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ABSTRACT
The 2017 Grand Challenge focused on the problem of automatic

detection of anomalies for manufacturing equipment. This paper

reports the technical details of a solution focused on particular

optimizations of the processing stages. These included customized

input parsing, fine tuning of a k-means clustering algorithm and

probability analysis using a lazy flavor of a Markov chain. We have

observed in our custom implementation that carefully tweaking

these processing stages at single node level by leveraging various

data stream characteristics can yield good performance results. We

start the paper with several observations concerning the input data

stream, following with our solution description with details on

particular optimizations, and we conclude with evaluation and a

discussion of obtained results.
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1 INTRODUCTION
The 2017 DEBS Grand Challenge focused on a use case of analyzing

data streams generated by sensors embedded in manufacturing

equipment with the goal of detecting anomalies in the equipment

behavior. The query to be solved for the anomaly detection involved

three main processing stages to be executed for each sensor: (1)
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finding clusters of sensor measurements, (2) training a Markov

model for detecting the probability that sensor reports shift between

clusters and finally (3) detecting anomalies based on the frequency

of shifting reports correlated with the trained Markov model. In

addition, our solution included a preprocessing stage of the data,

which was provided as a time-ordered stream of RDF tuples. A full

description of the proposed problem is thoroughly detailed in [1] .

The solution we propose in the current paper focuses on optimiz-

ing the processing chain at the level of a single node by leveraging

several particularities we observed in both the structure of data

stream and in the problem characteristics. The data to be analyzed

was embedded in an RDF format with a fixed structure. Each mes-

sage received as input represented an observation group associated

with a single machine and contained all sensor measurements for

that respective machine at a certain time. We have observed that the

fixed RDF structure permitted a fast customized parsing as part of

the preprocessing stage, which allowed us to easily create dedicated

processing queues for each individual sensor.

Further, the target query composed of the aforementioned three

stages should be solved with respect to a sliding time window

over each of the created sensor queues. We have observed that

for some windows the result of some processing stages can be

reused, based on computation executed over previous windows.

This allows us to skip the query computation in such cases, which

we noticed to have a relatively high frequency, and to rely on

previously obtained results. This optimization impacted both our

K-means implementation for finding the clusters in the first stage,

as well as the second stage training of the Markov model. We also

considered additional optimizations for these two stages, which

reduce the complexity of the baseline algorithms.

In our implementation, we also leverage the fact that the received

observation groups can be ordered based on timestamp as well as

the fact that processing of queues for different sensors does not

interfere in respect with the result. This allowed us to implement a

simple parallelization at single node level of our processing chain. In

this we just divide the work to multiple threads, where a particular

sensor queue will always be handled by the same thread. We

believe that our baseline design for the single node solution is

further extendable to a multi-node implementation with minor

adjustments and added synchronization in the final step. However,

based on preliminary runs using a multiple node configuration,

we concluded that under the given conditions of the test platform,

a distributed solution would not perform significantly better (or

actually might have even worse results) than the baseline approach.
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We structure our paper as follows. In Section 2 we describe

our solution architecture including technical implementation de-

tails. In Section 3 we discuss the particular optimizations we have

implemented and their impact. We continue in Section 4 with mea-

surements obtained on the test platform. We conclude in Section 5

with further ideas of optimization and with a discussion on the

obtained results.

2 SOLUTION ARCHITECTURE
We developed our solution in the Java language, using a custom

pipelined architecture. The reason for choosing Java was based

mostly on the fact that the testing platform was written in Java,

involving several standard wrapper classes facilitating the integra-

tion of the solution with the benchmark. The rationale of preferring

a custom architecture to a dedicated stream processing platform

(e.g., Storm [2]) had mainly two grounds. The first was due to some

optimization cases which are selectively triggered based on the

window values configuration and which involve all three process-

ing stages, making improper to adhere to the specific operator-like

separation that stream processing platforms typically imply. The

second ground was the single node approach we finally decided

for.

The first step of our solution consists in loading the metadata

describing the problem parameters, performing the necessary ini-

tialization of data structures and threads, and also executing a

warmup phase. In particular, one dispatcher thread is created for

partitioning the workload, and a set of worker threads for executing

the processing stages. We preferred using, where possible, either

singleton or static versions for the necessary data structures in

order to avoid costs of reinstantiating. During the warmup phase,

we are running the entire detection pipeline using 5000 observation

groups for 3 times (3 was determined as the best option in respect

to overall results after a couple of trials with various values).

We present our custom pipeline architecture in Figure 1 follow-

ing the path of an observation group starting with receiving it from

the input queue up to generating an anomaly.

An observation group is read from the RabbitMQ input queue as

a vector of bytes in RDF format by a dispatcher thread. This thread

extracts the machine id from the observation group with a mini-

mum of effort, by simply searching for it starting at a very specific

position in the byte array. This position is determined by counting

the length of the starting part of the RDF entry, which is similar

for each observation group because it follows a specific pattern

according to the given ontology. Proceeding like this minimizes the

search effort in the given input. This is essentially performed in

O(1) with a minor constant given by the text length corresponding

to ids increasing in time, which is variable.

Further, the observation group is routed by the dispatcher thread

to an internal preprocessing queue maintained by each worker

thread. Currently, the dispatching algorithm follows just a simple

routine, by applying a modulo on the machine id to identify the

thread chosen for processing. One important invariant guaranteed

by this strategy is that all observation groups generated by the same

machine are always processed by the same thread in the order they

are received (e.g., in Figure 1 the first worker thread will always and

exclusively process the data generated by the machines in the group

m : i1 tom : in). As we observed the input is currently received

sequentially as one observation group per each machine. Therefore,

this strategy works efficiently as long as all machines are producing

data. In the case of machines leaving and joining, the routing would

obviously require a different strategy for maintaining a proper load

balancing.

As illustrated in Figure 1 a worker thread will further execute

both the initial parsing stage and the chain of processing stages

over each observation group received in its queue. First, the worker

thread will apply a similar technique as previously mentioned for

efficiently parsing and extracting a sensor value from the observa-

tion group RDF data. The thread will essentially skip fixed constant

portions of RDF data and start searching for a sensor property id

and associated sensor value at specific positions, typically immedi-

ately close to the actual searched data location. Since this parsing

is done essentially in O(1) time for each sensor value and since dif-

ferent sensor values do not influence each other in the processing,

the thread will continue sending each obtained value through the

processing pipeline before extracting the next value. The position

that the parsing reached in the RDF observation group data is obvi-

ously saved for continuing after the current obtained sensor value

is processed.

Each sensor value obtained by the parsing is added to a window

sized queue associated with that specific sensor, which essentially

represents the current window of values to be processed (e.g., s :
i1_1 for the example in Figure 1). All these queues are organized in

a double indexed array, where the first index identifies the machine

id and the second index the sensor property id. This structure,

available at the global level, provides easy access without any race

conditions and in constant time to the individual window queues

by the worker threads. Whenever a new value is added to a queue

the first one is removed, sliding the window. Afterwards, the thread

starts executing the chain of processing stages over the values

present in the window queue (e.g., over s : i1_1 in the example in

Figure 1).

In the processing stages, we have applied several optimizations,

some of which depending on the specific structure of the windows

with respect to the contained values. We detail our implementation

of analyzing the values in a given window and detecting an anomaly

in Section 3. After an anomaly is produced by a worker thread it

is forwarded to a pre-exit priority queue ordered according to the

current timestamp.

An anomaly resides in this queue for a short time, until it is

determined that no worker thread could produce another anomaly

with an earlier timestamp.

In order to determine that no threads could produce an earlier

anomaly, each worker thread signals its last processed timestamp

to a central non-blocking data structure. A separate thread is used

to periodically check the latest minimum processed timestamp.

Once all threads reached a higher processed timestamp, all queued

anomalies are flushed to the RabbitMQ output queue as long as

their timestamp is lower than the minimum of already processed

timestamps.

In the case when the number of machines sending sensor values

is not constant, one or more threads could enter a starvation phase.

If all machines assigned (via the routing process) to the same thread
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Figure 1: Pipeline of processing an observation group. Notations:m : i - machine with identifier i ; t : i - timpestamp i ; s : i_j -
values of sensor i on machine j.

go silent, the thread would have an empty message queue. This

blocks the output queue as its latest processed timestamp does not

increase anymore until its machines start sending data again. In

order to prevent this situation, the starving thread would signal

with a fixed maximum timestamp value so it would not count when

computing the minimum of the latest processed messages.

3 PROCESSING CHAIN OPTIMIZATIONS
As described in Section 2 the chain of processing stages is exe-

cuted by each worker thread in sequence for every sensor value

that is parsed and added to the window queue. Besides the pro-

cessed window queue we particularly maintain during the entire

chain of processing several data items used by the optimizations

we implemented. These items are:

• prev_first - the first value of the previous window that was

just removed from the current window;

• frequencies - the frequency of apparition of the first K
distinct values in the window, up to the first apparition of

the Kth
distinct value, where K is the number of clusters

used by the K-means algorithm;

• position - the position of the last distinct value determined

in the previous window;

• cluster_sequence - the sequence of clusters associated with

each value in the window after the iteration of the K-means

stage.

We detail in the following the optimizations implemented in

each stage, some of which span across all stages.

K-means clustering. The first optimization in this stage, which

we further refer as IN/OUT, exploits the situation when the last

value added to the processed window queue is equal to prev_first
and the first K distinct values in the window remain the same. For

clarity we illustrate an example in Figure 2 where prev_first=2. The
challenge specification requires setting the initial cluster centers

to the first K distinct values in the window. We can notice that in

such context the clusters identified after the K-means stage will be

the same as in the previous window. This is due to the fact that

we start the clustering having the same K distinct initial centers

and the same values in the new window. It is, therefore, enough

to identify this situation in order to skip the K-means clustering.

The Algorithm 1 we implemented to determine this context runs

in sublinear time with respect to the window size. We describe the

algorithm in the following.
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Algorithm 1 IN/OUT algorithm

1: function in/out

2: result ← f alse
3: f requencies[prev_f irst] − −
4: if f requencies[prev_f irst] == 0 then
5: f requencies .remove(prev_f irst)
6: while position < window .lenдth ∧ f requencies .size() < K ∧ f requencies .includes(window[position]) do
7: f requencies[window[position]] + +
8: position + +

9: if position < window .lenдth then
10: f requencies .add(window[position])
11: f requencies[window[position]] ← 1

12: if window[position] == prev_f irst then
13: result ← true
14: else
15: position − −
16: else
17: result ← true
18: position − −
19: return result ∧ (prev_f irst == current_last)

Figure 2: Window sliding case when clusters remain un-
changed - the case of IN/OUT optimization.

We first decrease at line 3 the maintained frequency for prev_first
since one such value left the window. At line 4, we check if there

are no other similar values to prev_first in the range of first distinct

K values determined in the previous window. If there are other

similar values in this range as prev_first then we know that the

window cluster centers are the same (line 17) and the algorithm

ends by checking also the condition of the last value added being

equal to prev_first. If there are no other values equal to prev_first in
the window we first remove the corresponding value key from the

frequenciesmap (line 5). This means, in the general case, that we are

one distinct value less then the number of clusters. Following, at

line 6 we try to find if there is another distinct value in the window,

starting at the position of the last known distinct value obtained

in the previous window. If we find such a distinct value by the

end of the window (line 9) then we add it to the frequency map

and we check if it is equal to prev_first. If that is the case we know
again that we have the same first K distinct values as the previous

window. The other decrements of position relate with keeping this

data valid for future windows.

Using this technique the standard complexity of the K-means

stage is reduced from O(K ×W ) to O(W ) whereW is the window

size. Furthermore, IN/OUT has also implications in the Markov

modelling stage, as we will describe below.

The second optimization implemented in this stage, which we

will refer to as K1, is the situation where the values in a given

window will be clustered in a single cluster. This can happen either

in the case when the metadata defines only 1 cluster for a given

sensor, or when all the values in the window are identical. The K1
situation permits skipping not only the K-means processing stage

but all the processing chain. Since all values are part of the same

cluster, the probability of transition for each value will be 1 and

there will be no anomalies detected in the given window. The

complexity of the entire processing chain is therefore reduced to

O(W ) necessary to determine if all values are equal (except the

case when the metadata defines 1 cluster for the sensor when the

complexity is O(1)).
The third optimization in this stage, which we refer further

as LowK, refers to the case when the number of distinct values in

the window is lower than the number of clusters K defined in the

metadata for the respective sensor. This permits again skipping

the complete K-means clustering stage since we can directly as-

sign each value to a corresponding cluster knowing that values

will not shift between clusters if we execute any other iteration.

The LowK optimization reduces again the complexity of K-means

fromO(K×W ) toO(W ) necessary for iterating through the window
for assigning the values.

As we detail in Section 4 we observed that the occurrence of

the aforementioned situations in the data sets offered for testing

is considerably high, the optimizations being, therefore, triggered

very often.

Markov modelling. In the Markov modelling stage, we make use

of the cluster_sequence determined in the K-means clustering. Using

this we need to compute the probability of transition from one clus-

ter to another. The probability of transition from cluster a to cluster
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Points Machines
Throughput

(MB/s)
Latency
(ms) Sync

63 1000 36.7 6.79 Yes

63 1000 36.1 6.45 No

10000 1 31.6 5.68 N/A

Table 1: Performance results - average for 5 runs on the eval-
uation platform

b is defined as the observed number of transitions from a to b in the

window, divided by the total number of transitions from a observed

in the window. We decided for a lazy approach in our implemen-

tation, where we only count in this stage the two numbers that

we need to divide. This results in O(W ) time complexity for this

stage. The optimization helps skipping another O(K2) operations
that the division between each possible cluster transition count

would require. Moreover, in the case where the K-means IN/OUT
optimization applies, we can observe that the values in the clus-
ter_sequence simply shift, the former first one becoming the last. In

this situation, we can skip the full count execution in the Markov

modelling stage. This is done inO(1) by just preserving the counted
values from the previous window and updating the corresponding

counts for the first and last value in the cluster_sequence.

Anomaly detection. The lazy implementation of the Markov mod-

elling stage implies that we need to finalize computing the actual

probabilities of transition in the anomaly detection stage. This is

done by dividing the transition counts obtained previously. How-

ever, instead of computing the entire K2
set of probabilities for all

the possible cluster transitions, we only compute the probabilities

for the last N = 5 transitions as in the given specification of [1]

(which can be even less if the last values in the window did not shift

between clusters). Finally, we detect an anomaly by calculating the

composed probability of these last transitions and comparing it

with the given reference threshold.

4 EVALUATION AND OBSERVATIONS
We have tested our solution using the provided metadata in various

configurations. We summarize some of the most representative

runs in Table 1. For the cases of 1000 machines we have used 12

worker threads and for the case of 1 machine a single worker thread.

The chosen window size was 10 in all three tests. We have tested

both an implementation using the final synchronization step in

the solution architecture described in 2 as well a solution where

anomalies detected by worker threads are simply pushed directly

to the output queue. We observed in various runs that the flavor we

did not synchronize managed to perform relatively well in respect

to output correctness (i.e., producing anomalies in the right order).

We believe the reason for this was the relatively low frequency

when an anomaly appears. Also, an interesting aspect was that

the solution flavor for 1000 machines that we did not synchronize

performed just mildly better than the synchronized flavor. We can

conclude therefore that our synchronization mechanism does not

incur a very high overhead.

We have also measured the frequency of triggering the optimiza-

tions implemented for the K-means processing stage described in

Machines and
window size

Total
windows IN/OUT K1 LowK

1 / 10 274505 34.26% 13.16% 35.63%

10 / 10 2745050 33.58% 0.43% 64.32%

1 / 100 269555 34.11% 12.74% 7.82%

10 / 100 2695550 33.86% 0.03% 28.11%

Table 2: Exact frequency of each K-means optimization trig-
ger

Section 3. The results are illustrated in Figure 3. We have chosen

specifically two cases of workloads provided by the Grand Chal-

lenge Competition organizers. We have observed that testing for

both a window size of 10 and 100, the optimizations were triggered

for more than 50% of the processed windows. The optimizations

are mutually exclusive with respect to a processed window in the

following priority: IN/OUT, K1, LowK. The exact frequency of trig-

gering each optimization for the total number of processedwindows

over 5000 points in the workloads is provided in Table 2.

In respect to the lazy optimization of the Markov modelling,

we observed that the number of clusters for the sensors in the

provided 1000-machines metadata was 53 on average. This yields a

53x speed-up of the Markov modelling stage on average, as detailed

in Section 3.

During the preliminary tests, we have used a multi-node config-

uration composed of multiple Docker containers (from 2 to 7) using

a baseline message passing. The nodes were evenly spread across

the available servers. The evaluation revealed that the throughput,

in this case, was not increased compared to a single node config-

uration, reaching about 40MB/s. Considering on these results we

decided to focus on a multi-threaded single node solution.

One further attempt to optimize our parsing stage was to use

native C language solution. We have observed that interfacing with

a native implementation through JNI generated higher latencies

than the original Java implementation, on average 2x time. However,

we still consider other options to explore for achieving this (e.g.,

sockets, shared memory).

5 DISCUSSION AND POTENTIAL
ENHANCEMENTS

Although the evaluation platform offered a cluster of servers, the

experiences presented in Section 4 led us to the conclusion that one

multithreaded single node solution with highly optimized process-

ing stages is a perfectly feasible approach in the given context. We

actually believe that a multiple node solution might suffer more

from the overhead of passing messages over the network and ad-

ditional synchronization than the gain offered by a distribution

limited to 3 physical machines. Also, a factor for choosing the one

node solution was the amount of memory available on a single

server (256GB), which we nevertheless carefully evaluated with

respect to consumption (e.g., strictly considering the values in the

window queues held in memory for 1000 machines, with an average

of 55 stateful sensors per machine and a window size of 500, the

occupied space would not exceed 300MB).
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Figure 3: Frequency of K-means optimizations trigger for data sets of 5000 points on various conditions

Besides the optimizations already implemented, we also consid-

ered some other potential enhancements of our solution. One of

them is maintaining theK cluster centroids and theW values within

a window, both sorted ascending by value. This would allow a sig-

nificant improvement applicable to all iterations of the K-means

stage, independent of the window content, dropping the theoretical

running time-complexity from O(K ×W ) to O(K +W ). In order

implement this, first, the values within a window have to be kept

sorted in some data-structure that would allow efficient insertions,

deletions, and the iteration in increasing order. A balanced tree set

(e.g., AVL, Red-Black Tree) would allow the first two operations in

logarithmic time and the latter in linear time. The centroid values

can be kept in a simple sorted array since only their values change

from one round to another and there are no insertions or deletions

after the initialization. Using these structures in a K-means window

processing would make possible to find the assigned cluster to one

observation in O(1) average time. The algorithm would start by

iterating all sensor values smaller than the average of the first two

centroid values. All these values are assigned to the first cluster.

Then, the following (higher) values are iterated and assigned to

the second cluster, limited by the average of the next two centroid

values. The average is the boundary between clusters. The process

continues until all values are assigned. The new cluster centroids

can be updated in the same process to avoid further iterations. The

complexity analysis is very similar to the one of the merge-sort

of two sorted arrays and would provide the O(K +W ) complexity.

This is possible because of the fact that the K-means is applied on

1-dimensional data.

Another potential optimization would be a memoization applied

to the window contents, more precise by keeping a cache of the

results obtained from previously processed similar windows. This

would require a fast enough hash algorithm for the window values

and a low dispersion for the values emitted by each sensor.

However, an integration of these ideas and others would also

increase the code complexity and probably also introduce needs for

new synchronization points, so such extensions would require a

careful evaluation.
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