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ABSTRACT
High-performance computing resources are currently widely used
in science and engineering areas. Typical post-hoc approaches use
persistent storage to save produced data from simulation, thus read-
ing from storage to memory is required for data analysis tasks. For
large-scale scientific simulations, such I/O operation will produce
significant overhead. In-situ/in-transit approaches bypass I/O by
accessing and processing in-memory simulation results directly,
which suggests simulations and analysis applications should be
more closely coupled. This paper constructs a flexible and extensi-
ble framework to connect scientific simulations with multi-steps
machine learning processes and in-situ visualization tools, thus
providing plugged-in analysis and visualization functionality over
complex workflows at real time. A distributed simulation-time clus-
tering method is proposed to detect anomalies from real turbulence
flows.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; Modeling and simulation; Unsupervised learning; • Soft-
ware and its engineering→ Software organization and properties;
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1 INTRODUCTION
Recent advancements in parallel computing and high performance
computing (HPC) have given scientists the power to solve extremely
large problems that were impossible to tackle before. Reports from
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Boeing [5, 13] depict important user cases that with more powerful
supercomputers, numerical simulation of various approximations
to the Navier-Stokes equation can significantly reduce the testing
cost by increasing the scale and computation accuracy during the
development of new Boeing aircrafts.

Typical real world numerical simulations not only involve in-
tensive computations but also generate huge amounts of data. For
instance, S3D, a massively parallel DNS (direct numerical simula-
tion) solver developed at Sandia National Laboratories, requires
extreme-scale computing power and outputs tens of terabytes of
data [11]. In an S3D workflow, 30-130TB of data is generated per
simulation and the data must be first archived to local disks, and
then moved to distributed storage systems to make enough space
for the subsequent time steps [6]. Thus, further data analysis of
the simulation results includes: 1) loading massive amounts of data
from distributed storage systems; 2) reading data to the active disks;
and 3) loading data into main memory for analysis. However, the
expensive I/O overhead involved in the above procedure can be
alleviated by using an in-situ (or in-memory) processing approach.

In an in-situ approach, analysis applications are directly inter-
acting with simulation applications (it is common that different
applications are recompiled, linked together, and run in the same
process). This approach is able to totally avoid the I/O overhead
mentioned above since the analysis applications can directly read
data from the same main memory shared with the simulation ap-
plications. There are several limitations with this approach:

(1) Simulation and analysis applications are in the same address
space, which means simulation developers and analysis/vi-
sualization developers have to closely work together to care-
fully define how to integrate two open source codes.

(2) Whenever a user wants to modify analysis applications or
switch to different analysis methods, the whole application
must be stopped, rebuilt, and restarted.

(3) Analysis and simulation applications may have different scal-
ing behaviors, and binding them together will bring issues
of load balancing to both applications.

(4) Most often data-intensive analysis applications are memory-
demanding, and thus cannot fit into the same compute node
as the simulation application.

To combat these issues, we use a tuple space to connect different
applications so that analysis or visualization specialists no longer
need to know the details of simulation code and vice versa. This
way, simulation and analysis applications are decoupled from each
other such that different analysis tasks can be used and substituted
at runtime. In the tuple-space based approach, data communication
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is realized through Remote Direct Memory Access (RDMA). In this
paper, we will describe the following contributions in details:

(1) Demonstration of a real-time workflow system that includes
simulation, real-time data analysis and visualization compo-
nents targeting the domain of computational fluid dynamics
(CFD) and turbulence analysis.

(2) Design and implementation of an interactive software infras-
tructure where different types of applications can efficiently
cooperate using a tuple space.

(3) Design of a new scalable parallel non-parametric anomaly
detection algorithm that serves as the real-timemachine learn-
ing analysis method for CFD turbulence analysis.

The rest of the paper is organized as follows. Section 2 introduces
the background of DataSpaces, in-situ visualization techniques, and
vortex detections in turbulence flows. Section 3 presents the related
work to couple applications in scientific workflows. Section 4 de-
scribes our new parallel machine learning algorithm for anomaly
detections. Section 5 presents the design and implementation of
our software framework. Section 6 shows the experimental results,
and Section 7 summarizes the work.

2 BACKGROUND
2.1 Tuple Space and DataSpaces
Tuple space is an associative memory model that is intended for
high-productivity and distributed/parallel computing. Within the
model, tuples are accessed by content and type, rather than by their
raw memory addresses. The strength of this model is its ability to
describe data without referencing to any specific computer archi-
tecture. By using the tuple space model, different simulation and
analysis applications can be flexibly combined to reveal insights to
users dynamically.

DataSpaces [8] follows the tuple space model, and builds a flexi-
ble interaction and coordination substrate for various applications
so that they can interact at runtime. The live data from simulation
is extracted from a simulation application, and can be indexed and
accessed by other applications using semantically meaningful oper-
ators. In a typical simulation workflow, different types of coupled
jobs are launched at large scales, and thousands of compute nodes
are run to generate significantly large amounts of data. Also, differ-
ent applications will exchange data frequently. These interactions
would become overly complicated and varied provided using a low-
level message passing programming model. DataSpaces solves this
problem by providing a flexible, simple, high-level abstraction of a
semantically specialized, distributed and virtual shared space that
allows concurrent accesses by various applications.

In this work, we use DataSpaces to combine computational fluid
dynamics (CFD) simulations with machine learning analysis and
visualization automatically.

2.2 Paraview Catalyst and In-Situ Visualization
Large scale simulations may take weeks or even months to com-
pute a great amount of output data. On the other hand, scientists
often want to detect or look into specific phenomena while the
simulations are running so that the simulation can be paused, or
terminated in advance if unusual patterns are found during analysis.

In situ (or in-memory) data analysis is a widely used approach
to analyzing data while the data still resides in memory. Instead
of outputting simulation data to secondary storage, analysis is
performed in memory while data is being produced.

Paraview Catalyst (also known as Paraview Coprocessing Li-
brary) [10] is one of the early attempts to visualize large scale data
sets. It provides an adaptable API (application programming inter-
face) between simulation and visualization tasks. Unlike specialized
systems such as the hurricane prediction visualization [9], Paraview
Catalyst provides a generic in-situ visualization framework.

In order to instruct a simulator at runtime, Paraview Catalyst
requires developers to implement only three routines: Initialize,
Coprocess, and Finalize. The Coprocess routine will be invoked to
convert simulation raw data and perform different types of analysis
and visualization in each time step.

In this work, we use the Paraview Catalyst library to realize
online CFD visualizations at real time.

2.3 Application of Vortex Detections in
Turbulence Flow

Besides computation-intensive simulations, this paper also targets
big data analysis to look for interesting features that can be regarded
as patterns occurring in the dataset. Unlike a lot of features that can
be defined precisely, some features and patterns are quite common
but don’t have precise definitions. Vortex is one of such features in
flow fields. Hence, our work focuses on the important CFD vortex
detection problem at real time.

In general, a vortex is characterized by the swirling motion of
fluid around a central region. A few taxonomies have been pro-
posed to classify vortex detection methods [12]. How to define a
vortex is one of those taxonomies. The vortex-finding methods can
be classified into region-based or line-based. Region-based vortex
detection is to identify whether continuous cells belong to a vortex;
while line-based vortex detection is to identify vortices by locating
vortex core lines. In practice, region-based methods are easier to
implement and are less computationally expensive.

In this paper, we design and develop a region-based vortex de-
tection algorithm using a non-parametric divergence estimation
method (more details are provided in Section 4).

3 RELATEDWORK
There are many data and computational services, which are largely
shared and distributed [21]. However, the actual access and deploy-
ment on different systems often reduce the productivity. Workflow
is then used to to simplify coupling different applications.

For instance, Kepler is a widely used workflow framework where
scientists, analysts, and software developers can share data and
models over Internet (via Web Services) [17]. Kepler provides a
graphical user interface (GUI) where users can simply select and
connect different data sources and analytical components to create
a scientific workflow. Typical scientific workflows involve jobs that
are data-intensive, computation-intensive, and visualization inten-
sive. Web service extensions are needed so that scientific workflows
can access remote resources and services seamlessly.

Pegasus [7] is another widely used workflow framework that
can map complex scientific workflows to distributed resources. But
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in workflow frameworks such as Kepler and Pegasus, they typically
use files and slow disk I/Os to exchange data between applications.
They also require querying file existence to detect if new data is
available or not.

ADIOS (Adaptive I/O System) [15] is designed to support an
arrange of data transfer methods for integrating workflow com-
ponents. Designed by ORNL and Georgia Institute of Technology,
ADIOS enables scalable, portable and efficient componentization
of the I/O layer on both Linux clusters and supercomputers. It also
provides I/O componentization for different data transport methods,
which makes switching I/O methods in different infrastructures
simpler. Instead of parsing user-input arguments, ADIOS takes an
external XML file as configuration, which is portable in different en-
vironments. With this design, changing I/O routines in application
code is as simple as editing a single entry in the XML file.

ADIOS provides DataSpaces as a data transport method (imple-
mented with a wrapper). DataSpaces can provide low-overhead,
high-throughput data extraction from running simulations. Our
framework uses DataSpaces to integrate CFD simulations with
machine learning applications. Unlike ADIOS, our system is a
high-level application-specific framework, which is focused on
simulation-time CFD anomaly detections.

4 AN UNSUPERVISED MACHINE LEARNING
ALGORITHM TO ANALYZE CFD FLOWS

In certain data science domains, it is relatively simple to view data
points as fixed, finite-dimensional features. There is another class
of domains, which assumes that data corresponds to a continuous
probability distribution, as mentioned in [19]. In the second domain,
each group of data can be regarded as independent and identically
distributed (i.i.d.) samples, and k-nearest neighbors (kNN) statistics
are required to obtain divergence between data groups. Once we
know the divergence (or difference) of all region pairs, regions can
be clustered into different categories.

To compute a divergence, we employ the non-parametric di-
vergence estimation from [19]. The basic idea is as follows: Each
group of data X1:n = (X1, ...,Xn ) is regarded as n i.i.d samples
from a distribution with density p. If there is another group of data
Y1:m = Y1, ...,Ym from another distribution with density q, The dif-
ference between X and Y can be calculated by using a divergence
estimator. A common divergence metric is the L2 divergence, which
is described in the following definition:

Definition 4.1. Let p and q be densities over Rd , then the L2
divergence is:

L(p | |q) =

∫
(p(x) − q(x))2dx)

1/2
.

Yet we still need to know the densities of distributions such as
p(x) and q(x).

The densities of p(x) and q(x) can be estimated with the kNN
methods [16] . Given two data groups X1:n and Y1:m . Let vk (i) be
the Euclidean distance from Xi to its k-th nearest neighbor in Xi :n .
Similarly, let rk (i) be the distance from Yi to its k-th nearest neigh-
bor in Y1:n . We use c to represent the volume of a d-dimensional
unit ball. The density of p(x) at Xi given a parameter of k can be

expressed as follows:

pk (Xi ) = k/((n − 1) × c ×vk (i))

Similarly, the density of q(x) at Yi given a parameter of k is:

qk (Yi ) = k/(m × c × rk (i)).

To apply the non-parametric divergence estimation to our prob-
lem, we describe each point in a fluid region using three dimensions:
vx and vy for the point’s velocity in x and y directions, and dc for
the point’s distance to the fluid region’s center. The dc dimension
is chosen since the velocity in a vortex most often changes with
the distance from the center, as described in [20].

Next, we use the k-medoids clustering method to cluster all
regions using the above divergence estimation. As a classical parti-
tioning technique, k-medoids is robust to noise and outliers. It takes
dissimilarities between all elements as input and minimizes the sum
of in-cluster dissimilarities. Since divergence is also a metric of dif-
ference between regions, we use it to construct the dissimilarities
matrix and feed it to the k-medoids method. We run k-medoids
for multiple times, each time with random initial medoids. The
clustering result that has the best in-cluster dissimilarities is the
output. The algorithm is described in Algorithm 1.

Algorithm 1: Clustering based on Non-parametric Diver-
gence Estimation (npdivs)
Input:

Regions of data points R1:n , each point has (vx , vy , dc)
k , number of clusters
num_runs , number of runs of k-medoids method

Result:
cluster_ids , cluster id of each region

Begin
Estimate all pairwise divergences:
divs(R1,R2),divs(R1,R3)...divs(Rn−1,Rn ) among all
regions from R1:n using npdivs method ;
Construct a distance matrix D from
divs(R1,R2),divs(R1,R3)...divs(Rn−1,Rn ) ;
// run k-medoids for multiple times
for i = 0; i < num_runs; i + + do

randomly choose k initial medoids ;
run k-medoids until sum of in-cluster dissimilarity
doesn’t change ;
update cluster_ids if smaller sum of in-cluster
dissimilarity is achieved in this run ;

end
// return best clustering results
return cluster_ids ;
End

Note that a direct implementation of the algorithm cannot scale
well with large datasets since computing the pairwise divergences
among all regions can be extremely expensive. Hence, we present
an improved approach to solving this issue (we present details in
Section 5.3).
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Figure 1: Architecture of the software framework.

5 SOFTWARE FRAMEWORK
Our integrated simulation and machine learning framework con-
sists of four major components, which are the following indepen-
dent applications: Simulators, Data Processing, Data Analysis, and
Catalyst visualization. All the communication among applications
is fulfilled through DataSpaces, and no file I/O is involved. Figure 1
shows the software system’s architecture.

In the framework, Simulator flushes computed results into DataS-
paces in each time step. The simulation result is split into strips and
fetched by both Data Processing and Catalyst applications. Next,
the Data Processing application works with the Data Analysis appli-
cation to identify special patterns from stripped data; At the same
time, Catalyst generates all required visualization data structures
to provide users with visualization for both turbulence flow data
(i.e., path 3) and data analysis results (i.e., path 9).

5.1 Simulators
In our work, the simulation results are generated in two ways: 1)
The archived simulation data from a turbulence database [2]; and 2)
the real-time simulations using CFD software (e.g., OpenFoam [4]).

Turbulence database: The JohnsHopkins Turbulence Database
(JHTDB) provides web services with C/Matlab/python interfaces,
and data cutout downloads for various types of turbulence datasets.
We use a 2D cutout from the isotropic-coarse dataset as our first
simulation data source. More details about the isotropic-coarse
dataset is provided in Section 6.

Real-timenumerical simulations: OpenFoam is an open source
CFD software widely used in both engineering and science domains.
It provides a large range of solvers for different problems. To run a
simulation, a solver and a case need to be specified.

Different solvers reflect different algorithms or physical models.
On the other hand, a case is a collection of files to describe the
desired running conditions (such as mesh shape, start/end time,
parameters for solvers) of the application. We use icoFoam as an
example solver. IcoFoam solves incompressible laminar Navier-
Stokes equations using the PISO algorithm.

Figure 2: Data layout of simulation data in DataSpaces

To utilize DataSpaces, we write a new customized solver based
on the original icoFoam, and overwrite its default I/O routine. The
2-D Lid-driven cavity flow problem is used in our experiments. The
problem is a well-known benchmark for incompressible fluid flows.
Our simulation includes a fluid contained in a square container,
which has three stationary sides, and one moving side with a con-
stant velocity.

5.2 Data Processing and Data Analysis
As shown in Figure 1, our data analytics workflow involves the
Data Processing application and the Data Analysis application. The
two applications work as follows: 1) Simulation data is first divided
into regions and distributed to different data processing processes;
2) data processing processes then read the assigned regions and
compute the divergences between all pairs of regions; 3) After step
2 is completed, data analysis processes will read the computed
divergences and perform k-medoids clustering to search for the
k global medoids, where k is the number of clusters specified by
users; and 4) the data processing processes assign a cluster ID to
each of its allocated regions based on the region’s distance (i.e.,
divergence) to the k medoids.

The rest of the subsection provides more details about the data
processing and data analysis applications.

5.2.1 Data Processing. Since the produced simulation data may
be in a large scale, we strip data into a number of data processing
processes as shown in Figure 2. We partition data horizontally
instead of blocks because it can achieve better spacial locality during
DataSpaces operations. In our design, each data processing process
can run without data dependency on each other. Synchronization
between the data processing application and the next data analysis
application is supported by customized DataSpaces locks (details
will be discussed in Section 5.6).

5.2.2 Data Analysis. Once the data analysis application reads
the divergences computed from the data processing processes, it
will construct the distance matrix in local memory and perform
k-medoids clustering for a number of times and return the medoids
information when the smallest cost is achieved. The medoids infor-
mation will later be sent back to the data processing processes so
that they can assign a cluster ID to every region.
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5.3 Distributed Sampling
However, for large scale problems, the pair-wise divergence calcula-
tion in the Data Processing application can be time consuming. We
design a distributed sampling method to provide an approximation
of the large simulation data. This method greatly reduces the CPU
time of those data processing processes.

The original k-medoids algorithm works well for a small dataset,
but does not scale when taking large datasets [18]. In our specific
problem, suppose there are n fluid points (each point contains phys-
ical properties such as velocity, pressure, etc.), and those points
are evenly divided into geometrically continuous regions of size
size_reдion. This leads to a number of (n/size_r eдion)

Û(n/size_r eдion−1)
2

region pairs. Hence, the time complexity to compute pairwise diver-
gences for all regions will beO(n2), where size_reдion is eliminated
since it is a constant for a given resolution. Consequently, this qua-
dratic complexity significantly slows down the entire workflow for
a large input size.

To reduce the execution time for the pairwise comparisons (di-
vergence calculation, in our case) in the k-mediod method, one
promising approach called CLARA (Clustering LARge Applications)
[14] was used to draw samples from the original dataset, then find
medoids of the samples, and assign a cluster ID to all points in
the original data set based on these medoids. Since samples are
randomly drawn, medoids of the sampling can be considered an
approximation of the medoids of the whole data set. Experiments
in [14] have also shown that CLARA can achieve higher efficiency
than the original1 k-medoids algorithm.

Since the data processing application has access to all simulation
results (through path 2 in figure 1), the simplest method is to let data
processing processes get the information of each random region
sample through one DataSpaces ’get’ operation (in path 2 in figure
1). However, such small-granularity operations are expensive and
not recommended by DataSpaces because every single operation
will involve a nontrivial amount of transmission and synchroniza-
tion overhead. Therefore, a better method is to reorganize the data
such that each single DataSpaces operation will put/get a large
chunk of data.

In this paper, we design and develop a novel approach called
Distributed Sampling to let each simulation process decide its own
local samples randomly, and let DataSpaces aggregate samples from
all the simulation processes. Figure 3 shows how the distributed
sampling approach works. In each time step, local samples of re-
gions are drawn by each simulation process (aka “Simulator”), and
are gathered in the central DataSpaces. After DataSpaces gets sam-
ples from all the simulation processes, each data processing process
can easily retrieve a copy of the set of samples. By splitting global
sampling into: 1) local sampling, 2) aggregation of samples in DataS-
paces, and 3) each process reads a copy of all samples, the access
time to DataSpaces is greatly reduced. In particular, with this ap-
proach, a single put operation can incorporate the samples from
each simulator process into a global continuous DataSpaces area
while a single get operation can read all the samples at once.

5.4 In-situ Visualizations with Catalyst
We employ the visualization software of Paraview Catalyst to en-
able real-time visualizations of both CFD simulations and clustering

Figure 3: Distributed Sampling Using DataSpaces

analysis results. Paraview Catalyst can convert the simulation out-
put to Paraview-dependent data structures, which are then fetched
and visualized by Paraview servers.

As an end user, one can connect a laptop computer to Paraview
servers directly by installing a Paraview GUI. Typically, using Cat-
alyst includes the following two steps:

(1) Pre-process step. User needs to configure and specify visual-
ization methods and parameters before simulation runs.

(2) Execution step. Simulation code is linked with Catalyst, and
then generates visualization data structure at real time.

In the pre-process step, a python script is used to configure Cat-
alyst on how visualization pipelines will be constructed and how
data will be extracted (frequency and format) during the simulation.
Instead of explicitly writing this script from scratch, the “Catalyst
Script Generator plugin” allows users to generate scripts from tem-
plates and sample simulation data using the client-side Paraview
GUI. To get the sample simulation data, the user can use the pre-
configured scripts shipped with the Catalyst package, in which
file writers are automatically generated for different visualization
structures (VTK objects). A “live connection” option can also be
enabled so that the visualization data are extracted to Paraview
servers or directly-attached Paraview clients.

5.5 General DataSpaces Adapter
All applications interact with each other using the DataSpaces
routines. For different types of simulation sources and analysis
procedures, these routines can be reused easily to fit in various
situations using a consistent interface. An example is shown in
Listing 1. “put_common_buffer” is not shown here since it is nearly
the same as “get_common_buffer”.)

Listing 1: Interface of the Customized DataSpaces Adaptor
vo id get_common_buffer (

i n t t imes t ep ,
i n t bounds [ 6 ] ,
i n t rank ,
MPI_Comm ∗ p_gcomm ,
char ∗ var_name ,
f l o a t ∗ ∗ p_bu f f e r ,
s i z e _ t e l em_s i z e ,
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doub le ∗ p_t ime_used
) ;

To apply this interface to different variables used by a collection
of coupled applications, users only need to specify the name for
each variable (i.e., var_name), size of each element to be written
(i.e., elem_size) and the pointer to the prepared receive buffer (i.e.,
p_bu f f er ). The parameter of bounds[] corresponds to the geomet-
ric district to which the buffer will be written. In each time step,
this interface is called by all processes of the same application.

5.6 Inter-Application Synchronizations using
DataSpaces

It is desirable and helpful for users that both turbulence flows and
data analysis results can be visualized side-by-side in real time. This
requires each application coordinate with other applications in a
piplline way. Whenever a piece of simulation data is written to
DataSpaces, it must be immediately consumed by both Catalyst and
Data Processing applications. This gurantees the output shown to
the users is not delayed. When there is an anomaly pattern appear-
ing in the clustering analysis results, users can quickly compare it
with the corresponding flow visualization.

We adopt the customized lock implemented in DataSpaces, which
enforces writer/reader synchronizations. With this customized lock,
writer applications can always acquire a write lock while calling
dspaces_lock_on_write firstly. The subsequent calls todspaces_lock
_on_write require all read applications have fetched their data and
released the corresponding read lock. However, using this collective
lock directly will lead to poor performance. For instance, a simula-
tion process may be blocked when it tries to acquire a write lock
for which the corresponding consumer processes have not released
all the read locks.

To solve the problem, we create a new lock for each time step's
output (instead of using a single lock for one DataSpaces variable).
This way we are able to make sure synchronizations among appli-
cations are still maintained in each time step. At the same time, the
blocking between two consecutive times teps can be avoided. In
fact, DataSpaces is able to store multiple versions (or time steps)
of a variable, and the older versions are invalidated in the First In
First Out (FIFO) manner.

6 EXPERIMENTAL RESULTS
We evaluate our computational framework using the Karst com-
puter system located at the Indiana University ([3]). Karst is a
high-throughput computer system, which has 228 general access
compute nodes and 28 condo nodes, as well as 16 dedicated data
nodes for data-intensive operations. Each compute node is an IBM
NeXScale nx360 M4 server. Details of the compute node are pre-
sented in table 1. All the compute nodes have installed Red Hat
Enterprise Linux 6 and are connected via 10-gigabyte Ethernet.

Our performance evaluation consists of three different experi-
ments. The first experiment shows how our framework can support
real-time flow visualization and real-time clustering-based anomaly
detections. The second experiment analyzes the communication
overhead and efficiency of our framework. The third experiment
demonstrates the speedup and scalability of the framework.

Table 1: The Karst System.

Information Per compute node

CPU Two Intel Xeon E5-2650 v2
eight-core processors

#cores 16
Main memory 32GB
Secondary storage 250GB

6.1 Turbulence Analysis with JHTDB Dataset
Our first experimentwas performedwith the forced isotropic dataset
[1] from Johns Hopkins Turbulence Databases (JHTDB). A pseudo-
spectral method was used to solve a direct numerical simulation on
a 1024 × 1024 × 1024 grid. Original isotropic dataset contains 5028
frames of data, which includes velocity and pressure. This dataset
was chosen because the data is well formatted in VTK/HDF5 so
that we can quickly verify analysis results using visualization tools.
Note that both “fine” and “coarse” isotropic data are provided by
the original datasets from JHTDB. Our experiment uses the “coarse”
dataset in which frames are stored in every 10 time steps.

We use a slice of size 200 × 200 from the isotropic dataset with a
simulation duration of 100 frames. To simulate the real-time turbu-
lence dataflow, we use the the HDF5 reader which can extract both
velocity and pressure information from the dataset downloaded
from JHTDB periodically.

Figure 4 shows a snapshot of our real-time data analysis results.
The whole area is divided into 20 × 20 square regions. Divergences
are then calculated for every pair of regions. By using the k-medoids
clustering algorithm presented in Section 4, each region is assigned
with a cluster ID. The right part of the demo shows flow properties
in the current time step, with the colors and arrows representing
pressure and velocity, respectively. The left part is the real-time
output of our clustering analysis. The colors of different blocks
show which category the current region belongs to. In this example,
all regions are clustered into one of the three categories below:
(1) steady flow, where fluid in this region has similar velocity and
moves steadily in the same direction, (2) unsteady flow, where
swirling motions of fluid can be found, and (3) random flow, where
velocity of fluid change irregularly over time.

steady 
flow

unsteady 
flow

random 
flow

Figure 4: Demo on the JHTDB isotropic dataset
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As presented in Section 5, a frame of simulation data is sent to
DataSpaces in each time step, and then fetched by both data process-
ing and Catalyst applications. Finally, both clustering results and
turbulence flow properties (i.e., velocity and pressure) are processed
by the Catalyst application. The Catalyst visualization results can
be shown in a client-side Paraview GUI. In Paraview, two views
that use the same grid and cameras are linked together so that users
can easily find the mappings from clusters to turbulence flow.

6.2 Execution Time Breakdown
The second experiment is used to show the efficiency and com-
munication overhead of our framework. Since there are multiple
applications in our framework and all of them use DataSpaces to
communicate with each other, it is important to examine howmuch
time is spent on each interaction. We study the software efficiency
by breaking down the total execution time.

The configuration of ourworkflow experiments is shown in Table
2. We use 16 simulation processes, each of which computes and
generates a set of fluid velocity and pressure data for a 1024x1024
grid. We also use 32 data processing processes, each of which reads
a strip of simulation data from DataSpaces, then calculates the
divergences, and finally gets the k-medoids information from the
analysis processes.

Figure 5 shows the average data transfer and computation time
of all the four applications for 30 time steps: simulator, (data) pro-
cessing, (data) analysis, and catalyst. From the figure we can make
the following observations:

Table 2: Configuration for the time-breakdown experiment.

simulation processes 16
fluid grid size/process 1024x1024
data processing processes 32
data analysis processes 1
Catalyst processes 1
region size 16x16
number of clusters (k) 3
max number of versions buffered 30

Figure 5: An execution time breakdown

(1) In all the four applications, data transfer time is much less
than computation time.

(2) Simulator application has the highest computation time
among all the four applications. It means under the current
configuration, simulator won’t be delayed by other applica-
tions, thus the entire workflow will have a small end-to-end
latency.

(3) The computation time of different applications are in a simi-
lar magnitude (except for the analysis application, which is
not as computation intensive as the other applications and
uses only one process). This way all computing resources
are kept busy during the entire simulation.

6.3 Scalability Evaluation
We also want to study how well the workflow system can scale
with more computing resources. In this experiment, we use a fixed
problem size and increase the number of processes for various
applications.

The end-to-end execution time is measured from the beginning
of the simulation step to the end of the catalyst co-processing step.
We also measure the elapsed time of each application. Table 4 shows
the time to compute an input of size 4096 × 4096, which contains
1GB of velocity and pressure data.

The meaning of the metrics shown in Table 4 are provided in
Table 3. In the table, latency_produce is the time spent on the simu-
lator application from the beginning of the simulation to when the
simulation data is written to DataSpaces; Metric latency_consume
is the period from the Catalyst application reading the simulation
data to the Catalyst application generating all visualization data
structures. Note that although the second latency is evaluated in
the catalyst application, it also includes the time taken by the data
processing application and the analysis application, because Catalyst
always waits for results from those two applications.

From Table 4, we can see that when increasing the number of
data processing and simulation processes, the overall end-to-end
latency can be significantly reduced. We use a fixed problem size
of 4096 × 4096 and a sample size of 512. Since the divergences gen-
erated by these samples are distributed to different data processing
processes, the divergence calculation time is greatly decreased as
we increase the number of data processing processes. For cluster ID
assignments, since all simulation data is stripped to data processing
processes, more processes will result in fewer data regions in each
data processing process, thus time spent on assigning cluster IDs is
also reduced.

7 CONCLUSIONS
This paper presents a flexible and extensible software framework to
integrate simulation applications with various analysis applications.
A parallel non-parametric clustering method is also designed to
perform online machine learning for CFD simulations. In the frame-
work, different applications interact with each other by the means
of a shared tuple space. Using DataSpaces can greatly reduce the I/O
time compared with the traditional post-hoc approaches. We apply
our framework to the application of vortex/anomaly detection in
turbulence flows. Using a non-parametric divergence estimation
method, a distance-based clustering method is developed to cluster



PEARC17, July 09-13, 2017, New Orleans, LA , USA Feng Li and Fengguang Song

Table 3: Selected metrics for scalability evaluation.

Metric Name Description

problem size case size solved by simulation processes
np_sim number of processes for simulation application
np_dp number of processes for data processing application
time_divs_cal average time spent on divergence calculation in each time step
time_cluster_assign average time spent on assigning cluster ids using medoids information
time_catalyst average time used by catalyst application in each timestep
latency_produce latency produced by the producers: simulation application
latency_consume latency produced by the consumers: data processing, analysis and visualization
latency_all overall end-to-end latency

Table 4: configurations and results of scalability evaluation

problem size np_sim np_dp time_divs_cal time_cluster_assign time_catalyst latency_produce latency_consume latency_all
4096 × 4096 16 32 59.3s 88.9s 93.75s 340.5s 453.0s 793.5s
4096 × 4096 64 128 14.1s 20.1s 91.6s 53.5s 140.2s 193.7s

fluid regions into separate categories. As a result, clustering results
and fluid properties such as velocity and pressure are displayed by
an in-situ visualization tool at real time. With this new framework,
users can get real-time notifications of special patterns or anomalies
happening in a turbulence flow.

The paper also presents how different components can efficiently
cooperate to achieve a minimized end-to-end latency, and intro-
duces how distributed sampling can provide approximate results
with significantly reduced execution time. Furthermore, we design
and develop an integrated CFD simulation-time machine learning
framework to show how our framework can monitor turbulence
flows. The experimental results demonstrate that the integrated
framework is efficient and can scale well when more computing
resources are used.
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