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ABSTRACT
Web applications that combine dynamic data stream with distributed
background data are getting a growing attention in recent years.
Answering in a timely fashion, i.e., reactiveness, is one of the most
important performance indicators for those applications.

The Semantic Web community showed that RDF Stream Pro-
cessing (RSP) is an adequate framework to develop this type of
applications. However, RSP engines may lose their reactiveness due
to the time necessary to access the background data when it is dis-
tributed over the Web. State-of-the-art RSP engines remain reactive
using a local replica of the background data, but it progressively
becomes stale if not updated to re�ect the changes in the remote
background data. For this reason, recently, the RSP community has
investigated maintenance policies of the local replica that guar-
antee reactiveness while maximizing the freshness of the replica.
Previous works simpli�ed the problem with several assumptions.

In this paper, we investigate how to remove some of those simpli-
�cation assumptions. In particular, we target a class of queries for
which multiple policies may be used simultaneously and we show
that rank aggregation can be e�ectively used to fairly consider their
alternative suggestions. We provide extensive empirical evidence
that rank aggregation is key to move a step forward to the practical
solution of this problem in the RSP context.
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1 INTRODUCTION
Application domains that require to combine in a timely fashion
data stream with distributed background data are getting a growing
attention in recent years. For instance, in social content marketing,
advertisement agencies may want to propose viral contents to in-
�uencers (e.g., users with more than 100,000 followers) when they
are mentioned in micro-posts across Social Networks. Respond-
ing in timely fashion (a.k.a, being reactive) is the most important
requirement in this case, because i) followers have few minutes
of the attention span and ii) competitors may try to reach those
in�uencers before us.

However, the time to access and fetch the distributed background
data can be so high to put the application at risk of losing reactive-
ness. This is especially true when the distributed background data
is quasi static; e.g., in the example above, the number of followers
of the in�uencers, which are in the background data, is more likely
to change when they are mentioned in the stream.

The Semantic Web community showed that RDF Stream Pro-
cessing (RSP) [17] is an adequate framework to develop this type
of applications: RSP engines can receive and process stream items
as well as use federated SPARQL extension to access distributed
background data [1].

For instance, Listing 1 shows how the example above can be
declared in the context of RSP using the syntax proposed in [6].
Line 1 registers the query in the RSP engine. Line 2 describes how to
construct the results. Line 3 tells the engine to open a windowW on
a stream S and thatW is 10 minutes long and slides every minute. At
each evaluation, the WHERE clause at lines 4-6 is matched against
the data in the windowW and in the remote service BKG. Lines 4
select from the windowW , the number of mentions. Lines 5 ask
the remote service BKG to select the number of followers for the
users mentioned in the window. Line 6 �lters out, from the results
of the previous join, all those users whose number of followers is
above 100,000.

1 REGISTER STREAM <:InfluencersToContact > AS
2 CONSTRUCT {?user a :influentialUser}
3 FROM NAMED WINDOW W ON S [RANGE 10m STEP 1m]
4 WHERE{ WINDOW W {?user :hasMentions ?mentionsNum}
5 SERVICE BKG {?user :hasFollowers ?fCount }
6 FILTER (? fCount > 100 ,000) }

Listing 1: Sketch of the query studied in the problem

Not surprisingly, also RSP engines may loose reactiveness when
they need to access the background data distributed over the Web.



DEBS ’17, June 19-23, 2017, Barcelona, Spain Shima Zahmatkesh, Emanuele Della Valle, and Daniele Dell’Aglio

For this reason, in 2015, Dehghanzadeh et al. [5] started investi-
gating approximate continuous query answering over streams and
dynamic Linked Data sets (shortly named ACQUA in the remainder
of this paper). Intuitively, the ACQUA approach proposes to keep
a replica of the results of the federated SPARQL endpoint which
gives access to the distributed background data. At each evaluation
(in the example query, once per minute) only a subset of all the data
items in the replica is refreshed according to an update policy. A
refresh budget allows to control the number of refreshes. Keeping
the refresh budget small guarantees that the RSP engine is reactive,
but some data in the replica can become stale.

In 2016, Zahmatkesh et al. [19] extended ACQUA to optimize
the class of queries that include the �ltering of the intermediate
results obtained from the federated SPARQL endpoint. The intuition
is simple, it is useless to refresh data items that are not likely to
pass the �lter condition; it is better to focus on a band around the
condition. For instance, for the query in Listing 1, Zahmatkesh et al.
focus on the band ?f Count ∈ [90000, 110000]. This new approach,
�rst determines the data items that fall in the band (namely, the
Filter Update Policy) and, then, applies one of the ACQUA policies
on those data items. In the remainder of the paper we collectively
name ACQUA.F the policies obtained in this way. The results of
their evaluation shows that ACQUA.F policies outperform ACQUA
ones, when the selectivity of the �lter clause is high.

In this paper, we further investigate the ACQUA.F approach by
removing the assumption that it is possible to determine a priori
the band to focus on. The intuition of the proposed approach is
straightforward. Instead of applying in a pipe the Filter Update
Policy and one of the ACQUA policies, we let each policy express
its opinion by ranking data items according to its criterion and, then,
we use rank aggregation [8] to take fairly into account all opinions.

For this reason our research question is: can we use rank ag-
gregation to combine the ACQUA and the Filter Update policies so
to continuously answer queries (such as the one in Listing 1) and to
guarantee reactiveness while keeping the replica fresh (i.e., giving
results with high accuracy)?

In particular the contributions of this paper are the following:

• We provide empirical evidence that relaxing the ACQUA.F
assumption is hard.

• We de�ne three new policies (collectively named,
ACQUA.F+) that use rank aggregation to combine the Filter
Update and the ACQUA policies.

• We empirically demonstrate on synthetic and real datasets
that one of the new ACQUA.F+ policies keeps the replica
as fresh as the corresponding ACQUA.F one but without
requiring to determine a priori the band to focus on.

• We empirically demonstrate that such a policy uses the
same budget as the corresponding ACQUA.F policy.

This allows us to positively answer our research question and
represents another signi�cant step towards addressing the prob-
lem of combining in a timely fashion data stream with distributed
background data in the RSP context.

The remainder of the paper is organized as follows. In Section
2 we introduce the relevant background information. Section 3
reviews the state of the art. Our proposed rank aggregation solu-
tions are introduced in Section 4. Section 5 details the research

hypotheses, introduces the experimental settings, reports on the
evaluation of the proposed methods and discusses the practical
insight we gathered. In Section 6 we review the related work and,
�nally, Section 7 concludes and discusses future work.

2 BACKGROUND
In this section introduces the background necessary to understand
the paper. Section 2.1 introduces the key concepts of RDF Stream
Processing, while Section 2.2 shortly introduce rank aggregation.

2.1 RDF Stream Processing
RDF Stream Processing (RSP) extends the RDF data model and query
model considering the temporal dimension of data and evolution of
data over time. In the following, we will brie�y introduce the main
de�nition that will be used in the rest of the paper. We adopt the
de�nitions of RSP-QL [7], a reference model for RSP.

Data model. The RDF model is de�ned as atemporal; RSP-QL
therefore needs to introduce into it the notion of time.

An RDF stream S is a potentially unbounded sequence of times-
tamped data items (di , ti ):

S = (d1, t1), (d2, t2), . . . , (dn , tn ), . . . ,
where di is an RDF statement, ti the associated time instant and,
for each item i , it holds ti ≤ ti+1, i.e. stream items are in a non-
decreasing time order. An RDF statement is a triple (s,p,o) ∈ (I ∪
B) × (I ) × (I ∪ B ∪ L), where I is the set of IRIs, B is the set of blank
nodes and L is the set of literals [14].

With background data RSP-QL refers to the data stored in repos-
itories or embedded in Web pages that can be accessed through
SPARQL endpoints i.e., APIs that answer SPARQL query over the
Web [3]. Compared to RDF streams, background data changes very
slowly over time or does not change at all.

In this case, the time dimension is pushed through the notions of
time-varying and instantaneous graphs. The time-varying graph is
a function that maps time instants to RDF graphs and instantaneous
graph is the value of the graph at a �xed time instant t .

�ery model. Time dimension also a�ects the query model. The
main change is on the evaluation paradigm, that moves from one-
time evaluation to continuous one.

A SPARQL query [16] is de�ned through a triple (E,DS,QF ),
where E denotes the algebraic expression, DS the data set and QF
the query form. RSP-QL extends SPARQL to process RDF streams
optionally in combination with background data. An RSP-QL query
is de�ned by a quadruple (SE, SDS,ET ,QF ), where SE is an RSP-QL
algebraic expression, SDS is an RSP-QL dataset, ET is the sequence
of evaluation time instants, and QF is the query form.

A time-based sliding window W [7] determines a subset of the
RDF stream to be taken into account at evaluation time t.W takes
an RDF stream S as input and produces a time-varying graph GW.
The sliding window W is de�ned through the parameters (ω, β ,
t0): where ω and β are width and slide of windows and t0 is the
time stamp on whichW starts to operate. Each window contains a
portion of RDF statements, that can be viewed as an RDF graph.

An extended RSP-QL dataset SDS is a set composed by a default
graph Ḡ0, n named graphs {(ui , Ḡi )}, where ui is IRIs andm named
time-based sliding window over an RDF stream {(uj ,Wj (Sk ))}.
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An algebraic expression SE is a streaming graph pattern which is
the extension of graph pattern expression de�ned by SPARQL. As in
SPARQL, the evaluation of SE returns solution mappings. RSP-QL
adds a set of *streaming operators (RStream, IStream and DStream),
to transform those solution mappings in an output stream (i.e.,
timestamped solution mappings).

Considering I , the set of IRIs, B, the set of blank nodes, L, the
set of literals, and V , the set of variables, streaming graph pattern
expressions are recursively de�ned as follows:

• a basic graph pattern (i.e. set of triple patterns (s,p,o) ∈
(I ∪ B ∪V ) × (I ∪V ) × (I ∪ B ∪ L ∪V )) is a graph pattern;

• let P be a graph pattern and F a built-in condition,
P FILTER F is a graph pattern;

• let P1 and P2 be two graph patterns, P1 UNION P2,
P1 JOIN P2 and P1 OPT P2 are graph patterns;

• let P be a graph pattern and u ∈ (I ∪V ), the expressions
SERV ICE u P , GRAPH u P andWINDOW u P are graph
patterns;

• let P be a graph pattern, RStream P , IStream P and
DStream P are streaming graph patterns.

In RSP-QL, the evaluation of graph pattern expressions produces
sets of solution mappings; a solution mapping is a function that
maps variables to RDF terms, i.e., µ : V → (I ∪ B ∪ L). Let dom(µ)
be the subset of V where µ is de�ned: two solution mappings µ1
and µ2 are compatible (µ1 ∼ µ2) if the two mappings assign the
same value to each variable in dom(µ1) ∩ dom(µ2).

2.2 Rank Aggregation
In many circumstances, there is the need to rank a list of alternative
options (namely, candidates) according to multiple criteria. For
instance, in many sports, the ranking of the athletes is based on the
individual scores given by several judges. The problem of computing
a single rank, which fairly re�ects the opinion of many judges, is
called rank aggregation [8].

Several methods exist to solve the rank aggregation problem. In
this paper, we use Borda’s method [4]. This method is positional.
It asks each judge to rank candidates according to a numerical cri-
terion, so that each position in the ranked list has a score. Then,
the candidates are ranked by their total score, e.g., by the weighted
sum of the scores given by the individual judges. We choose this
method because the problem, which we address in this paper, re-
quires to minimize the time we spend in any computation and
Borda’s method is computationally easy. A naïve algorithm can
solve the rank aggregation problem using Borda’s method in linear
time and algorithms exist that can solve it in sub-linear time, e.g.
the Threshold Algorithm [9].

Other methods exist to handle cases where not all the judges can
give a score to all the candidates or the case where some judges are
biased or even malicious. However, those methods are computa-
tionally more expensive and handle problems that do not appear in
our rank aggregation scenario.

3 STATE OF THE ART
As we have already stated in Section 1, RDF Stream Processing o�ers
solutions to integrate and process the distributed data resources
on the Web. While RSP engines can receive and process stream

Figure 1: The framework proposed in [5] to address the prob-
lem of joining streaming and remote background data.

items, they also can use federated SPARQL extension to access
background data stored behind SPARQL endpoints [1]. The time to
access and fetch the remote background data can be so high to put
the RSP engine at risk of violating the reactiveness requirement in
continuous query answering.

3.1 Approximate Continuous Query
Answering in RSP

ACQUA [5] presents the �rst attempt to attack this problem. The
intuition of the paper is straightforward: the RSP engine must avoid
to access the whole remote background data at each evaluation.
Instead, it uses a local replica of the background data and keeps it
fresh using a maintenance policy that refreshes only a minimum
subset of the replica. A maximum number of fetches (namely a
refresh budget denoted with γ ) can be given to the RSP engine
to guarantee its reactiveness. If γ fetches are enough to refresh all
stale data of replica the RSP engine gives correct answer, otherwise
some data becomes stale and it gives an approximated answer.

Speci�cally, ACQUA addresses the problem of optimizing the
evaluation of a class of RSP-QL queries where the streaming data is
obtained by a window identi�ed by the IRIuS , the background data
is available via a SPARQL service at the URL uB and the algebraic
expression SE contains the following graph patterns:

(WINDOW uS PS) JOIN (SERV ICE uB PB),
where PS and PB are graph patterns that do not contain other

SERVICE, GRAPH or WINDOW clauses.
Let us denote with ΩS and ΩB the bags of mappings returned

by the WINDOW and SERVICE clauses, respectively. Let ΩR be
the local replica of ΩB . The maintenance process introduced in
ACQUA is composed of three elements: a proposer, a ranker and a
maintainer (Figure 1). (1) The proposer selects from ΩR a set C of
candidate mappings for the maintenance; (2) the ranker orders C
by using some relevancy criteria; (3) the maintainer refreshes the
elected set E (the top γ elements of C) picking them from ΩB ; (4)
the join operation is performed after maintenance on ΩS and ΩR .

ACQUA introduces several maintenance policies. The best results
are obtained combining the WSJ algorithm for the proposer and
the WBM algorithm for the ranker. WSJ selects from the replica
the mappings compatible with the ones returned by the WINDOW
clause to generate the candidate set. WBM identi�es the mappings
that i) are going to be used in the upcoming evaluations and ii)
allow saving future refresh operations. WBM uses the best before
time, i.e. an estimation of the time on which one mapping in R
would become stale, and the remaining life time, i.e. the number
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of future evaluations that involve the mapping µi to assign scores
and order the candidate set.

ACQUA also introduces two baseline rankers to be used in the
evaluation: RND, which randomly ranks the mappings in the can-
didate set, and LRU, which orders C by the time of the last refresh
of the mappings.

3.2 ACQUA with Filter Update Policy
ACQUA.F [19] extends the class of queries investigated by ACQUA
optimizing algebraic expression SE of the following form:

(WINDOW uS PS) JOIN ((SERV ICE uB PB) FILTER F ),

where F is either (?x < FT) or (?x > FT), ?x is a variable in
PB and FT is the Filtering Threshold.

ACQUA.F introduces the Filter Update Policy for maintaining
ΩR that contains the replica of ΩB (the results of the SERVICE
clause). In the maintenance process, the set C of candidate mappings
is selected by the WSJ proposer of ACQUA, while the Filter Update
Policy acts as a ranker. For each mapping µR ∈ ΩR , it computes
the Filtering Distance

FD(µR ) = |µR (?x) − FT| (1)

Then, it ranks the mappings in ΩR by FD and selects the top γ
ones for refreshing the replica. Finally, the maintainer updates the
elected mappings E. Experiments show that the Filter Update Policy
is the best policy when the FILTER clause has a high selectivity
(greater than 60%) for all the tested refresh budgets.

In order to �nd an update policy which is less sensible to selec-
tivity and gives better results, [19] proposed a combination of the
Filter Update Policy with ACQUA policies, namely the WBM.F pol-
icy and the baseline LRU.F and RND.F policies. In the maintenance
process of the combined approach, �rst, the proposer generates
the candidate set C, then the Filtering Distance of each mapping
is computed and, if the value is greater than a given Filtering Dis-
tance Threshold FDT (i.e., it falls out of a given band), the mapping
is eliminated from the candidate set. In the next step, the update
policy (from ACQUA policies) ranks the remaining mappings and
selects the set E to be refreshed. The results of experiments show
that for selectivity grater than 40%, LRU.F is the best policy, while
for other selectivities, WBM.F is the best one.

As we have already pointed out in Section 1, ACQUA.F assumes
that it is possible to determine a priori the band to focus on, i.e., the
optimal value of the Filtering Distance Threshold. Our experimental
study, in Section 5.4, shows that relaxing this assumption is hard.

4 RANK AGGREGATION SOLUTION
In this section, we introduce our proposed solution to the prob-
lem of combining in a timely fashion data stream with distributed
background data in the context of RSP.

In Section 4.1, we introduce the idea of using rank aggregation
to combine the ACQUA and the Filter Update Policy in order to
reactively answer continuous queries while keeping the replica
fresh (i.e., giving results with high accuracy). In Section 4.2, we
show how to apply this idea in combining the LRU and WBM
policies with the Filter Update Policy to obtain LRU .F+WBM .F+,

respectively. In Section 4.3, we elaborate on a di�erent method to
combine WBM and the Filter Update Policy to obtainWBM .F ∗

4.1 Overall idea
ACQUA.F applies the Filter Update Policy and the ACQUA policies
in a pipe. In this way, the opinion of the Filter Update Policy is more
relevant than the one of ACQUA policies. This gives good result
when focusing on a band around the FT minimizes the number of
stale data. However, when the selectivity of the �lter condition is
low, focusing on such a band is inconvenient.

Rank aggregation was shown to be an adequate solution in simi-
lar settings where there was the need to take fairly into account
the opinions of di�erent algorithms.

In our proposed solution, we use WSJ proposer from [5] to select
the candidate set C of mappings for the maintenance. As a ranker,
we use rank aggregation to combine the ranking obtained by order-
ing the mappings in C according to the scores computed by each
policy. Speci�cally, a weight (denoted with α ) allows computing an
aggregated score as follows:

scoreaдд = α ∗ scorel ist−1 + (1 − α) ∗ scorel ist−2 (2)

The aggregated list is ordered by the score scoreaдд . In the next
steps we follow [5], the maintenance process selects the top γ ones
from ordered list to create the elected set E ⊆ C of mappings to be
refreshed. Finally, the maintainer refreshes the mappings in set E.

4.2 ACQUA.F+ Policy
This section presents an algorithm to combine Filter Update policy
with ACQUA policies, respectively, named LRU .F+, andWBM .F+.

In our new combined approach, the proposer selects a set C
of candidate mappings for the maintenance, then the proposed
policy receives as input the parameter α and the two ranked lists
of mappings CL generated by ACQUA and Filter Update policies,
and it generates a single ranked list of mappings.

Algorithm 1 shows the pseudo-code of the proposed policy. For
each mapping in the candidate set C it computes the Filtering
Distance as the absolute di�erence of the value ?x of mapping µR
and the Filtering Threshold FT in the query (Lines 1–3). Then, it
orders the set C based on the Filtering Distance and generate the
ranked list CLf (Line 4). In the next step, based on the selected
policy from ACQUA, the algorithm computes the score for each
mapping in the candidate set C (Lines 5–7), and orders the candidate
set based on the scores to generate the ranked list CLacqua (Line 8).

For LRU .F+ policy, the algorithm computes the refresh time for
each mapping in the candidate set C, and generates scores based
on the least recently refreshed mappings. ForWBM .F+ policy, for
each mapping in the candidate set C, the remaining life time, the
renewed best before time, and the WBM score are computed to
order the candidate set.

Given the parameter α and the two ranked lists CLf and
CLacqua , the function AддreдateRanks generates a single ranked
list CLaдд aggregating the scores of two lists (Line 9). The set of
elected mappings E is created by getting the topγ ones from CLaдд
(Line 10). Finally, the local replica R is maintained by invoking the
SERVICE operator and querying the remote SPARQL endpoint to
get fresh mappings and replace them in R (Lines 11–14).
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Algorithm 1: The pseudo-code of the ACQUA.F+

1 foreach µR ∈ C do
2 FD(µR ) = |µR (?x) − FT| ;
3 end
4 CLf = order C w.r.t. the value of FD(µR );
5 foreach µR ∈ C do
6 compute the score of µR based on the selected policy from

ACQUA ;
7 end
8 CLacqua = order C w.r.t. the generated scores;
9 CLaдд = AддreдateRanks(α ,CLf ,CLacqua ) ;

10 E = �rst γ mappings of CLaдд ;
11 foreach µR ∈ E do
12 µS = ServiceOp.next(JoinVars(µR ));
13 replace µR with µS in R;
14 end

4.3 WBM.F∗ Policy
This section introducesWBM .F ∗, an improved version ofWBM .F+.
It considers that the candidate set C in WBM algorithm has two
subsets that include the "Expired" and the "Not Expired" mappings,
respectively. WBM uses the refresh budget only to update the map-
pings from the "Expired" set.

The proposedWBM .F ∗ algorithm computes the "Expired" and
"Not Expired" lists of WBM and accordingly, generates two ranked
lists ordering them based on Filter Update Policy. Finally, using rank
aggregation, WBM .F ∗ generates two ranked lists, "Expired.agg"
and "Not Expired.agg".WBM .F ∗ Policy �rst selects mappings from
"Expired.agg" list for updating, and if there is any remaining budget,
selects mappings from "Not Expired.agg" list.

Algorithm 2 shows the pseudo-code of theWBM .F ∗ policy. For
each mapping in the candidate set C, the remaining life time, the
renewed best before time, and the total score according to WBM are
computed (Lines 1–5), Then, the "Expired" (Exp) and "Not Expired"
(NExp) sets based on WBM are computed (Lines 6–7). The scores
of mappings are used to generate the "Expired" (ExpL) and "Not
Expired" (NExpL) ranked lists (Lines 8–9).

In the next step, for each mapping in the "Expired" set (Exp), it
computes the Filtering Distance as the absolute di�erence of the
value ?x of mapping µR and the Filtering Threshold FT in the
query (Lines 10–12). The Filtering Distance is also computed for
each mapping in the "Not Expired" set (NExp) (Lines 13–15). Then,
it orders two sets based on the Filtering Distance (Lines 16–17) and
generates the ranked lists ExpLf , and NExpLf . Given parameter
α , and lists of mappings, the function AддreдateRanks generates
two aggregated ranked lists: "Expired.agg" (ExpLaдд ) and "Not
Expired.agg (NExpLaдд ) (Lines 18–19).

The set of elected mappings E is created by getting the topγ ones
from ExpLaддlist (Line 20). If there exists any remaining refresh
budget, it gets the top mappings from NExpLaдд list (Line 21–24).
Finally, the local replica R is maintained by invoking the SERVICE
operator and querying the remote SPARQL endpoint to get fresh
mappings and replace them in R (Line 25–28).

Algorithm 2: The pseudo-code of theWBM .F ∗

1 foreach µR ∈ C do
2 compute the remaining life time of µR ;
3 compute the renewed best before time of µR ;
4 compute the score of µR ;
5 end
6 Exp = possible expired mapping of C;
7 NExp = C − ExP ;
8 ExpLwbm = order Exp w.r.t. the scores;
9 NExpLwbm = order NExp w.r.t. the scores;

10 foreach µR ∈ Exp do
11 FD(µR ) = |µR (?x) − FT| ;
12 end
13 foreach µR ∈ NExp do
14 FD(µR ) = |µR (?x) − FT| ;
15 end
16 ExpLf = order Exp w.r.t. the value of FD;
17 NExpLf = order NExp w.r.t. the value of FD;
18 ExpLaдд = AддreдateRanks(α ,ExpLf ,ExpLwbm ) ;
19 NExpLaдд = AддreдateRanks(α ,NExpLf ,NExpLwbm ) ;
20 E = �rst γ mappings of ExpLaдд ;
21 if γ > sizeOf (ExpLaдд ) then
22 E ′ = �rst (γ - sizeOf(E) ) mappings of NExpLaдд ;
23 E = E Union E ′;
24 end
25 foreach µR ∈ E do
26 µS = ServiceOp.next(JoinVars(µR ));
27 replace µR with µS in R;
28 end

5 EXPERIMENTS
This section reports on the results of the experiments we ran to
evaluate the proposed policies. Section 5.1 formulates the research
hypotheses that we tested. Section 5.2 introduces our experimental
setting made of synthetic and real datasets. Section 5.3 provides
empirical evidence that relaxing the ACQUA.F assumption is hard,
i.e., it is hard to determine a priori the band to focus on. Sections 5.4
and 5.5 report on the evaluation of our methods w.r.t. the research
hypotheses and discusses the practical insights we gathered.

5.1 Research Hypotheses
The space of evaluation, which we explore, has �ve dimensions:

(1) the proposed policies;
(2) the policies that we have to compare with;
(3) the selectivity of the �ltering condition (10%, 20%, ..., 90%,

75%);
(4) the refresh budget available to the policies (between 1 and

7); and
(5) the parameter α that allows controlling how the rank ag-

gregation combines ACQUA and Filter Update policies in
LRU.F+, WBM.F+ and WBM.F∗ (0.167, 0.2, 0.333, 0.5, 0.0667,
0.833);
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In order to explore this vast space, we �rst �x the budget to a
value, which is not enough to eliminate all stale data, and we tested
two hypotheses:

Hp.1 For every selectivity LRU.F+, WBM.F+ and WBM.F∗ have
the same accuracy of the corresponding ACQUA.F policy,
but they do not require to determine a priori the band.

Hp.2 For every selectivity LRU.F+, WBM.F+ and WBM.F∗ are
not sensible to α , i.e., the parameter α that controls the rank
aggregation can be set in a wide range of values without a
signi�cant impact on the accuracy.

In a second stage of the evaluation, we �x the selectivity and we
tested two more hypotheses:

Hp.3 For every budget LRU.F+, WBM.F+ and WBM.F∗ have the
same accuracy of the corresponding ACQUA.F policy.

Hp.4 For every budget LRU.F+, WBM.F+ and WBM.F∗ are not
sensible to α

It is worth to note that we do not expect LRU.F+, WBM.F+ and
WBM.F∗ to outperform the corresponding ACQUA.F policy, because
rank aggregation can only consider the opinions of the policies it
combines. In the best case, LRU.F+, WBM.F+ and WBM.F∗ can have
the same accuracy of ACQUA.F. The important point is that they
no longer rely on the ACQUA.F assumption that �xing the band
around FT is easy.

5.2 Experimental Setting
As experimental environment, we use an Intel i7 @ 1.7 GHz with
8 GB memory and a SSD disk. The operating system is Mac OS X
10.12.3 and Java 1.8.0.91 is installed on the machine. We carry out
our experiments by extending the experimental setting of ACQUA.F
[19] that in turn extends those presented in ACQUA [5].

The experimental datasets are composed of streaming and back-
ground data. The streaming data is a collection of tweets from 400
veri�ed users for three hours. The background data consists of the
number of followers per user collected every minute.

To control the selectivity of the �ltering condition, [5] designed
a set of transformations of the background data that randomly
selects a speci�ed percentage of the users and translates their time-
series to be sure that it crosses the Filtering Threshold at least once
during the experiment. In order to reduce the risk of bias in creating
those realistic test datasets, 10 di�erent datasets are generated for
each percentage of the selectivity used in the experiments. In the
remainder of the paper, we use the notation DSx% to refer to the
test case that contains 10 datasets whose selectivity is x%.

In addition to DS10%, DS20%, ... DS90%, we also created six
synthetic test cases, namely DEC40%, DEC70%, INC40%, INC70%,
MIX40% and MIX70%. The percentage refers as above to the selec-
tivity, while INC, DEC and MIX refers to how number of followers
of each user evolves over time. In DEC the number of followers
decreases. In INC, it always increases. In MIX, it randomly increases
and decreases. In order to reduce the risk of introducing biases each
synthetic test case contains 10 di�erent datasets.

As a test query, we use the one presented in Section 1 and for
each policy we run 140 iterations of the query evaluation, i.e., since
the query has to be evaluated once per minute we simulated the
time passing for 140 minutes.

(a) The Median over time (b) Distribution of dCJ at the end of
the experiemnt, i.e., 140th iteration

Figure 2: The two di�erent viewpoints that can be used to
illustrate the evaluation.

In order to investigate our hypotheses, we use the metric intro-
duced in ACQUA.F [19]. We set up an Oracle that, at each iteration
i , certainly provides correct answers Ans(Oraclei ) and we compare
its answers with the possibly erroneous ones of the query Ans(Qi ).
In our experiments, we use cumulative Jaccard distance at the kth
iteration dCJ (k) de�ned as:

dCJ (k) =
k∑
i=1

d J (Ans(Qi ),Ans(Oraclei )) (3)

where d J (Ans(Qi ),Ans(Oraclei )) is the Jaccard distance, which
measure diversity of the two sets Ans(Qi ) and Ans(Oraclei ) at the
ith iteration. The lower value of cumulative Jaccard distance shows
better performance of the query evaluation.

It is important to note that there are two viewpoints to show the
results of the investigation of those hypotheses (Figure 2). The �rst
viewpoint takes a time-series perspective and it allows comparing
the accuracy of the various policies through the time for every eval-
uation. For instance, Figure 2(a) shows the medians of cumulative
Jaccard distance over time for WBM, LRU and Filter Update policies
when tested with DS75% and a refresh budget of 3. The plot shows
that each policy has a constant behavior over time; for example,
the Filter Update Policy is the best policy for each iteration.

The second viewpoint (Figure 2(b)) focuses on the distribution of
the cumulative Jaccard distance at the end of the experiment (in the
example at the 140th iteration). It uses a box-plot [15] to highlight
the median and the four quartiles of the accuracy obtained running
the experiments with the 10 datasets in the DS75% test case. The
box-plot shows that for �rst three quartiles the Filter Update policy
is more accurate than all others; only the �rst quartile of WBM
has a comparable accuracy. In this paper, we use only the second
viewpoint to show the results of our experiments.

5.3 Relaxing ACQUA.F Assumption
In this experiment, we provide empirical evidence that relaxing the
ACQUA.F assumption is hard. ACQUA.F assumes that it is simple
to determine a priori the Filter Distance Threshold (FDT ), i.e., the
band around the Filtering Threshold to focus on.
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Figure 3: Result of experiment 1 that runs rank aggregation
policies over synthetic datasets to compare them with exist-
ing policies for di�erent selectivity.

To check if relaxing this assumption is easy, we test LRU.F
and WBM.F policies with the DEC40%, DEC70%, INC40%, INC70%,
MIX40%, and MIX70% test cases. We run each test case several times
with di�erent FDT values. The refresh budget γ is equal to 3.

Table 1: Summery of FDT value in case the policy has mini-
mum Cumulative Jaccard Distance

INC40% INC70% DEC40% DEC70% MIX40% MIX70%

LRU.F 156 1000 250 625 500 500
WBM.F 500 1000 375 375 109 93

Table 1 summarizes for each policy and test case the value of
FDT in which the cumulative Jaccard distance is smaller. The results
show that relaxing the assumption of knowing FDT is hard. The
ACQUA.F policies are sensitive to FDT and �xing a single FDT is
not straightforward.

5.4 Experiment 1
In this experiment we test hypotheses Hp.1 and Hp.2 by checking
the sensitivity to the �lter selectivity for the proposed policies
considering di�erent value of α . Keeping the refresh budget γ equal
to 3, we run experiments on both synthetic and real test cases. As
explained in Section 5.2, we present the results using box-plots
that capture the distribution of the cumulative Jaccard distance at
the end of the experiment. The results are obtained using the 10
di�erent datasets that are contained in each test case.

Figure 3 shows the results when using the synthetic datasets.
Each column shows the results related to one policy and for two
levels of selectivity (40% and 70%). Each row groups the experiments
run using the same test case (DEC, INC, and MIX). To show the
value of α used in the rank aggregation policies, we opt for the

notation < policy >< α >. For example LRU .F+0.2 in the second
column refers to LRU .F+ policy when using α = 0.2.

The results of the �rst two columns show that LRU .F+ with α
equal to 0.2 is comparable to LRU.F for all synthetic test cases (i.e.,
DEC, INC, and MIX). The results of columns three to �ve show that
WBM .F ∗ with α = 0.2 is comparable to WBM.F, whileWBM .F+

with α = 0.2 is worst than WBM.F.
Overall the results allow us to say that, w.r.t. the synthetic test

cases, Hp.1 is veri�ed only by LRU .F+ andWBM .F ∗. In other words,
the best approach for combining WBM and Filter Update policies is
considering the "Expired" and "Not Expired" lists of WBM in rank
aggregation algorithm (see Algorithm 2).

Figure 4 shows the obtained results over the test cases DS10%,
DS20%, ..., and DS90%. Each column shows the results related to one
policy for di�erent selectivities. The �rst three columns show the
results of Filter Update, ACQUA and ACQUA.F policies, respectively.
Columns four to eight show the results for our proposed rank
aggregation policies for �ve di�erent values of α .

Figure 4(a) compares the proposed LRU .F+ policy with Filter Up-
date, LRU, and LRU.F. Independently from the selectivity, LRU .F+
with α = 0.167 is as accurate as LRU.F and remains better than
Filter Update and LRU. This veri�es Hp.1 w.r.t. LRU .F+ on real
data. The results of column four to eight also show that LRU .F+
little sensitive to α in the range 0.167 and 0.5, while for larger α it
becomes less accurate than LRU.F. This veri�es Hp.2 w.r.t. LRU .F+.

The experiments on the synthetic and the real test cases shows
that LRU .F+ can have practical value, because it works for all
selectivities and for a wide range of values of α .

Figure 4(b) allows comparing the proposedWBM .F+ with di�er-
ent value of α with Filter Update, WBM, and WBM.F. The box-plots
show thatWBM .F+ is less accurate than WBM.F, and Filter Update,
and it is little sensitive to α in the range 0.167 and 0.5. Therefore,
Hp.1 is not veri�ed forWBM .F+, but Hp.2 is.

From a practical perspective, we learned that merging the two
lists of "Expired" and "Not Expired" mappings in the WBM algorithm
can badly a�ect the result.WBM .F+ is of no practical usage.

Figure 4(c) allows comparing the proposed WBM .F ∗ with dif-
ferent values of α with Filter, WBM, and WBM.F. WBM .F ∗ is as
accurate as WBM.F for selectivities smaller than 60% and it is little
sensitive to α . Accordingly, Hp.2 is veri�ed w.r.t.WBM .F ∗, but Hp.1
is only partially veri�ed for low selectivities.

From a practical perspective, it is worth observing thatWBM .F ∗

with α = 0.167 is: i) always better than WBM (i.e., the best policy
in ACQUA) and ii) better than LRU .F+ for low selectivity. Having
to choose a policy, LRU .F+ is the one that on average gives the best
accuracy, but having the possibility to estimate the selectivity at
run time, it would be better to use WBM .F ∗ for low selectivities
(<60%) and LRU .F+ for high selectivities (≥60%).

5.5 Experiment 2
In this experiment we test Hp.3 and Hp.4 by investigating the
sensitivity to the refresh budget γ for the proposed policies and for
di�erent values of α .

We run experiments using a subset of the test cases introduced
in Section 5.2. For synthetic data, the experiments run for refresh
budget 3 and 5 over the DEC70%, INC70%, and MIX70% test cases.
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(a) LRU .F +

(b) WBM .F +

(c) WBM .F ∗

Figure 4: Result of experiment 1 that runs rank aggregation policies over real datasets to compare them with existing policies
for di�erent selectivity.

For the real data the refresh budget varies from to 1 to 7 and the
experiments run over DS75% test case.

We choose to �x selectivity to 70% for the synthetic data and
75% for the real data, because, according to the results reported
in Section 5.4, this is the smallest value of selectivity for which
LRU .F+,WBM .F+, andWBM .F ∗ have comparable accuracy.

Figure 5 shows the results obtained using the synthetic test cases.
The �rst two columns allow asserting that the result of LRU.F and
LRU .F+ with α = 0.2 are comparable. The columns three to �ve
show that WBM .F ∗ and WBM .F+ with α = 0.2 are worst than
WBM.F. In particular,WBM .F+ is worst for both budget, whereas
WBM .F ∗ seems unable to use additional budget (i.e., the accuracy
with budget 5 is similar to the accuracy with budget 3). Therefore,
Hp.3 is veri�ed for LRU .F+, but not forWBM .F+ andWBM .F ∗.

This observation provides an additional insight onWBM .F+ and
WBM .F ∗. In discussing Hp.1 in Section 5.4, we note thatWBM .F ∗

is more accurate thanWBM .F+ for budget 3, but here we discover

that apparently giving more budget toWBM .F ∗ does not turn in
more accurate results.

Turning to real data (see Figure 6) con�rms the insight we gath-
ered using synthetic data: LRU .F+ is comparable with LRU.F (Figure
6(a)) whileWBM .F+ andWBM .F ∗ are worst than WBM.F. (Figures
6(b) and 6(c)). WBM .F ∗ is not able to use all the budget when it
is greater than 3. On the contrary WBM .F+, given a high bud-
get, becomes comparable to WBM.F. Therefore Hp.3 is veri�ed for
LRU .F+, partially veri�ed forWBM .F+ for budget greater than 5,
and not veri�ed forWBM .F ∗.

As a marginal note, Hp.4 (sensitivity to α ) is veri�ed for all
policies that use rank aggregation.

From a practical perspective, this analysis con�rms that if one
has to chose a policy LRU .F+ is on average the best one.WBM .F ∗

is a perfect solution only when the available budget is very low.
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Figure 5: Result of experiment 2 that runs rank aggregation
policies over synthetic datasets to compare them with exist-
ing policies for di�erent refresh budget.

6 RELATEDWORK
Many systems locally replicate data sources, which takes time to
access, to improve their performance and availability. To get ac-
curate answer, a maintenance process is needed to keep the local
replicas fresh. Extensive studies exist about optimization and main-
tenance process in database community [2, 11, 13, 18]. However,
those works still do not consider the problem of combing streaming
data with distributed background data.

The only follow up work of ACQUA that we are aware of is [10].
It studied the maintenance process for a class of queries that extends
the 1:1 join relationship of ACQUA work to M:N join, but that does
not include FILTER clauses. It models the join between streams and
background data as a bipartite graph.

7 CONCLUSIONS AND FUTUREWORK
In this work, we studied the problem of continuously evaluating
queries that need to access distributed background data while pro-
cessing a data stream. The time to access and fetch the distributed
background data can be so high to put the application at risk of
losing reactiveness.

RDF Stream Processing (RSP) is an adequate framework to study
this problem because it can process data streams and it can access
distributed background data using federated SPARQL. The ACQUA
work proposed an approach to i) keep a replica of the results of
the federated SPARQL endpoint and ii) use various maintenance
policies to refresh such a replica. ACQUA.F, which is an extension of
ACQUA, considers the class of queries that also includes a FILTER
clause.

In this paper, we further investigate the ACQUA.F approach by
removing the assumption that it is possible to determine a priori
the band to focus on. We proposed new policies that use rank

aggregation. Those new policies let each ACQUA.F policy express
its opinion by ranking data items according to its own criterion and,
then, aggregate those ranks to take fairly into account all opinions.

To study our research question, we formulate four hypotheses.
In Hypotheses Hp.1 and Hp.3, we test if our proposed policies have
the same accuracy of the corresponding ACQUA.F policies, without
determining a priori the band to focus on. In Hypotheses Hp.2, and
Hp.4, we test if the proposed policies are sensible to α . The results
are reported in Table 2.

Table 2: Summary of the veri�cation of the hypotheses w.r.t.
LRU .F+,WBM .F+, andWBM .F ∗.

measuring varying LRU .F+ WBM .F+ WBM .F ∗

Hp.1 accuracy selectivity 3 <60%
Hp.2 sensitivity to α selectivity, α 3 3 3

Hp.3 accuracy budget 3 > 5
Hp.4 sensitivity to α budget, α 3 3 3

The results of experiment 1 (about Hp.1, and Hp.2) show that
LRU .F+ policy has the same accuracy of the LRU.F policy for every
selectivity, andWBM .F ∗ policy is comparable to WBM.F policy for
low selectivity. They also show that the proposed policies are not
sensible to α and α ∈ [0.167, 0.5] is acceptable for every selectivity.

The results of experiment 2 (about Hp.3, and Hp.4) show that
LRU .F+ policy has the same accuracy of the LRU.F policy for every
budget, and WBM .F+ policy is comparable to WBM.F policy for
high value of budget. They also show thatWBM .F ∗ is not able to
use all the budget, and even increasing the budget, the error does
not go below a given minimum. Moreover, the proposed policies
are not sensible to α .

In our future work, we intend to further optimize the approach by
i) combining more than two policies, and ii) dynamically determine
the best α to combine the opinions of the di�erent policies, e.g., by
dynamically estimating the selectivity of the �ltering condition.

We also want to study the static optimization of pushing the
FILTER clause(s) into the SERVICE clause and keeping a cache of
recent results instead of a full replica.

Additionally, we intend to broaden the class of queries by explor-
ing queries with multiple FILTER clauses and queries that contain
a ranking clause [12] that involves variables present both in the
WINDOW and in the SERVICE clauses.

We also intend to study the e�ect of di�erent trends in the data.
For future work we would like to use data from other domains
(e.g., sensor networks) with various characteristics such as �at/fast
growing/shrinking of data rate and positive/negative correlation
between growing/shrinking of data rate and changes in data.
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