
BlueSkyNet: BLE Multi-Hop Network Management Architecture
Makito Kano
Intel Corporation

makito.kano@intel.com

ABSTRACT
Bluetooth Low Energy (BLE) is aimed for Internet of Things (IoT)
devices with limited battery capacity and small bandwidth. Despite
the increasing number of IoT devices and the improving perfor-
mance of BLE, the usage model is still limited to point-to-point with
no mobility. This limitation prevents the devices to spread across
a large field or a home. While multi-hop technologies had been
studied and commercialized, they do not fully take advantage of the
BLE’s low-power feature; and their configurations cannot easily
be changed once the network is deployed. We have designed an
architecture called BlueSkyNet. It allows network administrators
to form and manage a BLE multi-hop network that allows nodes
to be mobile. It takes advantage of the improving performance of
BLE, and allows the network configurations to be modified in a
software-defined way.

CCS CONCEPTS
•Networks→Network architectures;Programmable networks;

KEYWORDS
Bluetooth Low Energy, Multi-Hop Network

ACM Reference format:
Makito Kano. 2017. BlueSkyNet: BLE Multi-Hop Network Management
Architecture. In Proceedings of MobiArch ’17, Los Angeles, CA, USA, August
25, 2017, 6 pages.
https://doi.org/10.1145/3097620.3097621

1 INTRODUCTION
Internet of Things (IoT) is the trend that connects various types of
devices such as home electronics, sensors, actuators, and vehicles
to the Internet. Among different wireless protocols, Bluetooth Low
Energy (BLE) is considered to be one of the strongest candidates in
many IoT network settings. The annual Bluetooth device shipments
is expected to reach 5 billion by 2021, where BLE devices account
for 27%[12].

BLE is adopted to the Bluetooth protocol from version 4.0. While
the classic Bluetooth is typically used with mobile devices, BLE is
aimed for IoT applications because of its low power feature.

Bluetooth has consistently been upgraded, and the latest version
5 has four times range, twice data rate, and eight times broadcasting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiArch ’17, August 25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5059-4/17/08.
https://doi.org/10.1145/3097620.3097621

Management Traffic

Data Traffic

New Connection

Main Central

Figure 1: Example use case of BlueSkyNet.

bandwidth, than version 4.2, while inheriting the low energy feature
of BLE[13].

While various performance improvements have been made, BLE
is still expected to be used for a point-to-point connection. However,
this is slowly changing; BLE multi-hop network architectures and
routing protocols have been studied in the past few years[3, 6, 8].
In addition, a few BLE multi-hop network products have been
commercialized[4, 11]. However, while the studies and the products
propose effective solutions, they do not take advantage of the BLE’s
low-power feature and/or their network configurations cannot
easily be changed once they are deployed, which limits their use
cases.

To support wider range of IoT device use cases with BLE, we
have designed, implemented, and evaluated an architecture called
BlueSkyNet (BSN). Initially, it allows the BLE devices to report
Received Signal Strength Indication (RSSI) of surrounding devices
to themain central device to form amulti-hop network of connected
devices. Then it allows network administrators to programmatically
manage the devices in the network from the main central device.

We introduce two use cases of BlueSkyNet. The first is a multi-
hop sensor network in an outdoor field shown in Figure 1. The
network administrator uses the Main Central device to receive
the sensor data and send the management traffic to the network.
BlueSkyNet allows the Main Central to adjust the topology if a
device malfunctions or gets disconnected as shown with the bottom
left device. BlueSkyNet also allows the devices to be connected
when they have to be moved around as shown with the top left
device.

The second use case is the smart home IoT network. BlueSkyNet
allows the users to control the devices from the main central device,
such as their smartphone or PC, for purposes such as turning off all
the lights in certain room. In addition, BlueSkyNet adds a mobility
to the devices. The user can move the devices around the home
while maintaining the connection without manually reconnecting
them.

Our contributions are four-fold. First, we have designed an algo-
rithm for all BlueSkyNet-enabled devices in the network to notify

1

https://doi.org/10.1145/3097620.3097621
https://doi.org/10.1145/3097620.3097621
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3097620.3097621&domain=pdf&date_stamp=2017-08-11

MobiArch ’17, August 25, 2017, Los Angeles, CA, USA Makito Kano

the RSSI of devices around to the main central device. The main
central can collect this information to form a topology.

Second, we have designed an API that allows the network admin-
istrators to manage the multi-hop network in a software-defined
way. For example, add or delete devices and reroute traffic based
on the condition such as battery level or disruption in the network.

Third, we have created a feature that allows devices to be mobile
as long as they are within the range of any of the connected device.

Fourth, the architecture will benefit from the improved perfor-
mance of Bluetooth 5. The increased range will allow devices to
spread apart longer distance; and the increased data rate will sup-
port more bandwidth hungry applications while mitigating poten-
tial bottlenecks in a multi-hop network.

The rest of this paper is organized as follows. Section 2 describes
the BLE components related to our work. Section 3 introduces stud-
ies and products about BLE multi-hop network. Section 4 describes
the BlueSkyNet architecture and Section 5 describes its implemen-
tation. In Section 6, we evaluate our multi-hop connection and we
conclude the paper in Section 7.

2 BACKGROUND
We describe the components of BLE in Bluetooth 4.2 that are rele-
vant to our work.

2.1 BLE Advertisement
Generic Access Profile (GAP) is the framework that allows BLE
nodes to scan, advertise, and connect. Advertising packets are sent
in three channels that do not overlap with the Wi-Fi channels
to minimize the device interferences. Advertising interval can be
set between 10 ms to 10.24 sec. The shorter the interval, the more
battery consumption to incur, but higher chance of the packets to be
scanned. Similarly, scan interval and scan window define how often
a scanner scans, and how long each scanning lasts, respectively.

The length of the advertising packet payload is 31 bytes. How-
ever, it can be doubled if the advertiser uses scan response, in which
case the scanner needs to send a scan request. An advertising packet
typically contains service and characteristic information, which
define how data are organized between the master-slave pair. Each
packet includes some basic header information such as device ad-
dress.

Another responsibility of GAP is to establish a connection. The
scanner, or central, sends a connection request to the advertiser,
or peripheral. The request contains frequency hop increment for
the peers to switch the frequency during the connection to avoid
collision. The connection is established if the peripheral sends a
connection response.

2.2 GATT Connection
Generic Attribute Profile (GATT) defines a way for data to be orga-
nized with services and characteristics. One connection contains
one or more services. One service contains one or more character-
istics, and each characteristic defines the type of data to be trans-
mitted and how they can be accessed through the characteristic
properties. The properties define several access types such as read,
write, and notify. Read and write allow the central to read from or
write to the characteristic once per operation. Notify allows the

central to listen to the characteristic while the peripheral pushes
the data to the characteristic.

Communications over GATT connection allows devices to use
less energy compared to communications over advertisement. Peers
with a GATT connection follow connection interval, which can be
set between 7.5ms and 4 sec. The interval allows the devices to turn
off the radio interface when they are not transmitting data. Thus,
the interval can be configured based on the type of application and
the battery capacity of the device.

3 RELATEDWORK
BLE multi-hop network is an ongoing research topic. ALBER[6]
is the architecture that implements RPL (IPv6 routing protocol for
low power and lossy network) on top of BLE. It takes advantage of
the low-power and the connection oriented nature of BLE when
forming a multi-hop network with RPL. There has also been a study
about the BLE multi-hop routing protocol for MANET (mobile ad-
hoc network)[3]. It takes advantage of the BLE’s feature that allows
nodes to be bothmaster and slave. The study focused on the protocol
that allows any two nodes in the network to communicate. While
these routing protocols can be valuable in specific settings, our
work provides a framework to implement any routing protocol;
realizing solutions with BLE that can be applied to wider range of
networking problems.

Advertise-based multi-hop network has been studied[8] and
has also been commercialized. Qualcomm is the manufacturer of
CSRmesh technology[11], which allows IoT devices to form a mesh
network. CSRmesh uses the BLE advertisement to exchange data
among the devices. It uses the grouping technique to send data to
one or a group of devices.

Ilumi develops technology called MeshTek[4]. It uses both adver-
tising and GATT connections to exchange data in a mesh network.
However, both MeshTek and CSRmesh use the proprietary archi-
tecture and protocols that make it difficult to analyze.

While using advertisement packets simplifies the protocol, it
incurs some drawbacks. First, a communication relying on advertis-
ing and scanning uses more energy because the central periodically
needs to scan for advertisement packets without knowing whether
the packets are actually advertised. Since there is no predefined
path, all participating devices have to do this, which leads to large
number of unnecessary advertisement and scanning. Second, the ad-
vertisement data are more limited (31 bytes without scan response
in version 4.2) than the GATT connection data. Third, securing
broadcasting data are more difficult than securing a dedicated con-
nection. BLE advertising is known to allow an eavesdropper to
identify and track devices using the BLE addresses in the advertise-
ment packet[1].

4 BLUESKYNET ARCHITECTURE
BlueSkyNet architecture realizes the initial topology setup and the
networkmanagement of the created topologywith themanagement
API.

2

BlueSkyNet: BLE Multi-Hop Network Management Architecture MobiArch ’17, August 25, 2017, Los Angeles, CA, USA

Relay Node

Multi Hop Manager

Peripheral Interface Central Interface

Peripheral

Central1

GATTGAP

BlueSkyNet

Characteristics

BLE Library

Application

Main Central

GAP

BlueSkyNet Library

Web Server Controller

BLE Library

BSN

Characteristics
Central2

BSN

Characteristics
Central3

BlueSkyNet

Characteristics

GATT

Central Interface

Central1

BSN

Characteristics
Central2

BSN

Characteristics
Central3

BlueSkyNet

Characteristics

OH Algorithm Executor

Scanner Advertiser
BSN

Reporter

BSN

Executor Main Central Manager

Peripheral Manager Central Manager Central Manager

Figure 2: BlueSkyNet architecture.

4.1 Architecture Overview
Figure 2 shows the BlueSkyNet architecture. In the Relay Node,
Multi Hop Manager works at the highest level of network manage-
ment abstraction. During the initial topology setup phase, Over-
Heard (OH) Algorithm Executor uses Scanner and Advertiser to
scan, advertise, and relay the packets that can be used to form a
topology by the Main Central.

The first task of BSN Executor is to send application data from
the device’s application, such as sensor, and the performance data
of the device, which are battery level and connected peripheral’s
RSSI, to the central. Before sending the data, it adds the "header" to
identify the source. It uses the Central Interface to send these data.
The second task is to act on the management commands. When the
management command is received from the Peripheral Interface,
it handles tasks such as start a connection based on the topology
data structure, connect/disconnect/scan based on the command,
and reconnect if the auto reconnection is configured. These tasks
are executed through the Central Interface. In addition, it relays
management commands if they are destined to the downstream
device. In that case, it parses the topology structure received with
the management command and determines which central to relay
it.

BSN Reporter is responsible for relaying the application data
and the performance data to the central device (i.e., master device)
through the Peripheral Interface. It is also responsible for sending
the "results" of the network management tasks such as scanned
device information and connected/disconnected device information
to the central. It sends the disconnected device information if the
disconnection is forced (i.e., not from the management command)
as well. These data are sent through the Central Interface.

Peripheral Manager is responsible for providing the Peripheral
Interface. When the data are received from the characteristics, it
notifies the BSN Executor. On the other hand, it provides upper layer
executors a series of methods to push data into the characteristics.

Central Manager’s role is similar to that of the Peripheral Man-
ager. However, because there can be multiple centrals, it manages
the centrals and their state (connected/will try to connect).

In the Main Central node, Main Central Manager works the
similar way as BSN Reporter, except it works together with the
BlueSkyNet Library. Instead of relaying the received data to the
Peripheral Interface, it sends them to the library. The library ex-
poses API to the network management controller. The API calls are
converted into the lower level method call(s) to the Main Central
Manager.

There are five characteristics in BlueSkyNet architecture and
they are used to organize the data transferred for both application
and network management purpose.

Application characteristic(s): This is the characteristic for ap-
plication data. If the application uses multiple characteristics, an
application ID associated to each characteristic would be used to
identify the type of data by the main central. If the devices use
different number of characteristics, the largest number will be used
and configured during the initial connection process.

Topology characteristic: This is the characteristic for propagating
topology data during the connection process.

Performance characteristic: This is the characteristic for sending
battery level of its own and RSSI of connected devices to the main
central.

Connection characteristic: This characteristic is used for connect,
disconnect, and auto-reconnect actions.

Scan characteristic: This characteristic is used for the scan actions
by a central.

4.2 Initial Topology Setup Phase
The goal of the initial topology setup phase is to allow the main
central to know the RSSI of surrounding devices for each device ex-
pected to form a network. This information helps the main central
to form more robust network than from other simple approaches
such as measuring the distances among the devices. In addition,
the multi-hop nature of BlueSkyNet requires links to be as robust
as possible. To do so, each device periodically measures RSSI of sur-
rounding devices and advertises that information while advertising,
or relaying, the data from surrounding devices.

This process continues for some predefined period of time (e.g.,
one minute). After the main central collected the RSSI data, it con-
structs a tree data structure representing the topology and pushes
it to the first-hop device(s).

4.2.1 OverHeard Algorithm Overview. To relay the measured
data with BLE advertisement, we have created an algorithm, called
OverHeard (OH) algorithm. OH algorithm uses the flooding algo-
rithm, where every node advertises their own packet while relaying
received packets, as the base. Our modification is that each node
rotates between advertising its own packet and relaying received
packets with a fixed interval. This rotation is necessary because
BLE device can only advertise one advertising data at a time. Since
the scanner continuously scans, the received packets may accumu-
late. However, only the most recent packet is advertised and all old
scanned packets are dropped during the interval.

4.2.2 OverHeard Algorithm Details. We have designed an adver-
tising packet structure, which we call OH packet for convenience.
Figure 3 shows the structure of the OH packet.We use manufacturer
specific data format to send our OH Packet Payload. The payload

3

MobiArch ’17, August 25, 2017, Los Angeles, CA, USA Makito Kano

Adv Data

Length:

3 + Payload

Adv Type:

0xFF for

Manufacturer

Specific Data

Company

Code:

0x0002
OH Packet Payload

1 Byte 1 Byte 2 Bytes

Adv Header

3 Bytes

OH Packet Payload: Advertised

24 Bytes

OH Packet Payload: Scan

Response

31 Bytes

Source Relayed
Time

Stamp
Source RSSI Table Entries

1 Byte 1 Byte 1 Byte 52 Bytes

55 Bytes

Figure 3: OH packet structure.

Scanner

Source

RSSI

Table

Relay

Packet

Map

Relay

Table
Advertiser

Relayed

OH Packet

New OH

Packet

OH

Packet

1

2
4

5

6

7

8
Relayed?

OH

Packet
No

Yes
3

Figure 4: OverHeard algorithm steps.

has three fields: Source(1 byte), Relayed(1 byte), Time Stamp(1 byte),
and Source RSSI Table Entries. Source indicates the address of a
device that generates this packet. Since the 6-byte BLE address
occupies a significant space in the 62-byte advertising packet, we
assign one-byte alias to each device in the network and use them
during the advertisement. Relayed indicates whether the packet
was relayed from another device (1) or the packet was generated
and sent first time out to the air (0). Time Stamp indicates the time
that this packet is generated. Source RSSI Table stores the Source
Address - RSSI pairs of the neighbouring devices.

Each device executes two processes to run the algorithm; OH
Packet Scanner, which uses the Central Manager, and OH Packet
Advertiser, which uses the Peripheral Manager. We use Figure 4 to
describe the steps of the OH algorithm. Bold rectangle indicates
a process, normal rectangle indicates a data structure, and dotted
rectangle indicates a packet.

At a high level, the role of the scanner is to scan OH packets,
store the Address - RSSI pair into the Source RSSI Table, and create
a relay packet to be advertised by the advertiser. To describe more
in detail, first, it determines if the scanned OH packet is a relayed
packet from the Relayed field(1 in Figure 4). If not, it stores the
Address - RSSI pair into the Source RSSI Table(2). Then it constructs
a relay packet, which has the same payload as received OH packet,
except the Relayed field is set to 1. The relay packet is passed into
the RelayTable to check if it has never been relayed by this node
to prevent the relay broadcast storm(3 and 4). If this is the first
time to relay it, we store the relay packet into Relay Packet Map(5).
It stores only the latest packet from each device because we are
most interested in the latest Source RSSI Table entries. Thus, it is
necessary to check the time stamp before storing it in Relay Packet
Map.

The role of the advertiser is to periodically rotate between adver-
tising the device’s own Source RSSI Table entries(6), and Relayed
OH Packets in Relay Packet Map(7) before advertising it(8).

4.2.3 OverHeard Algorithm Analysis. The usable payload size
for an OH packet (using scan response) is 55 bytes where the first
3 bytes are used as header. Since each Source RSSI Table entry is 2
bytes, this algorithm can support at most 26 surrounding devices,
although this value will be eight times larger with Bluetooth 5.

The speed of the Source RSSI Table data of a particular device
to be relayed to the main central depends on the number of hops
and the advertising rotation interval. For example, if the shortest
path from a device to the main central is 5 hops and the rotation
interval is 4 seconds, then it will take about 20 seconds. We believe
that this delay is not significant in terms of usability because it is a
one-time process.

Flooding algorithm guarantees that every node will receive the
broadcasted packets, but is known to cause a broadcast storm
problem[7], which has two parts. The first part is that since ev-
ery packet can be sent by every node, the required bandwidth can
increase exponentially. This is not the case with OH algorithm
because only the most up-to-date packet from each node is sent.

The second part is that because each node receives and sends
packets at the same time, collisions will occur. This is not the major
concern with OH algorithm because packets are sent in a relatively
long interval (a few seconds). In addition, BLE advertising packets
are sent in three channels to mitigate the issue.

Although the initial advertising packets are sent in three chan-
nels, scan response packets are sent in only a single channel. This
is known to cause packet drops with approximately 25% probability
if large number of scanners are present within the range[5]. This
is not the major concern with OH algorithm because it uses the
flooding method.

4.3 BlueSkyNet Managment API
We show the ten most important methods that allow the admin-
istrators to form a multi-hop network as well as manage it in a
software-defined way. We also introduce some use cases of the
methods.

4.3.1 Management API Methods. Following is the list of API
methods.

ohPacketListener: This method is used to collect the OH packets
from all devices in the network. The collected data can be used to
help construct a topology. For each predefined interval, it returns
the OH packet payload that the main central scans.

formTopology(topology): This method is used to send the topol-
ogy information into the network. The devices are connected as the
topology is passed on to the next device. topology is the Topology
tree data structure.

subscribeToApplication(deviceID, appID): This method is used
to subscribe to application data such as sensor readings. appID
indicates a particular application if there are multiple applications
in one device. deviceID is the address alias of the device. Return
value is the application data.

subscribeToPerformance(deviceID): All BlueSkyNet enabled de-
vices send its battery level and RSSI of all connected devices. These

4

BlueSkyNet: BLE Multi-Hop Network Management Architecture MobiArch ’17, August 25, 2017, Los Angeles, CA, USA

Main
Central

1 2

3

4

Low
battery

Main
Central

1 2

3

Main
Central

1 2

3
Moving direction

Use Case 1 Use Case 2 Use Case 3

Figure 5: Use cases of the API methods.

data can be used to help take action. deviceID indicates the device
to subscribe to these performance data.

writeToApplication(deviceID, appID, appData): This method is
used to write the application data, appData, to the application char-
acteristic indicated by appID of device indicated by deviceID, if it
allows to.

connect(deviceIDFrom, deviceIDTo): This method is used to add a
device to the network. deviceIDTowill be connected to deviceIDFrom.

disconnect(deviceID): This method is used to disconnect a device
from the network. The disconnected device will automatically start
to advertise while the connected devices to the disconnected device
will be unaffected (i.e., stay connected).

disconnectListener(deviceID): This method is used to listen for
a disconnection event of the device indicated by deviceID.

turnOnScan(deviceID, scanPeriod): This method is used to tell
a device indicated by deviceID to scan for scanPeriod number of
seconds. It returns the scanned device ID and its RSSI, if any.

autoReconnect(deviceIDFrom, deviceIDTo, scanPeriod): If a device
indicated by deviceIDTo is disconnected from its central, the device
indicated by deviceIDFrom scans and tries to reconnect for scanPe-
riod number of seconds.

4.3.2 Method Use Cases. Figure 5 shows three use cases of the
API methods. Use case 1 shows when the main central notices
the decline in the battery level for node 1 through subscribeToP-
erformance. It disconnects its peripheral with disconnect and tells
node 2 to connect to it with connect. Node 4 is unaffected by this
reconnection.

Use case 2 shows when node 3 is added to the network. Suppose
node 1 and 2 are the reasonable candidates. Main central tells node 1
and 2 to scan and return the device ID and its RSSI with turnOnScan.
After it decides to connect with node 2, it tells it to connect to 3
with connect.

Use case 3 shows when node 3 moves to right while connected
to node 1. If autoReconnect is configured to node 2, node 2 starts to
scan for node 3 and tries to connect to it when it is disconnected.

5 IMPLEMENTATION
We have implemented the BlueSkyNet architecture with Raspberry
Pi 3 computers[2]. We have used bleno[9] and noble[10] BLE li-
braries and implemented the BlueSkyNet components with Node.js
on top of them. The total number of lines of code excluding the
libraries is approximately 1700, which is light enough for most of
the IoT devices.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

Time (sec)

CPU Utilization for Different Node Usage Patterns

Peripheral Only
1-node Relay
2-node Relay
3-node Relay

Figure 6: CPU utilization of BlueSkyNet nodes.

We have implemented the network management controller with
a web server that uses the BlueSkyNet Library and the correspond-
ing client web page with Socket.IO. Socket.IO enables real time and
bi-directional communication between the client and the server. It
allows the main central to receive the stream of real time data from
the BLE devices and send API calls simultaneously.

6 EVALUATION
We have measured CPU utilization of BlueSkyNet-related processes
in a device when it relays generated sample data every 1 second,
the most common task of a device.

Figure 6 shows the evaluation results. Peripheral Only indicates
that the device acts as a peripheral and sends data to its central as in
the standard BLE usage. This is the base case. 1-node Relay indicates
that a device is connected to one peripheral and one central device
and relays the data from its peripheral to the central. 2-node and
3-node Relay are the same as 1-node Relay except the number of
peripherals is different.

The graph shows that the increase from adding one node is about
0.1% in a long run. The difference between the base case and 1-node
Relay is about 1%. Thus, the CPU utilization of BlueSkyNet-related
processes is negligible.

7 CONCLUSION
Wehave shown BlueSkyNet, BLE-basedmulti-hop networkmanage-
ment architecture, to take advantage of BLE’s low-energy feature
as well as to provide network administrators ability to manage
the network in a software-defined way. We have described the
algorithm to form a network of BLE devices and BlueSkyNet’s
management API that allows the administrators to programatically
manage the network. The architecture adds mobility to the devices
in the network.

REFERENCES
[1] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah, and Prasant Mohapatra. 2016.

Uncovering Privacy Leakage in BLE Network Traffic ofWearable Fitness Trackers.
In Proceedings of the 17th International Workshop on Mobile Computing Systems
and Applications (HotMobile ’16). ACM, New York, NY, USA, 99–104. DOI:https:
//doi.org/10.1145/2873587.2873594

[2] Raspberry Pi Foundation. 2017. Raspberry Pi 3 Model B.
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. (2017).

5

https://doi.org/10.1145/2873587.2873594
https://doi.org/10.1145/2873587.2873594

MobiArch ’17, August 25, 2017, Los Angeles, CA, USA Makito Kano

[3] Z. Guo, I. G. Harris, L. f. Tsaur, and X. Chen. 2015. An on-demand scatternet
formation and multi-hop routing protocol for BLE-based wireless sensor net-
works. In 2015 IEEEWireless Communications and Networking Conference (WCNC).
1590–1595. DOI:https://doi.org/10.1109/WCNC.2015.7127705

[4] Ilumi. 2017. The only Bluetooth Smart solution with connection & broadcast
based mesh. https://ilumisolutions.com/. (2017).

[5] Robin Kravets, Albert F Harris, III, and Roy Want. 2016. Beacon Trains: Blazing
a Trail Through Dense BLE Environments. In Proceedings of the Eleventh ACM
Workshop on Challenged Networks (CHANTS ’16). ACM, New York, NY, USA,
69–74. DOI:https://doi.org/10.1145/2979683.2979687

[6] T. Lee, M. S. Lee, H. S. Kim, and S. Bahk. 2016. A Synergistic Architecture for
RPL over BLE. In 2016 13th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON). 1–9. DOI:https://doi.org/10.1109/
SAHCN.2016.7732968

[7] F. Li and Y. Wang. 2007. Routing in vehicular ad hoc networks: A survey. IEEE
Vehicular Technology Magazine 2, 2 (June 2007), 12–22. DOI:https://doi.org/10.
1109/MVT.2007.912927

[8] K. Mikhaylov and J. Tervonen. 2013. Multihop data transfer service for Bluetooth
Low Energy. In 2013 13th International Conference on ITS Telecommunications
(ITST). 319–324. DOI:https://doi.org/10.1109/ITST.2013.6685566

[9] Sandeep Mistry. 2017. bleno. https://github.com/sandeepmistry/bleno. (2017).
[10] Sandeep Mistry. 2017. noble. https://github.com/sandeepmistry/noble. (2017).
[11] Qualcomm. 2017. CSRmesh technology for Bluetooth-based networks.

https://www.qualcomm.com/products/features/csrmesh. (2017).
[12] ABI Research. 2016. Bluetooth Low Energy Devices to Account for 27% of Total

Bluetooth Shipments by 2021 as New Enhancements Expand Opportunities in
IoT. https://www.abiresearch.com/press/bluetooth-low-energy-devices-account-
27-total-blue/. (2016).

[13] Bluetooth SIG. 2017. Bluetooth 5: What it’s all about.
https://www.bluetooth.com/specifications/bluetooth-core-
specification/bluetooth5. (2017).

6

https://doi.org/10.1109/WCNC.2015.7127705
https://doi.org/10.1145/2979683.2979687
https://doi.org/10.1109/SAHCN.2016.7732968
https://doi.org/10.1109/SAHCN.2016.7732968
https://doi.org/10.1109/MVT.2007.912927
https://doi.org/10.1109/MVT.2007.912927
https://doi.org/10.1109/ITST.2013.6685566

	Abstract
	1 Introduction
	2 Background
	2.1 BLE Advertisement
	2.2 GATT Connection

	3 Related Work
	4 BlueSkyNet Architecture
	4.1 Architecture Overview
	4.2 Initial Topology Setup Phase
	4.3 BlueSkyNet Managment API

	5 Implementation
	6 Evaluation
	7 Conclusion
	References

