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Abstract

We present an approach for improving the performance of complex knowledge-based processes by 

providing data-driven step-by-step recommendations. Our framework uses the associations 

between similar historic process performances and contextual information to determine the 

prototypical way of enacting the process. We introduce a novel similarity metric for grouping 

traces into clusters that incorporates temporal information about activity performance and handles 

concurrent activities. Our data-driven recommender system selects the appropriate prototype 

performance of the process based on user-provided context attributes. Our approach for 

determining the prototypes discovers the commonly performed activities and their temporal 

relationships. We tested our system on data from three real-world medical processes and achieved 

recommendation accuracy up to an F1 score of 0.77 (compared to an F1 score of 0.37 using 

ZeroR) with 63.2% of recommended enactments being within the first five neighbors of the actual 

historic enactments in a set of 87 cases. Our framework works as an interactive visual analytic tool 

for process mining. This work shows the feasibility of data-driven decision support system for 

complex knowledge-based processes.
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1 INTRODUCTION

Contemporary information systems, such as personal calendars and electronic health records 

(EHR), often record activity logs. Process mining techniques attempt to extract nontrivial 

knowledge and insights from activity logs and use them for further analyses [1]. Process 

mining techniques have been applied in practical problems, assisting in visualizing, 

interpreting and diagnosing processes [1]. Existing recommender systems have not been 

developed based on process mining. Our current work presents such a bridge. We are 

designing a data-driven process analysis and recommender system that can provide 

contemporaneous recommendations of process steps and help with retrospective analyses of 

the process. Our approach relies on mining historic data to uncover the potential association 

between the way of enacting a process and contextual attributes. If association tests are 
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significant, we train a recommender system to output a prototypical enactment for the given 

context attributes.

Unlike most recommender systems that propose one or few next steps at a time, our system 

initially recommends all steps at once. Although it may not be feasible for the performers to 

study and follow a long list of steps, this recommendation can be used at runtime to 

automatically verily the process compliance and detect omitted steps and other process 

errors. Our framework has two stages: process analysis and process recommendation (Fig. 

1(a)). Process analysis includes: (1) clustering of historic traces based on similarity; (2) 

determining the cluster prototypes that represent the established process enactment for each 

cluster; (3) regression analysis to explore the correlation between cluster membership and 

context attributes; and (4) interactive visualization and statistical analysis of process traces. 

The recommendation stage includes: (1) predicting the cluster to which the given trace 

belongs based on the observed context attributes, and (2) displaying the prototype of the 

predicted cluster as the recommended enactment.

Key technical challenges for this system include measuring the similarity of process traces 

and determining the cluster prototypes. Similarity measurement strongly affects the results 

of trace clustering and plays a key role in our system. Several metrics of trace similarity 

exist but suffer from either inaccurate measurement because of timeline stretching needed to 

normalize the trace duration and compute the overlap between the traces, or information loss 

from forced sequencing of concurrent activities needed to apply edit distance or pattern-

based distance [2]. Another challenge is determining a prototype that represents the 

recommended sequence of steps for each cluster. Our contributions include:

• A novel metric of pairwise similarity between process traces based on time 

warping. Unlike existing similarity metrics (edit distance, pattern-based distance, 

and Euclidean distance based on a normalized timeline), our approach 

incorporates the time information while correcting for temporal differences 

between the same activities in different process traces, such as different start 

times, idle times and duration of performance. Our approach also handles 

concurrent activities and parallel activities for which the order of performance is 

irrelevant.

• A novel approach for determining a prototype for a cluster of process traces. Our 

prototype captures the established enactment for a given context and considers 

the temporal relationships between activities. It achieves a higher average 

similarity to process traces in its cluster than the cluster medoid.

• A data-driven recommender system that selects a representative enactment based 

on user-provided context attributes. We tested our system on data from three real-

world medical processes and achieved high recommendation accuracy.

2 RELATED WORK

Complex knowledge-based processes are usually performed based on domain knowledge 

and standard protocols. For example, for trauma resuscitation the Advanced Trauma Life 

Support (ATLS) protocol [3] suggests the workflow based on treatment priorities: Airway 
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→ Breathing → Circulation → (Neurological) Disability. Clarke et al. [4] and Fitzgerald et 

al. [5] developed computer-aided decision support that recommends next steps to reduce 

human errors. These systems rely on rules manually specified by domain experts, lack 

generalizability, and are subject to human bias. We present an automatic, data-driven, label-

free framework for process analysis and recommendation.

Our framework incorporates three main techniques: similarity metrics for process traces, 

trace clustering algorithms, and cluster prototype extraction. These techniques have been 

well studied in analysis of time series [6], but are not applicable to process data. Unlike time 

series with numerical values, process data is typically categorical, representing different 

activity types and their properties. Different process datasets may have very different 

features and no rule exists to decide similarity between traces of process enactment. 

Common similarity metrics include edit or Levenshtein distance [7,8] and pattern-based 

similarity, e.g., n-gram [9,10]. Both metrics accept as input only process traces represented 

as sequences, which requires that concurrent activities are sequenced (e.g., by activity start 

time) and that temporal information on activity duration and idle times is ignored. Forestier 

et al. [11,12] proposed dynamic time warping (DTW) as a similarity metric for process 

traces. The DTW, however, cannot handle concurrent activities, does not consider idle time 

intervals, and has other issues when used for process traces [13]. In addition, Forestier et al. 

considered processes that are mostly sequential (non-concurrent), with no activities for 

which the order of performance is irrelevant. To address these challenges, we introduce a 

novel similarity metric based on time warping that incorporates temporal information, such 

as activity start time, performance duration, and idle intervals.

Hierarchical clustering has been commonly used for process trace clustering [11][14-16]. 

This algorithm does not need a predefined number of clusters and produces a visually 

intuitive dendrogram (tree diagram). Its main limitation is its computational complexity, 

generally O(n2log(n)) where n is the number of traces, which makes it too slow for large 

datasets. We implemented hierarchical clustering in our framework as well as two other 

state-of-the-art clustering algorithms.

Cluster prototype candidates can be determined using different techniques. A widely used 

cluster centroid represents the cluster center with a minimum distance to other points in the 

cluster, e.g., sum-squared distance [6]. For categorical and event-based data, however, the 

notion of a “center” may not apply [6]. For example, the centroid of categorical data 

{orange, apple, banana} cannot be determined. An alternative is the cluster medoid as the 

most representative data object in the cluster—an existing object that has a minimal average 

dissimilarity to all other objects in its cluster. The medoid, however, may not be adequate 

when no “suitable” representative exists in the cluster. Another kind of prototype is the 

consensus sequence, a sequence of commonly observed activities found by aligning many 

process traces [2,13]. The consensus sequence, however, represents only the order of 

performance without temporal information. We introduce a novel approach for cluster 

prototype extraction that incorporates temporal information.
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3 TERMS AND DEFINITIONS

A performance of a process can be captured with activity codes and timestamps. We 

represent each activity by its type and performance time (Fig. 1(b)) denoted as A = {Atype, 

Ats, Ate], where Atype is the activity type, Ats is the start time, and Ate is the end time. A 

process case c = {id, x, T} is an instance of process performance. It is indexed with a unique 

case id and consists of the trace T which is a vector of performed activities (internal 

information), and the vector x of context attributes (external information). An ith process 
trace is represented as Ti = [Ai1,..., Aik], where k is the trace length (number of performed 

activities). To make explicit concurrent activities, we use a matrix representation of traces as 

Ti = [p1
i , . . , p

ki
i ], where the duration of ith trace is discretized into ki time units and in each 

time unit m the vector pi
m = [a1, …, aℓ] represents the execution status of all ℓ activity types. 

If an activity of type aj is being performed during time m, then aj = 1 and aj = 0 otherwise. 

The magnitude of each activity vector is ∣ pi
m ∣ = Σ j ∣ a j ∣ Context attributes (or external 

attributes) record the contextual information of a process case, such as the patient 

demographics (Fig. 1(c)) in a vector x = [x1, ..., xd]T of d observed attributes xi. By 

associating context attributes with step-by-step activities based on historic data, we can 

recommend the best process enactment for given attributes.

A process trace cluster C = [T1,..., Tc] is a group of c traces that are similar in terms of 

type, activity performance order and times. The cluster membership is determined by 

information internal to process traces. A prototype trace of a cluster is the most 

representative or typical process enactment for this cluster. This representative enactment 

can be an actually observed trace (an exemplar) or derived from other traces in the cluster. 

Cluster prototypes summarize the cluster information and highlight the commonalities of the 

process traces, which can help visualize and compare the differences between different 

clusters.

A recommended process trace is determined using both internal and contextual 

information of historic traces to find a standardized process performance. This trace can be 

used to guide the process performance or verify the process compliance and detect omitted 

steps and other process errors.

4 METHOD

Our framework performance (i.e., recommendation accuracy) does not depend as much on 

the recommender model as on the ability to capture significant commonalities between 

process performances using a similarity metric and clustering, as well as on determining the 

proper cluster prototype. Therefore, we focus on the similarity metric, clustering, and 

prototype extraction for assessing the performance.

4.1 Trace Similarity based on Time Warping

The process traces we considered are not simple sequences just recording activity type and 

the order of their performance, but concurrent timelines showing the performance status of 
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each activity type over time. Pairwise comparison of these composite traces is challenging. 

An effective similarity metric should combine (i) intrinsic activity likeness, e.g., some 

activities are mutually substitutable, (ii) activity performance time, (iii) relative order of 

performance, and (iv) temporal variation between different performances. The temporal 

variation has several causes, such as activities initiated at different times relative to the 

process start, performed at different speeds, omitted or repeated. The same activities may 

have different temporal characteristics in different traces and traces may have different 

duration. Although several similarity metrics exist for temporal sequences [7,8] [11,12] 

[14-16], none satisfies the above requirements.

We introduce a novel similarity metric for complex process traces using timeline warping to 

determine the optimal pairwise alignment (Fig. 2). Our metric considers both the sequential 

order and temporal overlaps of activities during this optimization. We define the similarity 

between traces Ti and Tj as:

s(i, j) =
Ti ∩ T j
Ti ∪ T j

(1)

where ∣ Ti ∣ = Σm ∣ pi
m ∣ is the total performance time of activities in trace Ti and pi

m is the 

vector of performance status of all activities in mth time unit. ∣ Ti ∩ T j ∣ is the time when 

both traces had same activities performed and ∣ Ti ∪ T j ∣ is the time when one or both traces 

had same activities performed. If we define ∣ Ti ⊗ T j ∣ as the time when only one trace had 

activities performed, then the total active time in a pair of traces is:

Ti + T j = Ti ∪ T j + Ti ∩ T j (2)

and

Ti + T j = Ti ⊗ T j + 2 Ti ∩ T j (3)

By combining these equations, the similarity of Ti and Tj is:

s(i, j) =
Ti ∩ T j

Ti + T j − Ti ∩ T j
=

Ti + T j
Ti + T j − Ti ∩ T j

− 1

=
2 Ti + 2 T j

Ti + T j + Ti ⊗ TJ
− 1

(4)

The only variable term in this equation during warping alignment of two traces is ∣ Ti ⊗ T j ∣. 

The optimal warping path between Ti and Tj is Pi j = pmn
i j = pm

i , pn
j , which is the 

solution to this optimization problem:
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argmin
pi j

Ti ⊗ T j = ∑
m, n

(pm
i − pn

j)(Jℓ − Sa)w

s . t .
m

pm
i ∈ Ti and

n
pn

j ∈ T j

(5)

where w = [wi,..., wl]T is a vector of weights indicating that some activities are more 

important than others. The weight can be any positive real number and the default is 1. 

When the weights are included, the trace magnitude is redefined as ∣ Ti ∣ = Σm ∣ pi
m w ∣. The 

ℓ-by-ℓ matrix Sa(i,j) ∈ [0,1] represents the degree to which any pair of ℓ activity types are 

substitutable and Sa(i,j) = 1 when activity types ai and aj are identical. An ℓ-by-ℓ matrix Jl of 

all ones is used to determine the distance between pairwise activity types as Jl – Sa. The 

weights and substitutability information are optional and may be given by domain experts 

when appropriate. Otherwise, they will default to a vector of ones and an identity matrix, 

respectively. Examples illustrate the influence of activity weight (Fig. 3(a),(c)) and 

substitutability (Fig. 3(a),(d)). Eq. (5) can be solved similarly as Levenshtein distance [7] 

using dynamic programming with a novel score function:

ti j(g, h)

=

− Σ
m = 0

g
pm

i w − Σ
n = 0

h
pn

jw − ∊, if min(g, h) = 0

max

ti j(g − 1, h − 1) − ∣ (pg
i − ph

j)(Jℓ − Sa)w ∣

ti j(g − 1, h) − ∣ pg
i w ∣ − ∊

ti j(g, h − 1) − ∣ ph
jw ∣ − ∊

(6)

The score function tij(g,h) is defined for alignment costs of two time units pi
g and pj

h. For 

aligning traces Ti and Tj, we define the (ki+1)-by-(kj+1) score matrix tij. The time-penalty 

vector ε = ∊, ∊, …, ∊ T ∈ ℝ1 × k is designed to penalize excessive warping of the timeline 

(grayed out bottom rows of traces in Fig. 3(a)). When ∈ = 0, the timeline can be warped 

without cost, which may declare a short trace similar to a long trace. Constant ∈ can be 

heuristically set to the reciprocal of the standard deviation of case duration. When time 

penalty ε is applied, the trace magnitude is redefined as ∣ Ti ∣ = Σg ∣ pi
gw ∣ + ∊. The above 

problem is a combinatorial optimization of inteival data. We first discretize the time axis and 

then use a time warping algorithm to find the optimal warping path Pij and similarity sij. 

Algorithm 1 (TwS-PT) shows our approach for calculating the similarity of process traces.

4.2 Clustering Process Traces

To determine the recommended enactments from a large number of process traces, we 

clustered the traces. Exemplar-based clustering (EC) is an important category of clustering 

algorithms. These algorithms first select exemplars (representative points) from the whole 

dataset and then assign the remaining objects to their nearest exemplar. EC includes classic 
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clustering algorithms, like K-means and K-medoids, and recent methods, like Affinity 

Propagation (AP) [17] and Density Peaks based Clustering (DPC) [18]. We used 

Hierarchical Clustering, AP, and DPC.

Selecting the number of clusters is a difficult and well-known problem. Our method for 

setting this number is motivated by an intuition about cluster perception. A set of data points 

projected onto a similarity space observed from distance would appear as having fewer 

clusters than when observed up close. We propose that the number of clusters that remains 

stable over the greatest range of observation granularities represents the most probable 

structure of the dataset. We used AP clustering to analyze how the number of clusters varies 

with perception granularity. In methods like K-means, K-medoids, and spectral clustering, 

the number of clusters K is specified by the user. Although a similar parameter (preference 

p) is specified in AP clustering, the selection of p is more robust than that of K, as p linearly 

controls the perception granularity. The number of clusters increases with p and depends on 

the number of input objects [17]. We used pc (p coefficient) to avoid the dependence on the 

number of objects:

p = mean(S) − pc ⋅ N (7)

where S is the similarity matrix of traces and N is the number of traces. Algorithm 2 

summarizes our approach for selecting the number of clusters using the AP clustering 

algorithm (NumC-AP).

In Algorithm 2, γ is the increment of pc and Nc is the number of clusters. We used synthetic 

data to show how NumC-AP works (Fig. 4). In the first example, points are distributed into 

four groups (Fig. 4(1.a)). The NumC-AP results show how the number of clusters changes 

with pc from N to 1 (Fig. 4(1.b)). The proper number of clusters determined by NumC-AP is 

4 and the second best choice is 2 clusters (Fig. 4(1.c)) as they best reflect the actual 

distribution of data points (Fig. 4(1.a)). Changing the distribution of the synthetic data 

causes the optimal number of cluster to change accordingly (Fig. 4(2)).

4.3 Determining the Cluster Prototype

After trace clusters are determined, a step-by-step prototype trace representing the 

recommended enactment is identified for each cluster. In the past, the medoid or a consensus 

sequence have been used as process prototypes. Because our traces contain concurrent 

activities that vary in the order of performance and temporal characteristics, existing 

methods cannot provide representative prototypes for our application. We developed an 

approach for determining cluster prototypes in three steps: (1) discovering the time-warped 

prototype using time warping paired with a divide-and-conquer strategy (a method of 

dividing the problem into recursively conquerable subproblems used, for example, in 

Quicksort); (2) unwarping the timeline to find the prototype; and (3) filtering and repairing 

the prototype for easier interpretation. Given a cluster C of traces, we first build a guide tree 

t (a dendrogram) using hierarchical clustering with the Ward’s method linkage criterion [19]. 

The time-warped cluster prototype qis then solved recursively from the leaves to the root of 
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the guide tree (Fig. 5(b)). At each step, q is calculated pairwise from process traces by 

summing up their aligned results (Fig. 5(a)).

q = Ti, j = Ti + T j = [p1
i + p1

j p2
i + p2

j⋯pk
i + pk

j] (8)

where Ti and T j denote traces aligned using Algorithm 1 and k is the length of the warped 

timeline. The time penalty vector ε is set to [0.2, ..., 0.2]T (bottom rows in Fig. 5(a)). The 

penalties start as equal for the original traces so during alignment ε can capture whether a 

warped time unit was frequently aligned or only existed in few cases. The summed ε in q in 

the root of guide tree t can guide the time unwarping by its values in each time unit (Fig. 

5(c)). For example, the long yellow bar in the bottom row of Fig. 5(a), between time 10 and 

25 in T(1,3,2),4 comes from trace T3 which has a long idle period in the middle. For easier 

interpretation, we simplify qby thresholding out the rare activities (Fig. 5(d)). To this aim, 

we define the support of a time cell ai j
q  as:

sup = ai j
q c (9)

where c is the number of traces in the cluster; i is the ith row (also ith activity type) of q; j is 

the jth column (also jth time unit) of q. The time unit is set to 1 when its support is greater 

than a threshold α and 0 otherwise, where α is by default set to 0.5. A potential drawback of 

this thresholding strategy is that it cannot capture frequent but sparsely distributed activities. 

To address this problem, we estimated the activity’s frequency and included frequent 

activities (unique freq ≥ 0.5 in the clusters’ cases) back into the prototype at the most likely 

position. This adjustment was done because the sparsely distributed rare activities may be 

aligned to several different positions during the prototyping. The thresholding removed them 

from consideration during warping, and left them to reincorporate more appropriately later. 

Another problem is, as time units are independent and discrete, activitytime cells of an 

activity may be fragmented after alignment and filtering (e.g., activity C in Fig. 5(d)). This 

fragmentation occurs because the time axis is discretized, a continuous activity is sliced into 

discrete slices and each slice is aligned independently with the corresponding time slice in 

other traces. When the slices of a continuous activity are independently aligned with other 

traces, the alignment may introduce gaps between the slices (e.g., activity C in in Fig. 5(d)) 

because in another trace the same activity was performed with an interruption or because a 

concurrent activity forced this fragmentation to achieve higher similarity score. We apply a 

repair to mitigate this problem by moving the smaller fragment to merge with the large one 

and close the gap if the gap is smaller than a time threshold β, which can be set as the mean 

value of all activity durations. We move the smaller fragment to the larger one since this 

repair has a smaller cost. Our procedure for extracting cluster prototype is summarized as 

Algorithm 3.
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4.4 The Recommender Model

We chose to use regression model for our recommender system rather than a complex model 

(e.g., SVM or neural networks), as the statistical analysis (e.g., significance test) in 

regression model can help us easier interpret the correlations between data cluster 

membership and context attributes.

The goal of our logistic regression model is to leverage a set of n process cases to design a 

classifier that can distinguish between m≥2 clusters given context attributes x. The cluster 

label of a process trace is encoded as y = [y(1),y(2), ... ,y(m)]T where y(i) = 1 if x is the context 

information of a trace that belongs to cluster i and y(i) = 0 otherwise. The n process cases 

can then be represented as 𝒮 = {(x1, y1), …, (xn, yn)}. By default, we define the last class (the 

mth cluster) as the reference categoiy, against which logits of the first m − 1 categories are 

compared. Our logistic regression was trained with L2 regularizer:

β = argmax
β

∑
j = 1

n
log P(y j ∣ x j, β) + λ β 2 (10)

where β are regression coefficients for context attributes and λ is the ridge estimator of L2 

regularizer. To find which attributes are associated with cluster membership, we used the 

Wald test [20] for logistic regression and a significance level at <0.05.

To generate recommendations, our system works by taking a new context attribute set x’ 
(given by the user) and outputs a recommended enactment. The trained regression model 

selects the cluster class label y that maximizes the likelihood function:

y = arg max
y

P(y ∣ x′, β) (11)

Our system then returns the prototype of the most probable cluster as the recommended 

enactment. Because not all contextual attributes are good predictors, we used only 

statistically significant attributes to improve the recommendation accuracy. If no attribute 

was found as significant, all attributes are considered. Our framework was implemented as a 

web app (VIT-PLA, Fig. 6) using D3.js, Bootstrap, JSP, Java, and includes interactive visual 

functions.

5 EXPERIMENTAL RESULTS

We demonstrated the use of our framework with three real-world logs and evaluated the 

performance of different techniques.

5.1 Real World Medical Process Datasets

Datasets from three medical processes, collected in the emergency department of Children’s 

National Medical Center, a level 1 pediatric trauma center in Washington, DC, were used for 

evaluating our framework (Table 1):
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Tracheal Intubation Data: Ten context attributes are of three types: (a) patient 

demographics: age (<24 months, 24-96, >96), gender, height, weight, body mass index 

(BMI); (b) provider attributes: intubator’s medical role (emergency medicine attending, 

anesthesia resident, etc.); and (c) event attributes: night/day, emergency/pre-arrival, direct-

laryngoscopy/video-laryngoscopy and reason for intubation (seizure, respiratory distress, 

altered mental status—AMS).

Trauma Resuscitation Data: The trauma resuscitation is performed by a trauma team 

comprised of several physicians, nurses and ancillary medical staff, all working 

concurrently. Each case was coded with 17 context attributes of two types: (a) patient 

demographics: age, race, gender, injury type, injury severity score, pre-arrival intubation, 

mental status, body region injured (e.g., head, face, chest, etc.); and (b) treatment attributes: 

paged response (stat, transfer), day/night, weekend/weekday.

Emergency Department (ED) Data: This dataset contained a very diverse set of patient 

procedures. The attribute types are the same as for the trauma resuscitation data. Unlike 

tracheal intubation and trauma resuscitation, which are standardized processes, the ED 

process is not. ED data is quite different from case to case and the activities are temporally 

sparse.

5.2 Similarity Metric Evaluation

To evaluate our similarity metric, we performed experiments using 65 randomly selected 

sets of three traces from the Intubation dataset {Ti, Tj, Tk} (Fig. 7(a)). Three medical experts 

were asked to decide the most similar among three trace pairs, (Ti, Tj), (Ti, Tk) and (Tj, Tk) 

based on their domain knowledge. Our visualizations (Fig. 7(a)) of traces helped them to 

quickly detect the differences between traces in a set. They used their domain knowledge to 

judge how important these differences are, and decide which trace pair is more similar than 

others. We used these labeled results to evaluate our similarity metric. Our baselines 

included edit distance (ED), sequential-pattern based distance (SP based on algorithm CM-

SPADE [22]), normalized Euclidean-distance (NE), and dynamic time warping distance 

(DTW). We also evaluated these similarity metrics using a majority voting strategy that 

determines whether the most similar pair selected by each metric matched the majority 

decision.

The results (Fig. 7(b)) showed that our time-warping-based similarity metric achieved the 

highest accuracy on both medical expert labels (0.69) and voting-based results (0.80). Edit 

distance, the simplest metric considered, also performed well because the intubation data 

was mostly sequential so the activity type and order of performance were the key for 

comparing the traces. Normalized Euclidean distance and DTW performed worse because 

they failed in cases where a long intubation trace (e.g., 40 mins) was compared with a brief 

trace (e.g., 10 mins). The normalized Euclidean distance failed because it could only capture 

few similarities after normalizing long and short timelines. The DTW failed because it did 

not penalize long idle times and activity duration differences between traces. In addition to 

individual metrics, we also computed the accuracy of the majority. The majority of our 
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similarly metrics correctly identified 39 sets (≥3 votes) and 5 sets as unsure (with two tied 

majorities).

In 12 of the 65 sets, all metrics and the medical experts agreed on the most similar trace 

pairs. In another 5 cases, all metrics made wrong choices. We reanalyzed these 5 cases and 

found that the ground truth was incorrectly labelled in two, and in the other three cases the 

experts used medical knowledge that was not explicitly considered by the similarity metrics: 

(1) time-to-task for “decision to intubate,” and (2) the type of oxygen mask (BVM vs. 

NRB). Even without additional domain knowledge, we found that in 62 of 65 cases (95.4%), 

at least one data-driven similarity metric made the same decision as the experts did. Our 

TwS-PT (Algorithm 1) independently achieved 69% decision accuracy. These two findings 

show the feasibility of using purely data-driven similarity metrics for comparing complex 

process traces.

5.3 Prototype Analysis

We evaluated our prototype extraction method (TwCP, Algorithm 3) quantitatively and by 

qualitative feedback from domain experts. We used mediod as the benchmark prototype 

since it is often used as cluster exemplar. For this comparison, we extracted the prototypes 

and medoids from the whole datasets without clustering, to avoid potential bias from 

clustering algorithms (Fig. 8). We omitted the ED dataset from this comparison because its 

prototype and medoid had only two activities. Our results show TwCP prototype had higher 

average similarity to other traces than the medoid (Fig. 9(a)). This difference was greater for 

the trauma dataset than for the intubation dataset because the medoid depends on dataset 

size (number of traces) and trace complexity. A large dataset is more likely to contain a trace 

close to the centroid. In a small dataset, the medoid may be far from the centroid. Process 

complexity also affects the medoid because more activities and greater variability makes it 

less likely that an existing trace will well represent the characteristics of the process. Our 

intubation data is much simpler than trauma data that had more than 100 activity types and 

average trace length of 109 activities.

The medoids may not fully capture deviations from the standard protocol due to the variable 

injuries of different patients. Our TwCP prototype better captured standard practices and 

included more tasks applicable to a diverse range of injuries, but it may capture idiosyncratic 

details that would not be expected by a domain expert. For the Trauma data (Fig. 8(b)), the 

medoid omitted inspection of the eyes, nose and pelvis while the TwCP suggested an 

acceptable but uncommon sequence for the extremity exam. For the Intubation data (Fig. 

8(a)), TwCP included the performance of airway assessment and the use of the non-

rebreather (NRB), which the medoid omitted. The medoid more accurately represented 

oxygen delivery during intubation because one cannot use a bag valve mask (BVM) and 

NRB simultaneously. TwCP, however, showed that both mechanisms of oxygen delivery 

were acceptable before intubation and included airway assessment, making the prototype 

more complete. The human factors literature suggests to study work-as-done rather than 

work-as-imagined when designing computerized support systems. TwCP prototype is useful 

since it captures actual work. By comparing a given trace to the prototype, one can detect 

and analyze the process deviations.
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5.4 Recommendation System Evaluation

Our recommendation system was evaluated using two approaches: (E1) whether the actual 

process trace (denoted as Tα) belonged to the most probable cluster decided based on 

context attributes by the trained regression model; and (E2) whether the recommended trace 

(denoted as Tr) was close to the actual trace. Because trace clusters may be of very different 

sizes (multi-class imbalance learning problem), we adopted the F-measure (F1-score) and 

geometric mean (G-mean) [21] to properly evaluate the performance using the first approach 

(E1). We did not choose the commonly used accuracy measure as it is ineffective at 

evaluating imbalanced learning scenarios, where the accuracy of the majority class may 

dominate. F-measure and G-mean can balance the classification performances of all majority 

and minority classes. The second approach (E2) evaluated our system by checking if the 

recommended trace Tr was among the k nearest neighbors of Ta, where k ranged from 1 to n 
and for k=1 the recommended prototype was the closest neighbor. This metric is not 

symmetrical, i.e., Tr being within k neighbors of Ta does not imply that Ta is within k 
neighbors of Tr. Therefore, a recommended trace that is among a few neighbors of most 

traces is very representative for the given cluster.

We implemented several similarity metrics: edit distance (ED), sequential pattern (SP), and 

TwS-TP, and several clustering algorithms: hierarchical clustering (HC), density-peak 

clustering (DPC) and affinity propagation clustering (APC). We clustered the process traces 

using different combinations of similarity and clustering algorithms. We used tenfold cross-

validation to reduce the variance of the recommendation accuracy. We selected ZeroR as the 

baseline, which always takes the largest cluster as the prediction result. Our experimental 

results (Table 2) show that the combination of time-warping distance and APC algorithm 

achieved the highest F1 score for both the Intubation and Trauma data. Edit distance with 

APC algorithm achieved the highest F1 score for the ED procedure data. From the 

perspective of the clustering algorithm, APC performed better than HC and DPC in most 

cases regardless of the similarity metric. From the perspective of the similarity metric, our 

TwS-PT performed best for both the Intubation and Trauma data. Edit distance performed 

best for ED data (Table 2), because ED procedures are sparse with only few activities and 

temporal information is not essential. Temporal information is informative and important for 

some but not all processes. The selection of similarity metric is best decided by the nature of 

dataset with the help of visualization tools. Medical procedures depend on other factors that 

were not recorded in our data, such as the environment, patient condition, and medical team 

status. This fact explains why we could not achieve very high recommendation accuracy for 

these complex datasets. An alternative is making recommendations only for a subset of cases 

when regression model has a high confidence. For example, when we made prediction only 

for patients whose intubation reason was altered mental status (AMS) and type of call was 

“now,” we achieved 87.5% recommendation accuracy using the TwS-PT + APC 

combination.

In 55 of 87 cases (63.2%) in the Trauma dataset, our recommended prototype was among the 

5 nearest neighbors of the actual trace (Fig. 9(b)). In the remaining 32 cases, the 

recommended prototype was not among the 5 nearest neighbors of the actual trace because 

our regression model incorrectly predicted the cluster membership from trace’s context. For 
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example, TwS-PT+APC had 0.767 F1 score for finding cluster membership using context 

attributes for trauma data (Table 2). A wrong cluster, in turn, results in recommending a 

wrong prototype.

5.5 A Case Study with Intubation Process

We used the Intubation dataset as a case study to further illustrate the performance of our 

framework. The recommended number of clusters given by NumC-AP (Algorithm 2) was 2 

(Fig. 10(a)(b)). The process traces were clustered using algorithms HC ((Fig. 10(c)), DPC, 

and APC. In the trained regression model, several context attributes, e.g., intubator role, 

night shift, intubation reasons, were statistically significant for trace clusters (Table 3). 

Using the APC result as an example, the reason for intubation and intubator role were 

significantly correlated with the two clusters. The two prototypes (qc1 and qc2) (Fig. 11) 

extracted from two clusters showed many differences: (1) qc1 (Fig. 11(a)) had the activities 

“airway assessment” and “NRB,” while in qc2 (Fig. 11(b)) these activities were missing; (2) 

qc1 (~19.5 mins) was shorter than qc2 (~22 mins); (3) activities “pre-oxy breathing verb.” 

and “decision to intubate” occurred later in qc2. In addition to these differences, qc1 and qc2 

had many commonalities, e.g., performance time and sequential order of activities “chest 

auscultation,” “critical window,” “RSIs” and “laryngoscopy.” Our medical experts explained 

that in cluster-1 clinicians used a passive non-rebreather (NRB) instead of an active bag-

valve mask (BVM) for initial oxygen delivery. The ATLS protocol requires that providers 

secure the patient’s airway before moving onto other survey items. Our results showed that 

patients in cluster-1 more frequently underwent intubation for respiratory distress. If patients 

in cluster-1 originally presented with a secured airway, it would make sense that the onset of 

respiratory distress would necessitate intubation to secure the airway. Patients in cluster-2 

were already experiencing some degree of respiratory distress or they would not have 

needed a BVM. It is plausible, then, that other clinical indicators prompted intubation in 

cluster-2.

6 CONCLUSION

We presented a process analysis and recommendation framework. Our framework starts by 

clustering traces of process enactment and extracting a prototypical enactment for each 

cluster. A regression model was then trained based on the associations between trace clusters 

and context attributes. A recommended enactment of the process is generated when a new 

set of context attributes is input into the trained regression model. We introduced novel 

approaches for measuring trace similarity and extracting prototypes. Although our 

framework was tested only with medical processes, it can be used for analyzing other real-

world processes.
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Figure 1. 
Data sample and our framework structure.
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Figure 2. 
Our time warping approach to find the minimum warping distance between two process 

traces T1 and T2. (a) Illustration of the warping path calculated between T1 and T2 (Eq. 

(4)). (b) Alignment of the warped timelines.
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Figure 3. 
(a) Example traces T1 – T4 showing how the similarity results are affected by (b) the time 

penalty ε, (c) activity weights w, and (d) activity substitutability Sa.
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Figure 4. 
Two examples of synthetic data in rows (1) and (2) showing how NumC-AP (Algo. 2) 

decides the number of clusters, (a) The data distribution in a plane, (b) pc vs. the number of 

clusters, (c) Zoomed-in view of (b).
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Figure 5. 
Steps for calculating a cluster prototype, (a) Calculating prototype q pairwise recursively 

from a set of process traces. Trace activities are shown in rows. After traces are aligned and 

activities summed up, the summed value is visualized using the color-bar from 1 to n, where 

n is the number of traces, (b) A guide tree for directing the prototype calculation for a cluster 

of traces, (c) Unwarping the warped timeline to restore the timeline and find the prototype, 

(d) Filtering the prototype using α. (e) Repairing activity C by merging smaller fragment to 

the larger one.
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Figure 6. 
Graphical user interface of the implementation of our framework for process mining and 

recommendation.
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Figure 7. 
(a) A sample set of Intubation procedure given to medical experts to evaluate. The 

horizontal-axis denotes timestamp in minutes and vertical-axis denotes activity types. The 

blue blocks represent the performance time and duration of activities, (b) Performance of 

different similarity metrics compared to expert opinion.
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Figure 8. 
(a) TwCP prototype (left) and medoid (right) for the whole Intubation dataset. (b) TwCP and 

medoid for Trauma dataset showing the 52 commonly performed activities. For easier 

comparison, the vertical axis labels (activity names) were ordered based on a rough temporal 

order of activities. The horizontal axis denotes the real (not warped) timeline in minutes.
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Figure 9. 
(a) Avg. similarity between prototypes and other process traces, (b) Number of hits of 

recommended process enactment within k nearest neighbors of the actual enactment.
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Figure 10. 
(a)(b) NumC-AP (Algorithm 2) on Intubation data and (c) hierarchical clustering (based on 

Ward’s method).
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Figure 11. 
Prototypes of cluster-1 (qc1) and cluster-2 (qc2).
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Table 1.

Properties of our three medical process dataset.

Stats ╲ Dataset Intubation Trauma ED

Num. Patient Records 101 87 644

Num. Total Acts 1244 9477 2290

Num. Act Types 15 128 65

Longest Trace (Num. Acts) 20 196 12

Shortest Trace (Num. Acts) S 60 1

Num. External Attributes 10 11 11
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Table 3.

p-values from regression model.

Attributes ╲ Clustering HC DPC APC

(Intercept) 0.43 0.73 0.03

Age
<24 months 0.43 0.07 0.11

24–96 months 0.75 0.39 0.94

Gender 0.76 0.1 0.34

Intubator
Role

Anesthesia Resident 0.41 0.31 0.2

PEM Attending 0.58 0.85 0.03

PEM Fellow 0.17 0.2 0.25

PEM/ED Resident 0.64 0.09 0.79

PICU Fellow 0.43 0.74 0.36

Direct Laryngoscopy 0.77 0.11 0.4

Night Shift 0.18 0.03 0.51

Reason
Respiratory Distress 0.15 0.87 0.02

Seizure 0.74 0.94 0.56

Type of Call
ED Patient 0.85 0.53 0.14

Now 0.79 0.34 0.57
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Algorithm 1. Time-warping Similarity of Process Traces (TwS-PT)

Input: Ti, Tj

Output: s(i,j)

Step1. Initialize Ti = [p1
i , . . , p

ki
i ], T j = [p1

j , . . , p
k j
j ], Pi j = {∅} , ∣ Ti ∣ = ∑g ∣ pg

i ∣ , ∣ T j ∣ = ∑h ∣ ph
j ∣ , ti j = {∅} .

Step2. Fill score matrix tij progressively using Eq. (6);

Step3. Deduce Pij by tracing back tij from tij(ki, kj) to tij(0,0) and at each step choosing the neighboring cell that yields the maximum score (Eq. 
(6)).

Step 4: ∣ Ti ⊗ T j ∣ = ( − 1) ∗ ti j(ki, k j);

Step5. return s(i,j) computed using Eq. (4)
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Algorithm 2. Number of Clusters using AP (NumC-AP)

Input: S = {s(i, j)}, pmin
c , γ

Output: Nc*

Step1. Initialize u = 1, pc(u) = pmin
c ;

Step2. Run AP clustering with S and pc(u). The output is the number of clusters Nc(u).

Step3. If Nc(u) > 1, u = u + 1, pc(u) = pc(u − 1) + γ, go to Step2.

Step4. return the most stable number of clusters Nc* = mode(Nc).
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Algorithm 3. Time-warping based Cluster Prototype (TwCP)

Input: C, α, β

Output: q

Step1. Calculate similarity matrix S of C using Algorithm 1 (TwS-PT);

Step2. Build the guide tree t with HC algorithm and S;

Step3. Traverse t bottom up, from leaves to the root;

Step4. Ti= node.get(left), Tj= node.get(right), align Ti and Ti;

q = Ti, j = T i + T j;

Step5. Go to Step 3 until current node equals root;

Step6. Unwarp q to recover the timeline;

Step7. Filter qwith a predefined α and repair q with β;

Step8. return q
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