
Runtime enforcement of reactive systems using synchronous enforcers?

Srinivas Pinisetty1, Partha S Roop2, Steven Smyth3, Stavros Tripakis1,4,
Reinhard von Hanxleden3

1 Aalto University, Finland First.Last@aalto.fi
2 University of Auckland, New Zealand p.roop@aucklanduni.ac.nz
3 University of Kiel, Germany ssm,rvh@informatik.uni-kiel.de

4 University of California, Berkeley, USA

Abstract. Synchronous programming is a paradigm of choice for the design of safety-critical reactive systems.
Runtime enforcement is a technique to ensure that the output of a black-box system satisfies some desired properties.
This paper deals with the problem of runtime enforcement in the context of synchronous programs. We propose a
framework where an enforcer monitors both the inputs and the outputs of a synchronous program and (minimally)
edits erroneous inputs/outputs in order to guarantee that a given property holds. We define enforceability conditions,
develop an online enforcement algorithm, and prove its correctness. We also report on an implementation of the
algorithm on top of the KIELER framework for the SCCharts synchronous language. Experimental results show
that enforcement has minimal execution time overhead, which decreases proportionally with larger benchmarks.

1 Introduction

Runtime verification (RV) [11,7] is an active area of research on methods that dynamically verify a set of desirable
properties over an execution of a “black-box” system. An alternative to such passive runtime analysis is runtime
enforcement (RE) [19,8,12,15]. In RE mechanisms, an enforcer is synthesized to observe the executions of a black-
box system to ensure that a set of desired properties are satisfied. In the event of a violation, the enforcer performs
certain evasive actions so as to prevent the violation. The evasive actions might include blocking the execution [19],
modifying input sequence by suppressing and / or inserting actions [12], and buffering input actions until a future time
when it could be forwarded [8,15]. These enforcement mechanisms are not suitable for synchronous reactive systems
since delaying the reaction or terminating the system is infeasible. Considering this, there is recent interest in runtime
enforcement of synchronous reactive systems [5].

A synchronous reactive system is non-terminating and interacts continuously with the adjoining environment.
Hence, the system execution may be considered as a series of steps, where in each step the system reads the inputs
from the environment, calls a reaction function that computes the outputs for emission. Synchronous programming
languages [3] are well suited for the design of synchronous reactive systems. They use observers [9] to express safety
properties, which are verified statically (using model checking). There have also been limited attempts to use observers
as runtime entities [17], for example for automatic test case generation. More recently Rushby studies applications of
observers for the expression of assumptions and axioms in addition to test case generation [18]. However, there have
been no studies on the bi-directional RE problem for synchronous reactive systems, which is the focus of the current
paper.

We consider bi-directional RE of synchronous programs, and the general context is illustrated in Figure 1. Here,
{i1, i2, · · · , in} are inputs from the environment to the enforcer, {i′1, i′2, · · · , i′n} are transformed inputs from the
enforcer to the program, {o1, o2, · · · , om} are outputs of the program to the enforcer, and {o′1, o′2, · · · , o′m} are trans-
formed outputs from the enforcer to the environment. RE for synchronous reactive systems is distinct from the existing
RE mechanisms such as [8,12,15,19] since the enforcement mechanism for a synchronous reactive system cannot halt
the system or delay events, and must react instantaneously when an error is observed. Moreover, we consider bi-
directional enforcement where the enforcer needs to consider the status of the environment and the program in order
to enforce the policies. The enforcer must respect the causality aspects i.e. every reactive cycle must start with the

? This work has been partially supported by the Academy of Finland, the U.S. National Science Foundation (awards #1329759
and #1139138), and the Deutsche Forschungsgemeinschaft (PRETSY2 project, award DFG HA 4407/6-2).

ar
X

iv
:1

61
2.

05
03

0v
1

 [
cs

.F
L

]
 1

5
D

ec
 2

01
6

Env. Enforcer Program

ϕInputs

i1

i2

··

Transformed Inputs

i′1

i′2

··

Transformed Outputs

o1

o2
··

Outputs

o′1

o′2
··

Fig. 1: Bi-directional enforcement for synchronous programs.

environment, where the status of the environment inputs must determine the reaction. After the program has reacted,
the generated outputs are emitted to the environment. Considering this, the enforcer must act as an intermediary such
that it first intercepts the inputs from the environment to validate them relative to the policy and forward the inputs to
the program once the policy is satisfied. In the event of any violation, the enforcer may suitably alter the inputs before
forwarding to the program. After the program has reacted to these inputs, again the enforcer must ensure that either
the policy is satisfied and hence the outputs are forwarded unchanged to the environment or a violation has happened
that needs to be handled by altering the outputs to prevent policy violation.

We study the problem of synthesizing an enforcer for any given safety property ϕ. Similar to enforcement mecha-
nisms in [19,8,12,15], several constraints are required on how an enforcer transforms input-output words. The enforcer
cannot delay events, and cannot block execution, but it is allowed to edit an event when necessary (i.e., when the event
that it receives as input leads to a violation). The notions of soundness and transparency are similar to the existing
enforcement mechanisms [19,8,12,15], where soundness means that the output of the enforcer must satisfy property ϕ,
and transparency expresses that the enforcer should not modify events unnecessarily. In the proposed framework, we
also introduce additional requirements called causality, and instantaneity. These constraints are developed specifically
to respect synchronous execution, detailed in Section 3.

Contributions. In this paper, we study and formally define, for the first time, the bi-directional enforcer synthesis prob-
lem for synchronous reactive systems (expressed as synchronous programs). The main contributions of the paper are
(1) We formally define the bi-directional enforcer synthesis problem and characterize the set of safety properties which
can be enforced (Section 3), (2) We develop an enforcement algorithm (Section 4) and prove its correctness, (3) We re-
port on an implementation of the algorithm on top of the KIELER framework for the SCCharts synchronous language
(Section 5), and (5) We evaluate the approach over a range of synchronous programs in the SCCharts language [21] to
illustrate scalability and practicality (Section 5).

2 Preliminaries and Notation

A finite (resp. infinite) word over a finite alphabet Σ is a finite sequence σ = a1 · a2 · · · an (resp. infinite sequence
σ = a1 · a2 · · ·) of elements of Σ. The set of finite (resp. infinite) words over Σ is denoted by Σ∗ (resp. Σω). The
length of a finite word σ is n and is noted |σ|. The empty word over Σ is denoted by εΣ , or ε when clear from the
context. The concatenation of two words σ and σ′ is denoted as σ · σ′. A word σ′ is a prefix of a word σ, denoted as
σ′ 4 σ, whenever there exists a word σ′′ such that σ = σ′ · σ′′; σ is said to be an extension of σ′.

We consider a reactive system with a finite ordered sets of Boolean inputs I = {i1, i2, · · · , in} and Boolean
outputs O = {o1, o2, · · · , om}. The input alphabet is ΣI = 2I , and the output alphabet is ΣO = 2O and the input-
output alphabet Σ = ΣI × ΣO. Each input (resp. output) event will be denoted as a bit-vector/complete monomial.
For example, let I = {A,B}. Then, the input {A} ∈ ΣI is denoted as 10, while {B} ∈ ΣI is denoted as 01 and
{A,B} ∈ ΣI is denoted as 11. A reaction (or input-output event) is of the form (xi, yi), where xi ∈ ΣI and yi ∈ ΣO.

Given an input-output word σ = (x1, y1) · (x2, y2) · · · (xn, yn) ∈ Σ∗, the input word obtained from σ is σI =
x1 · x2 · · ·xn ∈ ΣI which is the projection on inputs ignoring outputs. Similarly, the output word obtained from σ is
σO = y1 · y2 · · · yn ∈ ΣO is the projection on outputs.

2

An execution σ of a synchronous program P is an infinite sequence of input-output events σ ∈ Σω , and the
behavior of a synchronous program P is denoted as exec(P) ⊆ Σω . The language of P is denoted by L(P) =
{σ ∈ Σ∗|∃σ′ ∈ exec(P) ∧ σ 4 σ′} i.e. L(P) is the set of all finite prefixes of the sequences in exec(P).

A property ϕ over Σ defines a set L(ϕ) ⊆ Σ∗. A program P |= ϕ iff L(P) ⊆ L(ϕ). Given a word σ ∈ Σ∗,
σ |= ϕ iff σ ∈ L(ϕ). A property ϕ is prefix-closed if all prefixes of all words from L(ϕ) are also in L(ϕ): L(ϕ) =
{w | ∃w′ ∈ L(ϕ) : w 4 w′}. In this paper, we consider prefix-closed properties. Properties are formally expressed as
safety automata that we define in the sequel.

Definition 1 (Safety Automaton). A safety automaton (SA) A = (Q, q0, qv, Σ,−→) is a tuple, where Q is the set of
states, called locations, q0 ∈ Q is an unique initial location, qv ∈ Q is a unique violating (non-accepting) location,
Σ = ΣI × ΣO is the alphabet, and −→⊆ Q × Σ × Q is the transition relation. All the locations in Q except qv (i.e.,
Q \ {qv}) are accepting locations. Location qv is a unique non-accepting (trap) location, and there are no transitions
in −→ from qv to a location in Q \ {qv}. Whenever there exists (q, a, q′) ∈−→, we denote it as q a−→ q′. Relation −→ is
extended to words σ ∈ Σ∗ by noting q σ.a−−→ q′ whenever there exists q′′ such that q σ−→ q′′ and q′′ a−→ q′. A location
q ∈ Q is reachable from q0 if there exists a word σ ∈ Σ∗ such that q0

σ−→ q.

An SAA = (Q, q0, qv, Σ,−→) is deterministic if ∀q ∈ Q,∀a ∈ Σ, (q a−→ q′ ∧ q a−→ q′′) =⇒ (q′ = q′′).A is complete
if ∀q ∈ Q,∀a ∈ Σ,∃q′ ∈ Q, q a−→ q′. A word σ is accepted by A if there exists q ∈ Q \ {qv} such that q0

σ−→ q. The
set of all words accepted by A is denoted as L(A).

Remark 1. In the rest of this paper,ϕ is a safety property defined as deterministic and complete SAAϕ = (Q, q0, qv, Σ,−→
). If the user provides an non-deterministic or incomplete automaton, we determinize and complete it first. We also
consider that Q does not contain any (redundant) locations that are unreachable from q0.

Due to the causality requirement, the enforcer has to first transform inputs from the environment in each step according
to property ϕ defined as SAAϕ. We thus need to consider the input property that we obtain fromAϕ by projecting on
inputs.

Definition 2 (Input safety automaton AϕI
). Given ϕ ⊆ Σ∗, defined as SA Aϕ = (Q, q0, qv, Σ,→), input SA

AϕI
= (Q, q0, qv, ΣI ,→I) is obtained from Aϕ by ignoring outputs on the transitions, i.e., for every transition

q
(x,y)−−−→ q′ ∈→ where (x, y) ∈ Σ, there is a transition q x−→ q′ ∈→I , where x ∈ ΣI . L(AϕI

) is denoted as ϕI ⊆ Σ∗I .

q0 qv
(11, 1) , (11, 0) , (01, 1)

Σ \ {(11, 1), (11, 0), (01, 1)} Σ

(a) SA AS1 .

q0 qv
11 , 01

ΣI \ {11} ΣI

(b) Input SA obtained from AS1 .

Fig. 2: SA (left), and its input SA (right).

Example 1 (Example property defined as SA and its input SA). Let I = {A,B} and O = {R}. Consider the following
property: S1: “A and B cannot happen simultaneously, and also B and R cannot happen simultaneously”. The safety
automaton in Figure 2a defines property S1. Figure 2b presents the input SA for the SA in Figure 2a defining property
S1. Though the SA Aϕ is deterministic, the input SA AϕI

might be non-deterministic as is the case in Figure 2b.

Lemma 1. Let AϕI
= (Q, q0, qv, ΣI ,→I) be the input automaton obtained from Aϕ = (Q, q0, qv, Σ,→). We have

the following properties:

1 ∀(x, y) ∈ Σ,∀q, q′ ∈ Q : q
(x,y)−−−→ q′ =⇒ q

x−→I q
′.

2 ∀x ∈ ΣI ,∀q, q′ ∈ Q : q
x−→I q

′ =⇒ ∃y ∈ ΣO : q
(x,y)−−−→ q′.

3

Intuitively, property 1 of Lemma 1 states that if there is a transition from state q ∈ Q to state q′ ∈ Q upon input-output
event (x, y) ∈ Σ in the automaton Aϕ, then there is also a transition from state q to state q′ in the input automaton
AϕI

upon the input event x ∈ ΣI . Property 2 of Lemma 1 states that if there is a transition from state q ∈ Q to state
q′ ∈ Q upon input event x ∈ ΣI , then there certainly exists an output event y ∈ ΣO s.t. there is a transition from state
q to state q′ upon event (x, y) in the automaton Aϕ. Lemma 1 immediately follows from Definitions 1 and 2.

Edit Functions Consider property ϕ ⊆ Σ∗ defined as SA Aϕ = (Q, q0, qv, Σ,→), and its input SA AϕI
=

(Q, q0, qv, ΣI ,→I) obtained from Aϕ by projecting on inputs. We introduce editIϕI
(resp. editOϕ), that the enforcer

uses for editing input (resp. output) events (when necessary), according to input property ϕI (resp. property ϕ).

– editIϕI(σI): Given σI ∈ Σ∗I , editIϕI
(σI) is the set of input events x in ΣI such that the word obtained by

extending σI with x satisfies property ϕI . Formally,

editIϕI
(σI) = {x ∈ ΣI : σI · x |= ϕI}.

Considering the SA AϕI
= (Q, q0, qv, ΣI ,→I), the set of events in ΣI that allow to reach a state in Q \ {qv}

from a state q ∈ Q \ {qv} is defined as:

editIAϕI
(q) = {x ∈ ΣI : q

x−→I q
′ ∧ q′ 6= qv}.

For example, consider the SA in Figure 2b obtained from the SA in Figure 2a by ignoring outputs. Let σ = (10, 0)·
(01, 1), and thus σI = 10 ·01. Then, editIϕI

(σI) = ΣI \{11}. Also, q0
10·01−−−→I q0, and editIAϕI

(q0) = ΣI \{11}.
– nondet–editIAϕI

(q): If editIAϕI
(q) is non-empty, then nondet–editIAϕI

(q) returns an element (chosen ran-
domly) from editIAϕI

(q), and is undefined if editIAϕI
(q) is empty.

– editOϕ(σ, x): Given an input-output word σ ∈ Σ∗ and an input event x ∈ ΣI , editOϕ(σ, x) is the set of output
events y in ΣO s.t. the input-output word obtained by extending σ with (x, y) satisfies property ϕ. Formally,

editOϕ(σ, x) = {y ∈ ΣO : σ · (x, y) |= ϕ}.

Considering the automaton Aϕ = (Q, q0, qv, Σ,→) defining property ϕ, and an input event x ∈ ΣI , the set of
output events y in ΣO that allow to reach a state in Q \ {qv} from a state q ∈ Q \ {qv} with (x, y) is defined as:

editOAϕ
(q, x) = {y ∈ ΣO : q

(x,y)−−−→ q′ ∧ q′ 6= qv}.

For example, consider property S1 defined by the automaton in Figure 2a. We have editOAϕ
(q0, 01) = {0}.

– nondet–editOAϕ(q, x): If editOAϕ
(q, x) is non-empty, then nondet–editOAϕ

(q, x) returns an element (chosen
randomly) from editOAϕ

(q, x), and is undefined if editOAϕ
(q, x) is empty.

3 Problem Definition

In this section, we formalize the RE problem for synchronous programs. In the setting we consider, as illustrated in
Figure 1, an enforcer monitors and corrects both inputs and outputs of a synchronous program according to a given
safety property ϕ ⊆ Σ∗. We assume that the “black-box” synchronous program may be invoked through a special
function call called ptick, which is invoked exactly once during each reaction / synchronous step. Formally, ptick is a
function from ΣI to ΣO that takes a bit vector x ∈ ΣI and returns a bit vector y ∈ ΣO.

An enforcer for a property ϕ can only edit an input-output event when necessary, and it cannot block, delay or
suppress events. Let us recall the two functions editIϕI

and editOϕ that were introduced in Section 2 that the enforcer
for ϕ uses to edit the current input (respectively output) event according to the property ϕ. At an abstract level, an
enforcer can be seen as a function that transforms input-output words. An enforcement function for a given property
ϕ takes as input an input-output word over Σ and outputs an input-output word over Σ that belongs to ϕ.

4

Definition 3 (Enforcer for ϕ). Given property ϕ ⊆ Σ∗, an enforcer for ϕ is a function Eϕ : Σ∗ → Σ∗ satisfying the
following constraints:
Soundness

∀σ ∈ Σ∗ : Eϕ(σ) |= ϕ. (Snd)

Monotonicity
∀σ, σ′ ∈ Σ∗ : σ 4 σ′ ⇒ Eϕ(σ) 4 Eϕ(σ

′). (Mono)

Instantaneity
∀σ ∈ Σ∗ : |σ| = |Eϕ(σ)|. (Inst)

Transparency
∀σ ∈ Σ∗,∀x ∈ ΣI ,∀y ∈ ΣO :
Eϕ(σ) · (x, y) |= ϕ =⇒ Eϕ(σ · (x, y)) = Eϕ(σ) · (x, y).

(Tr)

Causality
∀σ ∈ Σ∗,∀x ∈ ΣI ,∀y ∈ ΣO,∃x′ ∈ editIϕI

(Eϕ(σ)I),
∃y′ ∈ editOϕ(Eϕ(σ), x

′) : Eϕ(σ · (x, y)) = Eϕ(σ) · (x′, y′).
(Cau)

The input-output sequence released as output by the enforcer upon reading the input-output sequence σ is Eϕ(σ), and
Eϕ(σ)I ∈ Σ∗I is the projection on the inputs. Note, editIϕI

(Eϕ(σ)I) returns a set of input events in ΣI , s.t. Eϕ(σ)I
(which is the projection of input-output word Eϕ(σ) to the input alphabet) followed by any event in editIϕI

(Eϕ(σ)I)
satisfies ϕI . editOϕ(Eϕ(σ), x′) returns a set of output events inΣO, s.t. for any event y in editOϕ(Eϕ(σ), x

′),Eϕ(σ) ·
(x′, y) satisfies ϕ.

– Soundness (Snd) means that for any word σ ∈ Σ∗, the output of the enforcer Eϕ(σ) must satisfy ϕ.
– Monotonicity (Mono) expresses that the output of the enforcer for an extended word σ′ of a word σ, extends the

output produced by the enforcer for σ. The monotonicity constraint means that the enforcer cannot undo what is
already released as output.

– Instantainety (Inst) expresses that for any given input-output word σ as input to the enforcer, the output of the
enforcerEϕ(σ) should contain exactly the same number of events that are in σ (i.e.,Eϕ is length-preserving). This
means that the enforcer cannot delay, insert and suppress events. Whenever the enforcer receives a new event, it
has to react instantaneously and has to produce an output event immediately.

– Transparency (Tr) expresses that for any given word σ and any event (x, y), if the output of the enforcer for σ
(i.e., Eϕ(σ)) followed by the event (x, y) satisfies the property ϕ (i.e., Eϕ(σ) · (x, y) |= ϕ), then the output that
the enforcer produces for input σ · (x, y) will be Eϕ(σ) · (x, y). This means that the enforcer makes no change
when no change is needed in order to satisfy the property ϕ.

– Causality (Cau) expresses that for every input-output event (x, y) the enforcer produces input-output event (x′, y′)
where the enforcer first processes the input part x, to produce the transformed input x′ according to property ϕ
using editIϕI

. The enforcer later reads and transforms output y ∈ ΣO which is the output of the program after
invoking function ptick with the transformed input x′, to produce the transformed output y′ using editOϕ.

Remark 2. Let Eϕ(σ) be the input-output sequence released as output by the enforcer for ϕ after reading input-output
sequence σ ∈ Σ∗. Upon reading a new event (x, y), if what has been already computed as output by the enforcer
Eϕ(σ) followed by (x, y) does not allow to satisfy the property ϕ, then the enforcer edits (x, y) using functions editIϕI

and editOϕ. When the current event (x, y) has to be edited, note that there may be several possible solutions. For
example, consider the property S1 introduced in Example 1. Let σ = (10, 1) · (01, 0), and the output of the enforcer
after processing σ will be Eϕ(σ) = (10, 1) · (01, 0). Let the new event be (11, 0), and Eϕ(σ) · (11, 0) 6|= ϕ, and the
enforcer has to edit the new event (11, 0). Note that Eϕ(σ)I = 10 · 01, and editIϕI

(10 · 01) = {00, 01, 10} and the
enforcer can choose any element from editIϕI

(10 · 01) as the transformed input.

Remark 3 (Enforcing bi-directional properties). By considering two uni-directional enforcers, where one enforcer
checks and transforms inputs from the environment to the program and another enforcer checks and transforms out-
puts from the program to the environment, bi-directional properties cannot be enforced. For example, bi-directional
properties such as the property S1 introduced in Example 1 cannot be enforced using two uni-directional enforcers.

5

Remark 4 (When the input word provided to the enforcer satisfies ϕ). Constraint (Tr’) expresses that when any input-
output word σ ∈ Σ∗ provided as input to the enforcer satisfies the property ϕ, then the enforcer will not edit any event
and will output σ (i.e., Eϕ(σ) = σ).

∀σ ∈ Σ∗ : Eϕ(σ) |= ϕ =⇒ Eϕ(σ) = σ. (Tr’)

Lemma 2. (Tr)⇒ (Tr’).
Lemma 2 shows that (Tr’) is a consequence of constraint (Tr). For any ϕ, for any σ ∈ Σ∗, proof of this lemma is

straightforward using induction on σ.

σ Eϕ(σ) Tr Tr’
(10, 1) (10, 1) 3 3

(10, 1) · (11, 1) (10, 1) · (10,1) 3 3

(10, 1) · (11, 1) · (01, 0) (10, 1) · (10,1) · (10,0) 7 3

(10, 1) · (11, 1) · (01, 0) (10, 1) · (10,1) · (01, 0) 3 3

Table 1: Example: (Tr) Vs. (Tr’)

Example 2 ((Tr) is stronger than (Tr’)). Via this example, we illustrate that constraint (Tr) is stronger than the alter-
native transparency constraint (Tr’). Let us consider the property S1 introduced in Example 1. In Table 1, first column
denoted using σ shows input-output words, and the second column denoted using Eϕ(σ) shows the output of the en-
forcer for σ, and the next two columns indicate whetherEϕ(σ) satisfies constraints (Tr) and (Tr’) respectively. We can
see that there are situations where (Tr’) holds and (Tr) does not hold. When the enforcer reads the third event (01, 0),
if it edits this event to (10, 0), then constraint (Tr’) holds, and constraint (Tr) does not hold since Eϕ((10, 1) · (11, 1))
followed by the new event read (01, 0) satisfies the property S1, and it should not be edited by the enforcer according
to constraint (Tr).

Definition 4 (Enforceability). Let ϕ ⊆ Σ∗ be a property. We say that ϕ is enforceable iff an enforcer Eϕ for ϕ exists
according to Definition 3.

Not all properties are enforceable, even if we restrict ourselves to prefix-closed safety properties, as the following
example shows.

q0 q1 qv
Σ Σ

Σ

Fig. 3: A non-enforceable safety property.

Example 3 (Non-enforceable safety property). We illustrate that not all prefix-closed safety properties are enforceable
according to Definition 3. Consider the automaton in Figure 3 defining the property ϕ that we want to enforce, with
I = {A}, O = {B} and Σ = ΣI × ΣO. Let the input-output sequence provided as input to the enforcer be σ =
(1, 1) · (1, 0). When the enforcer reads the first event (1, 1), it can output (1, 1) (since every event in Σ from q0 leads
to a non violating state q1). Note that from q1, every event in Σ only leads to violating state qv . Thus, when the second
event (1, 0) is read, every possible editing of this event will only lead to violation of the property. Upon reading the
second event (1, 0), releasing any event in Σ as output will violate soundness, and if no event is released as output,
then the instantianety constraint will be violated.

6

Theorem 1 (Condition for enforceability). Consider a property ϕ defined as SA Aϕ = (Q, q0, qv, Σ,→). Property
ϕ is enforceable iff the following condition holds:

∀q ∈ Q, q 6= qv =⇒ ∃(x, y) ∈ Σ : q
(x,y)−−−→ q′ ∧ q′ 6= qv (EnfCo)

Proof of Theorem 1 is given in Appendix A, page 13. Note that given any propertyϕ defined as SAAϕ = (Q, q0, qv, Σ,→
), it is straightforward to test whether Aϕ satisfies condition (EnfCo).

q0

q1

q2 qv

(0, 0)

(1, 1)

(1, 0), (0, 1)

Σ

Σ

Σ

(a) A non-enforceable property that can be
transformed into an enforceable property.

q0

q1

qv

(0, 0)

Σ \ {(0, 0)}

Σ

Σ

(b) Enforceable property obtained after
transformation.

Fig. 4: A non-enforceable property transformed into an enforceable property.

Remark 5 (Transforming a non-enforceable property into an enforceable property). Some non-enforceable properties
can be made enforceable by a transformation that excludes some behaviors from the property. We illustrate this with
an example. Consider the property defined by the automaton in Figure 4a. This property is not enforceable for the
following reason. Suppose that the first input-output event that the enforcer receives is (1, 1). Since there is a transition
from q0 to q2 upon (1, 1), the enforcer will take this transition (according to transparency constraint). Then, whatever
may be the second event that the enforcer receives, note that editIϕI

and editOϕ will be empty, and there is no way
to correct the event and avoid reaching qv . However, we can transform this property into an enforceable property by
excluding all the paths/behaviours that are problematic. In particular, we can remove state q2 from the automaton
of Figure 4a and redirect the transition labeled (1, 1) from q0 to qv instead. This has the effect of removing the
word (1, 1) from the language accepted by this automaton. The resulting automaton (shown in Figure 4b) that we
obtain satisfies the condition for enforceability (EnfCo) and therefore the resulting new property is enforceable. Note
that transforming a non-enforceable property to an enforceable one is not always possible. For instance, the non-
enforceable property of Figure 3 cannot be transformed to an enforceable property.

Transformation of non-enforceable properties. If a given safety property ϕ defined as SA Aϕ = (Q, q0, qv, Σ,−→)
does not satisfy the condition for enforceability (EnfCo), then we can apply the following transformation process to
check whether Aϕ can be transformed in to an enforceable property (by discarding some states in Q \ {q0} in the
automaton Aϕ). We discuss the algorithm for transformation briefly.

– For every state q ∈ Q \ {qv} if ∀(x, y) ∈ Σ, q (x,y)−−−→ qv , then merge q with qv (q is removed from the set of states
Q and all the incoming transitions to q go to qv instead).

– The transformation continues until one of the following two conditions hold:

• only two states q0 and qv remain in Q, i.e., Q = {q0, qv} such that ∀(x, y) ∈ Σ, q0
(x,y)−−−→ qv . In this case, the

algorithm returns that Aϕ cannot be transformed into an enforceable property.
• Q \ {q0, qv} is non-empty, and there is no state in Q \ {q0, qv}, that has all its outgoing transitions to qv .

In this case, the algorithm returns the resulting transformed automaton which is an enforceable property. Let
sub(Aϕ) be the transformed automaton. Note that L(sub(Aϕ)) ⊆ L(Aϕ).

The algorithm for transformation of non-enforceable properties is discussed in detail in Appendix B.

7

4 Algorithm

In this section, we provide an algorithm for implementing the bi-directional synchronous enforcement problem de-
fined in Section 3. Let the SA Aϕ = (Q, q0, qv, Σ,→) define the property ϕ that we want to enforce. SA AϕI

=
(Q, q0, qv, ΣI ,→I) is obtained from Aϕ by projecting on inputs (see section 2).

Algorithm 1 Enforcer

1: t← 0
2: q ← q0
3: while true do
4: xt ← read in chan()

5: if ∃q′ ∈ Q : q
xt−→I q

′ ∧ q′ 6= qv then
6: x′t ← xt
7: else
8: x′t ← nondet–editIAϕI

(q)
9: end if

10: ptick(x′t)
11: yt ← read out chan()

12: if ∃q′ ∈ Q : q
(x′

t,yt)−−−−→ q′ ∧ q′ 6= qv then
13: y′t ← yt
14: else
15: y′t ← nondet–editOAϕ

(q, x′t)
16: end if
17: release((x′t, y

′
t))

18: q ← q′ where q
(x′

t,y
′
t)−−−−→ q′ ∧ q′ 6= qv

19: t← t+ 1
20: end while

We provide an online algorithm that requires automata Aϕ and AϕI
as input. Algorithm 1 is an infinite loop,

and an iteration of the algorithm is triggered at every time step. We adapt the reactive interface that is used for
linking the program to its adjoining environment by following the structure of the interface described in [2]. We
extend the interface by including the enforcer as an intermediary between the synchronous program and its adjoining
environment.

In the algorithm shown below, t keeps track of the time-step (tick), initialized with 0. q keeps track of the current
state of both the automata Aϕ and AϕI

. Recall that the automaton AϕI
that we obtain from the automaton Aϕ by

projecting on inputs (see Section 2) have identical structure, and the only difference is that the outputs are ignored on
the transitions in the automatonAϕI

. Note that at the beginning of each iteration of the algorithm, the current states of
both the automataAϕ andAϕI

are the same (where both are initialized with q0). At t, if EOut ∈ Σ∗ is the input-output
sequence obtained by concatenating all the events released as output by the enforcer until time t, then q corresponds to
the state that we reach in the automatonAϕ upon reading EOut. Similarly, if EOutI ∈ Σ∗I is the sequence obtained by
projecting on x′is from EOut, q also corresponds to the state that we reach in the automaton AϕI

upon reading EOutI.
Functions read in chan (resp. read out chan) are functions corresponding to reading input (resp. output) channels,

and function ptick corresponds to invoking the synchronous program. Function release takes an input-output event,
and releases it as output of the enforcer.

Each iteration of the algorithm proceeds as follows: first all the input channels are read using function read in chan
and the input event is assigned to xt. Then the algorithm tests whether there exists a transition in→I from the current
state q upon xt to an accepting state inAϕI

. In case if this test succeeds, then it is not necessary to edit the input event
xt, and the transformed input x′t is assigned xt. Otherwise, x′t is assigned with the output of nondet–editIAϕI

(q). Let
us recall that nondet–editIAϕI

(q) returns an input event that leads to an accepting state in AϕI
from q.

8

After transforming the input xt according to AϕI
, the program is invoked with the transformed input x′t using

function ptick. Afterwards, all the output channels are read using function read out chan and the output event is
assigned to yt. Then the algorithm tests whether there exists a transition in→ from the current state q upon (x′t, yt)
to an accepting state in Aϕ. In case if this test succeeds, then it is not necessary to edit the output event yt, and the
transformed output y′t is assigned yt. Otherwise, y′t is assigned with the output of nondet–editOAϕ

(q, x′t). Note that
nondet–editOAϕ(q, x

′
t) returns an output event y′t such that (x′t, y

′
t) leads to an accepting state in Aϕ from q.

Before proceeding with the next iteration, current state q is updated to q′ which is the state reached upon (x′t, y
′
t)

from state q in the automaton Aϕ, and the time-step t is incremented. Note that if there exists a transition q
(x′

t,y
′
t)−−−−→ q′

in the SA Aϕ, then there also exists a transition q
x′
t−→I q

′ in the SA AϕI
. The current states of both the SA are always

synchronized and the same at the beginning of each iteration of the algorithm.

Definition 5 (E∗ϕ). Consider an enforceable safety property ϕ. We define the function E∗ϕ : Σ∗ → Σ∗, where Σ =
ΣI × ΣO, as follows. Let σ = (x1, y1) · · · (xk, yk) ∈ Σ∗ be a word received by Algorithm 1. Then we let E∗ϕ(σ) =
(x′1, y

′
1) · · · (x′k, y′k), where (x′t, y

′
t) is the pair of events output by Algorithm 1 in Step 17, for t = 1, ..., k.

Theorem 2 (Correctness of the enforcement algorithm). Given any safety property ϕ defined as SAAϕ that satisfies
condition (EnfCo), the function E∗ϕ defined above is an enforcer for ϕ, that is, it satisfies (Snd), (Tr), (Mono), (Inst),
and (Cau) constraints of Definition 3.

Proof of Theorem 2 is given in Appendix A, page 13.

Remark 6 (Determinism of the enforcer). Since we consider synchronous programs, the enforcer should be deter-
ministic. Regarding determinism, note that though Aϕ is deterministic, the enforcer E∗ϕ may be non-deterministic,
because when the received input x (resp. output y) does not lead to an accepting state from the current state q in AϕI

,
(resp. Aϕ), it is edited in step 8 (resp. step 15) of the algorithm. Note that editIAϕI

(q) (resp. editOAϕ(q, x) where
x ∈ editIAϕI

(q)), may contain more than one element as illustrated via an example in Remark 2, and nondet–editIAϕI

(resp. nondet–editOAϕ
) will choose one element from the set editIAϕI

(resp. editOAϕ
). However, it is straightforward

to make the behavior deterministic by computing editIAϕI
(q) off-line for all q ∈ Q \ {qv}, and selecting one element

randomly from editIAϕI
(q) and remembering the selection for each q by storing in a table with size |Q|. Thus, when-

ever in some state q and when the input read x does not lead to an accepting state from q (i.e, the condition tested in
line 5 evaluates to false), in step 8 we check the element corresponding to the state q from the table and assign it to
x′. Similarly, for event q ∈ Q \ {qv}, and for all x ∈ editIAϕI

(q), we can compute editOAϕ(q, x) off-line, select one
element randomly and store the selection in a table with size |Q×ΣI |. Thus, whenever in some state q, when (x′, y)
(where x′ is the transformed input and y is the output read) does not lead to an accepting state, in step 15 we check the
element corresponding to (q, x′) from the table and assign it to y′.

5 Application to SCCharts

SCCharts is a Statechart dialect that has been designed for safety-critical systems and offers deterministic concur-
rency [21]. We implemented the algorithm presented in Section 4 in an SCCharts compilation framework5 according
to the single-pass language-driven incremental compilation approach [14]. Here, a safety automaton is automatically
transformed into a synchronous enforcer using model-to-model transformations. The generated enforcer has three con-
current regions, one for reading and editing the inputs, one for invoking the tick function ptick with the edited inputs
and a final one for processing and emitting the outputs. The three components exactly match the steps of the algorithm
presented in Section 4.

Figure 5 depicts the example safety automaton ABO SA in SCCharts and the automatically generated Enforcer
ABO Enf. In this example, A and B serve as input vector, whereas O is the only output. The automaton only has two
states, the initial state q0 and the violation state qv . The safety property says that A and B and also B and O may not
be present at the same time.

5 https://rtsys.informatik.uni-kiel.de/kieler

9

https://rtsys.informatik.uni-kiel.de/kieler

Fig. 5: Example safety automaton ABO in SCCharts (left) and its automatically generated enforcer (right).

Examples6 Tick (LoC) # Properties Enf. (LoC) Time (µs) Time w/ Enf. (µs) Incr. (%)
Null 0 0 0 0.654 0.752 14.98

ABRO 23 1 21 1.208 1.565 29.55
ABO 28 1 21 0.998 1.368 37.10

Reactor 32 2 32 1.587 2.137 34.61
Faulty Heart Model 43 2 40 1.346 1.869 38.85
Simple Heart Model 76 2 40 2.175 2.825 29.86

Traffic Light 171 3 41 4.039 4.707 16.53
Pacemaker 271 2 35 7.302 8.318 13.91

FHM + Pacemaker 314 2 35 9.195 10.306 12.08
Table 2: Evaluation results.

Remark 7. In the ABO example, Figure 5, two regions (tick and output) concurrently write to a shared variable O.
Usually, this would be considered a write-write race, leading either to non-determinism, e.g. in Java threads, or re-
jection at compile time due to non-causality [3], as in synchronous languages. However, we can take advantage of
the fixed execution sequence of the three regions during every tick, following Algorithm 1. First a transition in the
input region is executed, followed by the tick region and finally the output region. This approach, thus, follows the
PRET-C [1] semantics, which is causal by construction.

In order to evaluate this implementation we used a series of models with increasing sizes as can be seen in Table 2.
To generate the mean values we simulated every model 5 times with each run consisting of 1000 ticks. As inputs
for each model, a random environment was created. The whole setup was executed for two cases. Firstly, the plain
model was simulated within its environment. Secondly, the same environment was used to simulate the model again
with an enforcer in between. The number of enforced properties (entry “# Properties” in Table 2) range from 0 to 3
including properties that enforce inputs and also outputs (bi-directional properties). All experiments were conducted
on an embedded system equipped with an 1 GHz ARM Cortex-A7 Dual-Core. Depending on the model size and the
number of properties enforced, we see an increase of mean execution time between 12%-38% when simulating with an
enforcer. Due to the netlist-based code generation of KIELER, there is a constant overhead because of the tick function
call. Therefore, the overhead decreases percentage-wise with increasing model size. The Null model test measures the
overhead of this black-box call with an enforcer with 0 safety properties. We observe a constant overhead of 0.1µs
here.

2 ABRO from [4], ABO from [21], Reactor from [20], Simple Heart Model and Pacemaker are remodeled SCCharts variants
from [10], Faulty Heart Model is a variant of the Simple Heart Model with deliberately flawed pulse signals, Traffic Light
from [13] (remodeled from Ptolemy Traffic Light)

10

As a concrete case study, we selected a pacemaker based on [10], which has been implemented in SCCharts.
As second experiment we ran the Faulty Heart Model together with the Pacemaker. The results of the close-loop
simulation can be seen in the last row of Table 2. Here, the Faulty Heart Model serves as environment for the
Pacemaker and generates flawed pulse signals for the heart. We added an enforcer to the pacemaker to make sure
that atrial and ventricular signals cannot occur simultaneously, which results in editing the input vector, and also that
the pacemaker does not emit pace signals for both in return, which results in editing the output vector. We observe a
mean overhead of 12% when using the enforcer.

6 Related Work

Synthesizing enforcers from properties is an active area of research. According to how an enforcer is allowed to correct
the input sequence, several RE models have been proposed. Security automata proposed by Schneider [19] focus on
enforcement of safety properties, where the enforcer blocks the execution when it recognizes a sequence of actions
that doses not satisfy the desired property. Edit automata [12] allows the enforcer to correct the input sequence by
suppressing and (or) inserting events, and the RE mechanisms proposed in [8,15] allows buffering events and releasing
them upon observing a sequence that satisfies the desired property. Recently, compositionality of enforcers has been
studied in [16]. Given a set of properties over the same alphabet, the problem studied in [16] addresses whether it
is possible to synthesize multiple enforcers, one for each property, and whether composing enforcers (in series or in
parallel) can enforce all the properties. Moreover, the enforcement framework in [16] allows to buffer (delay) events.
These approaches focus on uni-directional RE.

Mandatory Result Automata (MRAs) [6] extended edit-automata [12], by considering bi-directional runtime en-
forcement. Compared to the other RE frameworks such as [19,8,12,15], in MRA the focus is on handling communi-
cation between two parties. However none of the above approaches are suitable for reactive systems since halting the
program and delaying actions is not suitable. This is because for reactive systems the enforcer has to react instanta-
neously.

Our work is closely related to [5], which introduces a framework to synthesize enforcers for reactive systems,
called as shields, from a set of safety properties. In our work, we restrict to prefix-closed safety properties. The
approach in [5] seems to consider more that prefix-closed properties (where properties are expressed as automata),
but not all regular properties. Also, the approach in [5] has the notion of k-stabilization where the shield allows to
deviate from the property for k consecutive steps whenever a property violation is unavoidable. If a second violation
occurs within k steps, then the shield enters into a fail-safe mode, where it ensures only correctness. So, if two or more
errors occur within k-steps, then the shield may generate outputs arbitrarily to satisfy the property being monitored
by ignoring outputs from the system being monitored. In our approach, if the input given to the enforcer satisfies the
property, then the enforcer does not modify any event. In case if a violation is noticed upon some event, the enforcer
corrects it (to avoid violation), and continues to minimize deviation also for the future input events depending on the
state of the enforcer and the received input event. Moreover, in [5], the shield is uni-directional, where it observes
inputs from the environment and outputs from the system (program), and transforms erroneous outputs. In our work,
we consider bi-directional enforcement, as explained and illustrated in Fig. 1.

Note that when we consider safety-critical embedded systems such as medical devices and automotive systems, it
is also utmost important to monitor and transform “illegal” inputs, before they are fed to the program. For instance,
suppose that there are multiple sensors, and their values are inputs from the environment to the enforcer. Some sensors
may fail or may be attacked by some intruder. Unlike [5], which ignores inconsistent inputs, our work is able to deal
with both the inputs (from the environment) and the outputs (from the synchronous program) simultaneously during
each reaction.

7 Conclusions

Synchronous observers are used to express safety properties for synchronous programs, which may be verified ei-
ther statically or during runtime. This paper extends observers by proposing the concept of runtime enforcers for
synchronous programs. The property to be enforced is modeled as a safety automaton, which is syntactically like

11

an observer (expressed as an automaton with a single violation state) referring to both inputs and outputs of the
synchronous program. We formalise, for the first time, the runtime enforcement synthesis problem for synchronous
reactive systems. We define enforceability conditions, provide an algorithm, and prove its correctness. The synthesised
enforcer interacts with a black-box synchronous program and its adjoining environment to ensure that the property in
question holds during program execution. We have implemented the proposed enforcer synthesis algorithm for the
SCCharts synchronous language. We highlight the applicability of the proposed approach by enforcing policies over
a synchronous pacemaker model. In the near future, we will consider several extensions, including enforcement with
valued inputs and outputs (valued signals), non-safety properties, and distributed enforcement.

References

1. S. Andalam, P. S. Roop, A. Girault, and C. Traulsen. A predictable framework for safety-critical embedded systems. IEEE
Transactions on Computers, 63(7):1600–1612, 2014.

2. C. Andre, F. Boulanger, and A. Girault. Software implementation of synchronous programs. In Application of Concurrency to
System Design, 2001. Proceedings. 2001 International Conference on, pages 133–142. IEEE, 2001.

3. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The synchronous languages 12 years
later. Proceedings of the IEEE, 91(1):64–83, Jan 2003.

4. G. Berry. The Esterel v5 Language Primer, Version v5 91. Centre de Mathématiques Appliquées Ecole des Mines and INRIA,
06565 Sophia-Antipolis, 2000.

5. R. Bloem, B. Könighofer, R. Könighofer, and C. Wang. Shield synthesis: Runtime enforcement for reactive systems. In TACAS,
volume 9035 of LNCS. Springer, 2015.

6. E. Dolzhenko, J. Ligatti, and S. Reddy. Modeling runtime enforcement with mandatory results automata. Int. J. Inf. Sec.,
14(1):47–60, 2015.

7. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. In Engineering Dependable Software Systems,
volume 34, pages 141–175. IOS Press, 2013.

8. Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier. Runtime enforcement monitors: composition, synthesis, and en-
forcement abilities. FMSD, 38(3):223–262, 2011.

9. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification of reactive systems. In Algebraic
Methodology and Software Technology (AMAST93), pages 83–96. Springer, 1994.

10. Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and verification of a dual chamber implantable pace-
maker. In TACAS, pages 188–203. Springer, 2012.

11. M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic and Algebraic Programming,
78(5):293–303, 2009.

12. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM Trans. Inf. Syst. Secur., 12(3):19:1–
19:41, Jan. 2009.

13. C. Motika, H. Fuhrmann, R. von Hanxleden, and E. A. Lee. Executing domain-specific models in Eclipse. Technical Report
1214, Christian-Albrechts-Universität zu Kiel, Department of Computer Science, October 2012. ISSN 2192-6247.

14. C. Motika, S. Smyth, and R. von Hanxleden. Compiling SCCharts–A case-study on interactive model-based compilation. In
ISoLA, volume 8802 of LNCS, pages 443–462, Corfu, Greece, 2014.

15. S. Pinisetty, Y. Falcone, T. Jéron, H. Marchand, A. Rollet, and O. Nguena Timo. Runtime enforcement of timed properties
revisited. FMSD, 45(3):381–422, 2014.

16. S. Pinisetty and S. Tripakis. Compositional runtime enforcement. In NASA Formal Methods Symposium, NFM 2016, Min-
neapolis, MN, USA, pages 82–99. Springer, 2016.

17. P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber. Automatic testing of reactive systems. In Real-Time Systems Sympo-
sium, pages 200–209. IEEE, 1998.

18. J. Rushby. The versatile synchronous observer. In Specification, Algebra, and Software, pages 110–128. Springer, 2014.
19. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50, 2000.
20. C. Traulsen, T. Amende, and R. von Hanxleden. Compiling SyncCharts to Synchronous C. In Proceedings of the Design,

Automation and Test in Europe Conference (DATE’11), pages 563–566, Grenoble, France, March 2011. IEEE.
21. R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado, S. Mercer, and O. O’Brien. SCCharts:

Sequentially constructive statecharts for safety-critical applications. In PLDI, pages 372–383, NY, USA, 2014. ACM.

12

A Appendix: Proofs

Proof (of Theorem 1). Let us recall Theorem 1. Consider a property ϕ defined as SA Aϕ = (Q, q0, qv, Σ,→)7.
Property ϕ is enforceable iff the condition (EnfCo) holds which is the following condition: ∀q ∈ Q, q 6= qv =⇒
∃(x, y) ∈ Σ : q

(x,y)−−−→ q′ ∧ q′ 6= qv .
We prove that:

– Sufficient: If condition (EnfCo) holds then Eϕ according to Definition 3 exists.
Due to condition (EnfCo), whatever may be the current state q ∈ Q \ {qv} of the enforcer, there is at least one
possibility to correct the event that it receives when in state q (in case if the received event leads to qv from q).
That is, due to condition (EnfCo), ∀q ∈ Q \ {qv}, we know for sure that editIAϕI

(q) will be non-empty, and
∀q ∈ Q \ {qv},∀x ∈ editIAϕI

(q) : editOAϕ(q, x) will be also non-empty.
For any property ϕ defined as SA Aϕ, the enforcement function E∗ϕ (Definition 5) is an enforcer for ϕ which
satisfies all the constraints according to Definition 3. Theorem 2 shows that for any property ϕ (defined as SAAϕ)
that satisfies the condition for enforceability (EnfCo), the enforcement function E∗ϕ (Definition 5) is an enforcer
for ϕ, that is, it satisfies (Snd), (Tr), (Mono), (Inst), and (Cau) constraints of Definition 3.

– Necessary: If Eϕ according to Definition 3 exists, then condition (EnfCo) holds.
Suppose that an enforcer Eϕ for ϕ according to Definition 3 exists and assume that condition (EnfCo) does not
hold for Aϕ.

Since condition (EnfCo) does not hold, ∃q ∈ Q \ {qv} : ∀(x, y) ∈ Σ : q
(x,y)−−−→ qv , i.e., there exists a location

q ∈ Q \ {qv} such that all the outgoing transitions from q go to qv .
Since all the locations in Q are reachable from q0, ∃σ ∈ Σ∗ : q0

σ−→ q, i.e., there certainly exists a word σ ∈ Σ∗
that leads to the problematic accepting location q (which has all its outgoing transitions to qv) from the initial
location q0.
If σ is the input word to the enforcer, then due to constraint (Tr), it cannot edit any event in σ, and the enforcer
produces σ as output and reaches location q. When in location q, upon receiving any event (x, y) ∈ Σ, the enforcer

has no possibility to correct it, since every event in Σ leads to qv from q (i.e., since ∀(x, y) ∈ Σ : q
(x,y)−−−→ qv).

Thus, ∀(x, y) ∈ Σ, when the input word given to the enforcer is σ · (x, y), the enforcer cannot produce any event
as output since editIϕI

() and editOϕ() from location q will be empty, violating constraints (Inst) and (Cau). Thus,
our assumption is false and condition (EnfCo) holds for Aϕ.

Proof (of Theorem 2). Let us recall the condition for enforceability: A propertyϕ defined as SAAϕ = (Q, q0, qv, Σ,→
) is enforceable iff

∀q ∈ Q, q 6= qv =⇒ ∃(x, y) ∈ Σ : q
(x,y)−−−→ q′ ∧ q′ 6= qv.

Let us also recall the definition of function E∗ϕ : Σ∗ → Σ∗ (Definition 5). Let σ = (x1, y1) · · · (xk, yk) ∈ Σ∗ be a
word received by Algorithm 1. Then we let E∗ϕ(σ) = (x′1, y

′
1) · · · (x′k, y′k), where (x′t, y

′
t) is the pair of events output

by Algorithm 1 in Step 17, for t = 1, . . . , k.
Note that the input automaton AϕI

= (Q, q0, qv, ΣI ,→I) is obtained from Aϕ by projecting on inputs (See
Definition 2, Section 2).

We shall prove that given any safety property ϕ defined as SA Aϕ that satisfies condition (EnfCo), the function
E∗ϕ is an enforcer for ϕ, that is, it satisfies (Snd), (Tr), (Mono), (Inst), and (Cau) constraints of Definition 3.

Let us prove this theorem using induction on the length of the input sequence σ ∈ Σ∗ (which also corresponds to
the number of ticks/iterations of Algorithm 1).

Induction basis. Theorem 2 holds trivially for σ = ε since the algorithm will not release any input-output event as
output and thus E∗ϕ(ε) = ε.

Induction step. Assume that for every σ = (x1, y1) · · · (xk, yk) ∈ Σ∗ of some length k ∈ N, let E∗ϕ(σ) =
(x′1, y

′
1) · · · (x′k, y′k) ∈ Σ∗, for t = 1, . . . , k, and Theorem 2 holds for σ, i.e., E∗ϕ(σ) satisfies the (Snd), (Tr), (Mono),

(Inst), and (Cau) constraints. Let q ∈ Q \ {qv} be the current state of both the automataAϕ andAϕI
after processing

7 Note that we consider that Aϕ is deterministic and complete, and Q does not contain any (redundant) locations that are not
reachable from q0 in 1 or more steps.

13

input σ of length k, i.e., q corresponds to the state that we reach upon E∗ϕ(σ) in Aϕ, and the state that we reach in the
automaton AϕI

upon E∗ϕ(σ)I . Note that the current state q in Algorithm 1 can never be qv (q is initialized to q0 and it
is updated in step 18 to a state q′ ∈ Q \ {qv}).

We now prove that for any event (xk+1, yk+1) ∈ Σ, Theorem 2 holds for σ · (xk+1, yk+1), where xk+1 ∈ ΣI is
the input event read by Algorithm 1, and yk+1 ∈ ΣO is the output event read by Algorithm 1 in k+ 1th iteration (i.e.,
when t = k + 1). We have the following two possible cases based on whether there is a transition in the automaton
Aϕ from the current state q upon (xk+1, yk+1) to an accepting state.

– ∃q′ ∈ Q : q
(xk+1,yk+1)−−−−−−−−→ q′ ∧ q′ 6= qv .

In Algorithm 1, the condition tested in step 5 will evaluate to true since from Lemma 1, in AϕI
we will have

∃q′ ∈ Q : q
xk+1−−−→I q

′ ∧ q′ 6= qv , and thus x′k+1 = xk+1.

Also, the condition tested in step 12 will evaluate to true in this case since ∃q′ ∈ Q : q
(xk+1,yk+1)−−−−−−−−→ q′ ∧ q′ 6=

qv , and thus y′k+1 = yk+1. At the end of the k + 1th iteration, the input-output event released as output by
the algorithm in step 17 is (xk+1, yk+1). The output of the algorithm after completing the k + 1th iteration is
E∗ϕ(σ · (xk+1, yk+1)) = E∗ϕ(σ) · (xk+1, yk+1).
Regarding constraint (Snd), in this case, what has been already released as output by the algorithm earlier before
reading event (xk+1, yk+1) (i.e., E∗ϕ(σ)) followed by the new input-output event released as output (xk+1, yk+1)
satisfies the property ϕ, and thus constraint (Snd) holds.
Regarding constraint (Mono), it holds since σ 4 σ · (xk+1, yk+1) and also E∗ϕ(σ) 4 E∗ϕ(σ) · (xk+1, yk+1).
Regarding constraint (Inst) from the induction hypothesis, we have for σ of some length k, |σ| = |Eϕ(σ)|. We also
have E∗ϕ(σ · (xk+1, yk+1)) = E∗ϕ(σ) · (xk+1, yk+1). Thus, |σ · (xk+1, yk+1)| = |E∗ϕ(σ · (xk+1, yk+1))| = k+ 1,
and constraint (Inst) holds.
Constraint (Tr) holds in this case since the output of the enforcer before reading (xk+1, yk+1) i.e.,E∗ϕ(σ) followed
by the new input-output event read (xk+1, yk+1) satisfies the property ϕ and we already saw that the output event
released by the algorithm after reading (xk+1, yk+1) is E∗ϕ(σ) · (xk+1, yk+1).
Regarding constraint (Cau), in this case from the induction hypothesis, from the definitions of editIAϕI

and
editOAϕ

we have xk+1 ∈ editIAϕI
(q), and also yk+1 ∈ editOAϕ

(q, xk+1).
Theorem 2 thus holds for σ · (xk+1, yk+1) in this case.

– @q′ ∈ Q : q
(xk+1,yk+1)−−−−−−−−→ q′ ∧ q′ 6= qv .

In this case, we have two sub-cases, based on whether ∃q′ ∈ Q : q
xk+1−−−→I q

′ ∧ q′ 6= qv in AϕI
.

• ∃q′ ∈ Q : q
xk+1−−−→I q

′ ∧ q′ 6= qv .
In Algorithm 1, the condition tested in step 5 will evaluate to true and thus x′k+1 = xk+1.

In this case, the condition tested in step 12 will evaluate to false since @q′ ∈ Q : q
(xk+1,yk+1)−−−−−−−−→ q′ ∧ q′ 6= qv .

y′k+1 will thus be an element belonging to the set editOAϕ
(q, xk+1) if editOAϕ

(q, xk+1) is non-empty. It
is important to notice that editOAϕ

(q, xk+1) will be non-empty in this case since we know for sure that

∃y′k+1 ∈ ΣO, q′ ∈ Q : q
(xk+1,y

′
k+1)−−−−−−−−→ q′∧ q′ 6= qv (from the condition for enforceability (EnfCo), hypothesis

(q 6= qv), definition of editOAϕ
, and Lemma 1). Thus y′k+1 is an element belonging to editOAϕ

(q, xk+1). The
output of the algorithm after completing the k+1th iteration isE∗ϕ(σ ·(xk+1, yk+1)) = E∗ϕ(σ) ·(xk+1, y

′
k+1).

Regarding constraint (Snd), from the definition of editOAϕ
, we know that E∗ϕ(σ) followed by the new input-

output event released as output (xk+1, y
′
k+1) satisfies property ϕ, and thus constraint (Snd) holds.

The reasoning for constraints (Mono) and (Inst) are similar to the previous cases since we saw that Algo-
rithm 1 releases a new event (xk+1, y

′
k+1) as output after reading event (xk+1, yk+1) after completing k+1th

iteration.
Constraint (Tr) holds trivially in this case since E∗ϕ(σ) · (xk+1, yk+1) 6|= ϕ.
Regarding constraint (Cau), in this case from the induction hypothesis, from the definitions of editIAϕI

we
have xk+1 ∈ editIAϕI

(q), and we already discussed that editOAϕ
(q, xk+1) will be non-empty and thus con-

straint (Cau) holds in this case.
• @q′ ∈ Q : q

xk+1−−−→I q
′ ∧ q′ 6= qv .

14

In Algorithm 1, the condition tested in step 5 will evaluate to false in this case. It is important to notice that
editIAϕI

(q) will be non-empty since from the condition for enforceability and Lemma 1, we know for sure

that ∃x′ ∈ ΣI , q′ ∈ Q : q
x′
k+1−−−→ q′ ∧ q′ 6= qv in the automatonAϕI

. Thus, x′k+1 will be an element belonging
to editIAϕI

(q).

We have two sub-cases based on whether ∃q′ ∈ Q : q
(x′

k+1,yk+1)−−−−−−−−→ q′ ∧ q′ 6= qv or not.

∗ ∃q′ ∈ Q : q
(x′

k+1,yk+1)−−−−−−−−→ q′ ∧ q′ 6= qv .
In Algorithm 1, the condition tested in step 12 will evaluate to true in this case. Thus, y′k+1 = yk+1 in
this case and the event released as output by the algorithm at the end of k+1th iteration is (x′k+1, yk+1).
We have E∗ϕ(σ · (xk+1, yk+1)) = E∗ϕ(σ) · (x′k+1, yk+1).

Regarding constraint(Snd), from the condition of this case (i.e., ∃q′ ∈ Q : q
(x′

k+1,yk+1)−−−−−−−−→ q′ ∧ q′ 6= qv),
we know that E∗ϕ(σ) followed by the new input-output event released as output (x′k+1, yk+1) satisfies the
property ϕ, and thus constraint (Snd) holds.
The reasoning for constraints (Mono) and (Inst) are similar to the previous cases since we saw that the
algorithm releases a new event (x′k+1, yk+1) as output after reading event (xk+1, yk+1) at the end of
k + 1th iteration.
Constraint (Tr) holds trivially in this case since E∗ϕ(σ) · (xk+1, yk+1) 6|= ϕ.
Regarding constraint (Cau), we already discussed that editIAϕI

(q) is non-empty and x′k+1 ∈ editIAϕI
(q),

and yk+1 ∈ editOAϕ(q, x
′
k+1) from the condition of this case and definitions of editIAϕI

and editOAϕ .

∗ @q′ ∈ Q : q
(x′

k+1,yk+1)−−−−−−−−→ q′ ∧ q′ 6= qv .
In the algorithm, the condition tested in step 12 will evaluate to false in this case.
y′k+1 will thus be an element belonging to the set editOAϕ

(q, x′k+1) if editOAϕ
(q, x′k+1) is non-empty.

Note that editOAϕ(q, x
′
k+1) will be non-empty in this case since we know for sure that ∃y′k+1 ∈ ΣO, q′ ∈

Q : q
(x′

k+1,y
′
k+1)−−−−−−−−→ q′ ∧ q′ 6= qv (from the enforceability condition, definitions, and Lemma 1). Thus

y′k+1 is an element belonging to editOAϕ(q, x
′
k+1). The output of the algorithm after completing the

k + 1th iteration is E∗ϕ(σ · (xk+1, yk+1)) = E∗ϕ(σ) · (x′k+1, y
′
k+1) where x′k+1 is an element belonging

to editIAϕI
(qI) and y′k+1 is an element belonging to editOAϕ

(q, x′k+1).
Regarding constraint (Snd), from the definitions of editIAϕI

and editOAϕ
, we know thatEϕ(σ)·(x′k+1, y

′
k+1)

satisfies the property ϕ and thus constraint (Snd) holds.
The reasoning for constraints (Mono) and (Inst) are similar to the previous cases since we saw that the
algorithm releases a new event (x′k+1, y

′
k+1) as output after reading event (xk+1, yk+1).

Constraint (Tr) holds trivially in this case since Eϕ(σ) · (xk+1, yk+1) 6|= ϕ.
Regarding constraint (Cau), we already discussed that editIAϕI

(q) is non-empty and x′k+1 ∈ editIAϕI
(q),

and editOAϕ(q, x
′
k+1) is also non-empty and y′k+1 ∈ editOAϕ

(q, x′k+1) and thus constraint (Cau) holds.
Theorem 2 thus holds for σ · (xk+1, yk+1) in this case.

Thus Theorem 2 holds for σ · (xk+1, yk+1).

B Appendix: Transformation of Non-Enforceable Properties

Let us recall the discussion about non-enforceable properties in Section 3 (Example 3, and the condition for enforce-
ability (EnfCo)). We also saw that some non-enforceable properties can be transformed in to enforceable properties
(by excluding some behaviors from the given non-enforceable property) via an example discussed in Remark 5, and
an algorithm for transformation of non-enforceable properties is also briefly discussed in Section 3 after Remark 5.

Let us now discuss in detail about an algorithm that takes a safety automaton Aϕ that does not satisfy the condi-
tion for enforceability (EnfCo) and checks whether Aϕ can be transformed into an enforceable property (by exclud-
ing some behaviors) or not. If Aϕ can be transformed, then the algorithm returns the transformed safety automaton
sub(Aϕ). The algorithm excludes only problematic paths (behaviors) fromAϕ, and all good behaviors will be retained
in sub(Aϕ) (i.e., removal of behaviors is done minimally).

15

Algorithm 2 TransformNonEnf

1: sub(Aϕ)← Aϕ = (Q, q0, qv, Σ,−→)

2: while ∃q ∈ Q \ {qv} : ∀(x, y) ∈ Σ, q
(x,y)−−−→ qv do

3: for all q ∈ Q \ {qv} do

4: if ∀(x, y) ∈ Σ, q (x,y)−−−→ qv then
5: if q = q0 then
6: RETURN(NONE)
7: else
8: remove(q)
9: end if

10: end if
11: end for
12: end while
13: RETURN(sub(Aϕ))

Algorithm 2 takes an SA Aϕ = (Q, q0, qv, Σ,−→) (that does not satisfy the condition for enforceability) as input
and returns an SA sub(Aϕ) which is enforceable or it returns NONE if Aϕ cannot be transformed into an enforceable
property. sub(Aϕ) is initialized with the Aϕ. Function remove takes a state q ∈ Q \ {qv} and merges it with qv (i.e.,
q is removed from the set of states Q and all the incoming transitions to q go to qv instead).

The algorithm proceeds as follows: The condition of the while loop tests whether there are any states in sub(Aϕ)
that have all its outgoing transitions to qv . If this condition evaluates to true, then each state q in Q \ {qv} is checked
(whether all the outgoing transitions from q go to qv). If q = q0 is such a state (i.e., all the outgoing transitions from q0
go to qv)), then the algorithm immediately returns “NONE” (i.e., that Aϕ cannot be transformed into an enforceable
property). Otherwise, if q is different from q0 and if all the outgoing transitions from q go to qv , then state q is removed
and merged with qv . Finally, when there are no states in Q \ {qv} with all outgoing transitions to qv , the while loop
ends and the transformed automaton sub(Aϕ) is returned.

Note that if the automaton that is given as input to the algorithm already satisfies the condition for enforceability
(EnfCo), then the algorithm returns the same automaton (the while loop condition test will evaluate to false and thus
is never executed).

Example 4. Let us now consider some examples. Consider the example non-enforceable property discussed in Sec-
tion 3, presented in Figure 3. If the property automaton in Figure 3 is given as input to Algorithm 2, in the first iteration,
the while condition test will evaluate to true since there is a state q1, such that all the outgoing transitions from q1 go to
qv (i.e., q1

Σ−→ qv). Thus, in the first iteration, q1 will be merged with qv (i.e., q1 will be removed and all the incoming
transitions to q1 go to qv). Before the second iteration of the while loop starts, we will have only two locations q0 and
qv in the automaton, where all the transitions from location q0 go to qv . In the second iteration the while condition will
evaluate to true, and the algorithm returns NONE, since q0

Σ−→ qv and the initial locations also needs to be removed.

Example 5. We already discussed in Section 3 that the example non-enforceable presented in Figure 4a can be trans-
formed to an enforceable property. The automaton in Figure 4b presents the transformed automaton returned by Algo-
rithm 2.

16

	Runtime enforcement of reactive systems using synchronous enforcers

