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Abstract

Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects
into a strip of a given width, while minimizing the total height of the packing. The problem has multiple
applications, e.g. in scheduling and stock-cutting, and has been studied extensively.

When the dimensions of objects are allowed to be exponential in the total input size, it is known
that the problem cannot be approximated within a factor better than 3/2, unless P = NP. However,
there was no corresponding lower bound for polynomially bounded input data. In fact, Nadiradze and
Wiese [SODA 2016] have recently proposed a (1.4 + ε) approximation algorithm for this variant, thus
showing that strip packing with polynomially bounded data can be approximated better than when
exponentially large values in the input data are allowed. Their result has subsequently been improved to
a (4/3 + ε) approximation by two independent research groups [FSTTCS 2016, arXiv:1610.04430]. This
raises a question whether strip packing with polynomially bounded input data admits a quasi-polynomial
time approximation scheme, as is the case for related two-dimensional packing problems like maximum
independent set of rectangles or two-dimensional knapsack.

In this paper we answer this question in negative by proving that it is NP-hard to approximate strip
packing within a factor better than 12/11, even when admitting only polynomially bounded input data.
In particular, this shows that the strip packing problem admits no quasi-polynomial time approximation
scheme, unless NP ⊆ DTIME(2polylog(n)).

1 Introduction

In the strip packing problem we are given a collection of rectangular items I where each item i ∈ I is defined
by its width wi ∈ N and height hi ∈ N, together with a width parameter W ∈ N. The goal is to pack all
items of I into a strip of width W such that no two rectangles overlap, and the height of the packing is
minimized. Formally, in a packing each item i ∈ I corresponds to a rectangle (xi, xi + wi) × (yi, yi + hi),
where xi, yi ∈ N and xi + wi ≤ W , and the corresponding (open) rectangles are pairwise disjoint. The
objective is to construct a packing (i.e., find values of xi, yi for all the input rectangles) minimizing the value
of H = maxi∈I(yi + hi).

Motivation. The strip packing problem arises naturally in many settings. In the area of scheduling, it
models scheduling of jobs where each job i requires a contiguous portion of wi memory, where the total
memory of the machine is W , over a period of time hi. Minimizing the total height H of the solution
corresponds to minimizing the makespan of the schedule. In the area of industrial manufacturing, we have
the following cutting stock problem which also corresponds to strip packing. We want to cut rectangular
pieces out of a sheet of material (e.g. cloth or wood) of fixed width, minimizing the total amount of material
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used. Here we do not allow the rectangles to be rotated (because of the constraints like patterns on the
material or the grain of the wood). Recently, strip packing has also been applied in electricity allocation and
peak demand reductions in smart-grid (see [5]).

Related work. The strip packing problem has been studied extensively since 1980, when Baker et al. [4]
provided an algorithm with an asymptotic approximation ratio of 3. Subsequently, in a series of papers
[14, 18, 17, 19, 9, 8] better approximation algorithms have been presented. Currently, the best result is a
5/3+ε approximation ratio by Harren et al. [8]. The best known lower bound for approximating the problem
is 3/2, and it can be shown by a straightforward reduction from Partition.

The asymptotic approximation ratio for strip packing has also been studied in [14, 7, 3]. There, the lower
bound of 3/2 does not hold. In fact, there is an asymptotic FPTAS given by Kenyon and Rémila [15] with
an additive constant of O(hmax/ε

2), and an asymptotic PTAS given by Jansen and Solis-Oba [11] with an
additive constant of hmax, where hmax is the maximum height of a rectangle in the input instance. Strip
packing has also been studied in the setting where rotations of the items by 90 degrees are allowed. In this
setting, Jansen and van Stee [12] provided an asymptotic FPTAS.

Recently, pseudo-polynomial time algorithms for strip packing have been considered. Nadiradze and
Wiese [16] have given an algorithm achieving an approximation ratio of 1.4 + ε, which has then been refined
to a 4/3 + ε-approximation algorithm by Gálvez et al. [5] and by Jansen and Rau [10]. The running time of
these algorithms is polynomial when input data is polynomially bounded, that is, when all the numbers W ,
wi and hi are bounded polynomially in the number of items.

Strip packing is related to the geometric knapsack problem. There, given a collection of rectangular
items I, where each item i ∈ I is defined by its width wi ∈ N, height hi ∈ N, and weight ωi ∈ R+, and a
rectangular box of size W × H, the goal is to pack a subcollection of items of maximum total weight into
the given box so that no two items overlap. For this problem there is a (2 + ε)-approximation algorithm by
Jansen and Zhang [13], and a QPTAS by Adamaszek and Wiese [2].

Our results. The QPTAS for geometric knapsack [2], and also the pseudo-polynomial time algorithms for
strip packing [16, 5, 10], are based on the machinery introduced by Adamaszek and Wiese [1] for designing
a quasi-polynomial time approximation scheme for maximum independent set of rectangles. This raises a
question, asked in [5, 10], whether there is also a quasi-polynomial time approximation scheme for strip
packing, possibly based on the same machinery, when the input data is polynomially bounded.

We give a negative answer to this question, by showing APX-hardness of strip packing. This shows that
strip packing behaves differently with respect to approximation than the related maximum independent set
of rectangles and two-dimensional knapsack problems.

Theorem 1. For every ε > 0, it is NP-hard to approximate Strip Packing within a factor of 12/11− ε,
even if the dimensions of the rectangles are given in unary.

At the heart of our reduction in the proof of Theorem 1 lies an example showing that a rearrangement
argument, being the core engine of the approach of Nadiradze and Wiese [16] (cf. Section 4 of [16]), fails to
work if there are three rows of rectangles, not two as in [16]. Figure 1 illustrates this example: if we pick
a and b to be such integers that any nontrivial integral solution to the equation ax + by + z = 0 requires
integers of magnitude much larger than the number of rectangles, then one can argue that the presented
packing in a strip of height 11 is essentially the only one possible, and any rearrangement requires a strip
of height of at least 12. Our reduction exploits this figure by chopping every b × 1 rectangle vertically into
three pieces, embedding a 3-Partition instance into the picture.

At the intuitive level, it is the combination of hard constraints—the requirement of packing all the items
and the inability of widening the strip—that makes the problem hard to approximate. The issue lies in
relatively tall items that have to “stick out” by a significant portion of their height in case they cannot
be packed optimally into some prescribed space. In fact, Nadiradze and Wiese [16] have given a PTAS for
the case when a constant (depending on ε) number of items can be dropped, even when the input data is
exponentially bounded.
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2 Hardness of approximation for strip packing

In this section, we prove Theorem 1 by a reduction from the 3-Partition problem, which is known to be
strongly NP-complete [6].

Assume we are given an instance of the 3-Partition problem: a multiset S = {s1, s2, . . . , s3n} of 3n
integers, summing up to zero; the goal is to partition S into n triples, each summing up to zero. Furthermore,
let M = 1 +

∑3n
i=1 |si|. Since 3-Partition is strongly NP-hard, we can assume that all integers si are given

in unary; that is, the running time bound, the dimensions of the rectangles, and the size of the output
instance in our reduction can depend polynomially on both n and M .

Construction. We start by choosing two positive integers a, b using the following standard claim.

Claim 1. Given positive integers n and M , one can in time polynomial in n+M find two positive integers
a, b with the following properties:

(I) a, b > 3M and b is divisible by 3;

(II) for every three integers x, y, z with |x|, |y|, |z| ≤ max(9n, 3M), if ax+ by+ z = 0, then x = y = z = 0;

(III) a and b are bounded polynomially in n and M .

Proof. Let us take b = max(9n, 3M) + 3 and a = b2. Let x, y, z, w be integers such that ax+ by+ z = 0 and
|x|, |y|, |z| ≤ max(9n, 3M). Consequently, we have xb2 + yb+ z = 0 and |x|, |y|, |z| < b. Taking the equality
modulo b, we see that z is divisible by b and thus z = 0. Then, analyzing it modulo b2, we show that y is
divisible by b and hence y = 0. Finally, we conclude that x = 0. y

Armed with Claim 1, we can now construct rectangles in the output Strip Packing instance. First, we
set the width of the strip to

W := 2(a+ b) · n. (1)

We will now define a set of rectangles of total area 11W , such that the rectangles can be packed into a
rectangle W × 11 if and only if the input 3-Partition instance is a yes-instance. As every rectangle in our
construction will have integral height, if the input 3-Partition instance is a no-instance, then we will need
a strip of width at least 12 to accommodate all rectangles. Consequently, such a construction would prove
Theorem 1 due to (strong) NP-completeness of 3-Partition.

The output instance consists of the following rectangles:

(middle rectangles) We construct in total 6n middle rectangles as follows:

• 2n rectangles of height 2 and width a;

• n rectangles of height 3 and width b;

• for every 1 ≤ i ≤ 3n, a rectangle of height 1 and width b/3 + si (called solution rectangles).

(side rectangles) We construct in total 4n+ 1 side rectangles as follows:

• 2n rectangles of height 4 and width a+ b;

• 2n− 1 rectangles of height 5 and width a+ b;

• one rectangle of height 5 and width a, and one rectangle of height 5 and width b.

Note that b > 3M implies that all b/3 > si for 1 ≤ i ≤ 3n and thus all rectangles are well-defined.
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Figure 1: Canonical packing of the rectangles. Every gray b×1 rectangle consists of three solution rectangles,
corresponding to a set in the solution to the input 3-Partition instance.

From partition to packing. We now show that if the input 3-Partition instance is a yes-instance, then
we can pack all rectangles into a strip of size W × 11. Let us group solution rectangles into n triples, as in
the solution to the input 3-Partition instance. In this manner, we replace 3n solution rectangles with n
middle rectangles, each of width b and height 1. Such rectangles can be arranged as in Figure 1:

1. We put n side rectangles of dimension (a+ b)× 4 and n side rectangles of dimension (a+ b)× 5 on the
bottom of the W × 11 strip in an alternating fashion, starting from a rectangle of height 5.

2. We put n side rectangles of dimension (a+ b)× 4, n− 1 side rectangles of dimension (a+ b)× 5, and
the two remaining side rectangles of dimension a× 5 and b× 5 on the top of the W × 11 strip, in the
following order: first the b × 5 rectangle, then an alternating sequence of (a + b) × 4 and (a + b) × 5
rectangles, starting from an (a+ b)× 4 rectangle, and the a× 5 rectangle at the end.

3. In the middle, we put the middle rectangles, in the following order of heights: 1, 2, 3, 2, . . . , 1, 2, 3, 2.

A direct check shows that the middle rectangles fit exactly in the spaces left by the side rectangles.

From packing to partition. Assume now that all rectangles can be packed into a strip of size W × 11;
let us fix such a packing. Our goal is to show that the input 3-Partition instance is a yes-instance, and
the route to proving this is by verifying that the arrangement of non-solution rectangles must be exactly as
depicted in Figure 1. A direct calculation shows that the total area of all rectangles is 11W . Consequently,
the W × 11 strip is completely covered by the rectangles.

We say that a vertical line is in general position if it intersects the strip but does not contain any side
of a rectangle. We say that a set R of rectangles is tightly packed if every vertical line in general position
intersects exactly one rectangle of R. In other words, R is tightly packed if there is exactly one rectangle of
R touching the left side of the strip, exactly one touching the right side, and when we scan the strip from
left to right, then a rectangle from R ends at some x-coordinate within the strip if and only if a new one
rectangle starts at exactly the same x-coordinate.

We now show the following.
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Claim 2. Every vertical line in general position intersects exactly three rectangles: two side ones and one
middle one. Consequently, the set of middle rectangles is tightly packed, and one can partition the set of side
rectangles into two parts R1 and R2 such that Rt is tightly packed for t = 1, 2.

Proof. Since every rectangle has a height of at most 5, any two rectangles have a total height of at most 10,
and thus every vertical line in general position intersects at least three rectangles. Since the total width of all
rectangles is exactly 3W , every vertical line in general position intersects exactly three rectangles. However,
since any three side rectangles have a total height of at least 12, every vertical line in general position can
intersect only two of them. As the side rectangles have a total width of exactly 2W , every vertical line in
general position intersects exactly two side rectangles, and thus exactly one middle rectangle.

For the second claim, we can construct R1 by taking one of the two side rectangles at the left side of
the strip, and build R1 from left to right by picking a side rectangle starting at the x-coordinate where the
previously picked side rectangle ends. There will be always such a side rectangle, because the vertical line
in general position just after this x-coordinate again intersects two side rectangles. y

Let R1 and R2 be as in Claim 2. Observe that, in each set Rt, the total width of all rectangles equals
W = 2(a + b)n. Since there are only 4n + 1 side rectangles, from Claim 1, property (II), it easily follows
that one of the sets Rt (w.l.o.g., say it is R1), contains n rectangles (a+ b)× 4 and n rectangles (a+ b)× 5,
and the other one contains the remaining 2n+ 1 rectangles, including the two rectangles a× 5 and b× 5. By
potentially taking a symmetrical image of the strip, we may assume that the b× 5 rectangle appears to the
left of the a× 5 rectangle in the strip.

Assume that the left end of the strip is at x-coordinate 0, and the right end is at x-coordinate W .

Claim 3. Let x0 be an x-coordinate where a side rectangle from Rt (t ∈ {1, 2}) ends. Then x0 = a ·na+b ·nb
for some integers 0 ≤ na, nb ≤ 2n with nb − na ∈ {0, 1}.

Proof. Since every side rectangle has width a + b, a, or b, and the rectangles of Rt are tightly packed, we
can express x0 = (a+ b)ma+b + ama + cmb, where mz is the number of rectangles of width z that are in Rt

and to the left of x0. By taking na = ma+b + ma and nb = ma+b + mb, we obtain x0 = a · na + b · nb and
0 ≤ na, nb ≤ 2n.

Furthermore, nb − na = mb −ma. Since there is only one rectangle of width b and one of width a, we
have ma,mb ∈ {0, 1}. Since we have assumed that the b× 5 one is to the left of the a× 5 one, it cannot hold
that mb = 0 and ma = 1. Consequently, mb −ma ∈ {0, 1}. y

Claim 4. If we order the middle rectangles from left to right (recall that they are tightly packed), then every
maximal consecutive segment of solution rectangles consists of three rectangles of total width exactly b.

Proof. Let Ri1 , Ri2 , . . . , Rik be a maximal consecutive segment of solution rectangles in the left-to-right
ordering of all middle rectangles. Assume that the width of Rij is b/3 + sij . We shall prove that k = 3 and

that
∑k

j=1 sij = 0.
Let x0 be the x-coordinate of the left side of Ri1 and x′0 be the x-coordinate of the right side of Rik .

Since the sequence Ri1 , Ri2 , . . . , Rik is maximal, other middle rectangles have different heights, and the
whole W × 11 strip is covered by rectangles, both at x0 and at x′0 a side rectangle ends. By Claim 3 we
have x0 = ana + bnb and x′0 = an′a + bn′b for some integers na, nb, n

′
a, n

′
b with δ := nb − na ∈ {0, 1} and

δ′ := n′b − n′a ∈ {0, 1}. Furthermore, x′0 − x0 = kb/3 +
∑k

j=1 sij , that is,

kb/3 +

k∑
j=1

sij = x′0 − x0 = a(n′a − na) + b(n′b − nb),

i.e.,

0 = a(3n′a − 3na) + b(3n′b − 3nb − k)− 3

k∑
j=1

sij .
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Note that |3n′a− 3na| ≤ 6n ≤ max(9n, 3M), |3n′b− 3nb− k| ≤ 9n ≤ max(9n, 3M), and |3
∑k

j=1 sij | ≤ 3M ≤
max(9n, 3M). Thus, by Claim 1, property (II), we easily obtain n′a = na, n′b − nb = k/3, and

∑k
j=1 sij = 0.

However, recall that δ = nb − na ∈ {0, 1} and δ′ = n′b − n′a ∈ {0, 1} while k ≥ 1. Then δ′ = δ + k/3, so
δ, δ′ ∈ {0, 1} and k ≥ 1 implies that the only possibility is k = 3, δ = 0, and δ′ = 1. y

Consequently, the solution rectangles are partitioned into triples of rectangles of total width b. Such a
partition of the solution rectangles induces a solution to the input 3-Partition instance. This finishes the
proof of Theorem 1.
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