
Toeplitz Inverse Covariance-Based Clustering of Multivariate
Time Series Data

David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec
Stanford University

Abstract

Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns

in temporal data. Once these patterns have been discovered, seemingly complicated datasets can

be interpreted as a temporal sequence of only a small number of states, or clusters. For example,

raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few

actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because

it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting

the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a

new method of model-based clustering, which we call Toeplitz Inverse Covariance-based
Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or

Markov random field (MRF), characterizing the interdependencies between different observations

in a typical subsequence of that cluster. Based on this graphical representation, TICC

simultaneously segments and clusters the time series data. We solve the TICC problem through

alternating minimization, using a variation of the expectation maximization (EM) algorithm. We

derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way,

through dynamic programming and the alternating direction method of multipliers (ADMM),

respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in

a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how

TICC can be used to learn interpretable clusters in real-world scenarios.

1 INTRODUCTION

Many applications, ranging from automobiles [32] to financial markets [35] and wearable

sensors [34], generate large amounts of time series data. In most cases, this data is

multivariate, where each timestamped observation consists of readings from multiple

entities, or sensors. These long time series can often be broken down into a sequence of

states, each defined by a simple “pattern”, where the states can reoccur many times. For

example, raw sensor data from a fitness-tracking device can be interpreted as a temporal

sequence of actions [38] (i.e., walking for 10 minutes, running for 30 minutes, sitting for 1

hour, then running again for 45 minutes). Similarly, using automobile sensor data, a single

driving session can be expressed as a sequential timeline of a few key states: turning,

speeding up, slowing down, going straight, stopping at a red light, etc. This representation

Request permissions from permissions@acm.org.

HHS Public Access
Author manuscript
KDD. Author manuscript; available in PMC 2018 May 14.

Published in final edited form as:
KDD. 2017 August ; 2017: 215–223. doi:10.1145/3097983.3098060.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

can be used to discover repeated patterns, understand trends, detect anomalies and more

generally, better interpret large and high-dimensional datasets.

To achieve this representation, it is necessary to simultaneously segment and cluster the time

series. This problem is more difficult than standard time series segmentation [17, 20], since

multiple segments can belong to the same cluster. However, it is also harder than

subsequence clustering [3, 43] because each data point cannot be clustered independently

(since neighboring points are encouraged to belong to the same cluster). Additionally, even

if one is able to simultaneously segment and cluster the data, the question still arises as to

how to interpret the different clusters. These clusters are rarely known a priori, and thus are

best learned through data. However, without prior knowledge, it is difficult to understand

what each of the clusters refers to. Traditional clustering methods are not particularly well-

suited to discover interpretable structure in the data. This is because they typically rely on

distance-based metrics, such as dynamic time warping [4]. These methods focus on

matching the raw values, rather than looking for more nuanced structural similarities in the

data, for example how different sensors in a car correlate with each other across time.

In this paper, we propose a new method for multivariate time series clustering, which we call

Toeplitz inverse covariance-based clustering (TICC). In our method, we define each cluster

as a dependency network showing the relationships between the different sensors in a short

(time-invariant) subsequence (Figure 1). For example, in a cluster corresponding to a “turn”

in an automobile, this network, known as a Markov random field (MRF), might show how

the brake pedal at a generic time t might affect the steering wheel angle at time t + 1. Here,

the MRF of a different cluster, such as “slowing down”, will have a very different

dependency structure between these two sensors. In these MRFs, an edge represents a partial

correlation between two variables [26, 41, 46]. It is important to note that MRFs denote a

relationship much stronger than a simple correlation; partial correlations are used to control

for the effect of other confounding variables, so the existence of an edge in an MRF implies

that there is a direct dependency between two variables in the data. Therefore, an MRF

provides interpretable insights as to precisely what the key factors and relationships are that

characterize each cluster.

In our TICC method, we learn each cluster’s MRF by estimating a sparse Gaussian inverse

covariance matrix [14, 48]. With an inverse covariance Θ, if Θi, j = 0, then by definition,

elements i and j in Θ are conditionally independent (given the values of all other variables).

Therefore, Θ defines the adjacency matrix of the MRF dependency network [1, 45]. This

network has multiple layers, with edges both within a layer and across different layers. Here,

the number of layers corresponds to the window size of a short subsequence that we define

our MRF over. For example, the MRFs corresponding to clusters A and B in Figure 1 both

have three layers. This multilayer network represents the time-invariant correlation structure

of any window of observations inside a segment belonging to that cluster. We learn this

structure for each cluster by solving a constrained inverse covariance estimation problem,

which we call the Toeplitz graphical lasso. The constraint we impose ensures that the

resulting multilayer network has a block Toeplitz structure [16] (i.e., any edge between

layers l and l + 1 also exists between layers l + 1 and l + 2). This Toeplitz constraint ensures

that our cluster definitions are time-invariant, so the clustering assignment does not depend

Hallac et al. Page 2

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

on the exact starting position of the subsequence. Instead, we cluster this short subsequence

based solely on the structural state that the time series is currently in.

To solve the TICC problem, we use an expectation maximization (EM)-like approach, based

on alternating minimization, where we iteratively cluster the data and then update the cluster

parameters. Even though TICC involves solving a highly non-convex maximum likelihood

problem, our method is able to find a (locally) optimal solution very efficiently in practice.

When assigning the data to clusters, we have an additional goal of temporal consistency, the

idea that adjacent data in the time series is encouraged to belong to the same cluster.

However, this yields a combinatorial optimization problem. We develop a scalable solution

using dynamic programming, which allows us to efficiently learn the optimal assignments (it

takes just O(KT) time to assign the T points into K clusters). Then, to solve for the cluster

parameters, we develop an algorithm to solve the Toeplitz graphical lasso problem. Since

learning this graphical structure from data is a computationally expensive semidefinite

programming problem [6, 22], we develop a specialized message-passing algorithm based

on the alternating direction method of multipliers (ADMM) [5]. In our Toeplitz graphical

lasso algorithm, we derive closed-form updates for each of the ADMM subproblems to

significantly speed up the solution time.

We then implement our TICC method and apply it to both real and synthetic datasets. We

start by evaluating performance on several synthetic examples, where there are known

ground truth clusters. We compare TICC with several state-of-the-art time series clustering

methods, outperforming them all by at least 41% in terms of cluster assignment accuracy.

We also quantify the amount of data needed for accurate cluster recovery for each method,

and we see that TICC requires 3x fewer observations than the next best method to achieve

similar performance. Additionally, we discover that our approach is able to accurately

reconstruct the underlying MRF dependency network, with an F1 network recovery score

between 0.79 and 0.90 in our experiments. We then analyze an automobile sensor dataset to

see an example of how TICC can be used to learn interpretable insights from real-world

data. Applying our method, we discover that the automobile dataset has five true clusters,

each corresponding to a “state” that cars are frequently in. We then validate our results by

examining the latitude/longitude locations of the driving session, along with the resulting

clustering assignments, to show how TICC can be a useful tool for unsupervised learning

from multivariate time series.

Related Work—This work relates to recent advancements in time series clustering and

convex optimization. Subsequence clustering of time series data is a well-developed field.

Methods include several variations of dynamic time warping [3, 23, 25, 39], symbolic

representations [29, 30], and rule-based motif discovery [11, 28]. There has also been work

on simultaneous clustering and segmentation of time series data, which is known as time

point clustering [15, 49]. However, these methods generally rely on distance-based metrics,

which in certain situations have been shown to yield unreliable results [24]. Instead, our

TICC method is a model-based clustering approach, similar to clustering based on ARMA

[47], Gaussian Mixture [13], or hidden Markov models [43]. To the best of our knowledge,

our method is the first to perform time series clustering based on the graphical dependency

Hallac et al. Page 3

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

structure of each subsequence. This provides interpretability to our clusters, prevents

overfitting, and, as we show in Sections 6 and 7, allows us to discover types of patterns that

other approaches are unable to find. We do so by proposing a structured inverse covariance

estimation problem, which we call the Toeplitz graphical lasso. This problem is a variation

on the well-known graphical lasso problem [14] where we enforce a block Toeplitz structure

on the solution. While many algorithms exist to solve the standard graphical lasso [1, 21,

22], we are not aware of any methods specifically adapted for the block Toeplitz case. We

propose an ADMM approach because the overall optimization problem can be split into

ADMM-friendly subproblems, where we can derive closed-form proximal operators [5] to

quickly solve the optimization problem.

2 PROBLEM SETUP

Consider a time series of T sequential observations,

xorig =
∣ ∣ ∣ ∣

x1 x2 x3 … xT
∣ ∣ ∣ ∣

,

where xi ∈ Rn is the i-th multivariate observation. Our goal is to cluster these T observations

into K clusters. However, instead of clustering each observation in isolation, we treat each

point in the context of its predecessors in the time series. Thus, rather than just looking at xt,

we instead cluster a short subsequence of size w ≪ T that ends at t. This consists of

observations xt−w+1, …, xt, which we concatenate into an nw-dimensional vector that we

call Xt. We refer to this new sequence, from X1 to XT, as X. Note that there is a bijection, or

a bidirectional one-to-one mapping, between each point xt and its resulting subsequence Xt.

(The first w observations of xorig simply map to a shorter subsequence, since the time series

does not start until x1.) These subsequences are a useful tool to provide proper context for

each of the T observations. For example, in automobiles, a single observation may show the

current state of the car (i.e., driving straight at 15mph), but a short window, even one that

lasts just a fraction of a second, allows for a more complete understanding of the data (i.e.,
whether the car is speeding up or slowing down). As such, rather than clustering the

observations directly, our approach instead consists of clustering these subsequences X1, …,

XT. We do so in such a way that encourages adjacent subsequences to belong to the same

cluster, a goal that we call temporal consistency. Thus, our method can be viewed as a form

of time point clustering [49], where we simultaneously segment and cluster the time series.

Toeplitz Inverse Covariance-Based Clustering (TICC)—We define each cluster by a

Gaussian inverse covariance Θi ∈ Rnw×nw. Recall that inverse covariances show the

conditional independency structure between the variables [26], so Θi defines a Markov

random field encoding the structural representation of cluster i. In addition to providing

interpretable results, sparse graphical representations are a useful way to prevent overfitting

[27]. As such, our objective is to solve for these K inverse covariances Θ = {Θ1, …, ΘK},

one per cluster, and the resulting assignment sets P = {P1, …, PK }, where Pi ⊂ {1, 2, …,

Hallac et al. Page 4

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

T}. Here, each of the T points are assigned to exactly one cluster. Our overall optimization

problem is

argmin
Θ ∈ 𝒯, P

∑
i = 1

K
‖λ ∘ Θi‖1

sparsity
+ ∑

Xt ∈ Pi

−ℓℓ(Xt, Θi)
loglikelihood

+ β 𝟙 {Xt − 1 ∉ Pi}
temporal consistency

. (1)

We call this the Toeplitz inverse covariance-based clustering (TICC) problem. Here, is the

set of symmetric block Toeplitz nw × nw matrices and ||λ ∘ Θi ||1 is an ℓ1-norm penalty of the

Hadamard (element-wise) product to incentivize a sparse inverse covariance (where λ ∈
Rnw×nw is a regularization parameter). Additionally, ℓℓ(Xt, Θi) is the log likelihood that Xt

came from cluster i,

ℓℓ(Xt, Θi) = − 1
2(Xt − μi)

TΘi(Xt − μi) + 1
2 log det Θi − n

2 log (2π), (2)

where μi is the empirical mean of cluster i. In Problem (1), β is a parameter that enforces

temporal consistency, and 𝟙{Xt−1 ∉ Pi } is an indicator function checking whether

neighboring points are assigned to the same cluster.

Toeplitz Matrices—Note that we constrain the Θi’s, the inverse covariances, to be block

Toeplitz. Thus, each nw × nw matrix can be expressed in the following form,

Θi =

A(0) (A(1))T (A(2))T ⋯ ⋯ (A(w − 1))T

A(1) A(0) (A(1))T ⋱ ⋮

A(2) A(1) ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ (A(1))T (A(2))T

⋮ ⋱ A(1) A(0) (A(1))T

A(w − 1) ⋯ ⋯ A(2) A(1) A(0)

,

where A(0), A(1), …, A(w−1) ∈ Rn×n. Here, the A(0) sub-block represents the intra-time

partial correlations, so Ai j
(0) refers to the relationship between concurrent values of sensors i

and j. In the MRF corresponding to this cluster, A(0) defines the adjacency matrix of the

edges within each layer. On the other hand, the off-diagonal sub-blocks refer to “cross-time”

edges. For example, Ai j
(1) shows how sensor i at some time t is correlated to sensor j at time t

+ 1, and A(2) shows the edge structure between time t and time t + 2. The block Toeplitz

structure of the inverse covariance means that we are making a time-invariance assumption

over this length-w window (we typically expect this window size to be much smaller than

the average segment length). As a result, in Figure 1, for example, the edges between layer 1

and layer 2 must also exist between layers 2 and 3. We use this assumption because we are

Hallac et al. Page 5

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

looking for a unique structural pattern to identify each cluster. We consider each cluster to be

a certain “state”. When the time series is in this state, it retains a certain (time-invariant)

structure that persists throughout this segment, regardless of the window’s starting point. By

enforcing a Toeplitz structure on the inverse covariance, we are able to model this time

invariance and incorporate it into our estimate of Θi.

Regularization Parameters—Our TICC optimization problem has two regularization

parameters: λ, which determines the sparsity level in the MRFs characterizing each cluster,

and β, the smoothness penalty that encourages adjacent subsequences to be assigned to the

same cluster. Note that even though λ is a nw × nw matrix, we typically set all its values to a

single constant, reducing the search space to just one parameter. In applications where there

is prior knowledge as to the proper sparsity or temporal consistency, λ and β can be chosen

by hand. More generally, the parameter values can also be selected by a more principled

method, such as Bayesian information criterion (BIC) [18] or cross-validation.

Window Size—Recall that instead of clustering each point xt in isolation, we cluster a

short window, or subsequence, going from time t − w + 1 to t, which we concatenate into a

nw-dimensional vector that we call Xt. The Toeplitz constraint assumes that each cluster has

a time-invariant structure, but this window size is still a relevant parameter. In particular, it

allows us to learn cross-time correlations (i.e., sensor i at time t affects sensor j at time t +1).

The larger the window, the farther these cross-time edges can reach. However, we do not

want our window to be too large, since it may struggle to properly classify points at the

segment boundaries, where our time-invariant assumption may not hold. For this reason, we

generally keep the value of w relatively small. However, its exact value should generally be

chosen depending on the application, the granularity of the observations, and the average

expected segment length. It can also be selected via BIC or cross-validation, though as we

discover in Section 6, our TICC algorithm is relatively robust to the selection of this window

size parameter.

Selecting the Number of Clusters—As with many clustering algorithms, the number of

clusters K is an important parameter in TICC. There are various methods for doing so. If

there is some labeled ground truth data, we can use cross-validation on a test set or

normalized mutual information [8] to evaluate performance. If we do not have such data, we

can use BIC or the silhouette score [40] to select this parameter. However, the exact number

of clusters will often depend on the application itself, especially since we are also looking

for interpretability in addition to accuracy.

3 ALTERNATING MINIMIZATION

Problem (1) is a mixed combinatorial and continuous optimization problem. There are two

sets of variables, the cluster assignments P and inverse covariances Θ, both of which are

coupled together to make the problem highly non-convex. As such, there is no tractable way

to solve for the globally optimal solution. Instead, we use a variation of the expectation

maximization (EM) algorithm to alternate between assigning points to clusters and then

updating the cluster parameters. While this approach does not necessarily reach the global

optimum, similar types of methods have been shown to perform well on related problems

Hallac et al. Page 6

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[13]. Here, we define the subproblems that comprise the two steps of our method. Then, in

Section 4, we derive fast algorithms to solve both subproblems and formally describe our

overall algorithm to solve the TICC problem.

3.1 Assigning Points to Clusters

We assign points to clusters by fixing the value of Θ and solving the following combinatorial

optimization problem for P = {P1, …, PK},

minimize ∑
i = 1

K
∑

Xt ∈ Pi

−ℓℓ(Xt, Θi) + β 𝟙 {Xt − 1 ∉ Pi} . (3)

This problem assigns each of the T subsequences to one of the K clusters to jointly

maximize the log likelihood and the temporal consistency, with the tradeoff between the two

objectives regulated by the regularization parameter β. When β = 0, the subsequences X1,

…, XT can all be assigned independently, since there is no penalty to encourage neighboring

subsequences to belong to the same cluster. This can be solved by simply assigning each

point to the cluster that maximizes its likelihood. As β gets larger, neighboring subsequences

are more and more likely to be assigned to the same cluster. As β → ∞, the switching

penalty becomes so large that all the points in the time series are grouped together into just

one cluster. Even though Problem (3) is combinatorial, we will see in Section 4.1 that we

can use dynamic programming to efficiently find the globally optimal solution for this TICC

subproblem.

3.2 Toeplitz Graphical Lasso

Given the point assignments P, our next task is to update the cluster parameters Θ1, …, ΘK

by solving Problem (1) while holding P constant. We can solve for each Θi in parallel. To do

so, we notice that we can rewrite the negative log likelihood in Problem (2) in terms of each

Θi. This likelihood can be expressed as

∑
Xt ∈ Pi

−ℓℓ(Xt, Θi) = − ∣ Pi ∣ (log det Θi + tr(SiΘi)) + C,

where |Pi | is the number of points assigned to cluster i, Si is the empirical covariance of

these points, and C is a constant that does not depend on Θi. Therefore, the M-step of our

EM algorithm is

minimize − log det Θi + tr(SiΘi) + 1
∣ Pi ∣‖λ ∘ Θi‖1

subject to Θi ∈ 𝒯 .
(4)

Hallac et al. Page 7

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Problem (4) is a convex optimization problem, which we call the Toeplitz graphical lasso.

This is a variation on the well-known graphical lasso problem [14] where we add a block

Toeplitz constraint on the inverse covariance. The original graphical lasso defines a tradeoff

between two objectives, regulated by the parameter λ: minimizing the negative log

likelihood, and making sure Θi is sparse. When Si is invertible, the likelihood term

encourages Θi to be near Si
−1. Our problem adds the additional constraint that Θi is block

Toeplitz. λ is a nw × nw matrix, so it can be used to regularize each sub-block of Θi

differently. Note that 1
∣ Pi ∣ can be incorporated into the regularization by simply scaling λ; as

such, we typically write Problem (4) without this term (and scale λ accordingly) for

notational simplicity.

4 TICC ALGORITHM

Here, we describe our algorithm to cluster X1, …, XT into K clusters. Our method, described

in full in Section 4.3, depends on two key subroutines: AssignPointsToClusters, where we

use a dynamic programming algorithm to assign each Xt into a cluster, and

UpdateClusterParameters, where we update the cluster parameters by solving the Toeplitz

graphical lasso problem using an algorithm based on the alternating direction method of

multipliers (ADMM). Note that this is similar to expectation maximization (EM), with the

two subroutines corresponding to the E and M steps, respectively.

4.1 Cluster Assignment

Given the model parameters (i.e., inverse covariances) for each of the K clusters, solving

Problem (3) assigns the T subsequences, X1, …, XT, to these K clusters in such a way that

maximizes the likelihood of the data while also minimizing the number of times that the

cluster assignment changes across the time series. Given K potential cluster assignments of

the T points, this combinatorial optimization problem has KT possible assignments of points

to clusters, that it can choose from. However, we are able to solve for the globally optimal

solution in only O(KT) operations. We do so through a dynamic programming method

described in Algorithm (1). This method is equivalent to finding the minimum cost Viterbi

path [44] for this length-T sequence, as visualized in Figure 2.

Algorithm 1

Assign Points to Clusters

1: given β > 0, −ℓℓ(i, j) = negative log likelihood of point i when it is assigned to cluster j.

2: initialize PrevCost = list of K zeros.

3: CurrCost = list of K zeros.

4: PrevPath = list of K empty lists.

5: CurrPath = list of K empty lists.

6: for i = 1, …, T do

7: for j = 1, …, K do

8: MinIndex = index of minimum value of PrevCost.

Hallac et al. Page 8

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

9: if PrevCost[MinIndex] + β > PrevCost[j] then

10: CurrCost[j] = PrevCost[j] −ℓℓ(i, j).

11: CurrPath[j] = PrevPath[j].append[j].

12: else

13: CurrCost[j] = PrevCost[minIndex] + β − ℓℓ(i, j).

14: CurrPath[j] = PrevPath[minIndex].append[j].

15: PrevCost = CurrCost.

16: PrevPath = CurrPath.

17: FinalMinIndex = index of minimum value of CurrCost.

18: FinalPath = CurrPath[FinalMinIndex].

19: return FinalPath.

4.2 Solving the Toeplitz Graphical Lasso

Once we have the clustering assignments, the M-step of our EM algorithm is to update the

inverse covariances, given the points assigned to each cluster. Here, we are solving the

Toeplitz graphical lasso, which is defined in Problem (4). For smaller covariances, this

semidefinite programming problem can be solved using standard interior point methods [6,

36]. However, to solve the overall TICC problem, we need to solve a separate Toeplitz

graphical lasso for each cluster at every iteration of our algorithm. Therefore, since we may

need to solve Problem (4) hundreds of times before TICC converges, it is necessary to

develop a fast method for solving it efficiently. We do so through the alternating direction

method of multipliers (ADMM), a distributed convex optimization approach that has been

shown to perform well at large-scale optimization tasks [5, 37]. With ADMM, we split the

problem up into two subproblems and use a message passing algorithm to iteratively

converge to the globally optimal solution. ADMM is especially scalable when closed-form

solutions can be found for the ADMM subproblems, which we are able to derive for the

Toeplitz graphical lasso.

To put Problem (4) in ADMM-friendly form, we introduce a consensus variable Z and

rewrite Problem (4) as its equivalent problem,

minimize − log det Θ + tr(SΘ) + ‖λ ∘ Z‖1
subject to Θ = Z, Z ∈ 𝒯 .

The augmented Lagrangian [19] can then be expressed as

ℒρ(Θ, Z, U): = − log det (Θ) + Tr(SΘ) + ‖λ ∘ Z‖1 + ρ
2 ‖Θ − Z + U‖F

2 . (5)

where ρ > 0 is the ADMM penalty parameter, U ∈ Rnw×nw is the scaled dual variable [5,

§3.1.1], and Z ∈ .

Hallac et al. Page 9

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ADMM consists of the following three steps repeated until convergence,

a. Θk + 1: = argmin
Θ

ℒρ Θ, Zk, Uk

b. Zk + 1: = argmin
Z ∈ 𝒯

ℒρ Θk + 1, Z, Uk

c. Uk+1 := Uk + (Θk+1 − Zk+1),

where k is the iteration number. Here, we alternate optimizing Problem (5) over Θ and then

over Z, and after each iteration we update the scaled dual variable U. Since the Toeplitz

graphical lasso problem is convex, ADMM is guaranteed to converge to the global optimum.

We use a stopping criteria based on the primal and dual residual values being close to zero;

see [5].

Θ-Update—The Θ-update can be written as

Θk + 1 = argmin
Θ

− log det (Θ) + Tr(SΘ) + ρ
2 Θ − Zk + Uk

F
2 .

This optimization problem has a known analytical solution [10],

Θk + 1 = ρ
2 Q D + D2 + 4ρI QT, (6)

where QDQT is the eigendecomposition of Zk − Uk

ρ − S.

Z-Update—The Z-update can be written as

Zk + 1 = argmin
Z ∈ 𝒯

‖λ ∘ Z‖1 + ρ
2 Z − Θk + 1 − Uk

F
2 . (7)

This proximal operator can be solved in parallel for each sub-block A(0), A(1), …, A(w−1).

Furthermore, within each sub-block, each (i, j)-th element in the sub-block can be solved in

parallel as well. In A(0), there are n(n + 1)
2 independent problems (since it is symmetric),

whereas for the other w − 1 blocks, this number is n2. Therefore, Problem (7) can be broken

down into a total of (w − 1)n2 + n(n + 1)
2 independent problems. Each of these problems has

the same form, and can be solved in the same way.

Hallac et al. Page 10

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 2

Toeplitz Inverse Covariance-Based Clustering

1: initialize Cluster parameters Θ; cluster assignments P.

2: repeat

3: E-step: Assign points to clusters → P.

4: M-step: Update cluster parameters → Θ.

5: until Stationarity. return (Θ, P).

We denote the number of times each element appears as R (this equals 2(w − m) for sub-

block A(m), except for the diagonals of A(0), which occur w times.) We order these R

occurrences, and we let Bi j, l
(m) refer to the index in Z corresponding to the l-th occurrence of

the (i, j)-th element of A(m), where l = 1, …, R. Thus, Bi j, l
(m) returns an index (x,y) in the nw ×

nw matrix of Z. With this notation, we can solve each of the (w − 1)n2 + n(n + 1)
2 subproblems

of the Z-update proximal operator the same way. To solve for the elements of Z

corresponding to Bi j
(m), we set these elements all equal to

argmin
z

∑
l = 1

R
∣ λ

Bi j, l
(m)z ∣ + ρ

2 z − (Θk + 1 + Uk)
Bi j, l

(m)

2
. (8)

We let Q = ∑l = 1
R λ

Bi j, l
(m) and Sl = (Θk + 1 + Uk)

Bi j, l
(m) for notational simplicity. Then, Problem (8)

can be rewritten as

argmin
z

Q ∣ z ∣ + ∑
l = 1

R ρ
2 (z − Sl)

2 .

This is just a soft-threshold proximal operator [37], which has the following closed-form

solution,

Z
Bi j

(m)
k + 1 =

ρ∑lSl − Q

ρR

ρ∑lSl − Q

ρR > 0
ρ∑lSl + Q

ρR

ρ∑lSl + Q

ρR < 0
0 otherwise.

(9)

Hallac et al. Page 11

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We fill in the R elements in Zk + 1 (corresponding to Bi j
(m)) with this value. We do the same for

all (w − 1)n2 + n(n + 1)
2 subproblems, each of which we can solve in parallel, and we are left

with our final result for the overall Z-update.

4.3 TICC Clustering Algorithm

To solve the TICC problem, we combine the dynamic programming algorithm from Section

4.1 and the ADMM method in Section 4.2 into one iterative EM algorithm. We start by

randomly initializing the clusters. From there, we alternate the E and M-steps until the

cluster assignments are stationary (i.e., the problem has converged). The overall TICC

method is outlined in Algorithm (2)

5 IMPLEMENTATION

We have built a custom Python solver to run the TICC algorithm1. Our solver takes as inputs

the original multivariate time series and the problem parameters. It then returns the

clustering assignments of each point in the time series, along with the structural MRF

representation of each cluster.

6 EXPERIMENTS

We test our TICC method on several synthetic examples. We do so because there are known

“ground truth” clusters to evaluate the accuracy of our method.

Generating the Datasets—We randomly generate synthetic multivariate data in R5.

Each of the K clusters has a mean of 0→ so that the clustering result is based entirely on the

structure of the data. For each cluster, we generate a random ground truth Toeplitz inverse

covariance as follows [33]:

1. Set A(0), A(1), … A(4) ∈ R5×5 equal to the adjacency matrices of 5 independent

Erdős-Rényi directed random graphs, where every edge has a 20% chance of

being selected.

2. For every selected edge in A(m) set A jk
(m) = v jk, m, a random weight centered at 0

(For the A(0) block, we also enforce a symmetry constraint that every

Ai j
(0) = A ji

(0)).

3. Construct a 5w × 5w block Toeplitz matrix G, where w = 5 is the window size,

using the blocks A(0), A(1), … A(4).

4. Let c be the smallest eigenvalue of G, and set Θi = G+(0.1+|c |)I. This diagonal

term ensures that Θi is invertible.

The overall time series is then generated by constructing a temporal sequence of cluster

segments (for example, the sequence “1, 2, 1” with 200 samples in each of the three

1Code and solver are available at http://snap.stanford.edu/ticc/.

Hallac et al. Page 12

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://snap.stanford.edu/ticc/

segments, coming from two inverse covariances Θ1 and Θ2). The data is then drawn one

sample at a time, conditioned on the values of the previous w − 1 samples. Note that, when

we have just switched to a new cluster, we are drawing a new sample in part based on data

that was generated by the previous cluster.

We run our experiments on four different temporal sequences: “1,2,1”, “1,2,3,2,1”,

“1,2,3,4,1,2,3,4”, “1,2,2,1,3,3,3,1”. Each segment in each of the examples has 100K
observations in R5, where K is the number of clusters in that experiment (2, 3, 4, and 3,

respectively). These examples were selected to convey various types of temporal sequences

over various lengths of time.

Performance Metrics—We evaluate performance by clustering each point in the time

series and comparing to the ground truth clusters. Since both TICC and the baseline

approaches use very similar methods for selecting the appropriate number of clusters, we fix

K to be the “true” number of clusters, for both TICC and for all the baselines. This yields a

straightforward multiclass classification problem, which allows us to evaluate clustering

accuracy by measuring the macro-F1 score. For each cluster, the F1 score is the harmonic

mean of the precision and recall of our estimate. Then, the macro-F1 score is the average of

the F1 scores for all the clusters. We use this score to compare our TICC method with

several well-known time series clustering baselines.

Baseline Methods—We use multiple model and distance-based clustering approaches as

our baselines. The methods we use are:

• TICC, β = 0 — This is our TICC method without the temporal consistency

constraint. Here, each subsequence is assigned to a cluster independently of its

location in the time series.

• GMM — Clustering using a Gaussian Mixture Model [2].

• EEV — Regularized GMM with shape and volume constraints on the Gaussian

covariance matrix [13].

• DTW, GAK — Dynamic time warping (DTW)-based clustering using a global

alignment kernel [9, 42].

• DTW, Euclidean — DTW using a Euclidean distance metric [42].

• Neural Gas — Artificial neural network clustering method, based on self-

organizing maps [12, 31].

• K-means — The standard K-means clustering algorithm using Euclidean

distance.

Clustering Accuracy—We measure the macro-F1 score for the four different temporal

sequences in Table 1. Here, all eight methods are using the exact same synthetic data, to

isolate each approach’s effect on performance. As shown, TICC significantly outperforms

the baselines. Our method achieves a macro-F1 score between 0.90 and 0.98, averaging 0.95

across the four examples. This is 41% higher than the second best method (not counting

TICC, β = 0), which is GMM and has an average macro-F1 score of only 0.67. We also ran

Hallac et al. Page 13

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

our experiments using micro-F1 score, which uses a weighted average to weigh clusters with

more samples more heavily, and we obtained very similar results (within 1–2% of the

macro-F1 scores). Note that the K clusters in our examples are always zero-mean, and that

they are only differentiated by the structure of the data. As a result, the distance-based

methods struggle at identifying the clusters, and these approaches have lower scores than the

model-based methods for these experiments.

Effect of the Total Number of Samples—We next focus on how many samples are

required for each method to accurately cluster the time series. We take the “1,2,3,4,1,2,3,4”

example from Table 1 and vary the number of samples. We plot the macro-F1 score vs.

number of samples per segment for each of the eight methods in Figure 3. As shown, when

there are 100 samples, none of the methods are able to accurately cluster the data. However,

as we observe more samples, both TICC and TICC, β = 0 improve rapidly. By the time there

are 200 samples, TICC already has a macro-F1 score above 0.9. Even when there is a limited

amount of data, our TICC method is still able to accurately cluster the data. Additionally, we

note that the temporal consistency constraint, defined by β, has only a small effect in this

region, since both TICC and TICC, β = 0 achieve similar results. Therefore, the accurate

results are most likely due to the sparse block Toeplitz constraint that we impose in our

TICC method. However, as the number of samples increases, these two plots begin to

diverge, as TICC goes to 1.0 while TICC, β = 0 hovers around 0.9. This implies that, once

we have enough samples, the final improvement in performance is due to the temporal

consistency penalty that encourages neighboring samples to be assigned to the same cluster.

Network Recovery Accuracy—Recall that our TICC method has the added benefit in

that the clusters it learns are interpretable. TICC models each cluster as a multilayer Markov

random field, a network with edges corresponding to the non-zero entries in the inverse

covariance matrix Θi. We can compare our estimated network with the “true” MRF network

and measure the average macro-F1 score of our estimate across all the clusters. We look at

the same four examples as in Table 2 and plot the results in Table 2. We recover the

underlying edge structure of the network with an F1 score between 0.79 and 0.90. This

shows that TICC is able to both accurately cluster the data and recover the network structure

of the underlying clusters. Note that our method is the first approach that is able to explicitly

reconstruct this network, something that the other baseline methods are unable to do.

Window Size Robustness—We next examine how the selection of window size w
affects our results. We run the same “1,2,3,4,1,2,3,4” example, except now we vary the

window size w. (Recall that the “true” window size was 5.) Empirically, we discover that

any window size between 4 and 15 yields a Macro-F1 clustering accuracy score of between

0.95 and 0.98. Similarly, our network recovery macro-F1 score stays between 0.87 and 0.89

for window sizes between 5 and 14. It is only after the window size drops below 4 or above

15 that the results begin to get worse. We observe similar patterns in the other three

examples, so our TICC method appears to be relatively robust to the selection of w.

Scalability of TICC—One iteration of the TICC algorithm consists of running the

dynamic programming algorithm and then solving the Toeplitz graphical lasso problem for

Hallac et al. Page 14

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

each cluster. These steps are repeated until convergence. The total number of iterations

depends on the data, but typically is no more than a few tens of iterations. Since T is

typically much larger than both K and n, we can expect the largest bottleneck to occur

during the assignment phase, where T can potentially be in the millions. To evaluate the

scalability of our algorithm, we vary T and compute the runtime of the algorithm over one

iteration. We observe samples in R50, estimate 5 clusters with a window size of 3, and vary

T over several orders of magnitude. We plot the results in log-log scale in Figure 4. Note that

our ADMM solver infers each 150×150 inverse covariance (since nw = 50 × 3 = 150) in

under 4 seconds, but this runtime is independent of T, so ADMM contributes to the constant

offset in the plot. As shown, at large values of T, our algorithm scales linearly with the

number of points. Our TICC solver can cluster 10 millions points, each in R50, with a per-

iteration runtime of approximately 25 minutes.

7 CASE STUDY

Here, we apply our TICC method to a real-world example to demonstrate how this approach

can be used to find meaningful insights from time series data in an unsupervised way.

We analyze a dataset, provided by a large automobile company, containing sensor data from

a real driving session. This session lasts for exactly 1 hour and occurs on real roads in the

suburbs of a large European city. We observe 7 sensors every 0.1 seconds:

• Brake Pedal Position

• Forward (X-)Acceleration

• Lateral (Y-)Acceleration

• Steering Wheel Angle

• Vehicle Velocity

• Engine RPM

• Gas Pedal Position

Thus, in this one-hour session, we have 36,000 observations of a 7-dimensional time series.

We apply TICC with a window size of 1 second (or 10 samples). We pick the number of

clusters using BIC, and we discover that this score is optimized at K = 5.

We analyze the 5 clusters outputted by TICC to understand and interpret what “driving

state” they each refer to. Each cluster has a multilayer MRF network defining its structure.

To analyze the result, we use network analytics to determine the relative “importance” of

each node in the cluster’s network. We plot the betweenness centrality score [7] of each

node in Table 3. We see that each of the 5 clusters has a unique “signature”, and that

different sensors have different betweenness scores in each cluster. For example, the Y-

Acceleration sensor has a non-zero score in only two of the five clusters: #2 and #5. As such,

we would expect these two clusters to refer to states in which the car is turning, and the

other three clusters to refer to intervals where the car is going straight. Similarly, cluster #1

is the only cluster with no importance on the Gas Pedal, and it is also the cluster with the

Hallac et al. Page 15

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

largest Brake Pedal score. Therefore, we expect this state to be the cluster assignment

whenever the car is slowing down. We also see that clusters 3 and 4 have the same non-zero

sensors, velocity and gas pedal, so we may expect them to refer to states when the car is

driving straight and not slowing down, with the most “important” sensor in the two clusters

being the velocity in cluster 4. As such, we can use these betweenness scores to interpret

these clusters in a meaningful way. For example, from Table 3, a reasonable hypothesis

might be that the clusters refer to 1) slowing down, 2) turning, 3) speeding up, 4) cruising on

a straight road, 5) driving on a curvy road segment.

Plotting the Resulting Clusters—To validate our hypotheses, we can plot the latitude/

longitude locations of the drive, along with the resulting cluster assignments. Analyzing this

data, we empirically discover that each of the five clusters has a clear real-world

interpretation that aligns very closely with our estimates based on the betweenness scores in

Table 3. Furthermore, we notice that many consistent and repeated patterns emerge in this

one hour session. For example, whenever the driver is approaching a turn, he or she follows

the same sequence of clusters: going straight, slowing down, turning, speeding up, then

going straight again. We plot two typical turns in the dataset, coloring the timestamps

according to their cluster assignments, in Figure 5. It is important to note here that the same

pattern emerges here for both left and right turns. Whereas distance-based approaches would

treat these two scenarios very differently (since several of the sensors have completely

opposite values), TICC instead clusters the time series based on structural similarities. As a

result, TICC assigns both left and right turns into the same underlying cluster.

8 CONCLUSION AND FUTUREWORK

In this paper, we have defined a method of clustering multivariate time series subsequences.

Our method, Toeplitz Inverse Covariance-based Clustering (TICC), is a new type of model-

based clustering that is able to find accurate and interpretable structure in the data. Our

TICC algorithm simultaneously segments and clusters the data, breaking down high-

dimensional time series into a clear sequential timeline. We cluster each subsequence based

on its correlation structure and define each cluster by a multilayer MRF, making our results

highly interpretable. To discover these clusters, TICC alternates between assigning points to

clusters in a temporally consistent way, which it accomplishes through dynamic

programming, and updating the cluster MRFs, which it does via ADMM. TICC’s promising

results on both synthetic and real-world data lead to many potential directions for future

research. For example, our method could be extended to learn dependency networks

parameterized by any heterogeneous exponential family MRF. This would allow for a much

broader class of datasets (such as boolean or categorical readings) to be incorporated into the

existing TICC framework, opening up this work to new potential applications.

Acknowledgments

This work was supported by NSF IIS-1149837, NIH BD2K, DARPA SIMPLEX, DARPA XDATA, Chan
Zuckerberg Biohub, SDSI, Boeing, Bosch, and Volkswagen.

Hallac et al. Page 16

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

1. Banerjee O, El Ghaoui L, d’Aspremont A. Model selection through sparse maximum likelihood
estimation for multivariate Gaussian or binary data. JMLR. 2008

2. Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics. 1993

3. Begum, N., Ulanova, L., Wang, J., Keogh, E. Accelerating dynamic time warping clustering with a
novel admissible pruning strategy. KDD; 2015.

4. Berndt, DJ., Clifford, J. Using dynamic time warping to find patterns in time series. AAAI
Workshop on Knowledge Disovery in Databases; 1994.

5. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and Trends in Machine Learning. 2011

6. Boyd, S., Vandenberghe, L. Convex Optimization. Cambridge University Press; 2004.

7. Brandes U. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology. 2001

8. Cover, TM., Thomas, JA. Elements of Information Theory. John Wiley & Sons; 2012.

9. Cuturi, M. Fast global alignment kernels. ICML; 2011.

10. Danaher P, Wang P, Witten DM. The joint graphical lasso for inverse covariance estimation across
multiple classes. JRSS: Series B. 2014

11. Das, G., Lin, K-I., Mannila, H., Renganathan, G., Smyth, P. Rule discovery from time series. KDD;
1998.

12. Dimtriadou, E. Cclust: Convex clustering methods and clustering indexes. 2009. https://CRAN.R-
project.org/package=cclust

13. Fraley C, Raftery AE. MCLUST version 3: an R package for normal mixture modeling and model-
based clustering. Technical report. DTIC Document. 2006

14. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso.
Biostatistics. 2008

15. Gionis, A., Mannila, H. Finding recurrent sources in sequences. RECOMB; 2003.

16. Gray RM. Toeplitz and circulant matrices: A review. Foundations and Trends in Communications
and Information Theory. 2006

17. Hallac D, Nystrup P, Boyd S. Greedy Gaussian segmentation of multivariate time series. 2016
arXiv preprint arXiv:1610.07435.

18. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning. Springer; 2009.

19. Hestenes MR. Multiplier and gradient methods. Journal of Optimization Theory and Applications.
1969

20. Himberg, J., Korpiaho, K., Mannila, H., Tikänmaki, J., Toivonen, HT. Time series segmentation for
context recognition in mobile devices. ICDM; 2001.

21. Hsieh C-J, Sustik MA, Dhillon IS, Ravikumar P. QUIC: quadratic approximation for sparse inverse
covariance estimation. JMLR. 2014

22. Hsieh, C-J., Sustik, MA., Dhillon, IS., Ravikumar, PK., Poldrack, R. BIG & QUIC: Sparse inverse
covariance estimation for a million variables. NIPS; 2013.

23. Keogh, E. Exact indexing of dynamic time warping. VLDB; 2002.

24. Keogh, E., Lin, J., Truppel, W. Clustering of time series subsequences is meaningless: Implications
for previous and future research. ICDM; 2003.

25. Keogh, E., Pazzani, MJ. Scaling up dynamic time warping for datamining applications. KDD;
2000.

26. Koller, D., Friedman, N. Probabilistic Graphical Models: Principles and Techniques. MIT press;
2009.

27. Lauritzen, SL. Graphical models. Clarendon Press; 1996.

28. Li, Y., Lin, J., Oates, T. Visualizing variable-length time series motifs. SIAM; 2012.

29. Lin, J., Keogh, E., Lonardi, S., Chiu, B. A symbolic representation of time series, with implications
for streaming algorithms. SIGMOD workshop on Research issues in data mining and knowledge
discovery; 2003.

Hallac et al. Page 17

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=cclust
https://CRAN.R-project.org/package=cclust

30. Lin J, Keogh E, Wei L, Lonardi S. Experiencing SAX: a novel symbolic representation of time
series. Data Mining and knowledge discovery. 2007

31. Martinetz TM, Berkovich SG, Schulten KJ. ’Neural-gas’ network for vector quantization and its
application to time-series prediction. IEEE Transactions on Neural Networks. 1993

32. Miyajima, C., Nishiwaki, Y., Ozawa, K., Wakita, T., Itou, K., Takeda, K., Itakura, F. Driver
modeling based on driving behavior and its evaluation in driver identification. Proceedings of the
IEEE; 2007.

33. Mohan K, London P, Fazel M, Witten D, Lee S-I. Node-based learning of multiple Gaussian
graphical models. JMLR. 2014

34. Mörchen F, Ultsch A, Hoos O. Extracting interpretable muscle activation patterns with time series
knowledge mining. International Journal of Knowledge-based and Intelligent Engineering
Systems. 2005

35. Namaki A, Shirazi A, Raei R, Jafari G. Network analysis of a financial market based on genuine
correlation and threshold method. Physica A: Stat Mech Apps. 2011

36. O’Donoghue B, Chu E, Parikh N, Boyd S. Conic optimization via operator splitting and
homogeneous self-dual embedding. Journal of Optimization Theory and Applications. 2016

37. Parikh N, Boyd S. Proximal algorithms. Foundations and Trends in Optimization. 2014

38. Pärkkä J, Ermes M, Korpipää P, Mäntyjärvi J, Peltola J, Korhonen I. Activity classification using
realistic data from wearable sensors. IEEE Transactions on information technology in
biomedicine. 2006

39. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh,
E. Searching and mining trillions of time series subsequences under dynamic time warping. KDD;
2012.

40. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics. 1987

41. Rue, H., Held, L. Gaussian Markov Random Fields: Theory and Applications. CRC Press; 2005.

42. Sarda-Espinosa, A. Dtwclust. 2016. https://cran.r-project.org/web/packages/dtwclust/index.html

43. Smyth P. Clustering sequences with hidden Markov models. NIPS. 1997

44. Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory. 1967

45. Wainwright MJ, Jordan MI. Log-determinant relaxation for approximate inference in discrete
Markov random fields. IEEE Tr on Signal Processing. 2006

46. Wytock M, Kolter JZ. Sparse Gaussian conditional random fields: Algorithms, theory, and
application to energy forecasting. ICML. 2013

47. Xiong Y, Yeung D-Y. Time series clustering with ARMA mixtures. Pattern Recognition. 2004

48. Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society: Series B. 2006; 68:49–67.

49. Zolhavarieh S, Aghabozorgi S, Teh YW. A review of subsequence time series clustering. The
Scientific World Journal. 2014

Hallac et al. Page 18

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cran.r-project.org/web/packages/dtwclust/index.html

Figure 1.
Our TICC method segments a time series into a sequence of states, or “clusters” (i.e., A, B,

or C). Each cluster is characterized by a correlation network, or MRF, defined over a short

window of size w. This MRF governs the (time-invariant) partial correlation structure of any
window inside a segment belonging to that cluster. Here, TICC learns both the cluster MRFs

and the time series segmentation.

Hallac et al. Page 19

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Problem (3) is equivalent to finding the minimum-cost path from timestamp 1 to T, where

the node cost is the negative log likelihood of that point being assigned to a given cluster,

and the edge cost is β whenever the cluster assignment switches.

Hallac et al. Page 20

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Plot of clustering accuracy macro-F1 score vs. number of samples for TICC and several

baselines. TICC needs significantly fewer samples than the other model-based methods to

achieve similar performance, while the distance-based measures are unable to capture the

true structure.

Hallac et al. Page 21

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Per-iteration runtime of the TICC algorithm (both the ADMM and dynamic programming

steps). Our algorithm scales linearly with the number of samples. In this case, each

observation is a vector in R50.

Hallac et al. Page 22

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Two real-world turns in the driving session. The pin color represents cluster assignment

from our TICC algorithm (Green = Going Straight, White = Slowing Down, Red = Turning,

Blue = Speeding up). Since we cluster based on structure, rather than distance, both a left

and a right turn look very similar under the TICC clustering scheme.

Hallac et al. Page 23

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallac et al. Page 24

Ta
b

le
 1

M
ac

ro
-F

1
sc

or
e

of
 c

lu
st

er
in

g
ac

cu
ra

cy
 f

or
 f

ou
r

di
ff

er
en

t t
em

po
ra

l s
eq

ue
nc

es
, c

om
pa

ri
ng

 T
IC

C
 w

ith
 s

ev
er

al
 a

lte
rn

at
iv

e
m

od
el

 a
nd

 d
is

ta
nc

e-
ba

se
d

m
et

ho
ds

.

Te
m

po
ra

l S
eq

ue
nc

e

C
lu

st
er

in
g

M
et

ho
d

1,
2,

1
1,

2,
3,

2,
1

1,
2,

3,
4,

1,
2,

3,
4

1,
2,

2,
1,

3,
3,

3,
1

T
IC

C
0.

92
0.

90
0.

98
0.

98

M
od

el
-B

as
ed

T
IC

C
, β

 =
 0

0.
88

0.
89

0.
86

0.
89

G
M

M
0.

68
0.

55
0.

83
0.

62

E
E

V
0.

59
0.

66
0.

37
0.

88

D
is

ta
nc

e-
B

as
ed

D
T

W
, G

A
K

0.
64

0.
33

0.
26

0.
27

D
T

W
, E

uc
lid

ea
n

0.
50

0.
24

0.
17

0.
25

N
eu

ra
l G

as
0.

52
0.

35
0.

27
0.

34

K
-m

ea
ns

0.
59

0.
34

0.
24

0.
34

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallac et al. Page 25

Table 2

Network edge recovery F1 score for the four temporal sequences. TICC defines each cluster as an MRF

graphical model, which is successfully able to estimate the dependency structure of the underlying data.

Temporal Sequence TICC Network Recovery F1 score

1,2,1 0.83

1,2,3,2,1 0.79

1,2,3,4,1,2,3,4 0.89

1,2,2,1,3,3,3,1 0.90

KDD. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallac et al. Page 26

Ta
b

le
 3

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

fo
r

ea
ch

 s
en

so
r

in
 e

ac
h

of
 th

e
fi

ve
 c

lu
st

er
s.

 T
hi

s
sc

or
e

ca
n

be
 u

se
d

as
 a

 p
ro

xy
 to

 s
ho

w
 h

ow
 “

im
po

rt
an

t”
 e

ac
h

se
ns

or
 is

, a
nd

 m
or

e

sp
ec

if
ic

al
ly

 h
ow

 m
uc

h
it

di
re

ct
ly

 a
ff

ec
ts

 th
e

ot
he

r
se

ns
or

 v
al

ue
s.

In
te

rp
re

ta
ti

on
B

ra
ke

X
-A

cc
Y

-A
cc

SW
 A

ng
le

V
el

R
P

M
G

as

#1
Sl

ow
in

g
D

ow
n

25
.6

4
0

0
0

27
.1

6
0

0

#2
T

ur
ni

ng
0

4.
24

66
.0

1
17

.5
6

0
5.

13
13

5.
1

#3
Sp

ee
di

ng
 U

p
0

0
0

0
16

.0
0

0
4.

50

#4
D

ri
vi

ng
 S

tr
ai

gh
t

0
0

0
0

32
.2

0
26

.8

#5
C

ur
vy

 R
oa

d
4.

52
0

4.
81

0
0

0
94

.8

KDD. Author manuscript; available in PMC 2018 May 14.

	Abstract
	1 INTRODUCTION
	Related Work—This work relates to recent advancements in time series clustering and convex optimization. Subsequence clustering of time series data is a well-developed field. Methods include several variations of dynamic time warping [3, 23, 25, 39], symbolic representations [29, 30], and rule-based motif discovery [11, 28]. There has also been work on simultaneous clustering and segmentation of time series data, which is known as time point clustering [15, 49]. However, these methods generally rely on distance-based metrics, which in certain situations have been shown to yield unreliable results [24]. Instead, our TICC method is a model-based clustering approach, similar to clustering based on ARMA [47], Gaussian Mixture [13], or hidden Markov models [43]. To the best of our knowledge, our method is the first to perform time series clustering based on the graphical dependency structure of each subsequence. This provides interpretability to our clusters, prevents overfitting, and, as we show in Sections 6 and 7, allows us to discover types of patterns that other approaches are unable to find. We do so by proposing a structured inverse covariance estimation problem, which we call the Toeplitz graphical lasso. This problem is a variation on the well-known graphical lasso problem [14] where we enforce a block Toeplitz structure on the solution. While many algorithms exist to solve the standard graphical lasso [1, 21, 22], we are not aware of any methods specifically adapted for the block Toeplitz case. We propose an ADMM approach because the overall optimization problem can be split into ADMM-friendly subproblems, where we can derive closed-form proximal operators [5] to quickly solve the optimization problem.
	Related Work

	2 PROBLEM SETUP
	Toeplitz Inverse Covariance-Based Clustering (TICC)—We define each cluster by a Gaussian inverse covariance Θi ∈ Rnw×nw. Recall that inverse covariances show the conditional independency structure between the variables [26], so Θi defines a Markov random field encoding the structural representation of cluster i. In addition to providing interpretable results, sparse graphical representations are a useful way to prevent overfitting [27]. As such, our objective is to solve for these K inverse covariances Θ = {Θ1, …, ΘK}, one per cluster, and the resulting assignment sets P = {P1, …, PK }, where Pi ⊂ {1, 2, …, T}. Here, each of the T points are assigned to exactly one cluster. Our overall optimization problem is(1)We call this the Toeplitz inverse covariance-based clustering (TICC) problem. Here,
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="12.481px" height="9.643px" viewBox="5.269 -1.447 12.481 9.643" enable-background="new 5.269 -1.447 12.481 9.643"
xml:space="preserve">
<path d="M14.288-0.3c-0.486,0.43-0.925,1.041-1.316,1.834c-0.303,0.698-0.604,1.397-0.906,2.096
c-0.553,1.255-1.232,2.282-2.039,3.08C9.021,7.7,7.933,8.197,6.762,8.197c-0.995,0-1.493-0.342-1.493-1.026
c0-0.227,0.074-0.429,0.223-0.605s0.334-0.266,0.556-0.266c0.293,0,0.439,0.135,0.439,0.403c0,0.321-0.156,0.481-0.468,0.481
c-0.118,0-0.238-0.059-0.36-0.177C5.611,7.069,5.587,7.147,5.587,7.24c0,0.236,0.14,0.418,0.418,0.546
c0.217,0.099,0.46,0.148,0.729,0.148c0.812,0,1.555-0.345,2.229-1.034c0.42-0.42,0.913-1.113,1.479-2.081
c0.539-0.949,1.079-1.897,1.622-2.847c0.693-1.118,1.385-1.944,2.074-2.478L14.288-0.3z M17.75-1.256
c-0.727,0.444-1.481,0.666-2.266,0.666c-0.344,0-0.859-0.073-1.547-0.22c-0.687-0.146-1.207-0.22-1.561-0.22h-0.064
c-0.448,0.005-0.93,0.102-1.443,0.291c-0.709,0.26-1.367,0.661-1.976,1.204C8.157,1.116,7.789,1.761,7.789,2.398
c0,0.189,0.068,0.347,0.205,0.475s0.3,0.191,0.488,0.191c0.666,0,1.334-0.432,2.004-1.296c0.637-0.816,0.961-1.569,0.97-2.259h0.22
c0,1.072-0.281,1.942-0.843,2.613c-0.26,0.312-0.608,0.585-1.048,0.821C9.319,3.198,8.894,3.325,8.511,3.325
c-0.273,0-0.506-0.088-0.697-0.266C7.622,2.883,7.528,2.657,7.528,2.384c0-0.732,0.405-1.444,1.217-2.139
c0.652-0.566,1.389-0.996,2.209-1.288c0.676-0.241,1.327-0.361,1.955-0.361c0.358,0,0.896,0.042,1.61,0.124s1.252,0.124,1.61,0.124
c0.463,0,0.975-0.097,1.537-0.291L17.75-1.256z"/>
</svg>
 is the set of symmetric block Toeplitz nw × nw matrices and ||λ ∘ Θi ||1 is an ℓ1-norm penalty of the Hadamard (element-wise) product to incentivize a sparse inverse covariance (where λ ∈ Rnw×nw is a regularization parameter). Additionally, ℓℓ(Xt, Θi) is the log likelihood that Xt came from cluster i,
(2) where μi is the empirical mean of cluster i. In Problem (1), β is a parameter that enforces temporal consistency, and 𝟙{Xt−1 ∉ Pi } is an indicator function checking whether neighboring points are assigned to the same cluster.Toeplitz Matrices—Note that we constrain the Θi’s, the inverse covariances, to be block Toeplitz. Thus, each nw × nw matrix can be expressed in the following form,
 where A(0), A(1), …, A(w−1) ∈ Rn×n. Here, the A(0) sub-block represents the intra-time partial correlations, so
 refers to the relationship between concurrent values of sensors i and j. In the MRF corresponding to this cluster, A(0) defines the adjacency matrix of the edges within each layer. On the other hand, the off-diagonal sub-blocks refer to “cross-time” edges. For example,
 shows how sensor i at some time t is correlated to sensor j at time t + 1, and A(2) shows the edge structure between time t and time t + 2. The block Toeplitz structure of the inverse covariance means that we are making a time-invariance assumption over this length-w window (we typically expect this window size to be much smaller than the average segment length). As a result, in Figure 1, for example, the edges between layer 1 and layer 2 must also exist between layers 2 and 3. We use this assumption because we are looking for a unique structural pattern to identify each cluster. We consider each cluster to be a certain “state”. When the time series is in this state, it retains a certain (time-invariant) structure that persists throughout this segment, regardless of the window’s starting point. By enforcing a Toeplitz structure on the inverse covariance, we are able to model this time invariance and incorporate it into our estimate of Θi.Regularization Parameters—Our TICC optimization problem has two regularization parameters: λ, which determines the sparsity level in the MRFs characterizing each cluster, and β, the smoothness penalty that encourages adjacent subsequences to be assigned to the same cluster. Note that even though λ is a nw × nw matrix, we typically set all its values to a single constant, reducing the search space to just one parameter. In applications where there is prior knowledge as to the proper sparsity or temporal consistency, λ and β can be chosen by hand. More generally, the parameter values can also be selected by a more principled method, such as Bayesian information criterion (BIC) [18] or cross-validation.Window Size—Recall that instead of clustering each point xt in isolation, we cluster a short window, or subsequence, going from time t − w + 1 to t, which we concatenate into a nw-dimensional vector that we call Xt. The Toeplitz constraint assumes that each cluster has a time-invariant structure, but this window size is still a relevant parameter. In particular, it allows us to learn cross-time correlations (i.e., sensor i at time t affects sensor j at time t +1). The larger the window, the farther these cross-time edges can reach. However, we do not want our window to be too large, since it may struggle to properly classify points at the segment boundaries, where our time-invariant assumption may not hold. For this reason, we generally keep the value of w relatively small. However, its exact value should generally be chosen depending on the application, the granularity of the observations, and the average expected segment length. It can also be selected via BIC or cross-validation, though as we discover in Section 6, our TICC algorithm is relatively robust to the selection of this window size parameter.Selecting the Number of Clusters—As with many clustering algorithms, the number of clusters K is an important parameter in TICC. There are various methods for doing so. If there is some labeled ground truth data, we can use cross-validation on a test set or normalized mutual information [8] to evaluate performance. If we do not have such data, we can use BIC or the silhouette score [40] to select this parameter. However, the exact number of clusters will often depend on the application itself, especially since we are also looking for interpretability in addition to accuracy.
	Toeplitz Inverse Covariance-Based Clustering (TICC)
	Toeplitz Matrices
	Regularization Parameters
	Window Size
	Selecting the Number of Clusters

	3 ALTERNATING MINIMIZATION
	3.1 Assigning Points to Clusters
	3.2 Toeplitz Graphical Lasso

	4 TICC ALGORITHM
	4.1 Cluster Assignment

	Algorithm 1
	4.2 Solving the Toeplitz Graphical Lasso
	Θ-Update
	Z-Update

	Algorithm 2
	4.3 TICC Clustering Algorithm

	5 IMPLEMENTATION
	6 EXPERIMENTS
	Generating the Datasets—We randomly generate synthetic multivariate data in R5. Each of the K clusters has a mean of 0→ so that the clustering result is based entirely on the structure of the data. For each cluster, we generate a random ground truth Toeplitz inverse covariance as follows [33]:1.Set A(0), A(1), … A(4) ∈ R5×5 equal to the adjacency matrices of 5 independent Erdős-Rényi directed random graphs, where every edge has a 20% chance of being selected.2.For every selected edge in A(m) set , a random weight centered at 0 (For the A(0) block, we also enforce a symmetry constraint that every).3.Construct a 5w × 5w block Toeplitz matrix G, where w = 5 is the window size, using the blocks A(0), A(1), … A(4).4.Let c be the smallest eigenvalue of G, and set Θi = G+(0.1+|c |)I. This diagonal term ensures that Θi is invertible.The overall time series is then generated by constructing a temporal sequence of cluster segments (for example, the sequence “1, 2, 1” with 200 samples in each of the three segments, coming from two inverse covariances Θ1 and Θ2). The data is then drawn one sample at a time, conditioned on the values of the previous w − 1 samples. Note that, when we have just switched to a new cluster, we are drawing a new sample in part based on data that was generated by the previous cluster.We run our experiments on four different temporal sequences: “1,2,1”, “1,2,3,2,1”, “1,2,3,4,1,2,3,4”, “1,2,2,1,3,3,3,1”. Each segment in each of the examples has 100K observations in R5, where K is the number of clusters in that experiment (2, 3, 4, and 3, respectively). These examples were selected to convey various types of temporal sequences over various lengths of time.Performance Metrics—We evaluate performance by clustering each point in the time series and comparing to the ground truth clusters. Since both TICC and the baseline approaches use very similar methods for selecting the appropriate number of clusters, we fix K to be the “true” number of clusters, for both TICC and for all the baselines. This yields a straightforward multiclass classification problem, which allows us to evaluate clustering accuracy by measuring the macro-F1 score. For each cluster, the F1 score is the harmonic mean of the precision and recall of our estimate. Then, the macro-F1 score is the average of the F1 scores for all the clusters. We use this score to compare our TICC method with several well-known time series clustering baselines.Baseline Methods—We use multiple model and distance-based clustering approaches as our baselines. The methods we use are:•TICC, β = 0 — This is our TICC method without the temporal consistency constraint. Here, each subsequence is assigned to a cluster independently of its location in the time series.•GMM — Clustering using a Gaussian Mixture Model [2].•EEV — Regularized GMM with shape and volume constraints on the Gaussian covariance matrix [13].•DTW, GAK — Dynamic time warping (DTW)-based clustering using a global alignment kernel [9, 42].•DTW, Euclidean — DTW using a Euclidean distance metric [42].•Neural Gas — Artificial neural network clustering method, based on self-organizing maps [12, 31].•K-means — The standard K-means clustering algorithm using Euclidean distance.Clustering Accuracy—We measure the macro-F1 score for the four different temporal sequences in Table 1. Here, all eight methods are using the exact same synthetic data, to isolate each approach’s effect on performance. As shown, TICC significantly outperforms the baselines. Our method achieves a macro-F1 score between 0.90 and 0.98, averaging 0.95 across the four examples. This is 41% higher than the second best method (not counting TICC, β = 0), which is GMM and has an average macro-F1 score of only 0.67. We also ran our experiments using micro-F1 score, which uses a weighted average to weigh clusters with more samples more heavily, and we obtained very similar results (within 1–2% of the macro-F1 scores). Note that the K clusters in our examples are always zero-mean, and that they are only differentiated by the structure of the data. As a result, the distance-based methods struggle at identifying the clusters, and these approaches have lower scores than the model-based methods for these experiments.Effect of the Total Number of Samples—We next focus on how many samples are required for each method to accurately cluster the time series. We take the “1,2,3,4,1,2,3,4” example from Table 1 and vary the number of samples. We plot the macro-F1 score vs. number of samples per segment for each of the eight methods in Figure 3. As shown, when there are 100 samples, none of the methods are able to accurately cluster the data. However, as we observe more samples, both TICC and TICC, β = 0 improve rapidly. By the time there are 200 samples, TICC already has a macro-F1 score above 0.9. Even when there is a limited amount of data, our TICC method is still able to accurately cluster the data. Additionally, we note that the temporal consistency constraint, defined by β, has only a small effect in this region, since both TICC and TICC, β = 0 achieve similar results. Therefore, the accurate results are most likely due to the sparse block Toeplitz constraint that we impose in our TICC method. However, as the number of samples increases, these two plots begin to diverge, as TICC goes to 1.0 while TICC, β = 0 hovers around 0.9. This implies that, once we have enough samples, the final improvement in performance is due to the temporal consistency penalty that encourages neighboring samples to be assigned to the same cluster.Network Recovery Accuracy—Recall that our TICC method has the added benefit in that the clusters it learns are interpretable. TICC models each cluster as a multilayer Markov random field, a network with edges corresponding to the non-zero entries in the inverse covariance matrix Θi. We can compare our estimated network with the “true” MRF network and measure the average macro-F1 score of our estimate across all the clusters. We look at the same four examples as in Table 2 and plot the results in Table 2. We recover the underlying edge structure of the network with an F1 score between 0.79 and 0.90. This shows that TICC is able to both accurately cluster the data and recover the network structure of the underlying clusters. Note that our method is the first approach that is able to explicitly reconstruct this network, something that the other baseline methods are unable to do.Window Size Robustness—We next examine how the selection of window size w affects our results. We run the same “1,2,3,4,1,2,3,4” example, except now we vary the window size w. (Recall that the “true” window size was 5.) Empirically, we discover that any window size between 4 and 15 yields a Macro-F1 clustering accuracy score of between 0.95 and 0.98. Similarly, our network recovery macro-F1 score stays between 0.87 and 0.89 for window sizes between 5 and 14. It is only after the window size drops below 4 or above 15 that the results begin to get worse. We observe similar patterns in the other three examples, so our TICC method appears to be relatively robust to the selection of w.Scalability of TICC—One iteration of the TICC algorithm consists of running the dynamic programming algorithm and then solving the Toeplitz graphical lasso problem for each cluster. These steps are repeated until convergence. The total number of iterations depends on the data, but typically is no more than a few tens of iterations. Since T is typically much larger than both K and n, we can expect the largest bottleneck to occur during the assignment phase, where T can potentially be in the millions. To evaluate the scalability of our algorithm, we vary T and compute the runtime of the algorithm over one iteration. We observe samples in R50, estimate 5 clusters with a window size of 3, and vary T over several orders of magnitude. We plot the results in log-log scale in Figure 4. Note that our ADMM solver infers each 150×150 inverse covariance (since nw = 50 × 3 = 150) in under 4 seconds, but this runtime is independent of T, so ADMM contributes to the constant offset in the plot. As shown, at large values of T, our algorithm scales linearly with the number of points. Our TICC solver can cluster 10 millions points, each in R50, with a per-iteration runtime of approximately 25 minutes.
	Generating the Datasets
	Performance Metrics
	Baseline Methods
	Clustering Accuracy
	Effect of the Total Number of Samples
	Network Recovery Accuracy
	Window Size Robustness
	Scalability of TICC

	7 CASE STUDY
	Plotting the Resulting Clusters—To validate our hypotheses, we can plot the latitude/longitude locations of the drive, along with the resulting cluster assignments. Analyzing this data, we empirically discover that each of the five clusters has a clear real-world interpretation that aligns very closely with our estimates based on the betweenness scores in Table 3. Furthermore, we notice that many consistent and repeated patterns emerge in this one hour session. For example, whenever the driver is approaching a turn, he or she follows the same sequence of clusters: going straight, slowing down, turning, speeding up, then going straight again. We plot two typical turns in the dataset, coloring the timestamps according to their cluster assignments, in Figure 5. It is important to note here that the same pattern emerges here for both left and right turns. Whereas distance-based approaches would treat these two scenarios very differently (since several of the sensors have completely opposite values), TICC instead clusters the time series based on structural similarities. As a result, TICC assigns both left and right turns into the same underlying cluster.
	Plotting the Resulting Clusters

	8 CONCLUSION AND FUTUREWORK
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3

