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Abstract 

We propose a strategy to obtain approsin~ate solutions of 
an ovcrdctcrminecl consistent polynomial system of which 
we are only given an approximation. 

These systems will bc supposc:d to be instantiations of 
some polynomials Fl: . . . F,,.+I E k[X, :c] on the X variables: 
where k C C is an effective field: .c = (xl, : x,,) arc t.hc 
unknowns a.ntl X is to be seen as a set, of parameters. 

For an arbitrary choice of A; this system is generally in- 
consistent. M’c first propose hypothcscs under which the 
set of X where the systcni is consistent is an hypcrsurfacc 
of the space of paramclt.clrs. In the second part, wc use t.he 
algorithm for gcomctric resolution given in [7] in our partic- 
ular setting, to give a theoretical polynomial-time resolution 
algorithm. 

Finally, we apply our st.rategv to the csaruple of an over- 
const,rainc:d parallel manipulator; where an est.ra m(xsurc is 
adjoined. -4 resolution is comput,ed in Magma t,hat demon- 
strates the feasibility of the method. . , 

1 Introduction 

Many physical phenomenons can be modelized a.s polyno- 
mial systems with para.niet.ers, for inst,ance in t.lic fields of 
robotics or computer vision. Evm if t,he system is ovcrcon- 
strained, ph\;sic:al evidence tells t.hat for some set. of param- 
eters, the syst,cm ha.5 a solution, which is gtncrally unique. 
As an example, see the case of an overconstrained parallel 
manipulator wit.11 seven measures, \VllCN!ilS t,liis system has 
six dcgrccs of freedom. 

Consider f = (fl, , f,L+l ) au ovcrdetermined con- 
sistent 1~olynoniial system in C[.r:1 . xl,]. It. is is 
supposed to be ill1 instantiat,ion of some polynomials 
F,(X:Lr),... i F,+l (A, x) on an unknown set of p,aramet,ers X. 
If we slightly perturb the paramet,ers. chances are that the 
new system f hecomcs gcnerica.lly inconsistent. In many 
pra.ctical situations, WC are only given this approximation 
f, the exact set of parameters insuring consistency remains 
unknown. Typically, noise in a dat.a-acquiring syst.cm yields 

such cases. The issue is thus to recover approximate solu- 
tions of the overdctcrminctl consist,(Ant system f from the 
only dat,a of an inconsistent nearby a.pproximation f. 

Existing methods in this field rely on eigenvectors corn- 
put,at.ions ([2]) or Newton approximations mised with defor- 
mations of the syst,cm ([4]). 

Our idea is to esplicit,ly work with the polynomials Fi 
t.liat tlcpc~id on t,lie parameters X = (Xl : i A,) and the un- 
knowns x = (al ? ? I;~~). The paramet.ers lie in the affine 
space U? and :r in C” : so that Fj E C[Xl , . . ? A,, x1;. . ,.c,~]. 
We will suppose that the instantiation on X = 0 yields the 
inconsistent syst.eni f: whereas the “original” p;lr~lIlleters X0 

are unknown. Starting from X = 0: we seek a set, of param- 
eters such that. the system is consist,ent. 

We will work under t.he following hypotheses : 

the system Fl(O. x), , F,,(O: s) is a reduced complete 
int,crsect,ion. and admits a finite number rE of solutions ; 
the system FI (0,x): . F,+I (0, r) dc:finos the empty 
set. This is the pcrturlxxl data. 

t.hcrc is an unknown set of parameters X0 such that, 
Fl (X0, r)? : F,, + I (X0 i :I:): defines only one point. in cc” . 

In t,he first part, we show that micler these hypotheses, 
the set of parameters for which the syst,em is consist.ent is an 
hypersurface of U? This is a purely geomet.rical description 
of the situation, and it is followed by a brief discussion on 
the physical accuracy of this modelixation. 

\Vith the help of an algorithm for geomet,ric resolution 
given in [i]; we then propose an algorithm tha.t outputs a 
representation of this hypersurfa.ce, and a way to recover 
solutions above t.his hypcrsurface. III the case where the 
coefficients are rational, this algorithm’s complexity is poly- 
nomial in some suit.ably defined qmntities. Wc then propose 
a strategy to obt.ain approximate solutions starting from the 
point X = 0. 

The last, part. is devoted t.o the example of an overcon- 
strained parallel manipulator, for which a resolution is com- 
puted with the Magma computer algebra. system. It is only 
intended to derrlonst.ratc the pertinence of the physical mod- 
elization, for wc do not. yet have a gcncralist, software for 
geornctric resolution. 
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2 A point of view on approximate consistent sys- 
tems 

III this first part,. w’c give a geometric sketch of die sit,uation 
we arc &ding with. There is no computational considcra- 
tion here. 

For the sake of short writing; w will call G,, . @,lt~ the 
polynomial mappings 

Gn : c? x CT’” -3 @” 
(X,1:) e F,(X,.I:) i= I,...:71 

G rrfl : 
@’ xc + c,tl 

(X..c) e F;(X,:r) i=l,...:n+l 

Of course, we camot say 1IIui4~ about, the dimension of . 
the vanetles G’,’ (0) and Gil1 (0) in all generality, fix there 
might, lx places of tlegcnc:racy. Thus wc have t.o work locally. 

Let K lx the projection 

Call A the projection 7i(+,TJI(0)) on the space of param- 

eters P. This ob’icct is our m;lin noint. of int,crcst,. It, is t.o 
be seen as the lo& of consist.ency* : above a. point X of A: 
there is a (genc:ridly unique) solution to t.ho syst.em F. The 
main feat.ure here is the following proposition. 

Proposition 1 There is un open subset U of’ C?’ such that 

the set A nld 1:~ 0f I!v(~%III,~~,~~o~I. 1 d the f-fd-ih07t, 0f in t0 
@ii, (0) is one-to-one dove A n Z4. 

Proof. Note first t,hat A is generally not a.11 affi11e algebraic 
subvarietv of if?” since 7r needs not be proper. So when 
speaking ;f equa.t?ions describing A, we will refer to these of 
its algebraic Zariski-closure. 

Since t.hc syst.cm Fl(O, 2): : F,, (0. .r) is rcduccd and cle- 
fines i-l complete int.ersection, the ass0ciat.d jacot)ian matrix 
has full rank at every point, of tllc fiber above 0. Then thcrc 
exists an open subset IA containing 0 in cCP where this re- 
mains valid. From now on. when speaking of G,, or G,L+l: 
we will refer t.o their rcdriction 1.0 IA x C’“” . 

The fiber of the morphism * ,, RbO\.C 0 is a SmOOt~h vari- 
ety, consisting of X: irrcdiicildt: components that. form a non- 
ramified covering of L/. 

Now let us add t.he last polynomial F,,+l. It. cannot, 
vanish identically on any of the previous irreducible sheets. 
since this would contra.dict the inconsistency assumption 
over X = 0 cont.;Gnd in t,he first hppothesis. Then by Krull’s 
bheorem, t.he variety a;$, (0) is either empty or of dimension 
p - 1. The first, cannot occur: since contrary to the s~contl 

h?;pot,hesis. 
The projection r restricted to U x @’ is finite. This im- 

plies that t.he projcdion of t.he subvariety +ii, (0) c +k,’ (0) 
is a subvariety of t.hc sanic dimension, that is, I-, - 1. 

For the seco11d piirt. of t.he proposit,ion: we know that the 
projection is one-to-one: 011 cadi of the components of the 
covering. .Zs S,;, (0) consists of a single point atmvc X0, 
the result follows. up to the price of l)(!rll;il)s rest.ricting 14. 

This proposition yields a wily of dealing with such sys- 
t,cms. The point is to 1.r) imd reach t,lle hypersurfacc A. 
with stidng point X = 0, imd to track along the way SOIIIC 

values for t.he unknowns t. What. t,hcse values shoultf be 

is not yet clear: for above a paramet.er X that is not. 011 A, 

the overcoIist.ra.iIlctl system is inc:onsist.cnt.. We will bee later 
thst, t,hcrc is a ~~~~~ t,o llil.ve 2~11 estimate for the unknowns s 
that, yicltls the correct. due when t.hc: syst.em is consistent. 

11: miist Lo stxcssed here that the previous proposit.ion is 
villitl in all generality iindcr tllc two hypotheses. 

Noa: if we arc given a physical motlelization that, fulfills 
thcsc criterions, tllc quality of the solution wc output. de- 
pcuds of t,tIc (pdit,; of the appr0xiInat~ioII we arc given. If 0 
is not close c~110ilgh t,o A, there is no way t.0 guarantee what 
t.he output will be. 

We ran t.lnis reduce the problem of “solving” an incon- 
sistent ovcrdrt~rrmincd system to the SC!iW:ll for il point on 

an hypersurface for which we have a good initial guess. 
The main computa.tional task lies in the elimination pro- 

(‘CSS l~llilt. yidds a rc~prc:sc:nl:itt~ii)~~ Of A iilld CD;:, (0) above. 

Thcl form under which it is given needs not be a list. of 
monomials, all the more 8s the equation of A: <W im clim- 
inating polynomial, is h3u11d to show a high complexity in 
this rcprcscntation. 

The: following stdon exhibits an object that is well 
suited to our frame, the so-called ~eimetric resolution of 
illl dine variety. \I’e will expose il.11 illgOrithm for geometric 
resolutions t.hat doesn’t rely oil the monomial rcprcscnta- 
t,ion. 

3 A polynomial-time solving algorithm 

This part. shows an algorithm of polynomial complcsit,y that 
outputs a rrsolut.ion of the system F. The complexit? of 
t.his iIlgOrit.llIn dcpmds on iIIt.riIIsic a.ritliIIIetic quant~tics ; 

we will then rf!st.rict. oiirsdves in this pXt to polynomials 
wit.h rational codficients. 

Wc omit. the proofs of the already-published t,lieorems 
licrcb7 t.licy can 1x2 found in [i] and [15]. 

3.1 Geometric resolution of an affine variety 

We first recall the definition of a geometric resolution of 
an affine variety. IVe forget. approximate overconstrained 
systems for a while: for the not.ions and results arc valid in 
the general (TX+?. 

Lat. fl; . I,$ bc a regular scqucnce in Q[x, , ,xn], 
which dcfinc:s a varict?; I7 of dimmsion ‘1’ = 7). - s. 

Th(: viu%d>l(~s ~1 j . . . , r7. arc said to be in Needier po- 
sition with respect t.0 II if the applicatiou Q[zl : XT1 + 

Q[XI ,... :a,,]/(f~?...:f~) 1s in cc ive ant1 an ‘integral Iing j?.i’ 

extension. 117th a geometric I,oint. of view. it means that 
the project,ion over the first. 'r ViLriihl~S - t.hc free variables - 
is smjective and finite. 

The regular sequence fl i . . : fs is then said to be reducd 
if there is il (~lliLIl~(? of coordinates .i7 ++ q Such that, for all 1: 
in 1: ? s the variables !/I: . g,L- I arc in Nocthcr position 
with respect. t,o the syst,em (fl? , fi) itnd the determinant 
of the ,jacObian Inat,ris .I(fI: . : fi) is non-zero divisor ruotl- 

do (f,:...:f?). 

To work locally (outside some 9 = 0) wc have t.he fol- 
lowing ECllli\.idCIlt gcoInctric coIItlition : fI: i f,$ forIII a. re- 

dl,c:f?d WCitIlt fiLlnil?;, i.cb. fI. i fi (i = l? . S) ddirlc a. re- 
duc:f!d completc~ int,crscdion of codimension i oiitsidc 9 = 0. 

II, 1 his sf%l.iIig, a gcomctric resolution consists in : 



a linear climge of coortlimtes (xl ? j .c,,) H 
(ply . gvt) such that the polyrmmials arc in Nort.lier 
position with respect to t.hc new set 0f variables. 

primitive elelllellt 7L of 
&,I.. : ?/n]/(fl, 1 j-3). 

Q[:w ? ?bl + 
with a 1riininiun1 poly- 

noniial qrL E Z[U]. A pl.imit~ivc clmierlt will also be 
called sepnmtrn,q. This is a11 estcnsion 0f the definition 
in the aero-rli111c1isi01ial case? where 21 is iL priniil.ivc 
clcrucnt if and only if n(P) # u(Q) for all 1’ and Q 

distinct poi11ts of I’. The dcgrcc: of ql, is the rank of 
C&1 i . . ) 2/J/(j1; : js) as a C&/l : !/,.I-1110t1111c. 

It. is sufficient. to cousidcr li1iea.r priniit.ire elenie1its. 

a set Of pi~ilII1~t,~ri2,2t~i~~IlS piyi - ,ui(U) for i = f’ + 

l:...:n.. The pi (rcsp. cL ( IL)) arc pol,ynouiials in 
Z[yl,. yT] (resp. Z[y1, ?/V][C.i])Y iUlt1 dcpcntl 011 t,llC 
choice of 71.. With /J = III~~: t.he set of points x of 1” 
outside p-’ (0) is givcm by q?, (,u) = 0, /~j!/i - Us = 0. 

This object is well adapted to our proMcu1. The 111ini- 
mm1 polyn0111ial (1,‘ of the primitive rlement~ is the eliminat- 
ing object, WC arc looking for. Above a point o that, is not a 
zero of this polynomial, 1.11t: p;~r;tn1c:l.rizat.iorlR give values for 

the depe1ident variables. Suppose that c u&es tOH.ilId ?rn; 
where q,, (1:“) = 0. Then t,hc values of the paranlet.riza.t,ioIis 
tend t.0 the coordinates of the solution above ?:(I. Thcsc val- 
ues can t.hcrl I)e seen as approsimations of s0nie solution of 
t.h.? systcn1. 

This t,gpe of presentat,iou of a. rariet.y is first t,o lx found 
in t,hc w0rk of Kromckcr in t.hc end of t,hc 19th ccnt.ury [15]. 
In the comput,er algebra cornniiinity. this idea first iLppeilrW1 

under the nanic Wiapc IcI11Ina” iI1 [6] (see also [S]). 

In the zero-diniensional ca.se, the first prxt~ical imple- 
mentation of such itlm.5 is in [21] (see also [22]) whcrc it 
bears the II~IIIC Rat.i011ate Univariatc Rcprcscnt.ation. These 
algorithnls tlcpcntl ml tlic I)rCCo111pi1tRt.iori of a Grijbncr ba- 
sis. 

i~lt.c!rnat.ivc?lv, ii 1OIlg swks Of piLp(?r 1litS brought. it algo- 
rit.hrn with better t~lleOrc~tic~i~1 coniplexit~y to c~onipute inure- 
111cnt~all~ a geonietric: resolution : [S]. [l-l]? [lo]: [9]: [il. Th(> 
underlying idea. is to follow an it,erative intersect,ion process 
inst,ead of the rewriting procedures. This a.lgorit.lm shows a. 
p0lynomia.l con1plcxitG in both the com~lca:~~y of e~c~lrrc~&m 
of the input. pol~non1’ials arid some gcmnetric inwmiuts of 
the varict.\; they dcfinc. Below, we hricbfly csplaiu thcsc t,w-o 
fraturcs. 

3.2 Encoding the polynomials 

-4s 1lilS been said: it, is easier to obtain a. geo11iet.ric resolu- 
tion for systems of p0lyn0niials with good “evalua.t.ion prop- 
erties”. Let’s see what this is ah0ut,. 

Consider f0r iust,ance t.11~: square 111atrix .4 = [n,,] of size 
n.. Its deterniina.rit is a pOl~IlOI1liiil iI 1.lic ai,j’s having iI! 

1n0noniials. On anotlicr hand, l.ht:rc arc poly110111ial-time 
algorithms t,hat cvali1at.c its value on my insl.autiat~ion of 
the Uij ‘5 without using the developed form : a det.erniinant 
has good cvalua.tion properties. 

T11c point, is to think about. poly110mials as jmctCms fro111 
C” to C rilther than eltn1cnt~s of the vector-space C[.t:]. 

On a practical point of vifw. this means tlld we won’t 

stock a polyno111ial as t.hc list of its cocffic:ic:nt.s on tlw mono- 

mial basis? but ;ts ii flmct.ion by 11Wan5 of St.raight-T.irle Pro- 
grams or SLP’s. Inf0r111;tlly speaking, these are programs 

t,liat, conqmt,c the value of a polyn0111ial on any point of the 
source-space! t,his space being a power of a11 cff&ive field k. 

We will not recall hcrc precisely bhe uow well-known def- 
initions and t.heorem about, Straight-Line Programs. 

One has t,o know that the size of a SLP is nleasurecl by 
two yuautities : it,s length L and its non-scalar depth e. The 
first. one is simply the uuniber of its nodes ; the non-sca1a.r 
dqA is the lcngtli of t.lic longest pat11 in tlic gra.pli: counting 
Only non-scalar operations. 

Equality testing is based ml the thcmem of Hcintz- 
Schnorr ([13]). we the usual drawback that our algorithn1s 
are probabilistic: with lmiudcd failure prohabi~it~. 1;e will 
also have t,o different,iat,e SLP’S. Given a SLP of size L that. 
codes a polynon1ial P. t.he t.heoren1 of Baur and Strasscu [l] 
states that there is a SLP of sixo 5L that coniputes P and 
its gradicrtt. 

3.3 Geometric invariants 

li'f> 1101~ turn t0 the description of s01ne intrinsic. co111t~inato- 
rial quantities of t.hf: vilritrt~y tlcfincd by a list of polynomials 
(j1, . js) iu Q[x, : . ,x,,]. We will suppose here that these 
polyno1nials for111 a regular: reduced sequence, their dcgrcc 
being at most. d. They arc supposed to be coded hy St.raight- 
Lint Progra.nls of size at Illost, L iLIld non-scalar depth C. 
Att~achecl to this ecjuidimensional coutcst: we present two 
invariants, its (affinc) degree and its height.. 

Let’s first, see the degree of an affirie algebraic variety. Wf; 

will use only t,hc: gc~oruct,ric definition which is given in [l l], 
siucc IIO multiplicities occur. For a zero-dimensional variety, 
the degree is <~rlual t,0 the number of points. The general 
d&uitio11 is lJa.Sed 011 this first. CilS(!. 111 the worst CilSe, this 
degree is equal to the cliissical Bbzout’s bound d”, but can 
be strictlv lower. 

The dcgroe of t,hc sYste111 (ji) is the rnaxin1u111 of the 
dcgrccs of t.he intern&~t~e varic%ics 1; = I -(jl, , ji). It. 
will lx rioted 6. 

The second int,rinsic parameter we consider is the height,. 
and is of tliophantin(: nature. It. will be noted 11. The precise 
definition is technical, RIld out of t.he scope Of this paper. It, 
is dct~ailctl is [18] and [?I. 

The definition is based on the definit.ion of t,hc: height of 
an integer 71. E Z as 111as(log,( InI)), 1). The: process of defi- 
nition is similar t,o tl1c tlcgrce : first for ii zero-diriicnsioni11 
variet,y, then in the general case. For a zero-dirncnsional vari- 
et,y, the height is linked to t.he height of the polyno111ials in a 
geon1et,ric resolut,ion with integer coefficients. For a posit,ive- 
di1ncnsional variety 1; = 1’ (/I : . . . ji) in Noether position 
wit.11 projcctiori 7i : I. + @“-i . t,hc height is cornputcd from 
the height; of l.hc zero-dir11ensional viu%iCS 1,; = C1 (a), for 
suit,aMc (1 E @“-‘. 

From [14], we lmve by means of a.11 arit.hnx:t,ic B&out 
tlic~orcmi that rj is less t.lliLIl h(;c%“” : for a.11 unirflrsal c0nstant~ 
-4. 

3.4 The geometric resolution algorithm 

111 this part,, WC recall a theorem I)\; Giusti. Haegcle, Heint.2, 
SlolltGiaY Morais, Pardo which gives an algoritl1111 for geo- 
met.ric resolution, the coniplesity of wliich depends 011 tllC 
aforesaid ciua,ntit,ies. \Vc will not eSt.ilhliSll any proof here: 
but only sketch its behavior. 
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Thoerem 1 ill [7/ Let g and fl.. . fs in Q[x~, . . . ?x,~]. 
Suppose that the polyno7ninls fl, : fs define a regular, re- 
duced sequence in the open set y # 0 C c” and are of degree 
kss than d, height less than h and are coded by Straight-Line 
Programs of size less than L. Them is a bounded error prob- 
abzlzstic l3Lrin.g machine that outputs a geometric resollation 
of 1,); = I.,-( fl; . . . i fs). The time complexity of the e:ceclhtion 
is L(ndI~b7,)~(‘). 

Let’s make a few c0n~n~ent.s about this algorithm. 

The process is incremental : wc successively com- 
pute geometric rcsolut,ions of the varieties 1,; = 
V(fl,. , fi). The i’” inductive step consists in putting 
the 1: + ltlL polynomial in Noether position and to find a 
new prirnitivc clement, together with it.s minimal poly- 
nomial. 

The algorithm could also rclly on the preco~llputi~tion of 
a correct-test sequence, iIIld thus becomc determinist.ic. 

We can test, at, each step if the system is reduced. If 
this is not the case? we st,op the: comput.ation. 

The possibilitp of local computations outside some hy- 
persurface is likely to lower t.he affhc degree ; for in- 
sta.ncc, t,hcl points at, infinity do not alter t.he complcsit,?; 
of the affine resolution. 

The output pol~non~ials are given as Straight.-Line Pro- 
grams. 

This version of the algorithm relies on the notion of 
magic point ; this feature enables the lifting from a xero- 
dimensional sett.ing to a positivr-dilllerlsional one. 

Assume that WC have rexhed step i with a geometric 
resolution of the variety II,-l: and t.hat 1,; is in Koether 
position. Let ni : 1,; + @‘-’ bc the projection on the 

first 7~ - i coordinates. 1Vit.h tlic previous notat ions, a point. 
I? E Q”-’ is a 7nugic point for 1,; wit,11 respect. to ~ii if t.hc 
fiber ly>,i = 7i;‘(Pi) 11x5 deg(Ci) points. 

It. can he s11ow11 t.hat Pi is such a point if and only if the 
dct.crminant of t,hc: jacobian of the polynomials fl, . fi 
with IYS~JeCt to the free varia.bles is non-zero abOW P,. 

These magic points share tht: property that the knowl- 
edge of a geometric resolution of t.he fiber l,;>, is enough to 
construct a resolution for the whole variety 1;. This is done 
through a symbolic version of the Newton-Hcnsel itera.tion. 
For a proof, more detail4 explanation and extensions, WC 
refer to [18], [7] and [12]. 

Ha.ving t.his tool in mind, the it.erat,ive step of the algo- 
rithm splits in two parts : 

0 Obtain a geometric resolution of 1; from P,: the 
Noethcr normalization of 1,; ad the gclometric resolu- 
tion of I,,>; - this part uses t,he symbolic Newton-Hensel 
procedure. 

0 Normalixc V;+l. filltl a IlCw magic point Pi+I. and Cam- 

puC.e a geomctxic resolution of the fiber xhove this point 
- which is a zt~ro-dirllcnsio~~al problenl. 

3.5 A polynomial-time existence theorem 

Let’s get hack to ovcrconstrained systems. In this part, we 
apply t,he former results to this particular setting. To t.his 
effect: wc will use the following IlOtiLt.iOIlS : 

The system WC study is noted Fl: . 1 F,,+l i where JTi E 
Q[Xl I..‘, Xp:Z,:.. . , j.,,]. The degrees of the polynomials are 
bounded by (1, their height by h awl they are supposed to 
be coded by SLP’s of size at most. L. 

R.ecall that, the specialization in X = 0 satisfies the hy- 
pot,hrscs introduced in the introduction, ancl tl1a.t t,he set of 
X such that the system is ronsistcnt is an llypcrsurface of Cl’. 
The objective is to get a representation of the elinlinat.ing 
ohjcct. A and the l-‘aranlc~t.rixatioIls of t.h(b unknowns 3’ above 
a point X in Cc”. This will be done RS an application of the 
theorem 3.4. 

The geometric result, in the: first part is local. We then 
have t,o specify in t.he input. iI11 hypersurfacc l-(g) to a.void ; 
this hypersurface contains the places where degeneracics oc- 
cur. \ve will furthermore suppose that the system is regular 
and reduced out of this surface. As the hypotheses of [i] arc 
now fulfilled, wC CitIl iIl>Ply their result, illld state the IIliliIl 

theoretical theorem of this papc’r : 

Thoerem 1 Let (Fl,... ,F,,+1,,9) E 
Q[Xl . , A,,! 1: I I , x,,] .s~ch thut the .qstcm F satis- 
fies the two conditims of the introduction.. The degwes of 
these polynomials we bonnded by d, their height b!y h and 
their are coded by Stmigh,t-Lin,e Pro,qru7ns of size at most L. 
Let 1’ be the variety dcjined bg the system Fl: . : I;;,+, in 
@‘+r’ and call 6 and 11 its afinc degree a7d height. Assume 
that outside the set T’(g) the sequence Fi ,is wgvalar, reduced. 

There exists a bounded error pl~obabilistic T7Lrin.g machine 
that 

. a geometric resolzbtion of the syste7r~ F consisting of 
an eliminating polynomiul q(X,,) E QjIx, : . . . , A,,- I][U] 
a7t.d the parametrizations /)i”i = l;i(X,), where pi E 
Q[A, . . A,- I] (171.d 1:; E gx,. .A ,,-I ][ri], 

. the gradient of q with respect to the wx.rinb1e.s XI, , A,. 

Th.e h.ypersurface q- ’ (0) c U? is locally the consistenq lo- 
C1L.S. The r.lLn7GrLg-time of this algorith,m is L(,,rtEh6~,)“(~‘. 

Proof. Wr apply the theorem of 3.4. The geometric reso- 
lution algorithm successively puts t.he intermediat,e varieties 
1,; = I-(Fl,. . . : Fi) in Nocthcr position. t-is we ~SSIIIIIC that. 
the zero-set of t.hc 1). first polynomii& is a covering of CCI-’ : 
it. is possible t.0 cnsurc t,llilt, the first, ‘71 changes of variables 
only touch the variables 2:. 

The last step performs a change of variable in t.he space 
of paranlctcrs (Xl:. . A,) ~--t (/ll,. :/I],). The output. is a 
polynomial in U&l] that is manic in 1~1 and the variables :c a.5 
rational fractions in the variables 11. The applicat,ion of the 
inverse change of varii~bles yields a.11 clirninat,ing polpnomial 
y in the variables X and the paramctrizations as rationa. 
fractions in t,he same variables. The t.heorem of Baur md 

Strassctn t,hen yields the gradient of q in size less than fives 
t,inics the size of q. 

Out,side the discriminant. locus where iL denominator in 
the paranietriaations is zero? the zCroc5 of (I are the points 
iLhOW which the system is consist,ent: t,lliIt is the hypersur- 
face A. 

Our resolution algorithm is now the following : 



0 Compute a representation q of & its gradient arid 
parametrizations of the unknowns. 

0 St,arting from X = 0: perform nunieric~al itera.tions 1.0 
move towards ;1. 
Evaluate the unknowns 1’ along t,he way. 

In l&is sense: this algorithm can be called semi- 
nu7ne7ical : wc first perform a formal elimination. then suc- 
cessively improve the mimcrical approximations of the solu- 
tioris. 

4 An example : the parallel manipulator 

To test the feasibility of the method, we chose t.hc well- 
knowu example of the parallc4 manipulat.or or Stewart plat- 
form. After a brief overview of t.hc problem ild its history, 
we cspose the results of our own approach. 

The aim of this part, is mainly t,o illustrat,r our point of 
view 011 ov~~rdotcrlllilied systems: WC: arc not yet. ready to 
compare our software with existing syst,c!nis. 

4.1 The overconstrained parallel manipulator 

D. Sbewart proposed in 1965 the construction of a paral- 
lel manipulator, with a view to desigu flight. simulators. A 
pildld manipulator cons&s in : 

. 

. 

t,wo rigid bodies (the platforms) .4 and B: 011e of which 
is moving wit,11 respect to the ot,hcr, 

two set of points ill, . . . , -4~ (resp. BI: , Be) t.1ia.t. are 
fixed with respect, to A (rcsp. J3): so t.hat. A, is linked 
t.0 Bi by a straight leg. 

1% arc interested in the so-called &7ect problem : given 
the geometries of the two platforms A and B and the lengths 
of the segments AiB,? fiud the possible posit,ions of L3 with 
respect to A. This can be written as a polynomial system, 
the unknown of which is the displacement taking the coortli- 
natc frame of one platform to t.hc! other. In the general cast, 
six measures are necessarv t.o obt.ain a zero-dimensional sys- 
tc!Ill. 

This has been widely st,udied. On one hand, numeri- 
cal algorithms “& la Newton” work as loug as the platform 
is uot too tilted, set [17]. On another hand, the computer 
algebra community has taken interest in the maximum num- 
ber of positions (real or COIII~ICX) of a parallel manipulator 
([16], [17],[19],[20]). ‘Their works were based on the com- 
putat,ion of GrGbner bases, and/or gcomctric simplifications 
of the coristruct,ion. We propose li(lrc yet, auother point of 
view: adjoining a sevent,h measure: so as t,o get back to the 
framcbnork w’c gave above. 

We have chosen a particular type of platform, which dis- 
plays more syninict,ries t.lian the most general case. It, is 
borrowed from S. Egncr’s modelixatiou in [5]. aud some real 
Stewart platforms arc built upon this model. In this cast, 
the construction of the platform depends of some parame- 
ters : the radii of t,he circles and the half-a.ngles of a.tljac’eut. 
joints. These will be fixed throughout, our computations. 

A4 

AS 

Figure 1: The lower platform 

B4 BS 

Figure 2: The upper platform 

The angles ;&?%I aud &?%I arc respectively of r/6 
and ~13 rad. 

The sevcuth measure is t.hc height of the point L?l. In 
the esperimeuts we have led, it was considered as the only 
paramet,er : that. is, the first six measures were considered 
as act.ual constim1.s. This is a simplification of a potent.ially 
more complex setting, where every measure could be consid- 
ered as a parameter. 

4.2 Writing down the equations 

The system of equations we USC is borrowed from S. Egncr’s 
article [5]. The idea is straightforward : express the lengths 
of the six segments ad the height of point UI a.5 polynomial 
functions of tho input. 

The dat.a is the set of 6 + 1 measures II, . , Qo? 87. Recall 
that only the last. 0110 is a. paramctcr 1 the other ones are 
fixed trough the coniputat.ion. 
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The unknown is a disphmement (R, 7), where R E 
.90:3(W) and 7 = [x, v, z] is a translation. 

Rather than a set of variables R.ij together with the con- 
st,ra.int fRR = I, we para.mctcrize the rotation mat.rix by 
yuatrrnions. Four real qua.ntitics (en, ei, e2. e;~) such that 
ei + t=l + ef + ez = 1 yield the rotation mat,ris 

., 
e;j + c: - 6T$ - e; ,2(e1e:! -i- q,c::) :‘(I?,<!:, - q,ez) 

R= 2(e,ea - eoes) 
n ” 

“6 - e; + e.; - c3 “(t.2t.Q + Pot’, I 
2(f?l(~3 + eot.2) 2(azr:3 - e<,e, ) f-g - e: - e; + CT; I 

This parametrization has the drawback of introducing 
second-order terms in t.he unknowns: but this quantities are 
highly symmetric. It turns out that. t.he resolution with these 
variables is easy to compute. To SLII~ up, our variables are 
z,y,z,en,el,e2: es: and the parametrization adds the cqua- 

t.ion eg + e: + ef + e; = 1 to the system. 

Let now nl and bi hc t,he coordinates of A; and B, in 
the corresponding frame. Those quantities are known and 
depend on the construction parameters. t-is the half-angles 
between two consecutive joints are of magnit,ude 7r/6 and 

7r/12, these coordinates are not rational, but, in Q(&. a). 

We denote ly /L(M) the t.hird coordinate of point. a M. 
With this convention? the equat.ions are : 

lRbi+‘T-ail”=Cf i=1;....6 

e; + e: + e; + e; = 1 

h(Rhi + 7)’ = r’; 

Sonw remarks can be madc prior to any comput,at,ion. 

l Let’s first. look at the first six cquat,ions. The ma- 
trix R(eo, el, e?. ~3) is invariant by the transforma- 
tion (eo,el,e2.e3) ++ (-ee, --e~~---e?; -es): as the 
parametrization is homogeneous of degree two. This 
is why we eSIJCct an eliminating polynomial involving 
only eve11 powers of its variable. Then, as the base 
is in t.he plane h = 0, the knowledge of the lengt,hs 
isn’t enough to determine in what half-space h > 0 
or ii. < 0 the platform is. As a consequence, the set 
of solutions is globally invariant. by the t.ransformat.ion 
(x, y, z, eo, e1, e2> e3) +-+ (x, y//: -z: --co, Cl. ez> -es). 

l The last, equation we have chosen does not, eliminate 
these symmetries, for we have t.aken squares. It can 
then be argued that we are not here exactly in t,he gc- 
ometric conditions we chose in the preamble. 

These equations are in a raw format and we can simplify 
their writing. Some linear combinations lead to an cquiva- 
lent syst.em which is much easier to handle. Once again, this 
part. of the work is taken from S. Egner’s paper. We obtain 
the following system : 

The matrix M is a 6 x G matrix with entries in 

The paramet.ers 9; <are : 

90 = 50 

Yl = 2512 d-25/F& 
910 = 2512 fi + 25/2 fi 
911 _. I25/2&-125/6:& 
91.2 = - 12.5 
h,, = YlllYl 
hll = 91.‘/91 

Let’s repeat, that these value are due to t,he geometry of 
the plat.form that, involves angles of x/6 and r/12. The set 
of equa.tions will from now on be called F, , , F”. 

Gometrically speaking, the space of parameters is C, 
above which the space of vxiahles is cr. As the first 7 
equations do not, involve t,he paramet.er, they define a cylin- 
clcr in @ x @‘, which is one-clirlicnsioIla1 if the 6 lengths are 
generic enough. The last hypersurface cuts this cylinder on 
a finite set of points that projects on A C C. The seventh 
measure r? it yields an initial guess j we have to find the 
point of A closest to Cy”. 

4.3 Computing the geometric resolution 

The espcriments were based on an homa-made cardboard 
Stewart platform. for which we measured the seven lengths. 
Expressed in centimers, here is the available data : 

I, = 17.9 c‘l = 13.4 
r:! = 13.5 c,j = 15.1 
E3 = 12.05 & = 18.2 

Pi init - - 16.7 

This c1at.a is converted to rational expressions. The pre- 
cision of measure is abolit l/2 mm for the first six lengths. 
The last one is less precise ; the precision is only of 1 mm. 

Next follows a description of a resolution of this system. 
It, is intended 60 show t,llc soundness of our approi~cll on 
overdet.ermined syst.en1.s. rather than be a comparison be- 
tween two computational methods. for WC cannot compare 
Mween a general-purpose software and ad-hoc procedures. 

As we are actually in il zero-tliIncnsiona1 SitlliLtioll, a 

Grobncr basis computation for a pure lexicographic order 
on the xcro-dilileIisiorla1 syst,cm of eight equations will give 
a parametrixa.tion of t,hc unknowns, if the c:oordinat.es are 
generic enough. We could also obtain a. geometric resolution 
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from the Inllltiplic~~tiOIl tdJk of t,li(! (liiotient algebra as was 
said in part, 3.1 using F. Rouillier’s work. Unfortunat.el~, we 
didn’t work this possibili@ out. 

On another hand lies the geometric resolution algorit.hm 
WC ha.ve prescntcd. The implerrleIlt,a~ion by G. Lecerf of this 
algorit.hm is a. work in progress at, Lab. Gage so tha.t we are 
not ilbl(! to plug the ovcrconstraiued RYstzm in a procedure 
aud rxamiuc the result.. 

-4s a consequence: WC computed the rcsolut.ion using 
Magma-procedures t1ia.t follow the geometric resolution algo- 
rit.hm hut. do not. make use of t.hc Hcnsel lift,ing t,ool. This 
a.pproach is similar to t,he algorit,hm proposed in [lo], SW 
there section A.1 t,hat, describes the iuductivc step. The m;~in 
computational ta.sk consists in evaluatiug the new equation 
on the previous paramctrizat.ions and then computing the 
resultant. wit,11 the previous eliminating polynomial. The 
implenlentation uses an idea due t.o Kronecker which yields 
both the resultant illld some para.metrizatious in a siuglc 
step through a generic linear change of variables. 

\Ve did not, rcprcsent all the polynomials a.s a.ctual 
St,raight.-Line Programs. Still, the coniplexit~ of evaluation 
is crucial in the execution-time, for we evaluate equations on 
the available paramctrizatiorls. We then adopted a mixed 
approach : the subst,itutions <arp performed 011 polynomials 
coded by SLP’s. 

It must be stressed Ulat, WC did not implement h(w any 
gcncral-purpose resolution algoril.lim : our iIriIJlerneIitation 
is devoted to the particular case of the parallel manipulator. 
The order in which WC perform t.hc computations, SOITIC lin- 
car simplifications, as well as the SLP’s WC use are part of 
the code itself. The comparison betawx~ the running-times 
of the two approaches then has little Ill~~i~IliIlg. 

Both computations were do11e 011 a DEC Alpha EVX 
.‘lOO WIX with the software Magma ml the TJRIS MEDICIS 
cluster of servers. Here follows a brief description of the 
cxpcriments. To simpli& the writing, WC will abusively call 
height of a polynomial in Q( J2, fi) the maximum number 
of di 
‘III v+ 

its of its coefficients, written on the form no + n1 fi + 
3 + 7/.,x/%. ?1> E Q. 

l The first approach was the Griibner basis computation 
for the whole sqtem of eight. f2~llilti0Ils for Xl climi- 
nating order. This process took 95 minutes. It. +lds 
an eliminating polynomial p t.hat is of degree 28 and 
involves cvc11 powers of Z7 Only. The coefficients have 
an height. of about 2000 digits. 

For any ot.hcr variable, thcrc is in the basis a manic 
equation liucar in this variable or in the square of this 
variable. This is a consequence of the s,vmmetrv WI: 
have mcw,ioncd : sonic signs of variables cannot, lye 

dctcrmincd above t,hc roots of the eliminat,ing polyno- 
mial. The coefficients of thcsc equations have an height 
of >~bOut, 65000 digit.s. 

The hypersurface A is the finite set, of t,he roots of the 
pol~uomial p in C. We expect to find a root of p at. 
approximately 16.7. The root of 1) closest t.o lG.7 is app. 
16.48. It is t,hc only zero of p in a radius of 9 around 
lG.7, so t.hat no dollbt. is allowed regarding t,he choice of 
t.hc correct ims\ver. The error is about, 2 mm, which is 
of the order of magnitude of the input, precision. \Vc: lift 
the values of the other irlc-let~c?rminat.es using the ot,licbr 
polynomials in the base. 

i 

. The second process we followed is similar t.o the geo- 
metric resolution algorithm presented earlier, with the 
difference that we do not use t.hc Hcnscl lifting fcbaturc. 

Recall that, ouly the last mea.sure is considered a pa- 
rameter, whereas the other ones are fixed. This last. 
measure does not appear in thcl first. equations. In this 
sense, the first. six climina.tions are equivalent to the res- 
olution of t.lie G-G Stewart plat.form problem. Contrary 
to the Grijbner basis computat,iou, w: have natura.1 ac- 
ccss to this intermediate result as a b,v-product. 

We successively eliminate the variables 2: y, 2, eo, e:3 and 
el using thtl irst six equations, keeping track of the 
para.Inetrizat.ions of each va.riable with respect to the 
rcmainiug 011es. 

As a consequence of the s\;mmetrv we have mentioned, 
t,lie elimination process only giws the parametrization 
of c; ; this is t.he same phenomenon as in the GrGbner 
basis computation. 

We are left. wit,11 an eliminating polynomial q(ez) of dc- 
grw 28, which has an height of about, 200. This polyno- 
mial onl\: involves even powers of e.2, which too results 
from t,he spmmetries. The parametrizations have ap- 
proximatel\; t,hc same number of digits. 

This part takes 13 miuutcs to compute. Xote that a 
Griilmer basis comput,at,ion for t,his sub-system takes 
19 minutes and has coefficicnt,s of about lGOO0 digits. 

Up t,o now, we have left, t.hc last equa.tion F* untouched. 
Substitjut.ing t.he paranletrixat.ions module q(ez) in FS 
yields a polynomial of t.he form n(e,)-rl(ez)!:. The two 
cquatioris ouly involve cvcn powers of ez; so that their 
resultant is t,he square of the polynomial p of degree 28 

computed earlier. 

The substitution of the par;tnlecrizatiolls in FS t,akes 
21 minutes. The importance of a good complexity of 
c:valuat,ion arises liera niAurally : the tinic ncccssary 
to perform the substitution is proportional to the com- 
plexity of evaluation of t,he equation. 

There is no need to explicit,ly compute the polynomial 
p ; we are 0111; int,erested in finding a numerical ap- 
proximation of its roots, so that, a program evaluating 
it. and the piiranictrizations on an?; value of t’7 is enough. 
The last elimination can thus be done on floating-point, 
numbers. The qualit: of t.he solution is t.hen a function 
Of the precision we use. this pl~enOmenOn being charac- 
teristic Of any uunierical algorithm. We automatically 
fixed a decent minimal precision by successivr refine- 
111e11t.s. 

NYth 1500 significant. digits, the comput,ation of the 
resultant and its derivat,ivc on a value of (‘7 takes 2 sec- 
onds. \Vp use a Newton it.cration that converges in 3 it,- 
erations from our estimate 1G.i t.o app. 16.48. We then 
lift. estimates of the variables trough the parametriza- 
tions - with only t,lie sign coriditiou to fix. 

WC finish t,his sect,iou wit.11 the display of t,he solution 
above C; = 113.48 : 

0.012 -0.32 
0.99 0.083 , 

-0.06~1 0.94 I 

'T N [-4.1, 1.8,14]. 



5 Conclusion 

In this paper, wc present an original a.pproach on ovcrwn- 
strained systems with parameters: that finally innour1t.s to 
looking for a point. 011 all ll?;pCrSllrfiwe close to an initial 
Mirnate. This llypcrsurfac~e is the project,ion of t,he set of 
solutions of the system on t.he paranwtcr space ; it is the 
locus of consistency. 

The resolution algorit,hm yields a representat,ion of t.his 
liypfnwrfacc and t,he pararlletrizations iLbOVC it b?; IllC?ilIlS of 
St,raight-Lint PrOgrilIlls. This representation is t.hen usccl 
to perform numerical iterations, that give approximations of 
solutions. 

Our first. esarnplc of t.he parallel manipulator shows t.hat, 
this ilpproadl is feasible in an &nient.ary CRSf!. St.arting 
from an approximation of the scvcnth measure and cornput- 
ing il geometric resolution of tlic system, xw can deternlinc 
t,he uuicluc solution to the syst.em with IIO ambiguity. This 
process mixes both exact and nunlerical computations. 
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