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Abstract

Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns 

in temporal data. Once these patterns have been discovered, seemingly complicated datasets can 

be interpreted as a temporal sequence of only a small number of states, or clusters. For example, 

raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few 

actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because 

it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting 

the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a 

new method of model-based clustering, which we call Toeplitz Inverse Covariance-based 
Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or 

Markov random field (MRF), characterizing the interdependencies between different observations 

in a typical subsequence of that cluster. Based on this graphical representation, TICC 

simultaneously segments and clusters the time series data. We solve the TICC problem through 

alternating minimization, using a variation of the expectation maximization (EM) algorithm. We 

derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way, 

through dynamic programming and the alternating direction method of multipliers (ADMM), 

respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in 

a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how 

TICC can be used to learn interpretable clusters in real-world scenarios.

1 INTRODUCTION

Many applications, ranging from automobiles [32] to financial markets [35] and wearable 

sensors [34], generate large amounts of time series data. In most cases, this data is 

multivariate, where each timestamped observation consists of readings from multiple 

entities, or sensors. These long time series can often be broken down into a sequence of 

states, each defined by a simple “pattern”, where the states can reoccur many times. For 

example, raw sensor data from a fitness-tracking device can be interpreted as a temporal 

sequence of actions [38] (i.e., walking for 10 minutes, running for 30 minutes, sitting for 1 

hour, then running again for 45 minutes). Similarly, using automobile sensor data, a single 

driving session can be expressed as a sequential timeline of a few key states: turning, 

speeding up, slowing down, going straight, stopping at a red light, etc. This representation 

Request permissions from permissions@acm.org.

HHS Public Access
Author manuscript
KDD. Author manuscript; available in PMC 2018 May 14.

Published in final edited form as:
KDD. 2017 August ; 2017: 215–223. doi:10.1145/3097983.3098060.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can be used to discover repeated patterns, understand trends, detect anomalies and more 

generally, better interpret large and high-dimensional datasets.

To achieve this representation, it is necessary to simultaneously segment and cluster the time 

series. This problem is more difficult than standard time series segmentation [17, 20], since 

multiple segments can belong to the same cluster. However, it is also harder than 

subsequence clustering [3, 43] because each data point cannot be clustered independently 

(since neighboring points are encouraged to belong to the same cluster). Additionally, even 

if one is able to simultaneously segment and cluster the data, the question still arises as to 

how to interpret the different clusters. These clusters are rarely known a priori, and thus are 

best learned through data. However, without prior knowledge, it is difficult to understand 

what each of the clusters refers to. Traditional clustering methods are not particularly well-

suited to discover interpretable structure in the data. This is because they typically rely on 

distance-based metrics, such as dynamic time warping [4]. These methods focus on 

matching the raw values, rather than looking for more nuanced structural similarities in the 

data, for example how different sensors in a car correlate with each other across time.

In this paper, we propose a new method for multivariate time series clustering, which we call 

Toeplitz inverse covariance-based clustering (TICC). In our method, we define each cluster 

as a dependency network showing the relationships between the different sensors in a short 

(time-invariant) subsequence (Figure 1). For example, in a cluster corresponding to a “turn” 

in an automobile, this network, known as a Markov random field (MRF), might show how 

the brake pedal at a generic time t might affect the steering wheel angle at time t + 1. Here, 

the MRF of a different cluster, such as “slowing down”, will have a very different 

dependency structure between these two sensors. In these MRFs, an edge represents a partial 

correlation between two variables [26, 41, 46]. It is important to note that MRFs denote a 

relationship much stronger than a simple correlation; partial correlations are used to control 

for the effect of other confounding variables, so the existence of an edge in an MRF implies 

that there is a direct dependency between two variables in the data. Therefore, an MRF 

provides interpretable insights as to precisely what the key factors and relationships are that 

characterize each cluster.

In our TICC method, we learn each cluster’s MRF by estimating a sparse Gaussian inverse 

covariance matrix [14, 48]. With an inverse covariance Θ, if Θi, j = 0, then by definition, 

elements i and j in Θ are conditionally independent (given the values of all other variables). 

Therefore, Θ defines the adjacency matrix of the MRF dependency network [1, 45]. This 

network has multiple layers, with edges both within a layer and across different layers. Here, 

the number of layers corresponds to the window size of a short subsequence that we define 

our MRF over. For example, the MRFs corresponding to clusters A and B in Figure 1 both 

have three layers. This multilayer network represents the time-invariant correlation structure 

of any window of observations inside a segment belonging to that cluster. We learn this 

structure for each cluster by solving a constrained inverse covariance estimation problem, 

which we call the Toeplitz graphical lasso. The constraint we impose ensures that the 

resulting multilayer network has a block Toeplitz structure [16] (i.e., any edge between 

layers l and l + 1 also exists between layers l + 1 and l + 2). This Toeplitz constraint ensures 

that our cluster definitions are time-invariant, so the clustering assignment does not depend 
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on the exact starting position of the subsequence. Instead, we cluster this short subsequence 

based solely on the structural state that the time series is currently in.

To solve the TICC problem, we use an expectation maximization (EM)-like approach, based 

on alternating minimization, where we iteratively cluster the data and then update the cluster 

parameters. Even though TICC involves solving a highly non-convex maximum likelihood 

problem, our method is able to find a (locally) optimal solution very efficiently in practice. 

When assigning the data to clusters, we have an additional goal of temporal consistency, the 

idea that adjacent data in the time series is encouraged to belong to the same cluster. 

However, this yields a combinatorial optimization problem. We develop a scalable solution 

using dynamic programming, which allows us to efficiently learn the optimal assignments (it 

takes just O(KT ) time to assign the T points into K clusters). Then, to solve for the cluster 

parameters, we develop an algorithm to solve the Toeplitz graphical lasso problem. Since 

learning this graphical structure from data is a computationally expensive semidefinite 

programming problem [6, 22], we develop a specialized message-passing algorithm based 

on the alternating direction method of multipliers (ADMM) [5]. In our Toeplitz graphical 

lasso algorithm, we derive closed-form updates for each of the ADMM subproblems to 

significantly speed up the solution time.

We then implement our TICC method and apply it to both real and synthetic datasets. We 

start by evaluating performance on several synthetic examples, where there are known 

ground truth clusters. We compare TICC with several state-of-the-art time series clustering 

methods, outperforming them all by at least 41% in terms of cluster assignment accuracy. 

We also quantify the amount of data needed for accurate cluster recovery for each method, 

and we see that TICC requires 3x fewer observations than the next best method to achieve 

similar performance. Additionally, we discover that our approach is able to accurately 

reconstruct the underlying MRF dependency network, with an F1 network recovery score 

between 0.79 and 0.90 in our experiments. We then analyze an automobile sensor dataset to 

see an example of how TICC can be used to learn interpretable insights from real-world 

data. Applying our method, we discover that the automobile dataset has five true clusters, 

each corresponding to a “state” that cars are frequently in. We then validate our results by 

examining the latitude/longitude locations of the driving session, along with the resulting 

clustering assignments, to show how TICC can be a useful tool for unsupervised learning 

from multivariate time series.

Related Work—This work relates to recent advancements in time series clustering and 

convex optimization. Subsequence clustering of time series data is a well-developed field. 

Methods include several variations of dynamic time warping [3, 23, 25, 39], symbolic 

representations [29, 30], and rule-based motif discovery [11, 28]. There has also been work 

on simultaneous clustering and segmentation of time series data, which is known as time 

point clustering [15, 49]. However, these methods generally rely on distance-based metrics, 

which in certain situations have been shown to yield unreliable results [24]. Instead, our 

TICC method is a model-based clustering approach, similar to clustering based on ARMA 

[47], Gaussian Mixture [13], or hidden Markov models [43]. To the best of our knowledge, 

our method is the first to perform time series clustering based on the graphical dependency 
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structure of each subsequence. This provides interpretability to our clusters, prevents 

overfitting, and, as we show in Sections 6 and 7, allows us to discover types of patterns that 

other approaches are unable to find. We do so by proposing a structured inverse covariance 

estimation problem, which we call the Toeplitz graphical lasso. This problem is a variation 

on the well-known graphical lasso problem [14] where we enforce a block Toeplitz structure 

on the solution. While many algorithms exist to solve the standard graphical lasso [1, 21, 

22], we are not aware of any methods specifically adapted for the block Toeplitz case. We 

propose an ADMM approach because the overall optimization problem can be split into 

ADMM-friendly subproblems, where we can derive closed-form proximal operators [5] to 

quickly solve the optimization problem.

2 PROBLEM SETUP

Consider a time series of T sequential observations,

xorig =
∣ ∣ ∣ ∣

x1 x2 x3 … xT
∣ ∣ ∣ ∣

,

where xi ∈ Rn is the i-th multivariate observation. Our goal is to cluster these T observations 

into K clusters. However, instead of clustering each observation in isolation, we treat each 

point in the context of its predecessors in the time series. Thus, rather than just looking at xt, 

we instead cluster a short subsequence of size w ≪ T that ends at t. This consists of 

observations xt−w+1, …, xt, which we concatenate into an nw-dimensional vector that we 

call Xt. We refer to this new sequence, from X1 to XT, as X. Note that there is a bijection, or 

a bidirectional one-to-one mapping, between each point xt and its resulting subsequence Xt. 

(The first w observations of xorig simply map to a shorter subsequence, since the time series 

does not start until x1.) These subsequences are a useful tool to provide proper context for 

each of the T observations. For example, in automobiles, a single observation may show the 

current state of the car (i.e., driving straight at 15mph), but a short window, even one that 

lasts just a fraction of a second, allows for a more complete understanding of the data (i.e., 
whether the car is speeding up or slowing down). As such, rather than clustering the 

observations directly, our approach instead consists of clustering these subsequences X1, …, 

XT. We do so in such a way that encourages adjacent subsequences to belong to the same 

cluster, a goal that we call temporal consistency. Thus, our method can be viewed as a form 

of time point clustering [49], where we simultaneously segment and cluster the time series.

Toeplitz Inverse Covariance-Based Clustering (TICC)—We define each cluster by a 

Gaussian inverse covariance Θi ∈ Rnw×nw. Recall that inverse covariances show the 

conditional independency structure between the variables [26], so Θi defines a Markov 

random field encoding the structural representation of cluster i. In addition to providing 

interpretable results, sparse graphical representations are a useful way to prevent overfitting 

[27]. As such, our objective is to solve for these K inverse covariances Θ = {Θ1, …, ΘK}, 

one per cluster, and the resulting assignment sets P = {P1, …, PK }, where Pi ⊂ {1, 2, …, 
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T}. Here, each of the T points are assigned to exactly one cluster. Our overall optimization 

problem is

argmin
Θ ∈ 𝒯, P

∑
i = 1

K
‖λ ∘ Θi‖1

sparsity
+ ∑

Xt ∈ Pi

−ℓℓ(Xt, Θi)
loglikelihood

+ β 𝟙 {Xt − 1 ∉ Pi}
temporal consistency

. (1)

We call this the Toeplitz inverse covariance-based clustering (TICC) problem. Here,  is the 

set of symmetric block Toeplitz nw × nw matrices and ||λ ∘ Θi ||1 is an ℓ1-norm penalty of the 

Hadamard (element-wise) product to incentivize a sparse inverse covariance (where λ ∈ 
Rnw×nw is a regularization parameter). Additionally, ℓℓ(Xt, Θi) is the log likelihood that Xt 

came from cluster i,

ℓℓ(Xt, Θi) = − 1
2(Xt − μi)

TΘi(Xt − μi) + 1
2 log det Θi − n

2 log (2π), (2)

where μi is the empirical mean of cluster i. In Problem (1), β is a parameter that enforces 

temporal consistency, and 𝟙{Xt−1 ∉ Pi } is an indicator function checking whether 

neighboring points are assigned to the same cluster.

Toeplitz Matrices—Note that we constrain the Θi’s, the inverse covariances, to be block 

Toeplitz. Thus, each nw × nw matrix can be expressed in the following form,

Θi =

A(0) (A(1))T (A(2))T ⋯ ⋯ (A(w − 1))T

A(1) A(0) (A(1))T ⋱ ⋮

A(2) A(1) ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ (A(1))T (A(2))T

⋮ ⋱ A(1) A(0) (A(1))T

A(w − 1) ⋯ ⋯ A(2) A(1) A(0)

,

where A(0), A(1), …, A(w−1) ∈ Rn×n. Here, the A(0) sub-block represents the intra-time 

partial correlations, so Ai j
(0) refers to the relationship between concurrent values of sensors i 

and j. In the MRF corresponding to this cluster, A(0) defines the adjacency matrix of the 

edges within each layer. On the other hand, the off-diagonal sub-blocks refer to “cross-time” 

edges. For example, Ai j
(1) shows how sensor i at some time t is correlated to sensor j at time t 

+ 1, and A(2) shows the edge structure between time t and time t + 2. The block Toeplitz 

structure of the inverse covariance means that we are making a time-invariance assumption 

over this length-w window (we typically expect this window size to be much smaller than 

the average segment length). As a result, in Figure 1, for example, the edges between layer 1 

and layer 2 must also exist between layers 2 and 3. We use this assumption because we are 
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looking for a unique structural pattern to identify each cluster. We consider each cluster to be 

a certain “state”. When the time series is in this state, it retains a certain (time-invariant) 

structure that persists throughout this segment, regardless of the window’s starting point. By 

enforcing a Toeplitz structure on the inverse covariance, we are able to model this time 

invariance and incorporate it into our estimate of Θi.

Regularization Parameters—Our TICC optimization problem has two regularization 

parameters: λ, which determines the sparsity level in the MRFs characterizing each cluster, 

and β, the smoothness penalty that encourages adjacent subsequences to be assigned to the 

same cluster. Note that even though λ is a nw × nw matrix, we typically set all its values to a 

single constant, reducing the search space to just one parameter. In applications where there 

is prior knowledge as to the proper sparsity or temporal consistency, λ and β can be chosen 

by hand. More generally, the parameter values can also be selected by a more principled 

method, such as Bayesian information criterion (BIC) [18] or cross-validation.

Window Size—Recall that instead of clustering each point xt in isolation, we cluster a 

short window, or subsequence, going from time t − w + 1 to t, which we concatenate into a 

nw-dimensional vector that we call Xt. The Toeplitz constraint assumes that each cluster has 

a time-invariant structure, but this window size is still a relevant parameter. In particular, it 

allows us to learn cross-time correlations (i.e., sensor i at time t affects sensor j at time t +1). 

The larger the window, the farther these cross-time edges can reach. However, we do not 

want our window to be too large, since it may struggle to properly classify points at the 

segment boundaries, where our time-invariant assumption may not hold. For this reason, we 

generally keep the value of w relatively small. However, its exact value should generally be 

chosen depending on the application, the granularity of the observations, and the average 

expected segment length. It can also be selected via BIC or cross-validation, though as we 

discover in Section 6, our TICC algorithm is relatively robust to the selection of this window 

size parameter.

Selecting the Number of Clusters—As with many clustering algorithms, the number of 

clusters K is an important parameter in TICC. There are various methods for doing so. If 

there is some labeled ground truth data, we can use cross-validation on a test set or 

normalized mutual information [8] to evaluate performance. If we do not have such data, we 

can use BIC or the silhouette score [40] to select this parameter. However, the exact number 

of clusters will often depend on the application itself, especially since we are also looking 

for interpretability in addition to accuracy.

3 ALTERNATING MINIMIZATION

Problem (1) is a mixed combinatorial and continuous optimization problem. There are two 

sets of variables, the cluster assignments P and inverse covariances Θ, both of which are 

coupled together to make the problem highly non-convex. As such, there is no tractable way 

to solve for the globally optimal solution. Instead, we use a variation of the expectation 

maximization (EM) algorithm to alternate between assigning points to clusters and then 

updating the cluster parameters. While this approach does not necessarily reach the global 

optimum, similar types of methods have been shown to perform well on related problems 
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[13]. Here, we define the subproblems that comprise the two steps of our method. Then, in 

Section 4, we derive fast algorithms to solve both subproblems and formally describe our 

overall algorithm to solve the TICC problem.

3.1 Assigning Points to Clusters

We assign points to clusters by fixing the value of Θ and solving the following combinatorial 

optimization problem for P = {P1, …, PK},

minimize ∑
i = 1

K
∑

Xt ∈ Pi

−ℓℓ(Xt, Θi) + β 𝟙 {Xt − 1 ∉ Pi} . (3)

This problem assigns each of the T subsequences to one of the K clusters to jointly 

maximize the log likelihood and the temporal consistency, with the tradeoff between the two 

objectives regulated by the regularization parameter β. When β = 0, the subsequences X1, 

…, XT can all be assigned independently, since there is no penalty to encourage neighboring 

subsequences to belong to the same cluster. This can be solved by simply assigning each 

point to the cluster that maximizes its likelihood. As β gets larger, neighboring subsequences 

are more and more likely to be assigned to the same cluster. As β → ∞, the switching 

penalty becomes so large that all the points in the time series are grouped together into just 

one cluster. Even though Problem (3) is combinatorial, we will see in Section 4.1 that we 

can use dynamic programming to efficiently find the globally optimal solution for this TICC 

subproblem.

3.2 Toeplitz Graphical Lasso

Given the point assignments P, our next task is to update the cluster parameters Θ1, …, ΘK 

by solving Problem (1) while holding P constant. We can solve for each Θi in parallel. To do 

so, we notice that we can rewrite the negative log likelihood in Problem (2) in terms of each 

Θi. This likelihood can be expressed as

∑
Xt ∈ Pi

−ℓℓ(Xt, Θi) = − ∣ Pi ∣ ( log det Θi + tr(SiΘi)) + C,

where |Pi | is the number of points assigned to cluster i, Si is the empirical covariance of 

these points, and C is a constant that does not depend on Θi. Therefore, the M-step of our 

EM algorithm is

minimize − log det Θi + tr(SiΘi) + 1
∣ Pi ∣‖λ ∘ Θi‖1

subject to Θi ∈ 𝒯 .
(4)
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Problem (4) is a convex optimization problem, which we call the Toeplitz graphical lasso. 

This is a variation on the well-known graphical lasso problem [14] where we add a block 

Toeplitz constraint on the inverse covariance. The original graphical lasso defines a tradeoff 

between two objectives, regulated by the parameter λ: minimizing the negative log 

likelihood, and making sure Θi is sparse. When Si is invertible, the likelihood term 

encourages Θi to be near Si
−1. Our problem adds the additional constraint that Θi is block 

Toeplitz. λ is a nw × nw matrix, so it can be used to regularize each sub-block of Θi 

differently. Note that 1
∣ Pi ∣  can be incorporated into the regularization by simply scaling λ; as 

such, we typically write Problem (4) without this term (and scale λ accordingly) for 

notational simplicity.

4 TICC ALGORITHM

Here, we describe our algorithm to cluster X1, …, XT into K clusters. Our method, described 

in full in Section 4.3, depends on two key subroutines: AssignPointsToClusters, where we 

use a dynamic programming algorithm to assign each Xt into a cluster, and 

UpdateClusterParameters, where we update the cluster parameters by solving the Toeplitz 

graphical lasso problem using an algorithm based on the alternating direction method of 

multipliers (ADMM). Note that this is similar to expectation maximization (EM), with the 

two subroutines corresponding to the E and M steps, respectively.

4.1 Cluster Assignment

Given the model parameters (i.e., inverse covariances) for each of the K clusters, solving 

Problem (3) assigns the T subsequences, X1, …, XT, to these K clusters in such a way that 

maximizes the likelihood of the data while also minimizing the number of times that the 

cluster assignment changes across the time series. Given K potential cluster assignments of 

the T points, this combinatorial optimization problem has KT possible assignments of points 

to clusters, that it can choose from. However, we are able to solve for the globally optimal 

solution in only O(KT ) operations. We do so through a dynamic programming method 

described in Algorithm (1). This method is equivalent to finding the minimum cost Viterbi 

path [44] for this length-T sequence, as visualized in Figure 2.

Algorithm 1

Assign Points to Clusters

1: given β > 0, −ℓℓ(i, j ) = negative log likelihood of point i when it is assigned to cluster j.

2: initialize PrevCost = list of K zeros.

3:    CurrCost = list of K zeros.

4:    PrevPath = list of K empty lists.

5:    CurrPath = list of K empty lists.

6: for i = 1, …, T do

7:  for j = 1, …, K do

8:   MinIndex = index of minimum value of PrevCost.
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9:   if PrevCost[MinIndex] + β > PrevCost[j] then

10:    CurrCost[j] = PrevCost[j] −ℓℓ(i, j ).

11:    CurrPath[j] = PrevPath[j].append[j].

12:   else

13:    CurrCost[j] = PrevCost[minIndex] + β − ℓℓ(i, j ).

14:    CurrPath[j] = PrevPath[minIndex].append[j].

15:  PrevCost = CurrCost.

16:  PrevPath = CurrPath.

17: FinalMinIndex = index of minimum value of CurrCost.

18: FinalPath = CurrPath[FinalMinIndex].

19: return FinalPath.

4.2 Solving the Toeplitz Graphical Lasso

Once we have the clustering assignments, the M-step of our EM algorithm is to update the 

inverse covariances, given the points assigned to each cluster. Here, we are solving the 

Toeplitz graphical lasso, which is defined in Problem (4). For smaller covariances, this 

semidefinite programming problem can be solved using standard interior point methods [6, 

36]. However, to solve the overall TICC problem, we need to solve a separate Toeplitz 

graphical lasso for each cluster at every iteration of our algorithm. Therefore, since we may 

need to solve Problem (4) hundreds of times before TICC converges, it is necessary to 

develop a fast method for solving it efficiently. We do so through the alternating direction 

method of multipliers (ADMM), a distributed convex optimization approach that has been 

shown to perform well at large-scale optimization tasks [5, 37]. With ADMM, we split the 

problem up into two subproblems and use a message passing algorithm to iteratively 

converge to the globally optimal solution. ADMM is especially scalable when closed-form 

solutions can be found for the ADMM subproblems, which we are able to derive for the 

Toeplitz graphical lasso.

To put Problem (4) in ADMM-friendly form, we introduce a consensus variable Z and 

rewrite Problem (4) as its equivalent problem,

minimize − log det Θ + tr(SΘ) + ‖λ ∘ Z‖1
subject to Θ = Z, Z ∈ 𝒯 .

The augmented Lagrangian [19] can then be expressed as

ℒρ(Θ, Z, U): = − log det (Θ) + Tr(SΘ) + ‖λ ∘ Z‖1 + ρ
2 ‖Θ − Z + U‖F

2 . (5)

where ρ > 0 is the ADMM penalty parameter, U ∈ Rnw×nw is the scaled dual variable [5, 

§3.1.1], and Z ∈ .
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ADMM consists of the following three steps repeated until convergence,

a. Θk + 1: = argmin
Θ

ℒρ Θ, Zk, Uk

b. Zk + 1: = argmin
Z ∈ 𝒯

ℒρ Θk + 1, Z, Uk

c. Uk+1 := Uk + (Θk+1 − Zk+1),

where k is the iteration number. Here, we alternate optimizing Problem (5) over Θ and then 

over Z, and after each iteration we update the scaled dual variable U. Since the Toeplitz 

graphical lasso problem is convex, ADMM is guaranteed to converge to the global optimum. 

We use a stopping criteria based on the primal and dual residual values being close to zero; 

see [5].

Θ-Update—The Θ-update can be written as

Θk + 1 = argmin
Θ

− log det (Θ) + Tr(SΘ) + ρ
2 Θ − Zk + Uk

F
2 .

This optimization problem has a known analytical solution [10],

Θk + 1 = ρ
2 Q D + D2 + 4ρI QT, (6)

where QDQT is the eigendecomposition of Zk − Uk

ρ − S.

Z-Update—The Z-update can be written as

Zk + 1 = argmin
Z ∈ 𝒯

‖λ ∘ Z‖1 + ρ
2 Z − Θk + 1 − Uk

F
2 . (7)

This proximal operator can be solved in parallel for each sub-block A(0), A(1), …, A(w−1). 

Furthermore, within each sub-block, each (i, j )-th element in the sub-block can be solved in 

parallel as well. In A(0), there are n(n + 1)
2  independent problems (since it is symmetric), 

whereas for the other w − 1 blocks, this number is n2. Therefore, Problem (7) can be broken 

down into a total of (w − 1)n2 + n(n + 1)
2  independent problems. Each of these problems has 

the same form, and can be solved in the same way.
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Algorithm 2

Toeplitz Inverse Covariance-Based Clustering

1: initialize Cluster parameters Θ; cluster assignments P.

2: repeat

3:  E-step: Assign points to clusters → P.

4:  M-step: Update cluster parameters → Θ.

5: until Stationarity. return (Θ, P).

We denote the number of times each element appears as R (this equals 2(w − m) for sub-

block A(m), except for the diagonals of A(0), which occur w times.) We order these R 

occurrences, and we let Bi j, l
(m) refer to the index in Z corresponding to the l-th occurrence of 

the (i, j )-th element of A(m), where l = 1, …, R. Thus, Bi j, l
(m) returns an index (x,y) in the nw × 

nw matrix of Z. With this notation, we can solve each of the (w − 1)n2 + n(n + 1)
2  subproblems 

of the Z-update proximal operator the same way. To solve for the elements of Z 

corresponding to Bi j
(m), we set these elements all equal to

argmin
z

∑
l = 1

R
∣ λ

Bi j, l
(m)z ∣ + ρ

2 z − (Θk + 1 + Uk)
Bi j, l

(m)

2
. (8)

We let Q = ∑l = 1
R λ

Bi j, l
(m) and Sl = (Θk + 1 + Uk)

Bi j, l
(m) for notational simplicity. Then, Problem (8) 

can be rewritten as

argmin
z

Q ∣ z ∣ + ∑
l = 1

R ρ
2 (z − Sl)

2 .

This is just a soft-threshold proximal operator [37], which has the following closed-form 

solution,

Z
Bi j

(m)
k + 1 =

ρ∑lSl − Q

ρR

ρ∑lSl − Q

ρR > 0
ρ∑lSl + Q

ρR

ρ∑lSl + Q

ρR < 0
0 otherwise.

(9)
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We fill in the R elements in Zk + 1 (corresponding to Bi j
(m)) with this value. We do the same for 

all (w − 1)n2 + n(n + 1)
2  subproblems, each of which we can solve in parallel, and we are left 

with our final result for the overall Z-update.

4.3 TICC Clustering Algorithm

To solve the TICC problem, we combine the dynamic programming algorithm from Section 

4.1 and the ADMM method in Section 4.2 into one iterative EM algorithm. We start by 

randomly initializing the clusters. From there, we alternate the E and M-steps until the 

cluster assignments are stationary (i.e., the problem has converged). The overall TICC 

method is outlined in Algorithm (2)

5 IMPLEMENTATION

We have built a custom Python solver to run the TICC algorithm1. Our solver takes as inputs 

the original multivariate time series and the problem parameters. It then returns the 

clustering assignments of each point in the time series, along with the structural MRF 

representation of each cluster.

6 EXPERIMENTS

We test our TICC method on several synthetic examples. We do so because there are known 

“ground truth” clusters to evaluate the accuracy of our method.

Generating the Datasets—We randomly generate synthetic multivariate data in R5. 

Each of the K clusters has a mean of 0→ so that the clustering result is based entirely on the 

structure of the data. For each cluster, we generate a random ground truth Toeplitz inverse 

covariance as follows [33]:

1. Set A(0), A(1), … A(4) ∈ R5×5 equal to the adjacency matrices of 5 independent 

Erdős-Rényi directed random graphs, where every edge has a 20% chance of 

being selected.

2. For every selected edge in A(m) set A jk
(m) = v jk, m, a random weight centered at 0 

(For the A(0) block, we also enforce a symmetry constraint that every 

Ai j
(0) = A ji

(0)).

3. Construct a 5w × 5w block Toeplitz matrix G, where w = 5 is the window size, 

using the blocks A(0), A(1), … A(4).

4. Let c be the smallest eigenvalue of G, and set Θi = G+(0.1+|c |)I. This diagonal 

term ensures that Θi is invertible.

The overall time series is then generated by constructing a temporal sequence of cluster 

segments (for example, the sequence “1, 2, 1” with 200 samples in each of the three 

1Code and solver are available at http://snap.stanford.edu/ticc/.
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segments, coming from two inverse covariances Θ1 and Θ2). The data is then drawn one 

sample at a time, conditioned on the values of the previous w − 1 samples. Note that, when 

we have just switched to a new cluster, we are drawing a new sample in part based on data 

that was generated by the previous cluster.

We run our experiments on four different temporal sequences: “1,2,1”, “1,2,3,2,1”, 

“1,2,3,4,1,2,3,4”, “1,2,2,1,3,3,3,1”. Each segment in each of the examples has 100K 
observations in R5, where K is the number of clusters in that experiment (2, 3, 4, and 3, 

respectively). These examples were selected to convey various types of temporal sequences 

over various lengths of time.

Performance Metrics—We evaluate performance by clustering each point in the time 

series and comparing to the ground truth clusters. Since both TICC and the baseline 

approaches use very similar methods for selecting the appropriate number of clusters, we fix 

K to be the “true” number of clusters, for both TICC and for all the baselines. This yields a 

straightforward multiclass classification problem, which allows us to evaluate clustering 

accuracy by measuring the macro-F1 score. For each cluster, the F1 score is the harmonic 

mean of the precision and recall of our estimate. Then, the macro-F1 score is the average of 

the F1 scores for all the clusters. We use this score to compare our TICC method with 

several well-known time series clustering baselines.

Baseline Methods—We use multiple model and distance-based clustering approaches as 

our baselines. The methods we use are:

• TICC, β = 0 — This is our TICC method without the temporal consistency 

constraint. Here, each subsequence is assigned to a cluster independently of its 

location in the time series.

• GMM — Clustering using a Gaussian Mixture Model [2].

• EEV — Regularized GMM with shape and volume constraints on the Gaussian 

covariance matrix [13].

• DTW, GAK — Dynamic time warping (DTW)-based clustering using a global 

alignment kernel [9, 42].

• DTW, Euclidean — DTW using a Euclidean distance metric [42].

• Neural Gas — Artificial neural network clustering method, based on self-

organizing maps [12, 31].

• K-means — The standard K-means clustering algorithm using Euclidean 

distance.

Clustering Accuracy—We measure the macro-F1 score for the four different temporal 

sequences in Table 1. Here, all eight methods are using the exact same synthetic data, to 

isolate each approach’s effect on performance. As shown, TICC significantly outperforms 

the baselines. Our method achieves a macro-F1 score between 0.90 and 0.98, averaging 0.95 

across the four examples. This is 41% higher than the second best method (not counting 

TICC, β = 0), which is GMM and has an average macro-F1 score of only 0.67. We also ran 
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our experiments using micro-F1 score, which uses a weighted average to weigh clusters with 

more samples more heavily, and we obtained very similar results (within 1–2% of the 

macro-F1 scores). Note that the K clusters in our examples are always zero-mean, and that 

they are only differentiated by the structure of the data. As a result, the distance-based 

methods struggle at identifying the clusters, and these approaches have lower scores than the 

model-based methods for these experiments.

Effect of the Total Number of Samples—We next focus on how many samples are 

required for each method to accurately cluster the time series. We take the “1,2,3,4,1,2,3,4” 

example from Table 1 and vary the number of samples. We plot the macro-F1 score vs. 

number of samples per segment for each of the eight methods in Figure 3. As shown, when 

there are 100 samples, none of the methods are able to accurately cluster the data. However, 

as we observe more samples, both TICC and TICC, β = 0 improve rapidly. By the time there 

are 200 samples, TICC already has a macro-F1 score above 0.9. Even when there is a limited 

amount of data, our TICC method is still able to accurately cluster the data. Additionally, we 

note that the temporal consistency constraint, defined by β, has only a small effect in this 

region, since both TICC and TICC, β = 0 achieve similar results. Therefore, the accurate 

results are most likely due to the sparse block Toeplitz constraint that we impose in our 

TICC method. However, as the number of samples increases, these two plots begin to 

diverge, as TICC goes to 1.0 while TICC, β = 0 hovers around 0.9. This implies that, once 

we have enough samples, the final improvement in performance is due to the temporal 

consistency penalty that encourages neighboring samples to be assigned to the same cluster.

Network Recovery Accuracy—Recall that our TICC method has the added benefit in 

that the clusters it learns are interpretable. TICC models each cluster as a multilayer Markov 

random field, a network with edges corresponding to the non-zero entries in the inverse 

covariance matrix Θi. We can compare our estimated network with the “true” MRF network 

and measure the average macro-F1 score of our estimate across all the clusters. We look at 

the same four examples as in Table 2 and plot the results in Table 2. We recover the 

underlying edge structure of the network with an F1 score between 0.79 and 0.90. This 

shows that TICC is able to both accurately cluster the data and recover the network structure 

of the underlying clusters. Note that our method is the first approach that is able to explicitly 

reconstruct this network, something that the other baseline methods are unable to do.

Window Size Robustness—We next examine how the selection of window size w 
affects our results. We run the same “1,2,3,4,1,2,3,4” example, except now we vary the 

window size w. (Recall that the “true” window size was 5.) Empirically, we discover that 

any window size between 4 and 15 yields a Macro-F1 clustering accuracy score of between 

0.95 and 0.98. Similarly, our network recovery macro-F1 score stays between 0.87 and 0.89 

for window sizes between 5 and 14. It is only after the window size drops below 4 or above 

15 that the results begin to get worse. We observe similar patterns in the other three 

examples, so our TICC method appears to be relatively robust to the selection of w.

Scalability of TICC—One iteration of the TICC algorithm consists of running the 

dynamic programming algorithm and then solving the Toeplitz graphical lasso problem for 
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each cluster. These steps are repeated until convergence. The total number of iterations 

depends on the data, but typically is no more than a few tens of iterations. Since T is 

typically much larger than both K and n, we can expect the largest bottleneck to occur 

during the assignment phase, where T can potentially be in the millions. To evaluate the 

scalability of our algorithm, we vary T and compute the runtime of the algorithm over one 

iteration. We observe samples in R50, estimate 5 clusters with a window size of 3, and vary 

T over several orders of magnitude. We plot the results in log-log scale in Figure 4. Note that 

our ADMM solver infers each 150×150 inverse covariance (since nw = 50 × 3 = 150) in 

under 4 seconds, but this runtime is independent of T, so ADMM contributes to the constant 

offset in the plot. As shown, at large values of T, our algorithm scales linearly with the 

number of points. Our TICC solver can cluster 10 millions points, each in R50, with a per-

iteration runtime of approximately 25 minutes.

7 CASE STUDY

Here, we apply our TICC method to a real-world example to demonstrate how this approach 

can be used to find meaningful insights from time series data in an unsupervised way.

We analyze a dataset, provided by a large automobile company, containing sensor data from 

a real driving session. This session lasts for exactly 1 hour and occurs on real roads in the 

suburbs of a large European city. We observe 7 sensors every 0.1 seconds:

• Brake Pedal Position

• Forward (X-)Acceleration

• Lateral (Y-)Acceleration

• Steering Wheel Angle

• Vehicle Velocity

• Engine RPM

• Gas Pedal Position

Thus, in this one-hour session, we have 36,000 observations of a 7-dimensional time series. 

We apply TICC with a window size of 1 second (or 10 samples). We pick the number of 

clusters using BIC, and we discover that this score is optimized at K = 5.

We analyze the 5 clusters outputted by TICC to understand and interpret what “driving 

state” they each refer to. Each cluster has a multilayer MRF network defining its structure. 

To analyze the result, we use network analytics to determine the relative “importance” of 

each node in the cluster’s network. We plot the betweenness centrality score [7] of each 

node in Table 3. We see that each of the 5 clusters has a unique “signature”, and that 

different sensors have different betweenness scores in each cluster. For example, the Y-

Acceleration sensor has a non-zero score in only two of the five clusters: #2 and #5. As such, 

we would expect these two clusters to refer to states in which the car is turning, and the 

other three clusters to refer to intervals where the car is going straight. Similarly, cluster #1 

is the only cluster with no importance on the Gas Pedal, and it is also the cluster with the 
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largest Brake Pedal score. Therefore, we expect this state to be the cluster assignment 

whenever the car is slowing down. We also see that clusters 3 and 4 have the same non-zero 

sensors, velocity and gas pedal, so we may expect them to refer to states when the car is 

driving straight and not slowing down, with the most “important” sensor in the two clusters 

being the velocity in cluster 4. As such, we can use these betweenness scores to interpret 

these clusters in a meaningful way. For example, from Table 3, a reasonable hypothesis 

might be that the clusters refer to 1) slowing down, 2) turning, 3) speeding up, 4) cruising on 

a straight road, 5) driving on a curvy road segment.

Plotting the Resulting Clusters—To validate our hypotheses, we can plot the latitude/

longitude locations of the drive, along with the resulting cluster assignments. Analyzing this 

data, we empirically discover that each of the five clusters has a clear real-world 

interpretation that aligns very closely with our estimates based on the betweenness scores in 

Table 3. Furthermore, we notice that many consistent and repeated patterns emerge in this 

one hour session. For example, whenever the driver is approaching a turn, he or she follows 

the same sequence of clusters: going straight, slowing down, turning, speeding up, then 

going straight again. We plot two typical turns in the dataset, coloring the timestamps 

according to their cluster assignments, in Figure 5. It is important to note here that the same 

pattern emerges here for both left and right turns. Whereas distance-based approaches would 

treat these two scenarios very differently (since several of the sensors have completely 

opposite values), TICC instead clusters the time series based on structural similarities. As a 

result, TICC assigns both left and right turns into the same underlying cluster.

8 CONCLUSION AND FUTUREWORK

In this paper, we have defined a method of clustering multivariate time series subsequences. 

Our method, Toeplitz Inverse Covariance-based Clustering (TICC), is a new type of model-

based clustering that is able to find accurate and interpretable structure in the data. Our 

TICC algorithm simultaneously segments and clusters the data, breaking down high-

dimensional time series into a clear sequential timeline. We cluster each subsequence based 

on its correlation structure and define each cluster by a multilayer MRF, making our results 

highly interpretable. To discover these clusters, TICC alternates between assigning points to 

clusters in a temporally consistent way, which it accomplishes through dynamic 

programming, and updating the cluster MRFs, which it does via ADMM. TICC’s promising 

results on both synthetic and real-world data lead to many potential directions for future 

research. For example, our method could be extended to learn dependency networks 

parameterized by any heterogeneous exponential family MRF. This would allow for a much 

broader class of datasets (such as boolean or categorical readings) to be incorporated into the 

existing TICC framework, opening up this work to new potential applications.
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Figure 1. 
Our TICC method segments a time series into a sequence of states, or “clusters” (i.e., A, B, 

or C). Each cluster is characterized by a correlation network, or MRF, defined over a short 

window of size w. This MRF governs the (time-invariant) partial correlation structure of any 
window inside a segment belonging to that cluster. Here, TICC learns both the cluster MRFs 

and the time series segmentation.
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Figure 2. 
Problem (3) is equivalent to finding the minimum-cost path from timestamp 1 to T, where 

the node cost is the negative log likelihood of that point being assigned to a given cluster, 

and the edge cost is β whenever the cluster assignment switches.
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Figure 3. 
Plot of clustering accuracy macro-F1 score vs. number of samples for TICC and several 

baselines. TICC needs significantly fewer samples than the other model-based methods to 

achieve similar performance, while the distance-based measures are unable to capture the 

true structure.
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Figure 4. 
Per-iteration runtime of the TICC algorithm (both the ADMM and dynamic programming 

steps). Our algorithm scales linearly with the number of samples. In this case, each 

observation is a vector in R50.
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Figure 5. 
Two real-world turns in the driving session. The pin color represents cluster assignment 

from our TICC algorithm (Green = Going Straight, White = Slowing Down, Red = Turning, 

Blue = Speeding up). Since we cluster based on structure, rather than distance, both a left 

and a right turn look very similar under the TICC clustering scheme.
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Table 2

Network edge recovery F1 score for the four temporal sequences. TICC defines each cluster as an MRF 

graphical model, which is successfully able to estimate the dependency structure of the underlying data.

Temporal Sequence TICC Network Recovery F1 score

1,2,1 0.83

1,2,3,2,1 0.79

1,2,3,4,1,2,3,4 0.89

1,2,2,1,3,3,3,1 0.90
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	Abstract
	1 INTRODUCTION
	Related Work—This work relates to recent advancements in time series clustering and convex optimization. Subsequence clustering of time series data is a well-developed field. Methods include several variations of dynamic time warping [3, 23, 25, 39], symbolic representations [29, 30], and rule-based motif discovery [11, 28]. There has also been work on simultaneous clustering and segmentation of time series data, which is known as time point clustering [15, 49]. However, these methods generally rely on distance-based metrics, which in certain situations have been shown to yield unreliable results [24]. Instead, our TICC method is a model-based clustering approach, similar to clustering based on ARMA [47], Gaussian Mixture [13], or hidden Markov models [43]. To the best of our knowledge, our method is the first to perform time series clustering based on the graphical dependency structure of each subsequence. This provides interpretability to our clusters, prevents overfitting, and, as we show in Sections 6 and 7, allows us to discover types of patterns that other approaches are unable to find. We do so by proposing a structured inverse covariance estimation problem, which we call the Toeplitz graphical lasso. This problem is a variation on the well-known graphical lasso problem [14] where we enforce a block Toeplitz structure on the solution. While many algorithms exist to solve the standard graphical lasso [1, 21, 22], we are not aware of any methods specifically adapted for the block Toeplitz case. We propose an ADMM approach because the overall optimization problem can be split into ADMM-friendly subproblems, where we can derive closed-form proximal operators [5] to quickly solve the optimization problem.
	Related Work


	2 PROBLEM SETUP
	Toeplitz Inverse Covariance-Based Clustering (TICC)—We define each cluster by a Gaussian inverse covariance Θi ∈ Rnw×nw. Recall that inverse covariances show the conditional independency structure between the variables [26], so Θi defines a Markov random field encoding the structural representation of cluster i. In addition to providing interpretable results, sparse graphical representations are a useful way to prevent overfitting [27]. As such, our objective is to solve for these K inverse covariances Θ = {Θ1, …, ΘK}, one per cluster, and the resulting assignment sets P = {P1, …, PK }, where Pi ⊂ {1, 2, …, T}. Here, each of the T points are assigned to exactly one cluster. Our overall optimization problem is(1)We call this the Toeplitz inverse covariance-based clustering (TICC) problem. Here, 
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 is the set of symmetric block Toeplitz nw × nw matrices and ||λ ∘ Θi ||1 is an ℓ1-norm penalty of the Hadamard (element-wise) product to incentivize a sparse inverse covariance (where λ ∈ Rnw×nw is a regularization parameter). Additionally, ℓℓ(Xt, Θi) is the log likelihood that Xt came from cluster i,
(2) where μi is the empirical mean of cluster i. In Problem (1), β is a parameter that enforces temporal consistency, and 𝟙{Xt−1 ∉ Pi } is an indicator function checking whether neighboring points are assigned to the same cluster.Toeplitz Matrices—Note that we constrain the Θi’s, the inverse covariances, to be block Toeplitz. Thus, each nw × nw matrix can be expressed in the following form,
 where A(0), A(1), …, A(w−1) ∈ Rn×n. Here, the A(0) sub-block represents the intra-time partial correlations, so 
 refers to the relationship between concurrent values of sensors i and j. In the MRF corresponding to this cluster, A(0) defines the adjacency matrix of the edges within each layer. On the other hand, the off-diagonal sub-blocks refer to “cross-time” edges. For example, 
 shows how sensor i at some time t is correlated to sensor j at time t + 1, and A(2) shows the edge structure between time t and time t + 2. The block Toeplitz structure of the inverse covariance means that we are making a time-invariance assumption over this length-w window (we typically expect this window size to be much smaller than the average segment length). As a result, in Figure 1, for example, the edges between layer 1 and layer 2 must also exist between layers 2 and 3. We use this assumption because we are looking for a unique structural pattern to identify each cluster. We consider each cluster to be a certain “state”. When the time series is in this state, it retains a certain (time-invariant) structure that persists throughout this segment, regardless of the window’s starting point. By enforcing a Toeplitz structure on the inverse covariance, we are able to model this time invariance and incorporate it into our estimate of Θi.Regularization Parameters—Our TICC optimization problem has two regularization parameters: λ, which determines the sparsity level in the MRFs characterizing each cluster, and β, the smoothness penalty that encourages adjacent subsequences to be assigned to the same cluster. Note that even though λ is a nw × nw matrix, we typically set all its values to a single constant, reducing the search space to just one parameter. In applications where there is prior knowledge as to the proper sparsity or temporal consistency, λ and β can be chosen by hand. More generally, the parameter values can also be selected by a more principled method, such as Bayesian information criterion (BIC) [18] or cross-validation.Window Size—Recall that instead of clustering each point xt in isolation, we cluster a short window, or subsequence, going from time t − w + 1 to t, which we concatenate into a nw-dimensional vector that we call Xt. The Toeplitz constraint assumes that each cluster has a time-invariant structure, but this window size is still a relevant parameter. In particular, it allows us to learn cross-time correlations (i.e., sensor i at time t affects sensor j at time t +1). The larger the window, the farther these cross-time edges can reach. However, we do not want our window to be too large, since it may struggle to properly classify points at the segment boundaries, where our time-invariant assumption may not hold. For this reason, we generally keep the value of w relatively small. However, its exact value should generally be chosen depending on the application, the granularity of the observations, and the average expected segment length. It can also be selected via BIC or cross-validation, though as we discover in Section 6, our TICC algorithm is relatively robust to the selection of this window size parameter.Selecting the Number of Clusters—As with many clustering algorithms, the number of clusters K is an important parameter in TICC. There are various methods for doing so. If there is some labeled ground truth data, we can use cross-validation on a test set or normalized mutual information [8] to evaluate performance. If we do not have such data, we can use BIC or the silhouette score [40] to select this parameter. However, the exact number of clusters will often depend on the application itself, especially since we are also looking for interpretability in addition to accuracy.
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	Algorithm 2
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	5 IMPLEMENTATION
	6 EXPERIMENTS
	Generating the Datasets—We randomly generate synthetic multivariate data in R5. Each of the K clusters has a mean of 0→ so that the clustering result is based entirely on the structure of the data. For each cluster, we generate a random ground truth Toeplitz inverse covariance as follows [33]:1.Set A(0), A(1), … A(4) ∈ R5×5 equal to the adjacency matrices of 5 independent Erdős-Rényi directed random graphs, where every edge has a 20% chance of being selected.2.For every selected edge in A(m) set , a random weight centered at 0 (For the A(0) block, we also enforce a symmetry constraint that every ).3.Construct a 5w × 5w block Toeplitz matrix G, where w = 5 is the window size, using the blocks A(0), A(1), … A(4).4.Let c be the smallest eigenvalue of G, and set Θi = G+(0.1+|c |)I. This diagonal term ensures that Θi is invertible.The overall time series is then generated by constructing a temporal sequence of cluster segments (for example, the sequence “1, 2, 1” with 200 samples in each of the three segments, coming from two inverse covariances Θ1 and Θ2). The data is then drawn one sample at a time, conditioned on the values of the previous w − 1 samples. Note that, when we have just switched to a new cluster, we are drawing a new sample in part based on data that was generated by the previous cluster.We run our experiments on four different temporal sequences: “1,2,1”, “1,2,3,2,1”, “1,2,3,4,1,2,3,4”, “1,2,2,1,3,3,3,1”. Each segment in each of the examples has 100K observations in R5, where K is the number of clusters in that experiment (2, 3, 4, and 3, respectively). These examples were selected to convey various types of temporal sequences over various lengths of time.Performance Metrics—We evaluate performance by clustering each point in the time series and comparing to the ground truth clusters. Since both TICC and the baseline approaches use very similar methods for selecting the appropriate number of clusters, we fix K to be the “true” number of clusters, for both TICC and for all the baselines. This yields a straightforward multiclass classification problem, which allows us to evaluate clustering accuracy by measuring the macro-F1 score. For each cluster, the F1 score is the harmonic mean of the precision and recall of our estimate. Then, the macro-F1 score is the average of the F1 scores for all the clusters. We use this score to compare our TICC method with several well-known time series clustering baselines.Baseline Methods—We use multiple model and distance-based clustering approaches as our baselines. The methods we use are:•TICC, β = 0 — This is our TICC method without the temporal consistency constraint. Here, each subsequence is assigned to a cluster independently of its location in the time series.•GMM — Clustering using a Gaussian Mixture Model [2].•EEV — Regularized GMM with shape and volume constraints on the Gaussian covariance matrix [13].•DTW, GAK — Dynamic time warping (DTW)-based clustering using a global alignment kernel [9, 42].•DTW, Euclidean — DTW using a Euclidean distance metric [42].•Neural Gas — Artificial neural network clustering method, based on self-organizing maps [12, 31].•K-means — The standard K-means clustering algorithm using Euclidean distance.Clustering Accuracy—We measure the macro-F1 score for the four different temporal sequences in Table 1. Here, all eight methods are using the exact same synthetic data, to isolate each approach’s effect on performance. As shown, TICC significantly outperforms the baselines. Our method achieves a macro-F1 score between 0.90 and 0.98, averaging 0.95 across the four examples. This is 41% higher than the second best method (not counting TICC, β = 0), which is GMM and has an average macro-F1 score of only 0.67. We also ran our experiments using micro-F1 score, which uses a weighted average to weigh clusters with more samples more heavily, and we obtained very similar results (within 1–2% of the macro-F1 scores). Note that the K clusters in our examples are always zero-mean, and that they are only differentiated by the structure of the data. As a result, the distance-based methods struggle at identifying the clusters, and these approaches have lower scores than the model-based methods for these experiments.Effect of the Total Number of Samples—We next focus on how many samples are required for each method to accurately cluster the time series. We take the “1,2,3,4,1,2,3,4” example from Table 1 and vary the number of samples. We plot the macro-F1 score vs. number of samples per segment for each of the eight methods in Figure 3. As shown, when there are 100 samples, none of the methods are able to accurately cluster the data. However, as we observe more samples, both TICC and TICC, β = 0 improve rapidly. By the time there are 200 samples, TICC already has a macro-F1 score above 0.9. Even when there is a limited amount of data, our TICC method is still able to accurately cluster the data. Additionally, we note that the temporal consistency constraint, defined by β, has only a small effect in this region, since both TICC and TICC, β = 0 achieve similar results. Therefore, the accurate results are most likely due to the sparse block Toeplitz constraint that we impose in our TICC method. However, as the number of samples increases, these two plots begin to diverge, as TICC goes to 1.0 while TICC, β = 0 hovers around 0.9. This implies that, once we have enough samples, the final improvement in performance is due to the temporal consistency penalty that encourages neighboring samples to be assigned to the same cluster.Network Recovery Accuracy—Recall that our TICC method has the added benefit in that the clusters it learns are interpretable. TICC models each cluster as a multilayer Markov random field, a network with edges corresponding to the non-zero entries in the inverse covariance matrix Θi. We can compare our estimated network with the “true” MRF network and measure the average macro-F1 score of our estimate across all the clusters. We look at the same four examples as in Table 2 and plot the results in Table 2. We recover the underlying edge structure of the network with an F1 score between 0.79 and 0.90. This shows that TICC is able to both accurately cluster the data and recover the network structure of the underlying clusters. Note that our method is the first approach that is able to explicitly reconstruct this network, something that the other baseline methods are unable to do.Window Size Robustness—We next examine how the selection of window size w affects our results. We run the same “1,2,3,4,1,2,3,4” example, except now we vary the window size w. (Recall that the “true” window size was 5.) Empirically, we discover that any window size between 4 and 15 yields a Macro-F1 clustering accuracy score of between 0.95 and 0.98. Similarly, our network recovery macro-F1 score stays between 0.87 and 0.89 for window sizes between 5 and 14. It is only after the window size drops below 4 or above 15 that the results begin to get worse. We observe similar patterns in the other three examples, so our TICC method appears to be relatively robust to the selection of w.Scalability of TICC—One iteration of the TICC algorithm consists of running the dynamic programming algorithm and then solving the Toeplitz graphical lasso problem for each cluster. These steps are repeated until convergence. The total number of iterations depends on the data, but typically is no more than a few tens of iterations. Since T is typically much larger than both K and n, we can expect the largest bottleneck to occur during the assignment phase, where T can potentially be in the millions. To evaluate the scalability of our algorithm, we vary T and compute the runtime of the algorithm over one iteration. We observe samples in R50, estimate 5 clusters with a window size of 3, and vary T over several orders of magnitude. We plot the results in log-log scale in Figure 4. Note that our ADMM solver infers each 150×150 inverse covariance (since nw = 50 × 3 = 150) in under 4 seconds, but this runtime is independent of T, so ADMM contributes to the constant offset in the plot. As shown, at large values of T, our algorithm scales linearly with the number of points. Our TICC solver can cluster 10 millions points, each in R50, with a per-iteration runtime of approximately 25 minutes.
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	7 CASE STUDY
	Plotting the Resulting Clusters—To validate our hypotheses, we can plot the latitude/longitude locations of the drive, along with the resulting cluster assignments. Analyzing this data, we empirically discover that each of the five clusters has a clear real-world interpretation that aligns very closely with our estimates based on the betweenness scores in Table 3. Furthermore, we notice that many consistent and repeated patterns emerge in this one hour session. For example, whenever the driver is approaching a turn, he or she follows the same sequence of clusters: going straight, slowing down, turning, speeding up, then going straight again. We plot two typical turns in the dataset, coloring the timestamps according to their cluster assignments, in Figure 5. It is important to note here that the same pattern emerges here for both left and right turns. Whereas distance-based approaches would treat these two scenarios very differently (since several of the sensors have completely opposite values), TICC instead clusters the time series based on structural similarities. As a result, TICC assigns both left and right turns into the same underlying cluster.
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