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Abstract

We propose a strategy to obtain approximate solutions of
an overdetermined consistent polynomial system of which
we are only given an approximation.

These systems will be supposed to be instantiations of
some polynomials Fi,..., F,+1 € k[A, 2] on the A variables,
where k C C is an effective ficld, © = (z,...,x,) are the
unknowns and A is to be seen as a set of parameters.

For an arbitrary choice of A, this system is generally in-
consistent. We first propose hypotheses under which the
set of A where the system is consistent is an hypersurface
of the space of paramcters. In the second part, we use the
algorithm for geometric resolution given in [7] in our partic-
ular setting, to give a theoretical polynomial-time resolution
algorithm.

Finally, we apply our strategy to the example of an over-
constrained parallel manipulator, where an extra measure is
adjoined. A resolution is computed in Magma that demon-
strates the feasibility of the method.

1 Introduction

Many physical phenomenons can be modelized as polyno-
mial systems with parameters, for instance in the ficlds of
robotics or computer vision. Even if the svstem is overcon-
strained, physical evidence tells that for some set of param-
eters, the system has a solution, which is gencrally unique.
As an example, see the case of an overconstrained parallel
manipulator with scven measures, whereas this system has
six degrees of freedom.

Consider f = (fi,...,fnt+1) an overdetermined con-
sistent polynomial system in Clei,....z,]. It is is
supposed to be an instantiation of some polynomials
Fi(Mx),...,Faz1 (A ) on an unknown sct of parameters A.
If we slightly perturb the parameters, chances are that the
new system f becomes generically inconsistent. In many
practical situations, we are only given this approximation
f, the exact set of parameters insuring consistency remains
unknown. Typically, noise in a data-acquiring system vields
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such cases. The issue is thus to recover approximate solu-
tions of the overdetermined consistent system f from the
only data of an inconsistent nearby approximation f.

Existing methods in this field rely on eigenvectors com-
putations ([2]) or Newton approximations mixed with defor-
mations of the system ([4]).

Our idea is to explicitly work with the polynomials F;
that depend on the parameters A = (Ar, ..., Ap) and the un-
knowns x = (21,...,2,). The parameters lie in the affine
space C° and x in C7, so that F; € C[Ay, ..., Ap, &1,...,&0).
We will suppose that the instantiation on A = 0 yields the
inconsistent svstem f, whereas the “original” parameters Ag
are unknown. Starting from A = 0, we seek a set of param-
eters such that the system is consistent.

We will work under the following hypotheses :

e the system F1(0.2),...,F,(0,z) is a reduced complete
intersection, and admits a finite number k of solutions ;
the system F1(0,x),...,Frt1(0,2) defines the empty
set. This is the perturbed data.

e there is an unknown set of paramneters Ag such that
Fi(ho,2),. ... Fag1(Xo, ), defines only one point in C".

In the first part, we show that under these hypotheses,
the set of parameters for which the system is consistent is an
hypersurface of C°. This is a purely geometrical description
of the situation, and it is followed by a brief discussion on
the physical accuracy of this modelization.

With the help of an algorithim for geometric resolution
given in [7], we then propose an algorithm that outputs a
representation of this hypersurface, and a way to recover
solutions above this hypersurface. In the case where the
coefficients are rational, this algorithm’s complexity is poly-
nomial in some suitably defined quantities. We then propose
a strategy to obtain approximate solutions starting from the
point A = 0.

The last part is devoted to the example of an overcon-
strained parallel manipulator, for which a resolution is com-
puted with the Magma computer algebra system. It is only
intended to demonstrate the pertinence of the physical mod-
elization, for we do not yet have a generalist software for
geomctric resolution.
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2 A point of view on approximate consistent sys-
tems

In this first part, we give a geometric sketch of the situation
we are dealing with. Therce is no computational considera-
tion here.

For the sake of short writing, we will call &,,, ®,,1 the
polynomial mappings

P, CPxC* —» C°
(Az) = Fi(\x) i=1,...,n
(I)n-i—l U: X C" - Cn.{-l
(Ax) » Fi(\z) i=1,....,n+1

Of course, we cannot say much about the dimension of
the varieties @, '(0) and ®1,(0) in all generality, for there
might be places of degencracy. Thus we have to work locally.

Let 7 be the projection

o Ct'xCt -
Az) = A

Call A the projection w(®;,},(0)) on the space of param-
eters C'. This object is our main point of interest. It is to
be seen as the locus of consistency : above a point A of A,
there is a (generically unique) solution to the system F. The
main feature here is the following proposition.

Proposition 1 There is an open subset U of C° such that
the set ANU is of codimension 1 and the restriction of © to
®;,1,(0) is one-to-one above ANU.

Proof. Note first that A is generally not an affine algebraic
subvariety of C”, since w needs not be proper. So when
speaking of equations describing A, we will refer to these of
its algebraic Zariski-closure.

Since the system F1(0, z), ..., F,(0,x) is reduced and de-
fines a complete intersection, the associated jacobian matrix
has full rank at every point of the fiber above 0. Then there
exists an open subset I/ containing 0 in € where this re-
mains valid. From now on, when speaking of ®,, or ®,41,
we will refer to their restriction to U x C*.

The fiber of the morphism &, above 0 is a smooth vari-
ety, cousisting of k irreducible components that form a non-
ramified covering of I{.

Now let us add the last polynomial F,4,. It cannot
vanish identically on any of the previous irreducible sheets,
since this would contradict the inconsistency assuription
over A = 0 contained in the first hypothesis. Then by Krull's
theorem, the variety <I>;_1H (0) is either empty or of dimension
p — 1. The first cannot occur, since contrary to the second
hypothesis.

The projection 7 restricted to U x C* is finite. This im-
plies that the projection of the subvariety & _.lr-, (0) C ®,'(0)
is a subvariety of the samc dimension, that is, p — 1.

For the second part of the proposition, we know that the
projection is one-to-onc¢ on cach of the components of the
covering. As ‘I>17+'](0) consists of a single point above Ao,
the result follows, up to the price of perhaps restricting U4.

This proposition yields a way of dealing with such sys-
tems. The point is to try and reach the hypersurface A,
with starting point A = 0, and to track along the way some

values for the unknowns . What these values should be
is not yet clear, for above a parameter X that is not on A,
the overconstrained system is inconsistent. We will see later
that therc is a way to have an estimate for the unknowns x
that vields the correct value when the system is consistent.

It must be stressed here that the previous proposition is
valid in all generality under the two hypotheses.

Now, if we are given a physical modelization that fulfills
these criterions, the quality of the solution we output de-
pends of the quality of the approximation we arc given. If 0
is not close cnough to A, there is no way to guarantce what
the output will be.

We can thus reduce the problemn of “solving” an incon-
sistent overdetermined system to the search for a point on
an hypersurface for which we have a good initial guess.

The main computational task lies in the elimination pro-
cess that vields a representation of A and @;_}_1(0) above.

The form under which it is given needs not be a list of
monomials, all the more as the equation of A, as an elim-
inating polynomial, is bound to show a high complexity in
this representation.

The following section cxhibits an object that is well
suited to our frame, the so-called geometric resolution of
an affine variety. We will expose an algorithm for geometric
resolutions that doesn’t rely ou the monomial representa-
tion.

3 A polynomial-time solving algorithm

This part shows an algorithm of polynomial complexity that
outputs a resolution of the system F. The complexity of
this algorithm depends on intrinsic arithmetic quantities ;
we will then restrict ourselves in this part to polvnomials
with rational coefficients.

We omit the proofs of the already-published theorems
here, they can be found in 7] and [18].

3.1 Geometric resolution of an affine variety

We first recall the definition of a geometric resolution of
an affine variety. We forget approximate overconstrained
svstems for a while, for the notions and results arc valid in
the general case.

Let fi,....fs be a regular sequence in Qzi,...,xz5],
which defines a variety V7 of dimension » = n — s.

The variables z1,...,2, are said to be in Noether po-
sition with respect to V if the application Qz:,...2,] =
Qzi,....za]/(f1,-... fs) is injective and an integral ring
extension. With a geometric point of view, it mecans that
the projection over the first r variables - the free variables -
is surjective and finite.

The regular sequence fi, ..., fs is then said to be reduced
if there is a change of coordinates « — y such that for all ¢
in 1,...,s the variables yi,...,yn-; arc in Nocther position
with respect to the system (fi,..., fi) and the determinant

To work locally (outside some g = 0) we have the fol-
lowing equivalent geometric condition : fy, ..., fs form a re-
duced secant family, i.c. fi....,fi (i =1,...,5) definc a re-

duced complete intersection of codimension ¢ outside g = 0.

It this setting, a geometric resolution consists in :



e a linear change of coordinates (z1,...,%,)
(¥1,---.¥») such that the polvnomials are in Noether
position with respect to the new set of variables.

e a prinitive element u of Qy,...y.] —
Qlyr, -5 yn)/(f1,.--, fs); with a minimum poly-
nomial ¢, € Z[U]. A primitive element will also be
called separating. This is an extension of the definition
in the zero-dimensional case, where u is a primitive
clement if and only if w(P) # «(Q) for all P> and @
distinct points of V. The degree of ¢, is the rank of
Qi ynl/(fry. .. fs) as a Quyi, ... y»]-module.

It is sufficient to consider linear primitive elements.

e a set of paramcterizations p;y; — vi(u) for i = r +
. The p; (resp. wv;(u)) arc polvnomials in
Zlyr,-..y»] (resp. Zlyi....y.][U]), and depend on the
choice of u. With p = Tlp,, the set of points z of V
outside p~'(0) is given by g, (u) = 0, piyi — vi(u) = 0.

This object is well adapted to our problem. The mini-
mum polynomial ¢, of the primitive element is the eliminat-
ing object we arc looking for. Above a point ¢ that is not a
zero of this polynomial, the parametrizations give values for
the dependent variables. Suppose that v moves toward wp,
where ¢, (vg) = 0. Then the valucs of the parametrizations
tend to the coordinates of the solution above vo. These val-
ues can then be seen as approximations of some solution of
the system.

This type of presentation of a variety is first to be found
in the work of Kronecker in the end of the 19th century [15].
In the computer algebra community, this idea first appeared
under the name “shape lemma® in [6] (see also [3]).

In the zero-dimensional case, the first practical imple-
mentation of such ideas is in [21] (see also [22]) where it
bears the name Rationate Univariate Representation. These
algorithms depend on the precomputation of a Grébner ba-
sis.

Alternatively, a long series of paper has brought a algo-
rithm with better theoretical complexity to compute incre-
mentally a geometric resolution : [8], [14], [10], [9], [7]. The
underlying idea is to follow an iterative intersection process
instead of the rewriting procedures. This algorithm shows a
polynomial complexity in both the complexity of evaluation
of the input polynomials and some geometric invariants of
the variety they define. Below, we briefly explain these two
features.

3.2 Encoding the polynomials

As has been said, it is easier to obtain a geometric resolu-
tion for systems of polynomials with good “evaluation prop-
erties”. Let’s see what this is about.

Consider for instance the square matrix A4 = [ay;] of size
n. Its determinant is a polynomial in the a;;’s having n!
monomials. On another hand, therc are polynomial-time
algorithms that cvaluate its value on any instantiation of
the a;;’s without using the developed form : a determinant
has good cvaluation properties.

The point is to think about polynomials as functions from
C* to C rather than elements of the vector-space Clx].

On a practical point of view, this means that we won't
stock a polynomial as the list of its coefficients on the mono-
mial basis, but as a function by means of Straight-Line Pro-
grams or SLP’s. Informally speaking, these are programs

that compute the value of a polynomial on any point of the
source-space, this space being a power of an effective field k.

We will not recall here precisely the now well-known def-
initions and theorem about Straight-Line Programs.

Oue has to know that the size of a SLI is measured by
two quantities : its length L and its non-scalar depth £. The
first one is simply the number of its nodes ; the non-scalar
depth is the length of the longest path in the graph, counting
only non-scalar operations.

Equality testing is based on the theorem of Heintz-
Schnorr ([13]), we the usual drawback that our algorithms
are probabilistic with hounded failure probability. We will
also have to differentiate SLP's. Given a SLP of size L that
codes a polynomial P, the theorem of Baur and Strassen [1]
states that there is a SLP of size 5L that computes I’ and
its gradient.

3.3 Geometric invariants

We now turn to the description of some intrinsic combinato-
rial quantities of the variety defined by a list of polynomials
(fi,-  fs)in Q... ,z,]. We will suppose here that these
polynomials form a regular, reduced sequence, their degree
being at most. d. They are supposed to be coded by Straight-
Line Programs of size at most L and non-scalar depth £
Attached to this equidimensional context, we present two
invariants, its (afline) degree and its height.

Let’s first sce the degree of an affine algebraic variety. We
will use only the geometric definition which is given in [11],
since no multiplicities occur. For a zero-dimensional variety,
the degree is equal to the number of points. The general
definition is based on this first case. In the worst case, this
degree is equal to the classical Bézout’s bound d°, but can
be strictly lower.

- The degree of the system (f;) is the maximum of the
degrees of the intermediate varieties ¥; = V(fi,..., fi). Tt
will be noted 4.

The second intrinsic parameter we consider is the height,
and is of diophantine nature. Tt will be noted 5. The precise
definition is technical, and out of the scope of this paper. It
is detailed is [18] and [7].

The definition is based on the definition of the height of
an integer n € Z as max(log,(|n})).1). The process of defi-
nition is similar to the degree : first for a zero-dimensional
variety, then in the general case. For a zero-dimensional vari-
ety, the height is linked to the height of the polynomials in a
geometric resolution with integer coefficients. For a positive-
dimensional variety V' = ¥ (f1,..., fi) in Noether position
with projection # : ¥ — C'~'. the height is computed from
the height of the zero-dimensional varictics v, = 7~ !(a), for
suitable ¢ € C" 1.

From [14], we have by means of an arithmctic Bézout
theorem that 7 is less than héd?", for an universal coustant
A.

3.4 The geometric resolution algorithm

In this part, we recall a theorem by Giusti, Haegcele, Heintz,
Montafia, Morais, Pardo which gives an algorithm for geo-
metric resolution, the complexity of which depends on the
aforesaid guantities. We will not establish any proof here,
but ounly sketch its hehavior.



Thoerem 1 in [7] Let g and fi,....fs in Qz1,...,za].
Suppose that the polynomials f1,..., fs define a regular, re-
duced sequence in the open set g # 0 C C* and are of degree
less than d, height less than h and are coded by Straight-Line
Programs of size less than L. There is a bounded error prob-
abilistic Turing machine that outputs a geometric resolution

is L{ndhén)®".
Let’s make a few comments about this algorithm.

e The process is incremental : we successively com-
pute geometric resolutions of the varieties V; =
V(fi,..., fi). Thei*" inductive step consists in putting
the i 4+ 1"* polynomial in Noether position and to find a
new primitive element together with its minimal poly-
nomial.

o The algorithm could also rely on the precomputation of
a correct-test scquence, and thus become deterministic.

e We can test at each step if the system is reduced. If
this is not the case, we stop the computation.

¢ The possibility of local computations outside some hy-
persurface is likely to lower the affine degree ; for in-
stance, the points at infinity do not alter the complexity
of the affine resolution.

o The output polynomials are given as Straight-Line Pro-
grams.

This version of the algorithm relies on the notion of
magic point ; this feature cnables the lifting from a zero-
dimensional setting to a positive-dimensional one.

Assume that we have reached step i with a geometric
resolution of the variety ¥_i, and that V; is in Noether
position. Let m; : V; — C'7" be the projection on the
first n — ¢ coordinates. With the previous notations, a point
P, € Q"¢ is a magic point for V; with respect to m; if the
fiber Vp, = w7 " (P;) has deg(V;) points.

It can be shown that I’ is such a point if and only if the
determinant of the jacobian of the polynomials fi,..., fi
with respect to the free variables is non-zero above P;.

These magic points share the property that the knowl-
edge of a geometric resolution of the fiber Vp, is enough to
construct a resolution for the whole variety Vi, This is done
through a symbolic version of the Newton-Hensel iteration.
For a proof, more detailed explanation and extensions, we
refer to [18], [7] and [12].

Having this tool in mind, the iterative step of the algo-
rithin splits in two parts :

e Obtain a geometric resolution of V; from P, the
Noether normalization of V; and the geometric resolu-
tion of Vp, - this part uses the symbolic Newton-Hensel
procedure.

e Normalize V;11, find a new magic point P41, and com-
pute a geomctric resolution of the fiber above this point
- which is a zero-dimensional problem.

3.5 A polynomial-time existence theorem

Let’s get back to overconstrained systems. In this part, we
apply the former results to this particular sctting. To this
effect, we will use the following notations :

The system we study is noted Fi,..., Fy,+1, where F; €
QA1 -y Ap. 21, ..., 2] The degrees of the polynomials are
bounded by d, their height by h and they are supposed to
be coded by SLP’s of size at most L.

Recall that the specialization in A = 0 satisfies the hy-
potheses introduced in the introduction, and that the set of
A such that the systemn is consistent is an hypersurface of CP.
The objective is to get a representation of the eliminating
object A and the parametrizations of the unknowns 2 above
a point A in €. This will be done as an application of the
theorem 3.4.

The geometric result in the first part is local. We then
have to specify in the input an hypersurface V'(g) to avoid ;
this hypersurface contains the places where degeneracics oc-
cur. We will furthermore suppose that the system is regular
and reduced out of this surface. As the hypotheses of [7] are
now fulfilled, we can apply their result and state the main
theorctical theorem of this paper :

Thoerem 1 Let (F1,..., Fug1,9) €
QAL .., Apaia. .. 2] such that the system F  satis-
fies the two conditions of the introduction. The degrees of
these polynomials are bounded by d, their height by h and
their are coded by Straight-Line Programns of size at most L.
Let V' be the varicty defined by the system Fi,..., Fy4 in
C'* and call § and 7 its affine degree and height. Assume
that outside the set V(g) the sequence F; is reqular, reduced.

There exists a bounded error probabilistic Turing machine
that outputs

e o geomctric resolution of the system F consisting of
an eliminating polynomial g(Ap) € QAL,..., Ap-1][U]
and the parametrizations piz; = vi(Ay), where p; €
QA1 -] and v € QQAr, ..., A ][U],

o the gradient of ¢ with respect to the variables A1, . .., Ap.

The hypersurface ¢~ (0) C C° s locally the consistency lo-
cus. The running-time of this algorithm is L(ndhén)®%).

Proof. We apply the theorem of 3.4. The geometric reso-
Iution algorithm successively puts the intermediate varieties
Vi = V(F1,..., F;) in Nocther position. As we assume that
the zero-set of the n first polynomials is a covering of CP,
it is possible to cnsure that the first n changes of variables
only touch the variables z.

The last step performs a change of variable in the space
of parameters (A1,...,Ap) = (¢1,...,4tp). The output is a
polynomial in Q[z] that is monic in 21 and the variables x as
rational fractions in the variables p. The application of the
inverse change of variables yields an eliminating polynomial
¢ in the variables A and the parametrizations as rational
fractions in the same variables. The theorem of Baur and
Strassen then yields the gradient of q in size less than fives
times the size of .

Outside the discriminant locus where a denominator in
the parametrizations is zero, the zeroes of g are the points
above which the system is consistent, that is the hypersur-
face A.

Our resolution algorithm is now the following :



¢ Compute a representation ¢ of A, its gradient and
parametrizations of the unknowns.

e Starting from A = 0, perforin numerical iterations to
move towards A.
Evaluate the unknowns « along the way.

In this sense, this algorithm can be called semi-
numerical : we first perform a formal elimination, then suc-
cessively improve the numerical approximations of the solu-
tions. '

4 An example : the parallel manipulator

To test the feasibility of the method, we chose the well-
known example of the parallel manipulator or Stewart plat-
form. After a brief overview of the problem and its history,
we expose the results of our own approach.

The aim of this part is mainly to illustrate our point of
view on overdetermined systems, we are not yet ready to
compare our software with existing systems.

4.1 The overconstrained parallel manipulator

D. Stewart proposed in 1965 the construction of a paral-
lel manipulator, with a view to design flight simulators. A
parallel manipulator consists in :

o two rigid bodies (the platforms) .4 and B, one of which
is moving with respect to the other,

e two set of points A,,..., A¢ (resp. Bi,..., Bg) that are
fixed with respect to A (resp. B), so that A; is linked
to B; by a straight leg.

We are interested in the so-called direct problem : given
the geometries of the two platforms 4 and B and the lengths
of the segments A;B;, find the possible positions of B with
respect to 4. This can be written as a polynomial system,
the unknown of which is the displacement taking the coordi-
nate frame of one platform to the other. In the general case,
six measures are necessary to obtain a zero-dimensional sys-
tem.

This has been widely studied. On one hand, numeri-
cal algorithms “a la Newton” work as long as the platform
is not too tilted, see [17]. On another hand, the computer
algebra community has taken interest in the maximum num-
ber of positions (real or complex) of a parallel manipulator
([16], [17],{19],[20}). Their works werc based on the com-
putation of Grdobner bases, and/or geometric simplifications
of the construction. We propose here yet another point of
view, adjoining a seventh measure, so as to get back to the
framework we gave above.

We have chosen a particular type of platform, which dis-
plays more symmectries than the most general case. It is
borrowed from S. Egner’s modelization in [5], and some real
Stewart platforms are built upon this model. In this case,
the construction of the platformn depends of some parame-
ters : the radii of the circles and the half-angles of adjacent
joints. These will be fixed throughout our computations.

v A

A2
Al
AS
A6
Figure 1: The lower platform
B2 B1
(6]
B3 B6
B4 BS

Figure 2: The upper platform

e — ————

The angles 4204, and BsO'B; arc respectively of 7 /6
and /3 rad.

The seventh measure is the height of the point B;. In
the experiments we have led, it was considered as the only
parameter : that is, the first six measures were considered
as actual constants. This is a simplification of a potentially
more complex setting, where every measure could be consid-
ered as a parameter.

4.2 Writing down the equations

The system of equations we use is borrowed from S. Eguer’s
article [5]. The idea is straightforward : express the lengths
of the six segments and the height of point B, as polynomial
functions of the input.

The data is the set of 6+ 1 measures £, ..., fs, 7. Recall
that only the last one is a paramcter ; the other oncs are
fixed trough the computation.



The unknown is a displacement (R,7), where R €
SO3(R) and T = [z,y, z] is a translation.

Rather than a set of variables R;; together with the con-
straint ‘RR = I, we paramecterize the rotation matrix by
quaternions. Four real quantities (eo,ei,e€2,e3) such that
€3 +e? +e2 +e2 =1 yield the rotation matrix

2(erez + eges) 2(eyes — epez)
h “
ed — el +el—cf ’(6’63+l’0!’1)
3
2(ezes — eper)  ep — e — el el

2 2 2 2

eg + ey —e5 — ey
R= 2(e1e2 — egeg)

2(e1e3 + enen)

This parametrization has the drawback of introducing
second-order terms in the unknowns, but this quantities are
highly symmetric. It turns out that the resolution with thesc
variables is easy to compute. To sum up, our variables are
£, 4, %, €0, e| ) €25 €3, dnd the parametrization adds the equa-
tion e + ¢ +e3 +e2 =1 to the system.

Let now a; and b; be the coordinates of A; and B; in
the corresponding frame. These quantities are known and
depend on the construction parameters. As the half-angles
between two consecutive joints are of magnitude x/6 and

7/12, these coordinates arc not rational, but in Q(v/2, V/3).

We denote by h(Af) the third coordinate of point a M.
With this convention, the equations are :

Rbi+ T —ail>=¢ i=1,....6
eft+el+es+ei=1
h(Rb; + 7-)‘3 = (é
Some remarks can be made prior to any computation.

o Let’s first look at the first six equations. The ma-
trix R(eo,e1,e2,e3) is invariant by the transforma-
tion (eo,€1,e2,e3) — (—en, —€1,—e2,—e3), as the
parametrization is homogeneous of degree two. This
is why we expect an eliminating polynomial involving
only even powers of its variable. Then, as the base
is in the plane h = 0, the knowledge of the lengths
isn’t enough to determine in what half-space h > 0
or h < 0 the platform is. As a conscquence, the sct
of solutions is globally invariant by the transformation
(z,y,z,co,e1,€2,€3) — (3,9, —z, —co, €1, €2, —€3).

e The last equation we have chosen does not eliminate
these symmetries, for we have taken squares. It can
then be argued that we are not here exactly in the ge-
ometric conditions we chose in the preamble.

These equations are in a raw format and we can simplify
their writing. Some linear combinations lead to an equiva-
lent system which is much easier to handle. Once again, this
part of the work is taken from S. Egner’s paper. We obtain
the following system :

-leue
@ — hyp(2e] - 2e3)
S4ed —e8 - efimt2egnn — cgezlut2eres +egenlz—2hiated — c3)
vt dhiyeres
2eqen + egey)e + (eo - “1 +er, —e3)y 4 2epes — epe1)z + 4hiperen
T4 9%+ 2% —agig(ed - eF) + 490

I
-
o
D
Q
P
%
~
SRR IR SR

2 2 2 2
eg+el tex tez =1

110GV (e e + epen) + epey — agey) — 237 = t"Tz

The matrix A is a 6 x 6 matrix with entries in

QV2,v3)

25a 25a 25a 280 250 25a
a=VE—- V2
8=v6+ V2

The parameters g; are :

go = 50

g1 = 23/2V2-25/6V6
g0 = 25/2v6+25/2V2
gl = 125/2v2-125/6 V6
g2 = —125

hn = g11/qm

hia = g2/

Let’s repeat that these value are due to the geometry of
the platform that involves angles of /6 and 7/12. The set
of equations will from now on be called Fi,..., Fx.

Geometrically speaking, the space of parameters is C,
above which the space of variables is €7. As the first 7
equations do not involve the paramneter, they define a cylin-
der in C x C7, which is one-dimensional if the 6 lengths are
generic enough. The last hypersurface cuts this cylinder on
a finite set of points that projects on A ¢ C. The scventh
measure €5 vields an initial guess ; we have to find the
point of A closest to T

4.3 Computing the geometric resolution

The experiments were based on an home-made cardboard
Stewart platform, for which we mecasured the seven lengths.
Expressed in centimers, here is the available data, :

6L = 179 £ = 134
£ = 135 {5 = 15.1
£z = 12.05 £s = 18.2

&Mt o~ 16.7

This data is converted to rational expressions. The pre-
cision of measure is about 1/2 mm for the first six lengths.
The last one is less precise ; the precision is only of 1 mm.

Next follows a description of a resolution of this system.
It is intended to show the soundness of our approach on
overdetermined svstems, rather than be a comparison be-
tween two computational methods, for we cannot compare
between a general-purpose software and ad-hoc procedures.

As we are actually in a zero-dimensional situation, a
Grébner basis computation for a pure lexicographic order
on the zero-dimensional system of eight equations will give
a parametrization of the unknowus, if the coordinates are
generic enough. We could also obtain a geometric resolution



from the multiplication table of the quotient algebra as was
said in part 3.1 using F. Rouillier's work. Unfortunately, we
didn’t work this possibility out.

On another hand lies the geometric resolution algorithm
we have presented. The implementation by G. Lecerf of this
algorithm is a work in progress at Lab. Gage so that we are
not able to plug the overconstrained system in a procedure
and examine the result.

As a consequence, we computed the resolution using
Magma-procedures that follow the geowmetric resolution algo-
rithm but do not make use of the Hensel lifting tool. This
approach is similar to the algorithm proposed in [10], see
there section 4.1 that describes the inductive step. The main
computational task consists in evaluating the new equation
on the previous paramectrizations and then computing the
resultant with the previous eliminating polynomial. The
implementation uses an idea due to Kronecker which vields
both the resultant and some parametrizations in a single
step through a generic linear change of variables.

We did not represent all the polynomials as actual
Straight-Line Programs. Still, the complexity of evaluation
is crucial in the execution-timme, for we evaluate equations on
the available parametrizations. We then adopted a mixed
approach : the substitutions are performed on polynomials
coded by SLP’s.

It must be stressed that we did not implement here any
general-purpose resolution algorithm : our implementation
is devoted to the particular case of the parallel manipulator.
The order in which we perform the computations, some lin-
car simplifications, as well as the SLP’s we use are part of
the code itsclf. The comparison between the running-times
of the two approaches then has little meaning.

Both computations were done on a DEC Alpha EV36
400 Mhz with the software Magma on the UMS MEDICIS
cluster of servers. Here follows a brief description of the
experiments. To simplify the writing, we will abusively call
height of a polynomial in Q(v/2, v/3) the maximum number
of digits of its cocficients, written on the form ng + n1v2 +
-n-z\/§ +n3v6, n; €Q

o The first approach was the Grébner basis computation
for the whole system of eight equations for an climi-
nating order. This process took 95 minutes. It vields
an eliminating polynomial p that is of degree 28 and
involves cven powers of I7 only. The coefficients have
an height of about 2000 digits.

For any other variable, there is in the basis a monic
cquation lincar in this variable or in the square of this
variable. This is a cousequence of the symmetry we
have mentioned : some signs of variables cannot be
determined above the roots of the eliminating polyno-
mial. The coefficients of thesc equations have an height
of about 65000 digits.

The hypersurface A is the finite set of the roots of the
polynomial p in C. We expect to find a root of p at
approximately 16.7. The root of p closest to 16.7 is app.
16.48. It is the only zero of p in a radius of 9 around
16.7, so that no doubt is allowed regarding the choice of
the correct answer. The error is about 2 mm, which is
of the order of magnitude of the input precision. We lift
the values of the other indeterminates using the other
polynomials in the base.

-~

e The sccond process we followed is similar to the geo-
metric resolution algorithm presented carlier, with the
difference that we do not use the Hensel lifting feature.

Recall that only the last measure is considered a pa-
rameter, whercas the other ones are fixed. This last
measure does not appear in the first equations. In this
sense, the first six climinations are equivalent to the res-
olution of the 6—6 Stewart platform problem. Contrary
to the Grobner basis computation, we have natural ac-
cess to this intermediate result as a by-product.

We successively eliminate the variables z,y, 2, eo, es and
e1 using the first six equations, keeping track of the
parametrizations of each variable with respect to the
remaining ones.

As a consequence of the symmetry we have mentioned,
the elimination process only gives the parametrization
of 3 ; this is the same phenomenon as in the Grobner
basis computation.

We are left with an eliminating polynomial g(ez) of de-
gree 28, which has an height of about 200. This polyno-
mial only involves even powers of ez, which too results
from the symmetries. The parametrizations have ap-
proximately the same number of digits.

This part takes 13 minutes to compute. Note that a
Grobner basis computation for this sub-system takes
19 minutes and has coefficients of about 16000 digits.

Up to now, we have left the last equation Fg untouched.
Substituting the parametrizations modulo g(e2) in Fy
vields a polynomial of the form n(ez)—d(e2)€3. The two
cquations only involve even powers of ¢2, so that their
resultant is the square of the polynomial p of degree 28
computed earlier.

The substitution of the parametrizations in Fy takes
21 minutes. The importance of a good complexity of
evaluation arises here naturally : the time necessary
to perform the substitution is proportional to the com-
plexity of evaluation of the equation.

There is no need to explicitly compute the polynomial
p ; we are only interested in finding a numerical ap-
proximation of its roots, so that a program evaluating
it and the paramctrizations on any valuc of £7 is enough.
The last elimination can thus be done on floating-point
numbers. The quality of the solution is then a function
of the precision we usc. this phenomenon being charac-
teristic of any numerical algorithm. We automatically
fixed a decent minimal precision by successive refine-
ments.

With 1500 significant digits, the computation of the
resultant and its derivative on a value of ¢7 takes 2 sec-
onds. We use a Newton itcration that converges in 3 it-
erations from our estimate 16.7 to app. 16.48. We then
lift estimates of the variables trough the parametriza-
tions - with only the sign condition to fix.

We finish this section with the display of the solution
above {7 = 16.48 :

0.95 0.012 -0.32
R~ 0016 0.99 0.083 |,
032 -0.064 0.94

T ~[-41,1.8, 14].



5 Conclusion

In this paper, we present an original approach on overcon-
strained systems with parameters, that finally amounts to
looking for a point on an hypersurface close to an initial
cstimate. This hypersurface is the projection of the set of
solutions of the system on the paramcter space ; it is the
locus of consistency.

The resolution algorithm vields a representation of this
hypersurface and the parametrizations above it by means of
Straight-Linc Programs. This representation is then used
to perform numerical iterations, that give approximations of
solutions.

Our first example of the parallel manipulator shows that
this approach is feasible in an clementary case. Starting
from an approximation of the seventh measure and comput-
ing a geomnuetric resolution of the system, we can determine
the unique solution to the system with no ambiguity. This
process mixes both exact and numerical computations.
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