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ABSTRACT 

Design of text entry on small screen devices, e.g. 

smartwatches, faces two related challenges: trading off a 

reasonably sized keyboard area against space to display the 

entered text and the concern over "fat fingers". This paper 

investigates tap accuracy and revisits layered interfaces to 

explore a novel layered text entry method. A two part user 

study identifies preferred typing and reading tilt angles and 

then investigates variants of a tilting layered keyboard 

against a standard layout. We show good typing speed (29 

wpm) and very high accuracy on the standard layout – 

contradicting fears of fat-fingers limiting watch text-entry. 

User feedback is positive towards tilting interaction and we 

identify ~14° tilt as a comfortable typing angle. However, 

layering resulted in slightly slower and more erroneous 

entry. The paper contributes new data on tilt angles and key 

offsets for smartwatch text entry and supporting evidence for 

the suitability of QWERTY on smartwatches. 
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INTRODUCTION 

Tapping accurately on small screens is a widely stated 

problem for touchscreen interaction. As a result smartwatch 

interfaces have largely avoided placing keyboards on the 

devices but have instead opted for canned replies, voice 

recognition or emoji drawing to support replies to received 

messages. These methods excessively constrain smartwatch 

users’ ability to respond to messages received on the watch 

itself and limit other interactions where text input is 

necessary. 

Recent research [15] has shown promise for text entry on 

smartwatches being able to achieve reasonable speeds for 

short phrases using a near standard QWERTY layout. 

However, this comes at the cost of a keyboard that uses over 

85% of screen space (Figure 1). This prevents easy review of 

messages entered but is understandable as it is necessary to 

maximize the screen real estate for better separation of taps 

on very small targets of under 4 mm diameter.  

In this paper we revisit semi-transparent layered interfaces as 

a potential solution that maximizes screen real estate for both 

the keyboard and for reviewing the typed message. After a 

background review of small screen text entry and layered 

interfaces, the paper presents two studies: An initial 

parameter setting study investigating reading and writing tilt 

angles; A comparative study investigating user performance 

on smartwatch text entry using a standard layout keyboard 

and two variants of the tilting keyboard.  

 
Figure 1: Experiment Standard Text Entry Interface 

APPROACHES TO WATCH TEXT ENTRY 

Despite an array of research on alternative layouts (e.g. 

[5,6,13,31,35,39]) and alternative approaches (e.g. 

[24,36,44,46]), the traditional QWERTY layout has persisted 

on mobile phones and tablets despite being clearly sub-

optimal for touchscreen text entry – following similar 

arguments to those for desktop concerning familiarity of the 

layout dominating over speed gains (e.g. [10]). Unlike large 

laptop/desktop keyboards where keypresses are assumed to 

be unambiguous, albeit often subject to spell-correction, 

entry on touch-screen keyboards is normally considered to 

be imprecise. User input is taken as an indication of his/her 

intension and interpreted by a combination of tap models and 

language models.  

Tap models are required to interpret between continuous 

(x,y) screen coordinates and discrete keys. This is a particular 

concern on smartphones and smaller devices as people’s 

fingers are large compared to the on-screen keys, typically 6-

7 mm smartphone touchscreen key width compared to 

human finger tips of around 16-20 mm [9]. This is known as 
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the “Fat Finger Effect” (e.g. [3,20,22]) after concerns raised 

particularly by older adults on using finger touch interaction 

[40].  How people tap varies between individual (e.g. [1]), 

between devices (e.g. [20]) and based on how people hold 

the device (e.g. [1]). Taking these factors into account can 

considerably improve tap accuracy and text entry (e.g. [21]). 

More advanced tap models have been developed that exploit, 

for example, the built-in accelerometers to adjust the tap 

model based on the walking pattern of the user [14].  

Language models have long been a part of mobile text entry 

starting with unigram word “predictive text” approaches on 

12-key physical pad phones [12,23,29] through bi-gram 

word models (e.g. [19]) to complex models based on 

combining multi-gram letter and multi-gram word models 

(e.g. [43]).  

An alternative to one-touch-per-key text entry typical on 

phones is to build on the strength of language modelling to 

support a single gesture across the keyboard per word. 

Initially proposed with a custom keyboard [28] this has been 

widely adopted on smartphone text entry using the 

QWERTY layout [47]. Gesture approaches have also been 

developed that exploit accelerometers for touch-free entry 

(e.g. [24,36]) or to adjust button-based entry (e.g. [45]). 

The fat-finger problem is particularly concerning when 

considering text entry on very small touchscreen devices 

such as smartwatches. Inspired by the success of predictive 

text on traditional phones, ambiguous keyboards have been 

researched to provide large but multi-letter keys on 

smartwatches either following an alphabetic layout [11,27] 

or an optimized layout [11]. Alternatively the standard 

QWERTY layout can be supported with additional 

interaction to make it more suitable for very small screens. 

The Zoomboard [34], for example, requires users to tap 

initially to zoom into a section of the keyboard before 

selecting an enlarged key. While ZShift [30] allows users to 

adjust their taps using a miniature zoom key callout of the 

area they are touching. These approaches, however, resulted 

in slow reported typing speeds: users are slow to learn a non-

QWERTY layout and any form of interaction that involves 

mental response to displayed interaction tools is inherently 

slower than simple tapping. Simple tapping supported by a 

strong language model or gesture typing, e.g. Velocitap [43] 

and WatchWriter [15], have recently been shown to get 

speeds more in line with smartphone entry speed.  

LAYERED INTERFACE DESIGN 

Layering information so that partially-transparent layers are 

presented superimposed on the same display area is not 

common in interface design but can be effective. Originally 

developed for desktop interfaces such as toolbars [16] and 

menus [17] so that the interaction tools don’t obscure the 

underlying work area, they have been revisited for 

photographic manipulation tools with careful design of 

transparency not to interfere with underlying colour images 

[4]. Transparent controls have been used on mobile 

interfaces to overcome lack of screen estate [25] but have not 

been widely adopted.  

PROPOSED LAYERED TILT CONTROLLED KEYBOARD 

This paper reports our investigations to further investigate 

tap accuracy for typing and speed on a smartwatch and to 

explore tilt-based control. In our design tilting the watch 

fades between a full-screen keyboard (Figure 2 right) and a 

full-screen display of text of the message being typed (Figure 

2 left). In intermediate states a transparency merged version 

is shown proportional to the tilt (Figure 1 middle). The tilting 

keyboard stretches the standard QWERTY layout to almost 

fill the watch screen leaving only space for a suggestion bar 

at the top of the screen (a 25% increase in the height of the 

keyboard) and exploits the widest part of the round face to 

increase the width of the middle row by 23%. 

The rest of this paper reports two studies: 

1. A parameter setting study to assess if there is a 

difference in the tilt angle of the watch for reading 

vs writing and parameterize the second study. 

2. A comparative performance study of text entry on 

the standard layout (Figure 1) and the tilting layout 

(Figure 2). 

Both studies were conducted at University of Strathclyde 

under institutional ethical approval with users given a small 

shopping voucher in appreciation of their time 

 
Figure 2: Experiment Tilt Controlled Layered Text Entry 

Interface – full text (left) through to full keyboard (right) 

STUDY 1: PARAMETER SETTING 

Before finalizing the design of our keyboard we had to 

establish the tilt angles for typing and reading. In this 

parameter setting study participants were asked to (1) read 

three short passages of text on the watch, (2) enter six short 

phrases on the standard keyboard, and (3) demonstrate how 

they would angle the watch for reading and writing.  

For reading tasks participants were given one short 

paragraph to read as practice while free to ask questions, they 

then read two longer paragraphs without interruptions.  The 

paragraphs were the introductory sections of classic 

children’s stories of 94 [32], 150 [37] and 197 [2] words 

respectively. This involved scrolling using a vertical stroke 

gestures with a green next button (►) being double tapped 

to move on to the next phrase. Participants were told in 

advance that they would be asked some questions concerning 

the passages to encourage accurate reading. For phrase 2 and 

3 the tilt angle from vertical (Figure 3) was recorded every 

second after the initial scroll gesture to eliminate initial user 

settling. 



 

Figure 3: Tilt angles were measured from vertical parallel to 

the direction of the watch strap using internal accelerometer. 

 
Figure 4: Participant conducting study 

In writing tasks participants typed six short phrases from the 

standard Enron collection [41]. The first two were treated as 

practice with participants free to ask questions before silently 

completing the four test phrases (with double tap on ► to 

enter each phrase). While typing the angle was recorded after 

first keystroke. 

At the end of the study users were individually verbally 

prompted as follows: “One of the reasons of this study is to 

see if people read and type at different angles on a 

smartwatch [experimenter’s wrist rotated back and forth]. If 

you could separate reading and writing angle, please show 

me your reading angle [A] and your writing angle [B].” The 

displayed angle was logged by the experimenter pausing and 

tapping on the paired smartphone at A and B. 

Participants and Equipment 

Thirteen participants were recruited for this short study. All 

experiments were conducted while standing (figure 4) and 

wearing an LG Urbane smartwatch on their non-dominant 

hand with the index finger of their dominant hand used for 

typing. 13 participants were recruited through University 

mailing lists and were a range of undergraduate/postgraduate 

students and research assistants: 7 male, 6 female; median 

age 29 (range 18-41); none had previous experience of using 

a smartwatch but all had touchscreen phone experience. All 

users had self-declared normal, or corrected to normal with 

single vision lenses, eyesight and were self-declared native 

or fluent English speakers. The LG Urbane is a 1.3 inch 

diameter screen Android smartwatch with resolution of 320 

x 320 pixels running Android Wear 1.0. 

The keyboard used here (and the standard condition in study 

2) approximately matched the screen usage and shape of 

Gordon et al’s [15]. To increase alphabetic key sizes, space 

was implemented as a left-to-right swipe and backspace as 

right-to-left with the keys for these removed from the 

keyboard. For experimental purposes no capitalization or 

extended character panels were available, but these could be 

implemented using, say, vertical gestures or long presses. A 

fixed apostrophe and dash were available on the bottom row 

of the keyboard to support in-word punctuation. A tap on the 

single line text display revealed that text full screen for 

review, with a second tap returning to entry mode.  

The keyboard used a 8-gram character language model 

combined with a tap to key centre measure to interpret user 

taps on the keyboard into characters. Given a tap coordinate 

x,y each letter was assigned a score, Tx,y based on the 

Gaussian probability of tap being on the key. In the current 

implementation the mean tap was assumed to be centre of the 

key with standard deviation set at one-key width and a 

uniform circular distribution assumed. Analysis of study 2 

results could improve this approximation in line with actual 

tap patterns, which tend to off-centre and elliptical [1]. Given 

a history string H a Witten-Bell [7] model of decay was used 

to score the next most likely letter, MH, using a window of 7 

previous characters and a base unigram model for the next 

character. The final score for a letter is given by Tx,y
2 MH as 

this gave the best combination of language model accuracy 

and tap flexibility in pre-study tests. As the history itself is 

uncertain, a set of 6 most likely patterns was kept between 

taps and used to populate a new set of most highly scoring 

sequences. Space was modelled as an unambiguous character 

and, for efficiency, fixed the pre-space characters to the best, 

or selected, word. Backspace was modelled within word as 

rolling back the prediction and between words by recreating 

the tap pattern using key centres of the entered word.  

Based on our combined tap and language model, the most 

likely suggestion was automatically inserted character-by-

character as the user typed with three alternatives being 

offered on a suggestion bar. As per standard behaviour a 

space was inserted after suggestion bar choice, but within 

word punctuation had to be entered manually. The language 

model accounted only for miss-taps on the keyboard and did 

not include more advance spell correction for rarer omitted 

or duplicate letters (e.g. [8,43]). The first suggestion and text 

entry area are biased to show a complete word when possible, 

as opposed to prefixes of longer words, to reduce changes on 

space. As it has been shown that word predictions can lead 

to excess workload and can slow users [12,38], users were 

required to type whole words with use of the suggestion bar 

limited to correcting wrong predictions. 

Our studies followed a standard text entry transcription task 

approach with users typing large-print phrases from paper 

onto the watch. Wizard-of-Oz style studies have been used 



for tap analysis so that users can tap naturally with only their 

position in the text being shown,  and not actual characters 

entered (e.g. [1]). As we wanted to also assess speed of our 

different keyboards we felt this was not ideal and wanted 

users to have to type relatively accurately but not be over 

constrained by language modelling misinterpreting taps. We 

thus needed a high quality text entry method that would 

perform well in studies. Our tap and language model 

appeared to work fairly well but to improve performance 

given the processor and memory constraints of an 

experimental system we focused the training of the language 

model. We trained on the full Enron-50 memorable phrases 

augmented with three small lists of common words in 

English (containing 100, 200 and 200 words) and a list of 

200 most common word-bigrams2. This tuned the language 

model closely to the study set but did not exclude erroneous 

typing or incorrect suggestions. 

Results 

Figure 5 shows the average tilt angle for reading and typing 

from parts one and two of study when users were doing these 

tasks without knowledge of the tilt sensor monitoring (left) 

and from part three where users stated both angles (right). 

The results show a significant difference in the observed 

average angle for reading (Mr=8.8°, SDr=10.8°) and writing 

(Mw=15.0°, SDw=6.3°) (t(12)=2.30, p=0.041). No significant 

difference was observed for stated angles (read Mr'=23.8°, 

SDr'=15.5°; writing Mw'=15.6°, SDw'=10.9°) (t(12)=1.70, 

p=0.116).  

  
Figure 5: Observed and Stated Read and Write Angles  

(degrees from vertical, 95% confidence interval error bars)  

Discussion 

In both observed and stated measurements there was less 

variance on writing angle than reading angle. Furthermore 

the writing angle between observed and stated was very close 

while there was a marked difference between observed and 

stated reading angles. In observed tasks users overall 

preferred a flatter screen angle for reading but stated a 

stronger tilt when asked explicitly. This is unexpected and 

further studies need to be conducted to establish if this was 

an ordering issue as the initial observed shallow reading 

angle was before any text entry on the watch. However, there 

was also variation between users in both reading observed 

and stated angles.  

In terms of parameters for part 2 of the study, this study 

strongly suggests a 15° angle for writing. For reading the 

most flexible would be to allow a reading position both sides 

of this to support both flatter and more tilted reading angle. 

In observations the mean read angle was 6.2° flatter than the 

mean write angle while when stated it was 8.3° more tilted 

suggesting a possible range of 15°±9° for a three position tilt 

keyboard but this range was too sensitive to fine movement 

so was extended to 15°±21° in study 2. 

STUDY 2: KEYBOARD TEXT ENTRY 

To assess typing accuracy, speed and keyboard usage in 

practice we conducted a standard laboratory based 

comparative study between our tilt-controlled layered 

keyboard and a more standard keyboard with minimal space 

for entered text. 

Keyboard Parameter Setting 

The layered keyboard has two layers: a full screen keyboard 

and a full screen text view showing the text entered. At one 

extreme the keyboard is shown nearly opaque with a 

watermark of the underlying entered text (Figure 2 right) 

while at the other extreme the text is shown with a 

watermarked keyboard (Figure 2 left). Between these two 

angles a linear function adjusted the opaqueness of each 

layer with simple exponential smoothing to reduce flicker. 

The colour saturation was also adjusted so that layers were 

given a green tint as they became more transparent.  

Following study 1 the comfort angle for writing is 15°. As 

such a condition for study 2 is a tilting keyboard where the 

keyboard is opaque at 15° and users tilt forward or backward 

to see the entered text. However, it could be argued that users 

will start the study focusing on the keyboard and as they 

become more experienced will move towards a more 

transparent keyboard to focus on the text they are typing. In 

an ideal situation the final transparent keyboard angle 

should, thus, correspond with the preferred 15° writing 

position from study 1.  Study 2 was designed to compare 

these two design options with each other and with the more 

standard layout used in study 1. 

The study hypotheses were: 

H1. Text entry will be faster using the tilting keyboard; 

H2. Text entry will be more accurate using the titling 

keyboard; 

H3. The average angle of typing and variance of 

viewing angle will differ between the keyboards; 

H4. As the study progresses users will tend towards a 

more transparent keyboard (transparent conditions). 

The three study conditions were: 

1. Standard keyboard with manual swapping between 

near full screen keyboard and full screen text view 

(by user tapping on the text); 



2. Keyboard-Focused Layered Keyboard: a layered 

keyboard with the central 15° tilt angle resulting in 

a near opaque full screen keyboard with watermark 

only of entered text (user tilts to see text); 

3. Review-Focused Layered Keyboard: a layered 

keyboard with the central 15° tilt angle resulting in 

a near opaque full screen text with watermark only 

keyboard (user tilts to see keyboard). 

As per study 1, the space key and backspace were replaced 

with a horizontal gestures.  

 Standard Keyboard 

Focus 
Read Focus 

Central 

15° tilt 

angle 

   

Maximal 

offset 

from 15° 

   

Table 1: The three conditions in study 2 

Participants and Equipment 

26 users1 were recruited through email and poster advertising 

at Anonymous University (20 male, 5 female, 1 declined; 

median age 22, range 18-39, 2 declined). Of the users 3 

owned a smartwatch, 1 had limited prior use, and others had 

no previous use. All users were regular touch screen phone 

users with self-rated fluency in English and good, or good 

corrected using single-focus lenses, eyesight. 

The same LG Urbane watches and same prediction engine as 

per study 1 were used in study 2 (with minor fixes to 

handling of backspaces in the keyboard). As per first study 

users stood throughout, wore the watch on their non-

dominant wrist and typed with their dominant index finger 

(see Figure 4). 

Study procedure 

Within group study with users randomly allocated to 6 

permutations of the three keyboard conditions. Users 

completed an initial demographic background form then 

typed 33 phrases from Enron set [41] on each keyboard in 

one practice block of 3 phrases then three blocks of 10 test 

phrases. All tasks done while standing. A NASA TLX [18] 

form was completed after each condition. Finally a short exit 

questionnaire on preferences and issues with was completed. 

                                                         
1 Two further users withdrew from the study: one started feeling ill 

while the other exceeded the time limit of 1 hour. Their 
demographics and data was ignored. 

Results 

Text entry was analysed for speed (measured in words per 

minute, WPM) and accuracy (represented by number of 

backspaces used during typing and Character Error Rate, 

CER, the Levenshtein distance between target and typed 

phrases normalised to the length of the original phrase). 

Results were analysed using repeated measures ANOVA on 

3 keyboards x 3 measures. The watches' average tilt angle 

and stability (RDMS) was analysed separately (3 keyboards 

x 2 measures). Mauchly's sphericity test and Šidák 

adjustment were used. 

Speed 

Timing was recorded from first keystroke to last keystroke 

of each phrase with words per minute defined using the 

standard five characters per word metric. Analysis shows a 

significant difference between the three keyboard conditions 

(F(2,25)=5.29, p=.008). Figure 6 shows the standard 

keyboard fastest with a mean entry rate of 29.2 wpm 

compared with 27.2 and 26.7 wpm for keyboard-focus and 

read-focus tilting keyboards. The difference between 

standard and keyboard-focus & read-focus was significant 

(p=.046 and .045 respectively) while the difference between 

the two tilting variants was not (p=.89).  

  

Figure 6: Speed of text entry on three keyboard versions 

(error bars are 95% confidence intervals) 

Accuracy 

Overall entry was very accurate with Levenshtein distances 

of 0.25 per phrase with little use of backspace (approx. 2 

backspaces per phrase)(Figure 7). There was a significant 

difference between the three keyboard versions for 

backspace usage (F(2,25)=4.34, p=.018) but not for 

Character Error Rate, (F(2,25)=0.098, p=.851). Although 

usage was low, users did use backspace significantly less 

with the standard keyboard than the keyboard-focus 

condition (Mst=1.79, Mkf=2.30, Mrf=2.39 – pairwise Std-KF 

p=.020, Std-KF p=.073, KF-RF p=.967).  



 
Figure 7: Accuracy of input (CER and backspaces per phrase) 

Tilt angle and stability 

We measured the tilt of the watch every time the user tapped 

a key and observed a distinct difference between the three 

keyboard variants. Unfortunately tilt log data was lost for 

early participants resulting in N=12 for tilt analysis. 

The standard variant mean angle was 13.1° while the 

KeyboardFocus tilt condition was 10.0° and the ReadFocus 

9.2° (see Figure 8). Based on study 1, we set the central angle 

at 15° at which the keyboard focus condition showed a near-

opaque keyboard and the read focus condition near-opaque 

text. The angles observed of 10° for keyboard-focus and 9° 

for read-focus translate to a keyboard visibility of 77% and 

26% respectively. The difference in overall angle was 

significant (F(2,22)=4.015, p=.033) with post-hoc Šidák 

tests showing a marginal difference between standard and 

read-focus, p=.065). 

As we were interested in the learning effects we analysed tilt 

angle separately for final task set (final 10 phrases of 30 

study phrases per keyboard). Here the mean angle was 14° 

(+1° from overall average) for the standard keyboard, 11° 

(+1°) for the keyboard-focus condition and 8° (-1°) for read-

focus. A small change in all cases that was towards the 

"natural typing angle" identified in study 1 for both standard 

and keyboard-focus but away from in the read-focus 

condition. In both tilting conditions this lead to greater 

keyboard visibility of 80% (+3%) and 32% (+6%). As with 

overall mean angles, the difference in last-set angle was 

significant (F(2,22)=5.51, p=.011), post-hoc tests showed 

standard significantly different from read-focus, p=.038). 

We were interested in how much users adjusted the watch 

angle while typing, for example to adjust the angle to make 

text more visible in between typing characters. In addition to 

logging the tilt angle whenever a keystroke was recorded the 

watch recorded the angle periodically during tasks. We 

calculated the Root Mean Square Deviation of these regular 

tilt recordings from each users' individual mean angle while 

typing. As shown in figure 9 the variance was lowest for the 

standard keyboard followed by the read-focus with the 

keyboard-focus having highest variance. This pattern was 

repeated with lower variance for the last 10 phrase set per 

condition. ANOVA analysis showed the difference for all 

phrases was not-significant while for the last ten phrases a 

significant difference does exist (F(2,22)= 3.92, p=.035) but 

no pairwise differences were significant. 

Task Load Index 

The NASA Task Load Index (TLX) analysis showed 

significant differences between the three keyboards in 

overall sum of scores (Mstd=39.2, Mkf=43.9, Mrf=49.2; 

F(2,50)=5.68, p=.006) with post-hoc Bonferroni tests 

confirming workload significantly higher for read-focus than 

standard keyboards (p=.007). Figure 10 shows the individual 

TLX scales and identifies significant differences for mental, 

physical, effort and frustration. Figure 10 also highlights 

overall acceptable workloads with only one mean (physical 

read-focus) reaching the mid-point of the scales. 

Qualitative feedback 

In the end of the session users were asked to state three good 

and bad things about the tilting keyboard conditions. Table 2 

lists representative samples of participant quotes (with 

similar quotes grouped and counts given in parenthesis). 

Overall this paints a picture of enthusiasm for tilt switching 

and keyboard accuracy but many problems with the cross-

fading approach. 

 

Figure 8: Mean tilt angle 
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Figure 9: RMSD tilt variance from user average tap angle 
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Figure 10: NASA TLX Results 

TAP DISTRIBUTION 

In line with previous studies of tap distribution in mobile 

text-entry (e.g. [1]) we were interested to assess how 

accurate user tapping was on the watch keyboard. Following 

the results above, we focused on the standard keyboard and 

excluded the rarest three characters (q,x,z) from main 

analysis as they did not occur frequently enough in our test 

data. When analysing individual taps the coordinate tapped 

has to be associated with the intended letter – this can be 

problematic as users do not attempt the correct letter all the 

time (they may miss a key, double tap or simply spell the 

word wrongly). We associated each tap with the nearest-

letter on screen Ln, the expected letter in the phrase Le and 

the language-model corrected letter that was inserted into the 

text Li. We then filtered out cases where the tap was not 

correctly corrected by the language model to the expected 

letter in the target phrase (i.e. where Le ≠ Li). As error rates 

were low this is a more open approach than a simple distance 

filter – in practice it excluded 12% of taps that had a mean 

distance of 87.7 pixels from the expected key. 

Overall the average tap offset was 2.3 pixels horizontally and 

3.7 vertically showing very close overall proximity to the 

centre of keys (0.24↔ 0.38↕ mm). Figure 11 shows the 

average offset per key with a pattern similar to previous 

analysis (e.g. [1]) for single finger tapping on a smartphone. 

Letters near the centre of the keyboard are tapped more 

accurately than the edges and there is a clear downwards 

trend on the top row. However, the average offsets from the 

key centres are very small considering that the screen 

measures 33 mm diameter (approx. 4 mm between key 

centres). 

These average, however, may hide high variance either for 

each user or between users. Figures 12 shows the individual 

taps and does suggest fairly large tap variation around each 

key but still clear focus per letter.  

Positive Comments Negative Comments 

"You could easily check to see what was 

already written very easily." (8) 

"All of the message is displayed." (7) 

"Allowed you to easily switch between 

keyboard and typed view." (6) 

"Even when the focus was on the text, I was 

able to see the keyboard well." (5) 

"Accuracy of typing." (4)  

"The [keyboard-focus] keyboard was better 

as it had stability when changing from 

normal to fading mode." (2) 

"It allowed for more keyboard space on 

screen." (2) 

"Layout was basic and simple to 

understand." (2) 

"Word predictions were easier to read." (2) 

"No clutter as use of swipes for space and 

delete." 

"It was good to be able to check the sentence 

was correct." 

"Use of colours." 

"Better for longer sentences" 

"Movement felt natural." 

"A lot of flashing wouldn't allow me to focus on my writing." (9) 

"especially on [read-focus]" (2) and "foresee accidentally tilting … 

while walking" (1) 

"The already entered text sometimes blocked your view of the keys." 

(7) or "was distracting" (3) 

"The point where the text can be clearly seen is hard to find and 

maintain." (7) 

"It was not immediately obvious whether tapping on the screen while 

the keys were faded out would input text or perform another task, like 

move the cursor." (3) 

"It was uncomfortable to move your wrist to the correct angle for the 

tilt to register." 

"Tilting required me to tighten the strap." 

"Had to tilt wrist unusually for it to fully operate." 

"Autocorrect could be better." 

"Tilt angle was in between both screens for my [normal] wrist angle." 

"I didn't always realize when I had made mistakes." 

"Preferred seeing everything on one screen." 

"I think it was unnecessary. The [standard] keyboard was good 

enough." 

"Sometimes [tilting] was a bit tiring when compared with [standard]." 

"Swipe for space could be a bit more sensitive." 

Table 2: Sample Participant Quotes (counts for similar quotes in parenthesis) 



 

Figure 11: Average offset per key2 

 
Figure 12: Cloud plot of tap distributions with 95% 

confidence ellipses2 

Figures 13-16 show density plots for the keyboard's three 

horizontal rows and vertically. These show overlap but 

visible separation of plots between keys.  

Finally we analysed the over variance of taps and compared 

the average variance per user with the average variance 

between users. Horizontally we see an average standard 

deviation per user of 12.3 pixels which is very close to the 

average deviation between users of 11.5 pixels. Similarly we 

see an average vertical user standard deviation of 11.0 pixels 

compared to a between user 10.2 pixels. Summarized as 95% 

confidence ellipse on figure 17, the results show that within 

user variance is very similar to between user variance on this 

small screen but that the variance overall is surprisingly 

small and largely in-line with expectations from large 

smartphone studies (Azenkot and Zhai [1] found within user 

standard deviations of 11.3 horizontally and 9.9 vertically on 

a smartphone with higher between subject variance – despite 

much smaller physical key separations). 

                                                         
2 Word lists and log data, including all tap data, are available at 

http://watch.textentry.org.uk/  

DISCUSSION 

Reviewing our four hypotheses for study two: 

H1 Text entry will be faster using the tilting keyboard 

The results contradict this hypothesis – while the difference 

was not great, the standard keyboard was significantly faster. 

 
Figure 13: Top row horizontal density plot 

 

Figure 14: Middle row horizontal density plot 

 
Figure 15: Bottom row horizontal density plot 

 
Figure 16: Vertical density plots 

 

http://watch.textentry.org.uk/


H2 Text entry will be more accurate using the titling keyboard 

In all conditions error rates and use of backspace were low. 

However, again the hypothesis is contradicted with the 

standard keyboard having lower error rates, despite the keys 

being closer together. Qualitative feedback, TLX 

performance ratings, and tap offset/variance analysis 

confirmed that typing was very accurate overall. 

H3 The average angle of typing and variance of viewing angle 
will differ between the keyboards 

The two parts of this hypothesis are confirmed: we see a 

different average angle of the watch at tap-time for the three 

conditions. The standard keyboard was closest to the 

preferred angle identified in study 1 with the two tilt-based 

keyboards being away from this central position by around 

5°. The variation of angle during tasks was lowest for the 

standard keyboard (albeit with limited significance). There 

was little difference between the two tilt conditions but the 

keyboard-focus did appear to have higher variance of angle. 

In both tilting keyboards the mean angle corresponded to a 

position that had a partially transparent keyboard. It is 

interesting to note that even in the final block of phrases, the 

transparency between the two keyboards (80% and 32% for 

keyboard-focus and read-focus respectively) did not agree – 

showing that users weighted a comfortable typing angle 

higher than visibility optimization. Users also commented on 

a problem of maintaining uncomfortable angles. 

H4 As the study progresses users will tend towards a more 
transparent keyboard. 

This hypothesis is refuted – in the final task set users settled 

on higher opacity for the keyboard than in the phrase sets 

overall. Qualitative feedback suggested the transient 

transparent layering as confusing or distracting. 

CONCLUSION AND FUTURE WORK 

Tilt control was easily understood by participants in both 

studies and appreciated as a control method in study 2. 

However, the layered-tilting keyboard resulted in a slower 

and more erroneous typing, albeit by a small factor, with 

negative user comments focusing on the confusing nature of 

the merged transparent layers and the requirement to 

maintain an awkward angle. Our conclusion from this study 

is that users want to see both text and keyboard continuously 

so settle on a position where this is possible and will not tilt 

far beyond their comfortable typing angle to achieve this. 

While using the keyboard for 30 phrases users did not get 

comfortable enough with key locations to use a near 

transparent keyboard. As such, we must conclude that while 

the tilting interface was easy to understand and appreciated 

by users as a method for easily checking text and flicking 

between modes – the transient layering was not appreciated 

and did not help text entry where users preferred to see some 

of the text and the keyboard continuously. Adaptive 

monitoring of individual's tilt angles and more complex 

layering c.f [4] may overcome the visual issues. Tilt to 

control the display was effective, understood and "natural", 

with a fairly stable 13-15° tilt angle appearing most 

comfortable for typing, thus worthy of further research. Care 

is needed in design of tilt-based interfaces, however, to 

reduce the need to maintain an angle far from this central 

"comfort" angle. We suggest occasional flicking to view an 

alternative display, e.g. the whole text for review and/or carat 

placement in the case of text entry, may be a more suitable 

use of tilt-to control than fading proportionally between two 

superimposed views. Further research is planned into these 

issues in particular looking into how editing tasks could be 

supported. The studies here used traditional text-entry 

transcription tasks in a laboratory environment, we are also 

interested if different tasks (e.g. prompted composition [42] 

or image description [33]) or "in the wild" [26] study would 

affect usability of tilt and give greater challenges to the one 

short line approach of the standard watch Qwerty layout. We 

are also interested in looking further into the impact 

handedness may have on tap accuracy and what impact 

wearing the watch on the dominant has. 

Our study confirmed accurate tapping on the small watch 

screen and acceptable input speeds (29 words per minute) 

with very low error rates and backspace usage. Tap analysis 

showed that users were very accurate on their individual taps 

and in-line with previous studies relative to key dimensions. 

Furthermore the use of a tuned language model did succeed 

in supporting users typing with good "accuracy" while still 

encouraging accurate tapping.  

Speed, accuracy and tap analysis results are encouraging and 

provide support, with additional experimental data, for 

previous claims [15,43] that a standard QWERTY layout tied 

with a strong language model is suitable for text entry on 

smartwatches. 
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