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ABSTRACT
�is paper presents an approach for initial alignment or coarse reg-
istration of a partial 3D point cloud of objects. �e method is based
on computing the centroid of the points in the point cloud, and a
line derived from the surface normals. �is approach uses confor-
mal geometric algebra and non-linear least squares optimization to
achieve the results. �e method performs well in experiments, and
it is shown that it performs more accurately the more points are
sampled.

CCS CONCEPTS
•Mathematics of computing→Nonlinear equations; •Computing
methodologies→ Optimization algorithms;

KEYWORDS
computer vision, conformal geometric algebra, initial alignment,
screw theory
ACM Reference format:
Adam Leon Kleppe, Lars Tingelstad, and Olav Egeland. 2017. Initial Align-
ment of Point Clouds using Motors. In Proceedings of CGI ’17, Yokohama,
Japan, June 27-30, 2017, 5 pages.
DOI: 10.1145/3095140.3097282

1 INTRODUCTION
�e 3D-3D registration problem [13] is a well-known problem in
computer vision, and it is still a challenging problem. �e problem
is formulated as such: Assume that there are two sets of points, or
point clouds

A = {ai }, ai ∈ R
3,1, i = 1, . . . ,m

B = {bj }, bj ∈ R
3,1, j = 1, . . . ,n

Find the rotation R ∈ SO (3) and the translation t ∈ R3 that gives
the most optimal alignment between the two sets.

min
∑
i
‖ bj∗ − Rai − t ‖
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where bj∗ is the optimal corresponding point to ai , based on dis-
tance given the optimal R and t .

�is problem can be divided into two sub-problems. �e �rst is
to �nd the pose that aligns the two point clouds, and the second is
to �nd point-wise correspondences between the sets, or in other
words, which point in A corresponds to the points in B, or even if
there is a correspondence.

A large number of methods have been proposed to solve the
registration problem [14, 19]. �e most popular approach is ICP [2,
5, 15]. �ese methods can be classi�ed as either coarse or �ne
registration methods, and usually both have to be applied in order
to get globally optimal solution to the registration problem. Here
the coarse registration aims to �nd a rough initial alignment which
improves the initial conditions for the �ne registration.

Most of the �ne registration methods, including ICP, are so called
Expectation-Maximization algorithms[13], because they alternate
between solving the two sub-problems until both reaches a local
minima. A known restriction with EM-algorithms is that they only
�nd local optimal solutions. �is means that in order for them to
converge to the global optimum, the algorithm either has to be
expanded to include global optimization techniques, such as Go-
ICP [23] or Sparse ICP [3], or it has to have good initial conditions,
i.e. the point clouds have to have a good initial alignment relative
to each other, in order to converge to the correct solution. �is is
achieved with coarse registration methods, such as [7, 16–18].

�e coarse registration methods usually only solves one of the
sub-problems: Finding the pose that aligns the two point clouds.
�is means that the methods does not take the point correspon-
dences into account. �e most common approach is to create a
set of features or signatures in each point cloud, and search for
correspondences between the features. Examples of this are Point
Signatures [6], Spin Images [12], Point Feature Histograms [16, 17],
and Principal Component Analysis [7].

Both Point Signatures, Spin Images and Point Feature Histograms
use techniques that originated from 2D computer vision. �ey use
some measurement using relative distances and angles to generate
features. �ese measurements are calculated from the points and
surface normals of the point cloud. �e methods uses di�erent
schemes to categorize the features, be it sets, tables or histograms
to group them into cells. �e main drawback with these methods
is that the accuracy of the them depend on the resolution of these
cells.

In this paper we propose a new method for initial alignment of
two point clouds, i.e. coarse registration. �e method constructs
a feature using the centroid and a line computed from the surface
normals of a point cloud. �is feature is calculated using Conformal
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Geometric Algebra. �e motor which aligns the features of two
point clouds is found using Non-Linear Least Square Optimization,
and results in an initial alignment pose between the two point
clouds. �e bene�t of optimization techniques to �nd the pose
is that the accuracy does not depend on a given resolution. �is
method also has the bene�t of requiring less computation than the
methods mentioned above.

�is paper is is organised as follows: Section 2 is the preliminar-
ies, which introduces the parts of Conformal Geometric Algebra
used in the paper. Section 3 describes the proposed method. Sec-
tion 4 show the conducted experiment and the results, and lastly
the conclusion is found in Section 5.

2 PRELIMINARIES
2.1 Conformal Geometric Algebra
�e geometric algebra of the Euclidean space R3 is denoted R3,
while the conformal model of geometric algebra is denoted R4,1
resulting in the null basis {e0, e1, e2, e3, e∞} [9, 10]. �e basis vector
e∞ represents the point at in�nity, while e0 represents an arbitrary
origin. �ese basis vectors have the properties e2

∞ = e2
0 = 0 and

e∞ · e0 = −1. �e notation Rk3 refers to the k-grade elements of
R3. �e highest grade element of R3, is the Euclidean pseudoscalar,
which is denoted I3. �e conformal pseudoscalar is denoted I . �e
conformal dual of a multivector X is denoted X ∗ = XI−1.

Euclidean vectors p ∈ R3 maps to points P ∈ R4,1 using

P = p +
1
2p

2e∞ + e0

A line ` ∈ R3
4,1 is constructed as the outer product of two conformal

points and the point at in�nity:
` = PA ∧ PB ∧ e∞.

�is can be expressed as
` = (p + e0) ∧ n̂ ∧ e∞

where p is the Euclidean point and n̂ is the Euclidean directional
vector of the line. �is is called the direct representation in [9], and
the OPNS representation in [10].

�e dual representation of a line in conformal space is
`∗ = A + be∞

where A = n̂∗ is the directional bivector, and b is the momentum
of the line. It is noted that A ∧ b = 0.

A screw S , is a line with a pitch, meaning that
S∗ = A + be∞

where A ∧ b can be an arbitrary number.
A screw can be further described as

S∗ = A + (b ‖ + b⊥)e∞

where A ∧ b ‖ = 0, meaning that A + b ‖e∞ is a dual line and b⊥e∞
is the pitch.

A screw is generated by adding two lines together. �is is shown
when

S∗ = `∗1 + `
∗
2 = A1 +A2 + (b1 + b2)e∞

where A1 ∧ b1 = A2 ∧ b2 = 0, but A1 ∧ b2 and A2 ∧ b1 cannot be
guaranteed zero. �is also holds for the addition of multiple lines.

Figure 1: 2D Representation of the points in a point cloud
and their respective surface normal

A �ag [20] can be wri�en as the sum of a line and a conformal
point

f = ` + P

3 METHOD
�is method uses two point clouds, which represents the surface of
a given object, and �nds the motorM which is an optimal alignment
between the two point clouds. �is is achieved by �nding the motor
which minimizes the error between the centroids of each point
cloud, which results in an optimal translation, and at the same time
minimizes the deviation of the average line.

Assume that two point clouds X and Y are given by a set of
points and their respective surface normals.

X = {xi , n̂xi }, xi , n̂xi ∈ R
3,1, | |n̂xi | |2 = 1, i = 1, . . . ,m

Y = {yj , n̂yj }, yj , n̂yj ∈ R
3,1, | |n̂yj | |2 = 1, j = 1, . . . ,n

Note that the number of points in X and Y are not the same, and
that xi and yj do not necessarily correspond if i = j. It is assumed
that the surface normals are either calculated from the CAD model,
or by estimating it using the points in the point cloud data.

3.1 Centroid
�e conformal centroid of each point cloud is found by

P̄X = C *
,

1
m

m∑
i=1

xi+
-

P̄Y = C
*.
,

1
n

n∑
j=1
yj
+/
-

where C (p) is the conformal point based on the Euclidean vector p.

3.2 Average of lines
�e average of a set of lines is constructed as a screw which is the
sum of all lines, where each line is generated from a point and its
surface normal.

LX and LY are the sets containing all lines generated from the
point cloud.

LX = {`xi = (xi + n0) ∧ n̂xi ∧ n∞}

LY = {`yj = (yj + n0) ∧ n̂yi ∧ n∞}

�e sum of these lines become a screw, where the screw axis is
computed as the average of the lines. �e point cloud, generated
lines, average line and centroid can be viewed in Figure 2. It can be
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Figure 2: Lines generated from each point in the point cloud.
�e red line represents the average line, while the red point
is the centroid

seen here that the screw axis does not necessarily pass through the
centroid.

�e screws of the two point clouds, X and Y , are de�ned as

SX =
1
n

n∑
i=1

`∗xi

SY =
1
m

m∑
j=1

`∗yj

It can be seen that these screws are the average of all lines since

S =
1
n

n∑
i=1

`∗i

=
1
n

n∑
i=1

Ai + bie∞

=
1
n
*
,

n∑
i=1

Ai +

n∑
i=1

bie∞+
-

= Ā + b̄e∞

where Ā is the average directional bivector, and b̄ is the average
momentum. �is can be wri�en as

S = Ā + (b̄ ‖ + b̄⊥)e∞

where Ā ∧ b̄ ‖ = 0.
�is can be rewri�en using the average line ¯̀, which is the

average of the combined lines.

S = Ā + (b̄ ‖ + b̄⊥)e∞

= Ā + b̄ ‖e∞ + b̄⊥e∞

= ¯̀∗ + b̄⊥e∞

3.3 Restrictions
�ere are in total 7 degrees of freedom in a motion, 3 to translation,
3 to rotation and 1 to scale [11]. �is method uses only one line
and one point is known in both point clouds and therefore in both
coordinate systems. �is forces seven constraints upon the system,
4 from the line and 3 from the point. �is means the method is able
to perform any rigid-body motion.

Since each line is generated by a point p and its corresponding
surface normal n̂, these lines can be described as a force F = n̂ at
p, where |F | = 1. To sum all these forces is the same as evaluating
the force applied over the whole surface area, which by de�nition
is the same as pressure.

�is forces a restriction upon the method: �is method cannot be
used on the whole surface of an object. �is is because the pressure
over an enclosed surface area is zero. �is means that if the whole
surface is sampled by points and these points generate lines, then
the sum of these lines will be zero.

As mentioned, this method is used on point clouds generated
from the viewable surfaces of an object. In practice, this means
that this restriction will never occur, since the whole surface of an
object cannot be viewed at the same time.

3.4 Motor Estimation
Each point cloud, X and Y , have one centroid, P̄X and P̄Y , and one
screw axis, ¯̀X and ¯̀Y .

From these, their respective �ags are de�ned as

fX = ¯̀X + P̄X
fY = ¯̀Y + P̄Y

In order to minimize the error between these two �ags, we can
�nd the optimal motor between them.

fX −M
† fY M̃

†

¯̀X −M† ¯̀Y M̃† + P̄X −M†P̄Y M̃† = 0

where M† is the optimal motor between the two point clouds. �e
result of zero is only possible if both point clouds are identical.

When comparing two point clouds which are not identical, either
because of added noise or di�erent points are used, an optimization
scheme could be used. �e motor which is the optimal transform
between the two �ags, will have one unique solution, since two
lines and two points are used in the minimization function [4, 8].

3.5 Error Functions
�e optimization of the motor between the two centroids in the
�ag only require an error measurement in the form of distance. �e
distance measure between the two centroids is easily found with

ϵP = d
2 = P̄X ·MP̄Y M̃

where ϵP is the error function for the two centroids.
For the average lines in the �ag, both the distance and the angle

has to be optimized [1]. �ese parameters can be extracted from
the motor Mwhich transforms one to the other.

M =
¯̀X
¯̀Y
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where

M = cosθ − sinθAn − sinθbne∞ − d cosθane∞ + d sinθe1e2e3e∞

where An = a∗n and bn are components of the common normal line
`n .

According to [22], a good error function for angles is sin θ
2 . �is

is because the error function is at most sin π
2 = 1, which means

that outliers do not have a large error, but are bound by 1. �is can
be calculated using

1
2 (1 − cosθ ) = sin2 θ

2
�e distance between the two lines can be calculated by decom-

posing the motor in a di�erent manner:

M = TR

where

T = 1 − 1
2te∞

R = −e0 · (Me∞)

whereT is the translation and R is the rotation.
�e distance between the lines can then be calculated using

δ =‖ δ ‖

δ =
t ∧ B

B

where

t = −2e0 ·M
R

B =
〈R〉2
‖ 〈R〉2 ‖

where 〈R〉2 is the 2-blade component of R.
With these parameters, the error function ϵ ¯̀ can be formulated

as

ϵ ¯̀ = δ2 + sin2 θ

2 = δ2 +
1
2 (1 − cosθ )

3.6 Non-linear Least Square Optimization
�e non-linear least square optimization solver was used to estimate
the motor. By using the given error functions, the equation to be
minimized is given by

min 1
2

(
ϵ ¯̀ + ϵp

)2
= min 1

2

(
δ2 + sin2 θ

2 + d
2
)2

such that

MM̃ = 1

which is solved using Levenberg-Marquardt algorithm which is
has been developed to work for conformal points and lines. �e
algorithm is presented in [21].

Figure 3: Seven viewpoint samples generated from one of
the objects.

4 EXPERIMENTS
Several point clouds were generated from a set of CAD models.
Since the method only works when having partial surfaces, the
point clouds were generated using viewpoint sampling.

Viewpoint sampling was done by placing a virtual camera facing
the 3D model. �e points are generated based on the surfaces that
are visible by the virtual camera. In order to get the whole view
of the CAD model, several samples were generated from di�erent
viewpoints. �e position of the viewpoints were calculated using a
tessellated sphere which surrounded the 3D model. Each vertex of
the tessellated sphere was set as a viewpoint.

Two models each generated 3 point clouds per viewpoint, one
with 100 points, one with 1000 points and one with 10000 points.
�ere were a total of 42 viewpoints per object, resulting in a total
of 252 point clouds. A sample of these point clouds is shown in
Figure 3. Each point cloud was given an arbitrary transformation
and noise was applied to the point cloud. �e initial alignment
method together with the GAME framework was used to calculate
the transformation between the two point clouds. �e error was
calculated by applying the Root Mean Square between the points
in each point cloud, and is measured in meters.

ϵ =

√
1
n
PX1 ·MPY2M̃ + PX2 ·MPY2M̃ . . . PXn ·MPYn M̃

�e result of these tests are shown in Table 1. It can be seen
from the table that the error decreased as the number of samples
increased. �is is expected since the more samples are used, the
more the average will cancel out the added noise. �e average error
was 6.8325 × 10−4 m for a 100 samples, 3.323 × 10−4 m for a 1000
samples and 3.7214 × 10−5 m for a 10000 samples.

5 CONCLUSION
�is paper shows a method for initial alignment for point clouds.
�e method �nds the optimal motor between the centroid and
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100 Samples 1000 Samples 10000 Samples
Point Cloud # Iteration Error [m] # Iteration Error [m] # Iteration Error [m]

1 6 1.840 × 10−3 6 9.4128 × 10−3 17 6.6647 × 10−7

6 7 4.8510 × 10−4 16 1.3453 × 10−6 12 3.5899 × 10−7

7 7 3.1998 × 10−4 14 2.5855 × 10−6 12 2.5160 × 10−6

14 7 1.8475 × 10−4 7 5.7251 × 10−3 12 1.0650 × 10−8

22 7 1.1063 × 10−3 6 1.2058 × 10−2 11 3.9998 × 10−8

31 6 1.7973 × 10−3 7 5.5537 × 10−3 7 1.0105 × 10−2

45 7 1.0676 × 10−3 13 4.3508 × 10−9 11 8.0189 × 10−8

65 7 1.1544 × 10−4 13 2.5538 × 10−9 13 8.5678 × 10−9

73 12 8.7525 × 10−9 11 7.6853 × 10−9 10 4.7666 × 10−9

78 11 1.0848 × 10−8 11 3.4762 × 10−8 12 6.9853 × 10−9

Average 6.8325 × 10−4 3.323 × 10−4 3.7214 × 10−5

Table 1: Sample of the result of the initial alignment method. �e number of iterations before the method terminated and the
resulting error from the true transform is shown. �e average of all results is also shown.

average of lines of two point clouds, which is the initial align-
ment. �e average error was 6.8325 × 10−4 m for a 100 samples,
3.323 × 10−4 m for a 1000 samples and 3.7214 × 10−5 m for a 10000
samples.
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