULL);
4 // corresponds to i2
5 Plan *i2 = new Plan(0 /*start*/ , 4 /*end*/, 1 /*inc*/,
6 6 /*strideA*/, 1 /*strideB*/, i1);

Figure 1: Plan data structure example for a single-threaded, un-
blocked 2D transposition: Bi2i1 ← Ai1i2 ,A ∈ R6×4,B ∈ R4×6.

A plan encodes the execution of any given tensor transposition.
As such, a plan represents all loops, each corresponding to a differ-
ent tensor index. Figure 1 outlines the plan for a single-threaded,

2 Published under LGPLv3 at www.github.com/springer13/
hptt.
3 The plan is conceptually very similar to what is called a control tree
(cntl t) in BLIS.

unblocked 2D transposition Bi2i1 ← Ai1i2 ,A ∈ R6×4,B ∈
R4×6. The plans i1 and i2 respectively correspond to indices
i1 ∈ {0, 1, ..., 5} and i2 ∈ {0, 1, 2, 3}. More precisely, the strides
of i1 with regard to A and B are 1 and 4, respectively. The incre-
ment (inc) is not important for now, since this plan corresponds
to an unblocked implementation (we consider blocking in Sec-
tion 3.2).

The loop order is determined by the order i1 and i2 point to
one another: i2 stores a pointer to i1 (Line 6), while i1’s pointer
is set to NULL (Line 3), indicating that no more indices follow
and that the macro-kernel should be invoked. This example illus-
trates an execution where i1 and i2 respectively correspond to
the fastest-varying and the slowest-varying index (i.e., the loop as-
sociated to i1 is the innermost). A different loop order can be ob-
tained by having i1 point to i2 and i2 point to NULL. This flex-
ible design enables HPTT to generate different plans—based on
different loop orders—quite easily at runtime; likewise, different
parallelization strategies can be accommodated as well (see Sec-
tion 3.2).

Figure 2 illustrates the plan creation process of HPTT. Given the
input—in form of the permutation, size, number of threads and a
timeout parameter (for autotuning)—HPTT begins by (1) merging
indices which are consecutive in both tensors into a “superindex”.4

HPTT’s plan creation process offers two different execution paths:
The autotune path and the quick path. The former (2) generates
and (3) ranks all plans followed by the autotuning process (4)-
(6). During the quick path (denoted by the green dashed arrow),
on the other hand, only a single, good plan is created and returned
immediately without the need to generate all plans. The quick path
is essential for keeping the overhead—due to the plan creation—as
low as possible when no autotuning is desired (e.g., from within
CTF).

Input

(1) Merge indices

Loop order Parallelization

(3) Rank plans

(4) Start timer Timeout?

(5) Measure plan

Better?

(6) Replace best

Plan

No

Yes

Yes

No(2) Generate plans

Figure 2: HPTT’s plan creation process. The dashed green arrow
denotes the quick path which returns a good plan immediately.

Whether HPTT takes the autotune path or the quick path de-
pends on the user-specified timeout parameter; the user, thus, has
to decide if the overhead due to the autotuning process can be
amortized by repeated executions of the same tensor transposi-
tion (e.g., [17])—albeit with (possibly) different data. If the au-

4 For instance, Bi2i3i1 ← Ai1i2i3 becomes B(i2i3)i1 ← Ai1(i2i3),
see [20].



totune path is chosen, then (4) a timer is started and HPTT evalu-
ates the performance of the ranked plans (from good to bad) until
the timeout has been reached. This autotuning feature is concep-
tually very similar to that of FFTW [5]. Like FFTW, HPTT also
uses the original input data (i.e., the pointers to A and B) for auto-
tuning. However, in contrast to FFTW, HPTT does not modify the
elements of either input during the autotuning process. We achieve
this by setting the coefficient α = 0 and β = 1; thus, the output
tensor is only overwritten with its original value, while A is still
read from main memory but it is then multiplied with zero.5

i3

i2
i1

i1

i2

i3

Ai1i2i3Bi3i2i1

(a) Visualization.

1 // specify permutation and size
2 std::vector<uint32_t> perm = {2,1,0};
3 std::vector<uint32_t> sizeA = { 8, 16, 16};
4 std::vector<uint32_t> outerSizeA = {16, 32, 32};
5 std::vector<uint32_t> outerSizeB = {16, 16, 8};
6
7 // create a plan
8 double timeout = 1.0; // in seconds
9 auto plan = hptt::create_plan(perm,

10 1.0 /*alpha*/, A, sizeA, outerSizeA,
11 0.0 /*beta*/ , B, outerSizeB,
12 numThreads, timeout);
13
14 // execute the transposition
15 plan->exec();

(b) HPTT input.

Figure 3: Exemplary tensor transposition Bi3i2i1 ← Ai1i2i3 for
A ∈ R16×32×32, the shaded sub-tensor inA is of size 8×16×16.

Figure 3 visualizes an exemplary use case of HPTT where a
subtensor of A ∈ R16×32×32 is transposed-and-compacted into
B ∈ R16×16×8 via the tensor transposition Bi3i2i1 ← Ai1i2i3 .
HPTT accepts so called outer sizes (similar to the leading dimen-
sion in BLAS) which enable HPTT to operate on subtensors; this
feature makes it possible to transpose-and-compact (see Figure 3a)
or to transpose-and-scatter (reverse operation of Figure 3a, not
shown).

3.2 Vectorization and Parallelization
HPTT decomposes an arbitrary-dimensional tensor transposition
into many independent two-dimensional b×bmacro-tiles which are
composed ofw×w micro-tiles (see Fig. 4). These two-dimensional
tiles are, always chosen such that the stride-1 index in both A and
B is preserved, facilitating fully-vectorized memory operations and
thereby exploiting the spatial locality inherent to tensor transposi-
tions. As illustrated in Fig. 4, the macro- and micro-tiles are respec-
tively computed by a macro- and micro-kernel.

Each w × w micro-tile denote an explicitly vectorized, in-
register transposition, with w corresponding to the vector-width
of the underlying architecture (e.g., w = 8 for single-precision
elements on an AVX-enabled processor). The interested reader is
referred to [20] for further details on the vectorization.

A noticeable difference to TTC [20, 21], however, is that the
remainder (the macro-tiles shaded in gray, Fig. 4) are now also
vectorized. HPTT starts out with b = 4w, once the remainder is

5A may not have special values like inf or NaN.

i1

i2

Ai1,i2

i2

i1

Bi2,i1

macro-kernel

transpose

b

b

b

b

w

w
micro-kernel

w

w

Figure 4: Decomposition of a 2D transposition into b × b macro-
tiles and w × w micro-tiles.

reached b is decreased to b/2; this concept continues until b = w.
Thanks to this concept, HPTT does not search for suitable blocking
parameters any longer and removes this search direction entirely,
making the plan generation process less complex.

The macro-tiles are completely independent from one another
and can be computed in-parallel by different threads. HPTT is able
to parallelize the loops, corresponding to the tensor indices, indi-
vidually. For instance, revisiting Fig. 1, two threads t1 and t2 could
parallelize the loop associated to i1, if t1 uses i1->start=0;
i1->end=3; while t2 uses i1->start=3; i1->end=6;;
the loop corresponding to i2 could also be parallelized similarly.
Likewise, HPTT can parallelize multiple loops simultaneously; this
mechanism enables a new search direction which had not been
present in TTC before.

3.3 Performance Heuristics
Given the vast search space of viable plans, the challenge is to se-
lect a good plan that yields high performance. This sections outlines
the performance heuristics of HPTT which addresses this problem.
The performance model consist of two separate heuristics: the par-
allelization heuristic (see Section 3.3.1) and the loop order heuristic
(see Section 3.3.2).

3.3.1 Parallelization
As mentioned above, HPTT is able to parallelize all loops individ-
ually resulting in a large search space of different parallelization
strategies.

The fundamental ideas behind the parallelization heuristic are
manifold: First and foremost, load-balancing should be maximized;
thus, total amount of work should be equally distributed among the
threads. Second, the parallelization of any stride-1 index should be
avoided; abiding to this rule increases the amount of consecutive
memory accesses per thread. Finally, if one of the stride-1 indices
needs to be parallelized in order to increase load-balancing, then
this heuristic prefers to parallelize the stride-1 index of A over
the stride-1 index of the output tensor B; the rationale being that
false sharing between the threads should be avoid. An analytical
description of this heuristic is beyond the scope of this paper;



however, a curious reader can find the corresponding source code
at www.github.com/springer13/hptt.

3.3.2 Loop Order
A tensor transposition of N -dimensional tensors has N ! distinct
ways to order the loops. Most of these loop orders lead to signif-
icantly different performance [20], making it critical to choose a
good loop order for any given tensor transposition.

We encode a loop order L of an N -dimensional tensor transpo-
sition as an N -tuple L = (l1, l2, ..., lN ) with li ∈ {1, 2, ..., N}
such that the loop corresponding to index li represents the i-th
loop around the macro-kernel. For instance, given the tensor trans-
position Bi6i5i4i1i3i2 ← Ai1i2i3i4i5i6 and the loop order L =
(6, 5, 4, 1, 3, 2) means that any plan that uses L traverses B in a
linear fashion. While such a loop order is ideal for B, it would
(most likely) be supoptimal with respect to the memory accesses
to A. More precisely, the loop corresponding to the stride-1 index
of A (i1) is the fourth loop around the macro-kernel, leading to a
strided memory access pattern with a large stride.

The rationale behind HPTT’s loop heuristic is that loops cor-
responding to innermost indices of either of A and B should
be “close” to the macro-kernel. Moreover, this heuristic slightly
favours the innermost indices of B over those of A to favour con-
secutive writes over consecutive reads.

Permutation
Rank 6,5,4,3,2,1 4,3,6,2,1,5 6,1,5,4,3,2
1 6,1,5,2,4,3 4,1,3,2,6,5 1,6,2,5,3,4
2 6,1,2,5,4,3 1,4,3,2,6,5 1,6,2,3,5,4
3 1,6,5,2,4,3 4,1,2,3,6,5 1,6,5,2,3,4

(a) (a) (c)

Table 1: Top-3 loop orders ranked by the loop heuristic for three
different permutations. The leftmost index denotes the innermost
loop, while the rightmost index corresponds to the outermost loop.

Table 1 shows the top-3 loop orders for three different ten-
sor transpositions (a) – (c). We observe that the stride-1 indices
are always either the fastest-varying (innermost) or the second
fastest-varying index. For instance, the top-1 loop order for the
tensor transposition Bi6i5i4i3i2i1 ← Ai1i2i3i4i5i6 in column (a)
interleaves the indices of B and A while given precedence to B.
On other hand, the top-1 loop order for the tensor transposition
Bi6i1i5i4i3i2 ← Ai1i2i3i4i5i6 in column (c) chooses i1 as the in-
nermost index due to the fact that i1 is the second fastest-varying
index in B while i6 (the fastest-varying index of B) is the slowest-
varying index (i.e., least important) index ofA; phrased differently,
i1 is important to both A and B, while i6 is only important to B.

3.4 Recursive Design
Figure 5 illustrates the recursive design of HPTT. Each invocation
of transpose() either invokes the macro-kernel (Lines 7-9)
or enters a loop and then unfolds the plan (Lines 12-14) with a
recursive call. In the latter case, the pointers to A and B are offset
according to the strides of the respective tensor index and the plan
is unfolded (Line 14) before making the recursive.

4. Performance Evaluation
To assess the performance of HPTT across a wide range of use-
cases, we report the bandwidth attained on a tensor transpositions
benchmark [20] that comprises a total of 57 transpositions rang-
ing from 2D to 6D, with each tensor roughly occupying 200 MB
of memory. All measurements are based on the maximum band-
width attained over multiple executions (caches are cleared in be-
tween runs). If not otherwise noted, we use single-precision ten-
sors, initialized in a NUMA-friendly fashion to distribute them

1 void transpose( const float* A, float alpha,
2 float* B, float beta, const Plan* plan){
3 int strideA = plan->strideA;
4 int strideB = plan->strideB;
5 if( isMacroKernel(plan) ){
6 /*** invoke macro-kernel ***/
7 for(int i = plan->start; i < end; i+= plan->inc)
8 macroKernel(&A[i*strideA], alpha, plan->next->strideA,
9 &B[i*strideB], beta, plan->next->strideB);

10 } else {
11 /*** recurse ***/
12 for(int i = plan->start; i < plan->end; i+= plan->inc)
13 transpose( &A[i*strideA], alpha,
14 &B[i*strideB], beta, plan->next);
15 }
16 }

Figure 5: Plan Execution. This function has been simplified from
its original form for better readability.
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Figure 6: HPTT bandwidth with and without autotuning. Horizon-
tal orange and black lines respectively denote the system’s SAXPY
and STREAM bandwidth.

evenly among the memory controllers. The bandwidth is calculated
as

Bandwidth :=
λ× S

10243 × Time
[GiB/s], (2)

where S denotes the size of the transposed tensor (in bytes) and λ
is either 2 or 3, depending on whether B is overwritten (β = 0) or
updated (β 6= 0); unless otherwise stated, we report the results for
β 6= 0.



Bandwidth [GiB/s]
Name Microarchitecture Model #Cores #Threads SAXPY STREAM Compiler Compiler-flags

IVY Ivy Bridge Intel E5-2670 v2 2× 10 2× 10 35.1 31.8 icpc 16.0.3 -O3 -xHost
KNL Knights Landing Intel Xeon Phi 7210 64 64 74.1 75.0 icpc 17.0.2 -O3 -xHost
IBM Power7 IBM PowerPC A2 16 64 33.4 26.5 g++ 6.3 -O3 -mcpu=native
STR AMD Steamroller A10-7850K 4 4 18.1 11.9 g++ 5.3 -O3 -march=native

ARM ARMv7-A ODROID-XU3 4 + 4 8 4.8 3.9 g++ 5.4 -O3 -march=native

Table 2: Hardware description. The SAXPY and STREAM columns indicate the bandwidth attained for y← αx+y, and for the z← αx+y
(STREAM triad [15]), respectively.
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Figure 7: HPTT bandwidth for β = 0 on Ivy Bridge system.
Horizontal orange and black lines denote the system’s SAXPY and
STREAM bandwidth, respectively.

We evaluate HPTT’s performance on five platforms (Table 2);
the number of threads, per platform, were chosen empirically to
give the best performance.

In Fig. 6, we observe that (1) on average, HPTT attains the
following fraction of the SAXPY / STREAM bandwidth for the
various systems: 92% / 102% (IVY), 97% / 96% (KNL), 100%
/ 126% (IBM), 69% / 105% (AMD) and 97% / 119% (ARM);
these results illustrate HPTT’s close-to-optimal performance. (2)
Autotuning, on average, only improves the performance by 6%,
8%, 10%, 6%, and 2% for the IVY, KNL, IBM, AMD and ARM
system, respectively; these numbers indicate that the performance
heuristics work well in most cases. (3) The maximum speedup
due to autotuning can be as high as 1.45×, 1.31×, 1.53×, 1.35×
and 1.19× for the IVY, KNL, IBM, AMD and ARM system,
respectively; thus, making autotuning a viable option for those
cases where the autotuning overhead can be amortized over several
tensor transpositions.

Figure 7 covers the case β = 0 (i.e., an out-of-place transposi-
tion without accumulating into the output) on the IVY system, and
highlights the impact of non-temporal stores. While the overall per-
formance is lower than what outlined in Fig. 6 (β 6= 0), on average
non-temporal stores improve the performance by 1.20×.

HPTT’s speedup over Eigen [7], with and without explicit vec-
torization, are shown in Fig. 8. The maximum speedup for the IVY,
AMD, and ARM systems is as high as 27.4×, 16.6×, and 8.8×,
respectively. Explicit vectorization does not affect the performance
on the Ivy Bridge (or and KNL systems; data not shown); we take
this as a clear indication of icpc’s superb optimization capabilities.
Vice versa, both the AMD and ARM systems experience noticeable
average speedups of 1.28× and 1.12× due to explicit vectorization,
suggesting that gcc struggles to find a good vectorization.
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Figure 8: HPTT speedup over Eigen with and without explicit
vectorization using a semi-log scale.

4.1 Cyclops Tensor Framework
We analyze now the effects of HPTT on CTF [18].6 Since one ten-
sor contraction within CTF can require up to six tensor transposi-
tions, highly-optimized tensor transpositions are critical to achieve
good overall performance. We measure the speedup over CTF for a
tensor contraction χ as

Speedup(χ) =
Time( CTF without HPTT(χ))

Time( CTF with HPTT(χ))
. (3)

Figure 9 shows that HPTT improves CTF’s performance no-
ticeably; the test cases are sorted identically to those presented
in [19], that is, bandwidth-bound and compute-bound contractions
on the left and right, respectively. As expected, we observe larger
speedups (up to 3.1×) for those contractions limited by memory
bandwidth, than for the compute-bound ones. This is intuitive be-
cause the contractions towards the left spend more time on trans-
positions than those towards the right, which are instead dominated
by a matrix-matrix multiplication (GEMM); test cases 13 and 19
are indeed pure GEMMs and thus do not require any transposi-
tion. Finally, we stress that these timings also include the time to
create the “best” plan (according to HPTT’s performance heuris-
tics); the plan creation overhead is—thanks to the quick path (see
Section 3.1)—negligible (on average, less than 0.1%).

6 While CTF targets distributed-memory systems, it uses a shared-memory
tensor transposition (via OpenMP) per MPI rank.
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5. Conclusions and Future Directions
We introduced HPTT, an open-source7 C++ library for high-
performance tensor transpositions that avoids the code generation
process of its predecessor, TTC [20]. At the same time, HPTT still
preserves desirable properties such as autotuning, explicit vector-
ization, blocking, and multi-threading.

HPTT’s autotuning framework is able to generate multiple
plans; this feature enables HPTT to tune for an optimal plan with
respect to any given tensor transposition and size at runtime. We
further outlined HPTT’s performance heuristics which yield com-
petitive performance to the best plan which was found by the auto-
tuning framework.

HPTT’s close-to-optimal performance was demonstrated on a
wide range of architectures, suggesting that there is essentially
no more performance to be gained. We also assessed the perfor-
mance of Eigen’s tensor transposition implementation, indicated
that HPTT executes up to 27.4× faster. Given Eigen’s importance
for TensorFlow [1], HPTT could also proof to be valuable within
the machine learning community.

Provided HPTT’s close-to-optimal performance and its rich fea-
ture set (e.g., scaling, support for subtensors), this publication con-
cludes our work on tensor transpositions. In the future it would be
interesting to see if HPTT’s autotuning process can also be applied
to the BLIS framework.

Finally, we integrated HPTT into our local copy of CTF, result-
ing in an average speedup of 1.9× across a wide range of tensor
contractions.
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