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ABSTRACT

Embedded software is found everywhere from our highly vis-
ible mobile devices to the confines of our car in the form
of smart sensors. Embedded software companies are under
huge pressure to produce safe applications that limit risks,
and testing is absolutely critical to alleviate concerns re-
garding safety and user privacy. This requires using large
test suites throughout the development process, increasing
time-to-market and ultimately hindering competitivity.

Speeding up test execution is, therefore, of paramount
importance for embedded software developers. This is tradi-
tionally achieved by running, in parallel, multiple tests on
large-scale clusters of computers. However, this approach
is costly in terms of infrastructure maintenance and energy
consumed, and is at times inconvenient as developers have
to wait for their tests to be scheduled on a shared resource.

We propose to look at exploiting GPUs (Graphics Process-
ing Units) for running embedded software testing. GPUs are
readily available in most computers and offer tremendous
amounts of parallelism, making them an ideal target for em-
bedded software testing. In this paper, we demonstrate, for
the first time, how test executions of embedded C programs
can be automatically performed on a GPU, without involving
the end user. We take a compiler-assisted approach which
automatically compiles the C program into GPU kernels for
parallel execution of the input tests. Using this technique,
we achieve an average speedup of 16× when compared to
CPU execution of input tests across nine programs from an
industry standard embedded benchmark suite.

1 INTRODUCTION

The embedded software market has grown at an extraordinary
pace over the last decade. Embedded systems are ubiquitous,
featuring in consumer electronics like mobile communication
devices, safety critical systems such as car sensors, breaking
systems, medical monitoring devices and telecommunication
systems. The widespread use and close daily interaction with
these systems makes safety concerns a top priority when
developing and approving embedded software. Testing such
software is crucial for gaining confidence on their safety, and
limiting risks to users and companies.

1.1 Problem

Although individual embedded software code bases tend to
be orders of magnitudes smaller than traditional applications,
their test suites are typically large due to the focus on safety.
As a result, the development process is hindered by the
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constant need for running large test suites, increasing costs
and slowing down innovation. Speeding up the testing process
of embedded software is critical for maintaining fast time-to-
market in a competitive market. This need is exacerbated
by development practices such as Test-Driven Development
(TDD) that relies on short development cycles and repeated
runs of tests for better quality software. Software companies
in this domain are able to confirm this observation - Keysight
Technologies that develop software for the telecommunication
industry have a constant need to test state machines that are
typically small but require a large number of tests, to achieve
confidence in their correctness. They state that, “Testing
the finite state machines is part of the test cycles for TDD,
the shorter we can keep the time to execute the test suites,
while achieving full coverage, the better. The flip side is,
the more coverage we add the slower the tests become and
it slows down the TDD and Continuous Integration cycles.”
Oxford Wave Research who specialize in audio fingerprinting
software, require large test suites for fairly small code bases
in their products, and state that “the time taken to run all
our tests on one of our products is approximately 60 hours”.

Managing limited battery power when running in-situ
test suites periodically on the embedded device is also a
concern [14]. Existing solutions that have focused on reducing
the number of test cases to be executed are not suitable to
the field of embedded software since it comes at the expense
of fault finding effectiveness [11, 12], departing from the
crucial goal of ensuring safety. Therefore, new approaches
are necessary that can maintain the large number of test
cases while accelerating the overall test execution process.

To combat the problem with time consuming test runs
during development, industry is moving towards distributing
test execution among multiple machines, executing them con-
currently to reduce total run time. This approach, however,
is costly in terms of resources, infrastructure, maintenance
and energy consumed. GPUs (Graphics Processing Units)
have emerged as formidable parallel accelerators that are
easily available, present in virtually any modern computer
from desktop workstations to laptops. We believe GPUs will
find particular use in testing in-development code by allowing
developers to run tests quickly on their local machine instead
of waiting to access a shared resource. Rajan et al. [18] have
shown that GPUs offer large potential for accelerating test
suite executions. However, they manually transform pro-
grams and tests to run on the GPU. GPUs are notoriously
hard to program and porting an existing application to the
GPU might introduce bugs on its own, defeating the purpose.
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1.2 Contributions

In this paper, we show that it is possible to automatically
accelerate embedded software test executions on the GPU
without requiring any GPU programming knowledge. We
take a compiler approach to solve this problem by automati-
cally generating GPU code from the original unmodified C
programs. We apply classical, time-proven, compiler trans-
formations that offer higher levels of guarantees than manual
porting of the original program to GPU. In addition to GPU
code generation, our tool-chain automatically handles data
transfers to and from the GPUs, completely relieving the
programmers from writing any GPU-specific code. It is worth
noting that we focus on functional testing, purely concerned
with the implementation behavior, so we can safely offload
the test execution on a different hardware.

We evaluate our approach using applications from the
automotive and telecom domain of the EEMBC industry-
standard benchmarks for embedded systems. The EEMBC
benchmark suite is designed to reflect real-world embedded
systems applications. It is created and maintained by an
industry consortium that includes major embedded systems
industry players like Samsung, Sony and Huawei. For each
benchmark, we automatically produce a GPU kernel which is
run in parallel across the input tests. Our results show that
running the generated GPU code on an Nvidia GPU achieves
a speedup of up to 53×, and an average speedup of 16× over
single thread performance across benchmarks, compared to
a speedup of 7× achieved with an 8 core CPU. We also offer
experimental evidence that the sequential program semantics
remains unchanged with our approach.

To summarize, this paper makes the following contribu-
tions:

(1) Presents an approach for automatically generating
GPU code from sequential C embedded applications
for accelerating testing.

(2) Improves usability by automatically launching test
executions on the GPU without requiring any expert
knowledge from programmers.

(3) Empirical evaluations on industry standard embed-
ded system benchmarks for correctness and perfor-
mance improvement.

(4) Analysis of benchmark features that are favorable
for speedup on GPUs.

The rest of this paper is organized as follows. Sections 2
and 3 discusses background and related work. Section 4
presents our approach which includes GPU code generation
and runtime. Our experimental methodology is described in
Section 5. Section 6 presents and discusses the results from
our experiments. Future work is presented in Section 7 while
section 8 concludes this paper.

2 BACKGROUND

Generally, GPUs consist of one or more compute units (a.k.a
streaming multiprocessors), which in turn contain one or
more processing elements (a.k.a streaming processors). The
processing elements execute groups of individual threads,

referred to as work-groups or blocks depending on the GPU
programming model, concurrently. The functions executed
by the GPU threads are called kernels. GPUs have SIMD
(single instruction, multiple data) architecture, in which all
threads in a work-group execute the same kernel with different
input data. This makes them a good fit for the execution of
functional software tests, in which the tested functionality is
executed multiple times with different test inputs.

A work-group is further divided into groups of threads
(typically 32) called warps. Threads belonging to a warp are
executed in lock-step, i.e all threads in a warp execute the
same instruction but on different data. If there is control-flow
divergence among threads in a warp, divergent instructions
will be serialised, impacting performance negatively. This has
implications for testing when test cases launched on the same
warp take different control-flow paths. We plan to investigate
methods to mitigate this effect in our future work.

The two most widely used programming models for GPU
programming are CUDA [1] and OpenCL [2]. Based on
C/C++ programming languages, they expose low-level hard-
ware details, which require the programmer to explicitly
express the parallelism in their algorithms. The mapping of
parallelism to compute units and threads is also explicitly
managed. OpenCL is our programming model of choice, since
it provides cross-platform functional portability, which could
potentially enable future research on testing using different
accelerator architectures. Groups of threads executing the
same kernel on a compute unit and sharing local memory is
referred to as a work-group in OpenCL.

OpenCL is a C-like language and as a result testing C
programs by translating them into an OpenCL kernel using
our approach is uncomplicated. However, GPUs are spe-
cialised and not all C/C++ features are supported by the
OpenCL compiler, which has implications for the scope of
C applications which can be tested on the GPU. Our tool
design takes this into consideration and includes methods to
handle it.

3 RELATED WORK

Existing work in reducing test suite execution time is primar-
ily focused on reducing the size of the test suite [23]. However,
it has been shown that reduction in test suite sizes can result
in reduced fault finding effectiveness [12],[11]. Additionally,
the criteria used to reduce test suite sizes – structural cov-
erage of the code, does not have a strong correlation with
effectiveness when size of the test suite is controlled for [12].
As a result, reducing execution time by discarding tests may
not be the preferred approach. Industry has looked at dis-
tributing test execution using multiple machines. Patent by
Kushneryk et al. [13] uses an auxiliary test environment1

to run test cases in parallel with the primary test environ-
ment. In this paper, we accelerate test suite execution by
effectively leveraging parallel accelerators such as GPUs, a

1They define environment to be well-known computing systems like
PCs, laptops, servers, etc.
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topic that has received little attention in the software testing
community.

General-purpose computing on GPUs (GPGPU) has been
successfully applied in a broad range of domains [6, 16, 20].
The key challenge, in general, is the identification of opportu-
nities to parallelize. There is growing interest in the software
engineering community to use the massive performance ad-
vantage offered by GPUs. Recenty, Yu et al. explored the use
of GPUs for test case generation [25]. Bardsley et al. have
developed a static verfication tool, GPUVerify, for analyz-
ing GPU kernels [7]. Li et al. [15] and Yoo et al. [24] have
adapted multi-objective evolutionary algorithms for test suite
optimization to execute on GPUs. They transform the al-
gorithm for regression test prioritization or minimization to
execute on a GPU, which is very different from the objective
and methodology in our approach.

The only paper to explore the use of GPUs to accelerate
test suite execution is [18], by Rajan et al. The key points in
their approach are: The program and its logic remains un-
changed. The changes to execute the tests in parallel on the
GPU are only to the program interface. The program func-
tionality is launched as a GPU kernel with each thread using
a different test input data. The approach in [18], however,
uses manual code transformation and is incomplete in tack-
ling GPU limitations with respect to ease of programming,
unsupported program features, and performance optimiza-
tions. The paper also lacks a detailed evaluation and analysis
of when the proposed technique will be useful. In this paper,
we tackle the feasibility and ease of use challenge by design-
ing a framework that allows test cases to be automatically
launched on the GPU without requiring any GPU program-
ming knowledge and improving supported program features.
We also show, through empirical evaluations, that the frame-
work preserves correctness and generates significant speedup
on industry standard embedded systems benchmarks. We
present detailed analysis of our results and identify features
in benchmarks that are suitable/unsuitable for test execution
on the GPU.

GPU programming poses many challenges for the devel-
oper, both in terms of programmability and performance.
The use of low-level programming models, such as CUDA and
OpenCL, requires familiarity with the architecture in order
to write correct parallel code, and effective optimizations in
order to reach the full performance potential of the GPU.
Previous research addresses these challenges by proposing
high-level programming frameworks, compilers and code gen-
eration tools. For instance, [19, 22] introduce and evaluate a
framework, which automatically generates low-level OpenCL
code from high-level parallel primitives. The work defines the
primitives, which correspond to parallel functionalities, e.g.
map and reduce, as well as a functional-style programming
language which is used by the programmer to express parallel
algorithms. Another example is SYCL [3], which provides a
high level-abstraction of OpenCL to allow programmers to
write GPU code in standard C++. Purely compiler-based
approaches include [8], targeting CUDA, and [10], aimed at
lower-level code generation. Both of them use the polyhedral

model for loop parallelization in order to transform portions
of the program into parallel code to be executed on the GPU.

These existing tools and frameworks provide high-level
mechanisms to both discover and express parallelism for the
GPU. They are, however, not suited for our purposes since
the need in our approach is not identification of parallelism,
as that is inherent in test execution - the test cases are
directly mapped to the GPU threads. The need lies in a
code generation tool that will take the CPU program and
transform it into an OpenCL kernel, without affecting the
core program functionality, while also launching it with a
different test case on each GPU thread. None of the existing
tools can provide this capability. In the next sections, we
describe the design and implementation of our framework
that addresses these needs.

4 OUR APPROACH

To automate the testing process, we have implemented a
framework, illustrated in Figure 1 with the following goals,
(1) Abstract away low level GPU details, making the ap-
proach accessible to all programmers, even those unfamiliar
with OpenCL, and (2) Allow automatic transformations of
program features typically unsupported on the GPU. Our
framework consists of two components,

(1) CodeGen - a code generation tool. It trans-
lates the tested C program to an OpenCL kernel,
which can be executed by the GPU threads. It also
generates data structures and functions, used by the
runtime, to transfer test cases and results between
the CPU and GPU memories. To do this, it takes
the unmodified source code of the tested program
and a configuration file as inputs.

(2) Runtime - a test execution system. The run-
time executes on the CPU. It performs the following
steps: (1) It reads the test cases, supplied in CSV
format, and transfers them to the GPU memory. (2)
It builds the OpenCL kernel, generated from the
tested program, and launches it in parallel on the
GPU threads. (3) When the GPU finishes execution,
it transfers the testing results back to the CPU for
inspection.

We describe the two components separately in the following
sections, using the example shown in Figure 2.
Example: Figure 2 shows a simple C program, which takes
two integers as command-line inputs, a and b, and adds them
to a global variable c, using the addc function. It prints
the results to standard output. A test case for this program
would consist of values for the two input integers - a and b,
and the expected result would be a value for the variable
sum.

4.1 CodeGen

The main task of our code generator is to convert the original
C program into an OpenCL kernel. As seen in Figure 1, the
CodeGen tool takes the unmodified C source code of the
tested program and a configuration file.
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kernel

Figure 1: Automated Test Execution on the GPU

4.1.1 Configuration. The configuration file describes the
test case inputs and results for the tested program. It is
used by CodeGen to generate the data structures which are
used to transfer test inputs and results between the CPU
and GPU memories. Figure 3 shows the configuration file for
the example program and the data structures generated by
the tool. The configuration file shows that the program takes
two integer inputs through the command line, corresponding
to argv indices 1 and 2, and produces a single integer result,
which corresponds to the sum variable. This simple program
uses integers, but we also support the use of custom data
types, pointers and arrays for the test case inputs and results.

As seen in Figure 3, the configuration is directly trans-
lated into data structures for the test case inputs - struct
test input, and test case results - struct test result. Code-
Gen outputs them in a header file structs.h, which is used
both by the CPU and GPU code.

CodGen also generates a parser for the Runtime, which
is used to read values for the test cases and assign them to
members of the generated memory structures.

4.1.2 Kernel Generation. Once the main data structures
have been created, CodeGen translates the tested program
into an OpenCL kernel which executes on the GPU threads.
This is achieved using a compiler-based approach which works
at the AST (Abstract Syntax Tree) level using the Clang C
frontend.

Figure 2 shows the kernel generated for the example pro-
gram. CodeGen changes the signature to the main function,
which now takes two arguments, (1) the test inputs; values
for which are initialised by the CPU, and (2) the test re-
sults, which will be calculated by the kernel. The memory
structures test input and test result are the ones gener-
ated by CodeGen, as described in Section 4.1.1. As seen
in Figure 2, each GPU thread, identified by its global id
(idx), selects a different test case for execution (input gen)
as well as a different test result, in which to record its outputs

(result gen). CodeGen replaces reading of input parameters
from argv with assignments from test case input gen. It also
also adds an assignment of the results of the test, variable
sum, to result gen.

In this way, CodeGen generates an OpenCL kernel for the
tested program. It is important to note that CodeGen does
not change the core algorithm of the program, but only its
input/output interface, ensuring that the tested functionality
is the same.

4.1.3 Code Transformations. While generating the OpenCL
kernel, CodeGen performs code transformations for C fea-
tures, which are not readily supported by the OpenCL stan-
dard.
Global scope variables. OpenCL does not support as-
signment to global scope variables. CodeGen moves them
to local scope by moving their declarations into the kernel
function, main kernel, and passing them as arguments to
any functions using them. By using pointers, the tool ensures
that any changes made to their values would be visible to the
all the other functions, preserving the “global” nature of the
original variable. This is shown in our example in Figure 2
with global variable c.
Command line arguments. Values for command line
arguments should be supplied as part of the test case input.
As seen in Section 4.1.2, CodeGen replaces references to the
command line arguments with references to the corresponding
values in the generated test input structure.
Standard input and output. Similar to command line
arguments, a value for every standard input needs to be
supplied as part of the test case. CodeGen then replaces
references to the standard input with references to the mem-
ory structures containing the test cases. Standard output is
commented out by CodeGen, except in the cases when it is
specified as the expected testing result in the configuration
file. In those cases, the tool replaces it with a write to the
generated test result structure.
Standard library calls. The OpenCL standard does not
support calls to the C Standard Library. To tackle this prob-
lem, a custom OpenCL implementation of the C Standard
Library is necessary. For this project, we implemented a small
subset of Standard Library functions in OpenCL, namely
functions in ctype.h, string.h, atoi and fgets. We took
inspiration from uClibc [4], a very small C standard library
typically used for embedded systems. In our future work,
we plan to add OpenCL implementations of other standard
library functions as the need for them arises.

4.1.4 Implementation details. CodeGen is implemented in
C++14, using the Clang LibTooling library [5]. It consists of
two main components: Kernel Generator and Data Structure
Generator. The Kernel Generator performs the code trans-
formations which translate the original C program into valid
OpenCL kernel code. It uses LibTooling’s AST Matchers to
perform sequential compiler passes, which find and transform
the relevant portions of the original program. It then uses
the Rewriter class inside the corresponding AST Handlers to
perform the transformations at source code level. The Data
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Listing 1: Original C program.

#include <stdio.h>

#include <stdlib.h>

int c;

int addc(int a, int b){

return a + b + c;

}

int main(int argc , char* argv []){

int a = atoi(argv [1]);

int b = atoi(argv [1]);

c = 3;

int sum = addc(a, b);

printf("%d + %d + %c = %d\n", a, b, c, sum);

}

Listing 2: Automatically generated OpenCL kernel.

#include "structs.h"

//#include <stdio.h>

//#include <stdlib.h>

/* int c;*/

int addc(int a, int b, int *c){

return a + b + (*c);

}

kernel void main_kernel(

global struct test_input* inputs ,

global struct test_result* results ){

int idx = get_global_id (0);

struct test_input input_gen = inputs[idx];

global struct test_result *result_gen = &results[idx];

int argc = input_gen.argc;

result_gen ->test_case_num = input_gen.test_case_num;

int c;

int a = input_gen.a;

int b = input_gen.a;

c = 3;

int sum = addc(a, b, &c);

/* printf ("%d + %d + %c = %d\n", a, b, c, sum );*/

result_gen ->sum = sum;

}

Figure 2: Example of converting a C program into an OpenCL GPU kernel using CodeGen.

Listing 3: Configuration file.

input: int a 1

input: int b 2

result: int sum variable: sum

Listing 4: Generated data structures - file structs.h.

typedef struct test_input{

int test_case_num;

int argc;

int a;

int b;

} test_input;

typedef struct test_result{

int test_case_num;

int sum;

} test_result;

Figure 3: Configuration file and generated data structures for the example program.

Structure Generator performs a straightforward translation
of the configuration file into data structures, and CPU code
to read and write to them. The source code for CodeGen,
along with instructions to build and execute it, can be found
at https://github.com/issta2017sub/CodeGen.

4.2 Runtime

The Runtime implements the CPU’s functionality for launch-
ing test cases for execution on the GPU. This functional-
ity is always the same for any tested C program. It con-
sists of reading values for the test cases from a CSV file,

building the OpenCL kernel for the tested program, launch-
ing the kernel with the supplied test cases and checking
that the test results are correct. The Runtime is imple-
mented in standard C, using the OpenCL API to perform
all the GPU related operations. The source code, along
with instructions to build and execute it, can be found at
https://github.com/issta2017sub/Runtime.

Test Cases. Test cases are provided in a CSV (Comma
Separated Value) file in which, (1) each row corresponds to
a test case, (2) the first column contains the id of the test
case, (3) the subsequent columns contain the input variables,
in the order in which they are given in the configuration file.

5
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For the example in Figure 2, a test case file with 5 test
cases could look like this:

1 13 7

2 50 22

3 1000 0

4 0 1000

5 0 0

where the values for inputs a and b for test case 1 are 13
and 7 respectively, for test case 2 they are 50 and 22 and so
on. The Runtime also supports custom data structures and
arrays for the test case inputs. The values for them are given
in the same CSV format. To parse and assign values to the
members of struct test input correctly, the Runtime uses
code, generated automatically by our CodeGen tool.

Kernel build and launch. After the Runtime has read the
values of the test cases, it stores them in an array of type
sruct test input. This array is transferred to GPU mem-
ory, from where each thread reads its respective test case
and executes it, as discussed in Section 4.1.2 and shown in
Figure 2. The Runtime builds and launches the OpenCL
kernel generated by CodGen, using the standard OpenCL
API.

Transfer results and check. Once the GPU kernel has exe-
cuted, we transfer results back to the host where the results
are validated against the gold output. Any difference ob-
served is recorded and presented to the user.

5 EXPERIMENT

We check the feasibility and performance of our approach on
C programs from the embedded systems domain. We seek
to assess three aspects in our evaluation, overhead of using
a GPU, speedup over single and multi-core CPU execution,
and correctness.

Kernel Execution versus Data Transfer Time: GPU pro-
grams have to copy data back and forth from the host memory
to perform I/O or when GPU memory is exhausted. Data
transfer between the GPU and host memory is slow due to
the high latency of the interface. We measure the time taken
to perform the input and output data transfers between host
and device and compare it to the computation time on the
GPU.

Speedup: For each subject program and associated sets
of test cases, we perform test executions on the (1) CPU
– that runs the original benchmark and tests without any
change on (i) 1 core sequentially, (ii) 2 cores, (iii) 4 cores,
and (iv) 8 cores. For multi-core execution, we use OpenMP
to launch test executions in parallel. (2) GPU – by trans-
forming the program interface and generating kernel and
host code through our tool. We measure and compare time
taken for executions on the CPU and GPU to assess speedup
achieved.

Correctness: We assess that our approach and tool pre-
serves correctness by not altering program functionality when
running tests on the GPU. For each subject program and
test suite, we collect outputs from test executions on the
CPU and those from the GPU and check if they are an exact
match.

5.1 Measurement

In our experiments, we use the following CPU – Intel(R)
Xeon(R) CPU E5-2640 v3 processor with 8 cores at 2.60 GHz
and 16 GB RAM. All the programs were compiled with GCC
with the highest optimization level (-O3). The GPU we use
is the NVidia Tesla K40m with 15860 work items, spread
across 15 compute units. The GPU operates at 745 MHz
and has 12 GB global memory and 50 KB local memory.

To measure GPU kernel execution time and time taken to
transfer inputs/outputs to/from the GPU we use the profiling
functions contained in the OpenCL API. For CPU execution
time, we use the standard C function gettimeofday. Each
subject program with each test suite (with sizes from 28 to
217) is run 100 times to measure execution time on the CPU
and another 100 times with the GPU to measure execution
time and data transfer overhead. We report median execution
times and transfer times.

5.2 Subject Programs

We use 9 benchmarks from the Embedded Microprocessor
Benchmark Consortium (EEMBC), which provides a diverse
suite of benchmarks organised into categories that span nu-
merous real-world applications, namely automotive, digital
media, networking, office automation and telecom, among
others [17]. EEMBC benchmarks are not just processor-
based. They focus heavily on embedded software running
on smartphone, tablets, and other embedded systems. The
benchmark programs in our evaluation are from the auto-
motive and telecom category. A description of the subject
programs is provided in Table 1. The first four programs are
from the automotive domain and the remaining five from the
telecom domain.

Table 1: Subject programs used in our experiment

Subject Description Input/Test Work-
(in bytes) group size

a2time01 Angle to time conversion 2000 128
puwmod01 Pulse Width Modulation 4849 32
rspeed01 Road speed calculation 2000 512
tblook01 Table lookup & interpol. 1856 512
autcor00 Cross corr. of signals 1024 128
conven00 Convolution Encoder 512 32
fbital00 Bit allocation 604 128
fft00 Fast Fourier Transform 1024 32
viterb00 Viterbi Decoder 688 512

5.3 Experimental Setup

The benchmarks have a limited number of test cases associ-
ated with them. In addition to these, we generated 131,072
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unique test cases for each program, using a random num-
ber generator, in order to enable experimentation with large
test suites. We thus have, for each subject program, test
suites with sizes ranging from 28 (256) to 217 (131,072) tests.
Table 1 also shows the input size of each test in bytes, the
smallest input size is for conven benchmark with just 512
bytes of data per test, whilst the largest input is 4849 bytes
for puwmod benchmark.

Each of the benchmarks in Table 1, along with each of its
associated test suites was run through our tool to produce the
equivalent GPU version. Our tool did not make any changes
to the code implementing the algorithm. The changes were
restricted to the test harness and input-output interface of
the program.

The last column in Table 1 shows the work-group size
used on the GPU for each benchmarks. This number was
determined experimentally by conducting an exploration
of work-group sizes between 32 (the warp size) and 1024,
following common practice.

6 RESULTS AND ANALYSIS

6.1 Kernel vs Data Transfer Time

This section evaluates the GPU execution time, investigating
the execution time of the GPU kernel and data transfer
separately.

Kernel Execution Time. For small input sizes, kernel exe-
cution time remains roughly constant on the GPU, due to the
large number of available threads, as can be seen in Figure 4
(second bar). When test suite size increases, the GPU simply
solicits more threads for parallel execution of the additional
test cases having little effect on execution time with the small
suites. This constant trend continues until a saturation point
is reached when the test suite size exceeds the number of
available GPU threads. We call this point in our evaluation,
threshold size. After reaching the threshold size, kernel exe-
cution time increases linearly with test suite size. In most
cases, the threshold size is approximately reached for 16,384
tests.

Data Transfer Time. The overheads for each subject pro-
gram, input and output transfer time, across test suite sizes
are shown in Figure 4 (first bar). As expected, data transfer
time increase linearly with the test suite size.

Data Transfer vs Kernel Time. We now look at comparing
the total time for data transfer to and from GPU (for inputs
and outputs) versus the kernel execution time. As we saw
above, kernel execution time remains roughly the same with
increase in test suite size until the threshold size is reached,
since up until then there are available threads to accommo-
date the additional test cases. However, once the threshold
size is reached and all the GPU cores are busy, subsequent
increases in test suite size will result in proportional increase
in execution time. Data transfer time, on the other hand,
increases with test suite size from the start.

For some benchmarks, such as fbital, kernel execution
time dominates and is up to 5× higher than data transfer

time. This means that the cost of data transfer is minimal
compared to the time it takes to perform the computation.
However, for other benchmarks, such as puwmod, the data
transfer time is larger than kernel execution time, implying
that the amount of computation required per test is relatively
small. In such instances, using a GPU incurs a large overhead
due to the need for transferring data to the external device.
This overhead could be mitigated by using an on-chip GPU
or using pipelining as explained in the next section.

Summary. Increasing test suite size proportionally in-
creases input and output transfer overheads. There is no
general trend with respect to total transfer time versus kernel
execution time. Time taken for data transfers can be hidden
by splitting the test suite into smaller groups of tests and
pipelining their execution.

6.2 Speedup against CPU

We assess speedup achieved when executing test suites on
the GPU compared to (1) single thread execution on CPU,
and (2) Multi-core CPU, with parallel execution on 2, 4, and
8 cores.

6.2.1 GPU vs Single Thread. For each subject program
and each of the associated test suite sizes (ranging from 28

to 217), we collect the following data: 1. Execution time on
the CPU, 2. Execution time on the GPU to execute all the
tests in the suite, including the time taken to transfer test
inputs from host to GPU and test results back to host. We
report time on the GPU without optimising (by pipelining)
for data transfer on large test suites, which in essence is the
worst-case time of our approach. We compute speedup as
CPU execution time divided by GPU execution time. The
speedup for each of the subject programs over different test
suite sizes (on log base 2 scale on the x-axis) is plotted in
Figure 5.

Figure 5 clearly shows that for all the programs, speedup
increases linearly with increase in test suite size until a point,
after which it begins to stabilize. The reason for the linear
increase in speedup with respect to test suite size is because
increase in test suite size (double) causes a proportional
increase (double) in execution time on the CPU. However,
on the GPU, execution time remains roughly the same with
increase in test suite size until threshold size is reached. After
reaching threshold size, speedup generally remains stable
(although slow increases are observed in some benchmarks)
with increasing test suite size. This is because, both CPU and
GPU execution times increase at similar rates with test suite
sizes after threshold size causing little change in speedup. For
our subject programs, we find that the threshold size where
speedup stability starts to be reached is at the test suite size
of 16384. Note that for subject programs – fbital, viterb,
significant increases in speedup continues to be observed up
to test suite sizes of 131072 (by 20% rather than 100% as
observed before threshold size). For these two programs, the
GPU execution time increases at a slightly lower rate than
CPU execution time.
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Figure 4: Data transfer overhead versus Kernel Execution time for each subject program
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Figure 6: Speedup of GPU and multi-core CPUs
over single CPU core.

As seen in the plots in Figure 5, speedup is generally higher
when test suite sizes are very large. The average speedup
for maximum test suite size in our experiment across all
programs is 9.6×. For the smallest test suite size of 256 in
our experiment, speedups are limited. We find that running
on GPU starts to achieve speedup gains over the CPU when
test suite sizes are 2048 or more. This is not surprising, since
for smaller test suite sizes, there is not enough workload
for the GPU (idle threads) to be better than the CPU. A
single execution of the program, in general, is likely to be
much faster on the CPU versus the GPU, since the CPU is
optimized to run general purpose programs and there is no
parallelism within a single test execution that the GPU can
leverage.

It is easy to see from Figure 5 that most of the sub-
ject programs gain significantly from test execution on the
GPU with large test suite sizes. viterb, fbital, a2time,

autcor, tblook all do well on the GPU with speedups rang-
ing from 9.7× to 37× when executing the largest test suite.
Only rspeed, puwmod, and conven achieve limited speedup
gain 2.2× to 5.6×. Section 6.3 analyzes the reasons for the
varying speedup that we observe over the different programs.

6.2.2 Hiding Data Transfer. One of the main issues when
offloading computation to a GPU is often the long data
transfer time required to send the data to the GPU. This is
especially a problem with large test suite sizes. It is possible
to mitigate the effect of high transfer time using pipelining to
overlap GPU execution and data movement. Large test suites
can be split into several smaller groups of tests. While one
group of tests executes on the GPU, we can safely start the
data transfer for the next group of tests and keep feeding the
GPU enough data to process so as to maximize its utilization.

Figure 6, shows the speedup achieved with and without
overlapping the data with kernel execution on the GPU. As
can be seen, overlapping data transfer always leads to slightly
better overall performance on the GPU, bringing the largest
speedup from 38× (for viterb) to 53× (for a2time). For
all programs, our approach is able to outperform the CPU
execution time (i.e. speedup larger than 1) and offers an
average speedup of 16×.

6.2.3 GPU vs Multi-core. To offer a fairer comparison
point, we show in Figure 6 speedup achieved when using
multiple cores, 2,4 and 8, on the CPU with the largest test
suite, by modifying the original application with OpenMP
for all subject programs. For most programs, speedup scales
linearly with number of CPU cores, achieving an average
speedup of 6× with 8 cores over all subject programs. For 5 of
the 9 programs, GPU offers significant speedup ranging from
18× to 53×. Average GPU speedup over all benchmarks is
16× as opposed to 6× for an 8-core CPU. This clearly demon-
strates the benefit of using a GPU, even when compared to
a multicore CPU where each core is fully utilized. In two
cases, rspeed and puwmod, the GPU is slower than using 8
CPU cores. We discuss reasons for the limited speedup in
the next Section.

6.3 Analysis

This section presents an analysis to explain the diversity of
speedup observed on our benchmarks. It is based on the gen-
eral observation that the more compute-intensive a program
is, the higher the performance will be on the GPU. We use
the following metric to establish the computational intensity
of a benchmark: T ime cpu/Byte. This represents the time
it took for the CPU to process a Byte of input data. A higher
value of this metric generally means that more computations
are executed per Byte of input data processed, suggesting
that the benchmark is more computationally demanding.

Figure 7 shows the computational intensity of each bench-
mark. As can be seen, the benchmarks with the lowest value
(rspeed, puwmod, fft), also have the lowest speedup (Figue 6).
Conversely, benchmarks with a high value, fbital, viterb,
a2time are the ones exhibiting the largest speedups. a2time
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Figure 7: Computational intensity of benchmarks
ordered by speedup achieved.

does not have the highest computational intensity but it
achieves largest speedup due to the effect of pipelined data
transfer. Input data transfer time for a2time is comparable
to execution time and pipelining groups of tests helps double
speedup, approximately, from 24× to 53× .

Interestingly, conven, based on its computational intensity,
would be expected to perform relatively well, but its speedup
is comparable to fft, that has lower computational intensity.
The reason for this behavior lies in the fact that conven uses
a temporary array of 1KB for each input test, that is read
and written many times in a loop. This array can easily fit
in the large cache of the CPU, but cannot fit in the smaller
cache of the GPUs, leading to GPU performance being lower
than expected.

To summarise, benchmarks that exhibit a high compute-
intensity tend to give high speedup when executing test cases
on the GPUs. However, performance on the GPU might also
be limited by the presence of a data working set larger than
the cache, resulting in sub-optimal performance. Given the
trend towards larger cache sizes on GPUs, we expect that
programs characterised by this feature will exhibit larger
speedup on future generations of GPUs.

6.4 Correctness

For each subject program, we collected the test case outputs
from the CPU and GPU executions across all test suites.
Each test suite was executed 100 times on the GPU and
CPU. We found that for all 9 subject programs, with 256
to 131,072 test cases each, the test case outputs between
the CPU and GPU executions were an exact match. We
can safely conclude that our framework for executing tests
on the GPU preserves correctness of program execution for
all 9 embedded system benchmarks and test suites in our
experiment.

7 FUTURE WORK

Our approach in this paper handles challenges with respect to
usability and performance when running test executions on
GPUs. Nevertheless, our tool still lacks support for execution
of certain program features on GPUs. It is worth noting
that features like dynamic memory and file system calls that
GPUs do not support are not commonly present in embedded
software. In our future work, we plan to address the following
GPU limitations,

System Calls. To address the limitation with system call
support, we will provide mechanisms for executing system
calls and file I/O on the CPU while concurrently executing
the GPU kernels. We will also explore the feasibility of using
recently proposed file system abstraction–GPUfs [21]– for
invoking file system calls efficiently. Additionally, we will
investigate profiling techniques to detect system call patterns,
similar to the one proposed by Fadel [9], and explore hiding
patterns (such as memory management patterns) that do not
add valuable information to program behavior.

Control Flow Divergence. To mitigate the impact of
control flow divergence, we will analyze and profile tests so
that tests with the same or largely similar control flow are
grouped together. We will schedule this group of tests onto
the same warp or block on the GPU for efficient use of lock-
step execution. We believe this technique will be effective
since for a large test suite, it is likely there will be substantial
numbers of tests with similar control flow.

Recursion Recursion is a feature that is currently not sup-
ported in OpenCL. Recursive function calls can, however, be
eliminated using a stack implementation in its place. We plan
to implement a compiler pass that transforms all recursive
calls in the original C/C++ implementations to use a custom
stack implementation in OpenCL.

8 CONCLUSION

This paper has shown how test executions of C embedded
software can be transparently accelerated using a GPU. We
have taken a compiler approach to automatically convert
sequential C program into OpenCL kernels. As shown in this
paper, this involves the application of compiler transforma-
tions for dealing with command line arguments, standard
input/output, global variables and library calls. While there
is still significant remaining work to support all the features
commonly found in C programs, we have demonstrated that
this approach works in practice for nine benchmarks from the
EEMBC benchmark suite. We achieved significant speedups
of up to 53× with the GPU versus 7× with an 8 core CPU.
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