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Abstract

The aim of this paper is to decide whether a linear differ-
ential equation with polynomial coefficients depending on
parameters has got polynomial solutions. More precisely we
want to construct a finite set 7 of necessary and sufficient
algebraic and arithmetic conditions such that there is a poly-
vomial solution if and only if the parameters belong to 7.
The presence of Diophantine equations makes the general
problem undecidable. We get such a set T when the recur-
rence relation associated to the equation (in an appropriate
basis) has got two terms. Using hypergeometric sequences
we also succeed in constructing sufficient conditions for a
family of equations.

1 Introduction

Let L = @, (2)0" + au—1 ()" 7" + -+ + aalx) be a lincar
differential operator with coeflicients in K[s].

Let us assume first that A" is Q. The main problem in
differential Galois theory is to determine the differential Ga-
lois group of the linear diffcrential homogeneous equation
L(y) = 0 that is to say the algcebraic relations between the
solutions of the equation. No algorithm exists to handle
this general problem ([18]). However one can characterize
the liouvillian solutions, that is to say solutions that are
built up using integration, exponentiations, algebraic fuuc-
tions and composition ([18]). The question of deciding when
the equation L(y) = 0 has such solutions has been particu-
larly discussed for a long time ([17), [21], [24]). M.F. Singer
has proved that one can decide whether or not the equa-
tion L(y) = 0 has got liouvillian solutions ([17]). When the
order of the equation is equal to two, Kovacic effectively
computes them ([11]). Their computation is reduced to the
computation of polynomial, rational or exponential solutions
of differential lincar cquations ([22]). Many algorithms have
been constructed to perform the computation of these three
types of solutions ([1}, [2], [15], [20]. [23],...) .

Let us assume now that K is Q(Af, ..., M) where A,

-, M, are parameters lying in €. The main question is to
find which parameters lead to a liouvillian solution.
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In 1992, A. Duval and M. Loday-Richaud have stud-
ied the liouvillian solutions of some particular families of
cquations of order two depending upon some parameters
(Schwarz and Heun equations, [3]). At first sight, one
conld think that the computation of the polynomial solu-
tions would be casv and that the main difficulties would be
encountered within the computation of the exponential so-
lutions. One can show that the presence of the parameters
docs not. modify the method used in the computation of the
exponential parts ([3]). So the problem of describing the
liouvillian solutions can be algorithmically reduced to de-
scribing the values of the parameters such that some linear
differential equations have polvnomial solutions. It is this
last problem that A. Duval and M. Loday-Richaud have en-
countered while describing the liouvillian solutions (of the
Schwarz and Heun equations) and that we focus on in this
article.

In section 2, we prove that there is no algorithm which
decides for which values of the parameters any given linear
differential equation depending ou the parameters has poly-
nomial solutions. We note that if we fix a nonnegative inte-
ger d then the set of the parameters leading to a polynomial
solution of degree less than or equal to d is a constructible
set. The main difficulty is when the degree of the polynomial
solution actually depends upon the parameters. Qur aim is
to construct a finite set of necessary and sufficient algebraic
and arithmetic conditions on the parameters leading to a
polynomial solution whose degree may not be numerically
fixed. This last problem remains open in full generality. so
we propose a ‘tool box’ that can solve many cases. The key
to our approach is the link beeween polynomial solutious
to linear differential equations and finite solutions to linear
recurrence relations.

In scction 3, we consider two terms recurrence relasions.
We construct a finite set of necessary and sufficient condi-
tions on the paramcters leading to a finite solution to such
a recurrence relation.

In section 4, we study three terms recurrence relations
of order two. We prove that, under some hypotheses, for ali
nonnegative integer d, the set of the parameters leading to
a polynomial solution of degrec less than or equal to d is a
non empty constructible set. Then we generalize Hautot’s
method ([8], [7], [9]) and give a finite set of sufficient condi-
tions on the parameters leading to a finite solution (whose
degree may depend on the parameters) to the recurrence
relation.

Lastly, in section 3, we adapt Petkovsek’s method ([14])
to find finite hypergeometric solutions to any parameterized
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recurrence relation. We detail the case of a family of recur-
rence relations for which we construct finite non empty sets
of arithmetic or algebraic sufficient conditions on the pa-
rameters leading to finite hypergeometric solutions (whose
degrec may yet depend on the parameters).

With this approach (and with Hautot’s method), I show
how to handle onc of the unsolved equations met in [3].

Acknowledgments I would like to thank Jacques-
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proof of theorem 2.

2 Necessary conditions and undecidability

Let M = (My,.. ., M,) denote a tuple of parameters and let
Ky = Q(M). Let Ly = an (2)0" +ap—1 (£)0" " - - +aalx)
be a linear differential operator with cocfficients in Kl
where § = d‘—{,

This paper is concerned with effectively finding all the
values m = (ma,...,ms) in €F such that L, (y) = 0 has
polynomial solutions. In the sequel of the paper, L both
designates L, and L.

+oc
Let y = Z yiz' be a formal series. It satisfies L(y) =0
i=0
if and only if its coefficients y; satisfy a recurrence relation
(sec [1] for more details) :

ao(Dyi + -+ ap(B)yiys =0 (1)

where b is a fixed nonnegative integer,

Vi€ {0,....b},aj(t) € Kaglt], Vi < O,y = 0.

We call the recurrence relation (1) the recurrence relation
associated to the operator L in the basis (uf'i)ieN.

Note that we can write y in any other basis (F;) provided
the polynomials P satisfy some additional properties (sce

[1])-

Definition 1 The number b is called the order of the recur-
rence relation.

Definition 2 A sequence (yi)icz satisfying a recurrence re-
lation and such that :

de N, FweNNieZ,(i<vori>d)=y =0
is called a finite solution to the recurrence relation.

The aim is to find a finite set of nccessarv and sufficient
algebraic conditions ou the parameters such that there exists
a nonzero finite solution to the recurrence relation (1). that
is to say such that there cxists two nonnegative integers v
and d (v < d) such that the recurrence relation (1) has a
solution of the type

(.00, Yes s yas0,..0)

with y, # 0 and yq # 0.

Let us first give some necessary conditions on the degree
and the valuation of the sought polynomial solution.
Let us take i = d in (1) then ag(d)ys = 0. But ys # 0 so
ao(d) = 0.
Let ng = min{j € {0,...,0}/o,(t) € Kn[t]\ K }.
A first necessary condition is

oy =

“= -1 = 0and 3d € N/, (d —no) = 0.

3]
(V]

This last equation is called the ‘right indicial equation’ or
‘infinity indicial equation’ which gives the possibilities for
the degree d of the polynomial solution. We encounter the
problem of deciding when a polynomial of Ky [t] has an in-
teger root. We see later in this section that we do not try to
solve this problem as it can he written with a finite number
of arithmetic and algebraic conditions.

In the same way one can construct the ‘left indicial equa-
tion'. Let ny, = maa{;
Then a sccond necessary condition is :

Oyt = - Zap = 0 and Jo € N/, (v — ) = 0.

Example 1 Consider the following linear differential equa-
tion :
26%y" + (3 = 2AL)x" + x)y —
(P(AMy, Mo)e™ + Max + M)y =0
where P is a polynomial with integer coefficients. Its associ-
ated recurrence relation in the basis (x')ien 1s :
—P(M, M)y —
(3 +20)(—i -1+ A'.['_?,)'!],‘+] —+ (—-_"\11 + 2+ i);lji+2 =0

So a first necessary condition is
P(m;.m») =0.
Then the new recurrence relalion is
(14+20)0 —m2)yi + (i +1—m)yip1 =0
and the necessary condition becomes
Fmq,m2 € N/(my < my and Py, ma) =0).
We note that this last equation is « Diophantine one.

The presence of arithmetic conditions may lead us to solve
Diophantine equations in terms of integer solutions (like in
the previous example). Furthermore, in 1970, Y. Matiyase-
vich proved Hilbert’s Tenth Problem which states that there
is no universal method tor solving Diophantine equations in
terms of integer solutions ([12]). Using this last result one
can state the same type of theorem for lincar differential
equations with coefficients in Kaq[x].

Theorem 1 (J.-A. Weil) There erists no algorithm that,
given any linear differential homogeneous equation depending
on parameters, decides for which values of the parameters
this equation has got a rational solution or not. Proof
Let us consider the following differential linear equation :

1’\.[ ",\ s
y - '!I(;:]— +- L + P(M;,....M:))=0

1 €r— 5

where Ay, ..., M, are parameters and P is any polynomial

This equation is equivalent to :

(e —

So it has rational solutions if and only if there exists m =
(m,...,ms) in Z° such that P(m) = 0. However, by
Matyascevich’s theorem ([12]), there is no algorithi which
can solve the latter for any P in Z[X,,...,X.]; so there

y=c(e—1)" . )M exp(P(M,, ..., Ms)x)



is no algorithm which can determine whether a given linear
differential equation has got rational solutions or not. ad

In the sequel of this paper we are looking for a finite set of
necessary and sufficient algebraic and arithmetic conditions
on the parameters leading to a polynomial solution. So we
do not care neither about the possible presence of Diophan-
tine equations, nor about the problem of deciding when a
polynomial of Kas[t] has an integer root.

When we apply the recurrence relation (1) to i
—b,....,d, then we get a system Sq of d+b+1 linear equations
with d + 1 unknowns.

If we fix a nonnegative integer d (not depending upon
parameters) then the size of the matrix My of the linear
system Sy is numerically known. It suffices to decide for
which values of the parameters the rank of this matrix is
less than or equal to d. We can even compute the solutions
of the linear system &; ([19]).

Lemma 1 Letd be a fized nonnegative integer. Then the set
of the parameters leading to a polynomial solution of degree
less than or equal to d is an algebraic sel.

If we do not fix d and if the indicial equation has a solu-
tion depending on the parameters then the size of the matrix
associated to the recurrence relation also depends on the pa-
rameters and so it is difficult to find a finite number of con-
ditions on the paramecters leading to a nonzero solution of
the linear systerm.

3 Two terms recurrence relations

We give here a finite set of necessary and sufficient alge-
braic or arithmetic conditions on the paramcters leading to
a polynomial solution of L(y) = 0 when the recurrence rela-
tion associated to it (in a suitable basis) has two terms (see
[10] for a study of such recurrence relations).

Theorem 2 Assurmne that the recurrence relation associated
to L (in o suitable given basis) has two terms :

oo(D)y: + an(i)yips = 0.

The equation L(y) = 0 has got a nonzero polynomial- solu-

tion if and only if there exisls two nonnegative integers v

and d such that e < d, v =d (modb), ap(v —b) =0 and

ao(d) = 0. Proof

Suppose that L{y) = 0 has a nonzero polynomial solution
d

Y= Z yir' with yo # 0. Then ao(d) = 0. Let j in
i=0

{0,...,b — 1} and ky in IN such that d = bks + j. Sup-
pose that ap(j + kb) # 0 for all -1 < k < kg — 1. Then one
can check that y; x4 =0torallk e {-1,...,kg—1}. In
particular onc must have yq = y;1n, = 0, which is false, so
there exists k. € {—1,.... ks — 1} such that ca(j+bk,) = 0.
To conclude let @ = j + (1 + k), then ap(v —b)=0,v=d
(mod b) and v < d.

Suppose that there exists two nonnegative integers v and
d such that v < d, v = d (modb), ap(v —b) = 0 and
ao(rd) = 0. Let d be the smallest integer such that v < d < d,
ao{d) =0and d=d (mod h). We shall prove that L{y) =
0 has a polynomial solution of degree d. For this, put yi=1
Then y;_,. Y aps- - - Yo can be (uniquely) determined using

an (k) ) . s
T ool tkD) Yit(k+116- Now

set y; = 0 for i ¢ {d—b,...,v}. Then one can verify that

the recurrence relation y;isn
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f> o)
y= E yix' is a nonzero polynomial solution of our equa-

i=0)

tion. O

4 Three terms recurrence relations of order two

In (his section we assume that the recurrence relation asso-
ciated to the operator L (in a suitable basis) is the following
onc :

@o(8) yi + ar (D yirr +02(D) vz =0 (2)
where ao and a2 are non constant polynomials with coeffi-
cients in Kyr. We have seen that oo must have an integer
root greater than or equal to —2. For notational convenience,
we assutne that a»(—2) = 0. The matrix associated to the
recurrence relation is then a square matrix and in this par-
ticular case one can state the following leruma which gives a
necessary and sufficient non algebraic condition :

Lemma 2 Letd be a nonnegative integer such that ao(d) =
0. For i in IN, let M; be the square matriz associuted to the

recurrence (2) and let A; be its determinant : M; =
[ a1{—1) a»(-1) 0 1
ao(0) 1(0) a2{0)
ao(t—2) a1(i—2) a2(i—2)
L 0 aoli—1) oi(i—1) ]

Then the differential equation L(y) = 0 has got a nonzero
polynomial solution of degree less than or equal to d if and

only if N
Aqg = 0.

Proof
d
If E y;,._a:k is a nouzero solution of L{y) = 0 then, by con-
k=0
struction of My, the linear systemm M, ¥ = 0 has a nonzero
solution, so the determinant Ay of the matrix My cancels.

If Ay = 0 then the linear system My Y = 0 has a nonzero so-
lusion Y =! (yo,....ys). Furthermore ao(d) = a2(—=2) = 0,

50 (..., 0,90, 44,0,...) is a solution to the recurrence re-
lation. 0o
4.1 Existence of a polynomial solution for all de-

grees

In lemma 1 we show that, for any fixed d in IN, the sct of the
m leading to a polynomial solution is a constructible set. In
this section, we explain, on a family of equations, a strategy
to study whether this set is non empty for all d in IN.

We use the recurrence relation satisfied by (A;) :

Propriety 1 Let (A;)ien be the sequence defined in the
lemma 2. It also satisfies the following recursion :

Ao = C)’l(—l)

Ay = o (-Dei(0) — a2(—1)ao(0)

vie N\ {0, 1},

A = o= DA —agi = Daa(i —2)A 2



Proof
This can be casily seen by developing A; along the last line.
|

Proposition 1 Assume that

a1 (i) = S()MP + d) (4)

(Ho) «a € IN” ~
TN (i), ar (), a2 (i) € Q(Mo, ..., M4
vie {-1,0.1,...}, (i) e @~
Let d be a nonnegative integer. If there exists (nis, ..., M)
such that ao(d) = 0, then there erists (m....,ms) leading

to a nonzero finite solution of degrec less than or cqual to d
of (2).

Proof

Using the recursion satisfied by A;, one proves by induction
on i that

i—1 i
Ay = (I eGNMI 43" grwdsf
d=—1 k=0
where g; € Q(Mo, ..., M,).
Let d be a nonnegative integer and let (ma,...,m;) such

that ao(d) = 0. Then A, can be seen as a polynomial in
F[M;] where F is in the algebraic closure of @. So there
exists m caucelling Ay.

Using lemma 2 once concludes that (1mny, m2, ..., m;) leads to
a nonzero finite solution to (2). a

Example 2 The followring linear differential operator Ly
comes from the proposition 14 page 240 of [5]. It is one
of the equations mel in [5] while studying the liowvillian so-
lutions of the non hypergeometric confluent Heun equation.
One wants to characterize the values of (v, 8,7, p,v) in €°
such that Ly(y) =0 has polynomial solutions where

Ly =2x(1— ;n)iz-s-

dr+

+(1 =20 — (1 =1 +a—7) = 2apx)=0.

+2(1 -8+ (—a+3+y -2+ ax”)L

The associated recurrence relalion in the basis (1%)ien 18 the
following one

ho(Dyi + hi(Dyigr + halé)yize =0 (3)
where
ho(d) = 2a(i — )
hi(i) = -2v—4—-3a+3vy+Ba+38-73v+
22—+ B+ —2)i —2i(i+1)
ha(i) = 20i+2)(2-8+1)

We note that ha(=2) = 0. Let d be any numerically fized
positive integer. A mecessury condition to get o polynomial
solution of degree d is p = d.

We wonder whether there ewists parameters satisfying Ay =
0. But according to proposition 1,

i-1
Vi€ {-1,...,d}, &= (=20)' + Y gislo, By,

k=0
where g; .« € Qla, 8,7, 4]
So
d-1
Ac=0 (2" + > gusle. ,7,d) =0
k=0
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Necessariy there exists o, 3,7y, v satisfying Ay = 0. So for
each positive integer d, there erists values (o, 3,v.p1,v) in
C® of the parameters such that the equation Ly (y) = 0 has
a nonzero polynomial solution of degree d.

4.2 The sufficient conditions of A. Hautot

The following proposition is a generalization of A. Hautot’s
idea that he applied to three particular linear differential
equations ([8], [7], [9]). We construct finite sets V7 of alge-
braic and arithmetic conditions on the parameters such that
for any m in V" the equation L, (y) = 0 has a polynomial
solution whose degree may depend on the parameters.

Proposition 2 Let iy be any numerically fized integer in
{=1,0,...} and Vi, be the set of the (ma, ..., my) satisfying

CY'_"{(_2) = (t-_)('io) =0
Qi1 =0
3d € {io+1,i0+2,...} ao(d) = 0.

If Vi, is non empty then for each (m,...,m¢) in Vi, there
18 @ nonzero finite solution of degree less than or equal to d
to the recurrence relation (2).

Proof

Let (mu, ..., ms) € Vi, and let d be an integer greater than
iy such that ao(d) = 0. As o (iy) is assumed to be zero, the
matrix M, can be written like a diagonal block matrix :

s _ [ Mig+1 0
J\Ad - ( Bld Cd )

As det(Miy+1) = Aiy41 = 0, we get Ay = 0, which proves
the proposition. O

Example 3 The differential equation Ly, = 0 from the first
cxample belongs to the family studied by A. Hautot in [8].
If & is equal to zero them we get a two term recursion

(=20 —443v+38 -y +2(3+v—-2)(i — 1) = 2i(i = 1))y:i +

20+ 1A - B+ )yit1 =0

The parameters leading to a polynomial solution for Ly (y) =
0 are those such that the left indicial equation has integer
solutions.

To simplify the erposition, we now assume that o is equal to
1. Then

holi) = i—p

hi(i) = —v—-L4+3v+23—38v+
(y+ 8 —4)i —i?

hali) = (+2)(2-8+1)

Let us take ip = 1, then a2(ip) =06 3 =23 and

5
5 VY -2 0
M, = > 2
Mz = —t 7 ¥ -
1
0 —n+tl 5 —-viy

Vo= {(B, 7, . 7)/B8 =3, Az = 0and g € N\{0,1}}

For each (3,7,v, 1) in Va, the differential equation has
got a polynomial solution of degree p.



5 The hypergeometric solutions

In this section we adapt the method of Petkovsek for com-
puting hypergeometric solutions of linear recurrencc rela-
tions ([14]) to our paramcterized situation. We first describe
a general method available for any recurrence relation (sec-
tion 5.1). Then we study a particular class of equations
whose recurrence relation has three terms and is of order
two (section 5.2).

5.1 A general method

Let us assume that the recurrence relation associated to
L(y) = 0 (in a suitable basis) is (1) : ao(d)y: + -+ +
ap(1)yi+s = 0, where oo and a3 are both non constant poly-
nomials. The idea is to construct a finite set T of conditions
and a two terms recurrence relation such that : for each
(mi,...,ms) in T this two terms recurrence relation has fi-
nite solutions which also satisfy (1) and whose degrees may
vet depend on the parameters.

Remark 1 If there exists a positive integer d such that
(..,0,90,...,94,0,...) is a solution to the recurrence rela-
tzon (1) ( where d may depend on some parameters), then
there exists a polynomial R such that

VieZ, (i + 1)QE)yi+1 = (i —d) R(i)y;

where
- J IIe=0 10
Q(Z) = jEJ
1 ifJ =10
dqﬂR)z
It suffices to compute the coefficients of the polynomial R(1)
by interpolation in the coefficients yo, ..., Yd-

Qur aim is to construct a two terms recurrence relation
Bo()yi + Br(yi+1 =0

where 8o and 31 are both polynomials whose degrees are
numerically fixed. That is what we perform gencralizing
Petkovsek’s algorithm.

Theorem 3 Let us assume that ay(—b) = 0 and that there
erists d in IN such that ao(d) = 0. Let (y;)iez be a sequence

such that :
Yit1 ifi € {0,....d}
Yi ifi ¢ {0,...,d}

where ¢ 1s in K37, A, B, C are polynomials and where the
following conditions are satisfied :

A)C(i+1)
CTBhc Y
0

(C\) A(d) = B(~1) =0,
(Co)Vie{=b+1,..., —1} Ay #0
(C5) Vi€ {0,....d+b—3),B(i) £ 0

Ld}LCE) £G6
(Cs) > Pu(i)C(i+k) =0

k=0

(Cy) Vi € {0,
b

and

k=1 b—1
Pe(i) = c*ou (i) [ [ AG + ) IIBG+a.

=0 i=k

Then the sequence (¥;)icz satisfies (1) :

ao(d)yi + - + ap(Dyigsr = 0.

Proof

Let us notice first that the sequence (yi)iez is well defined
according to the conditions (Cs), (Cs) and (C4).

As y; cancels whenever 4 is not in {0,...,d}, we can first
notice that

b ka
Zak(i)yi+k = Z o (DYire
k=0 Kk,

where k; = maz(0, —7) and k2 = min(b,d — 7).
b
Ifi < —bori>dthen Z () yivr = 0.

k=0
b

If i =d then E k(D Yirk = ao(d)ys = 0.

k=0
b

If i = —b, then Z(x,\.(-i)ka = ap(—b)yo = 0.

k=0
Let ¢ bein {-b+1,..
so Vk € {kl,...,k-z},

.sd—1}. Then 0 < i+k <i+k2 <d,

k—-1 b1
ceien [ avea Tl e gt
=0
J ’\1—1 b1
where F(i,ki) = C(i+ ki)™ H A+ ) H B(i+7)
Jj=0 j=ky

and F(i, k1) does not cancel according to the conditions
(C2), (Ca) and (C4).

So
b

Z ar(Dyier =

k=0

Yitky
k).
TGk Z P.(5)CE +
Furthermore, as B(—1) cancels, P (z ) also cancels whenever
—1—115111{k ,b—1}. Buti > —b+1soVk € {0,...,k
1}, Pe(i) = 0. In the same way, as A4(d) cancels, one proves

Vk e {ky+1,...,b}, Pe(s) = 0. To conclude,
b b
By 'Uz+k1
Az_joako.)ym SN Z ()Cli+k) =0
a
If the polynomials A, B and C satisfy the hypothe-
ses of Gosper's lemma ([6]) (4 and B monic; Vk €
N, ged(A(2), B + k)) = gcd(A®F),C(1)) = ged(B(i +

1),C(1)) = 1) then one proves that A(¢) divides ap(7) and
B(#) divides oy (i —b+1) (see [14]). So in practice, we choose
the polynomial A(7) (resp. B(7)) among the divisors of o (%)
(resp. ap(i — b)). The computation of the polynomial C re-
mains. We encounter herc the same type of problem as the
one of the first section : the degree N may depend on the
paramcters. However if we fix a nonnegative integer N, we



can coustruct, as in lemma 1, a finite set of algebraic condi-
tions on the parameters leading to a polynomial solution C
of degree N.

We describe below a method to find a set of sufficient con-
ditions leading to a polynomial solution of L(y) = 0.

1. The recurrence relation.
Compute the recurrence relation associated to the op-
erator L in a suitable basis (/%)ien :
ao(fy; + -+ ap(@)yips =0
Assume that vou know the factorization of «o and as.
Construct, the set I of the nonnegative integer roots of
cvo {which may depend on the parameters).

o

The set of the possible degrees of (4, B).
Construct the set E of the clements (da,ds) of
{0,....e0} x {0,..., e} such that :

k1, ka2 € {0, e ,b}, k1 ;é k2,5k1 = 5/\,2 =4,

where 6, = kda + (b — k)dp + e = deg(I%),

er = deg(aw), 0 = max{d;,0 < k < b}

If E is empty then for each (4,B) with degree in
{0,...,e0} x {0,...,es}, there is no polynomial C sat-
isfying the condition (Cs).

3. The set of the possible (4, B).
Construct the set E of the couples (A(i), B(z)) such
that

A(7) divides ao(%)

dd € I'/ao(d) = A(d) =0

B(i) divides as(i + 1 — b)

B(-1)=0

A(da,dB) € E/(deg(4),deg(B)) = (da,dB)

4. The set of the sufficient conditions on the pa-
rameters.

For each (A(:), B(z)) in E, fix a nonnegative integer N
N-1

and set C(1) =" + Z exi®. Construct the set Tn of

k=0
the parameters such that (Cs), (C3), (C4) and (Cs) are
satisfied.

Remark 2 If the set E of the second step is empty then
one can compute the recurrence relation associated to L in
another basis of polynomials using the tools of [16].

Example 4 Let us consider the linear differential homoge-
neous equation
zy'(2) + (Mo + Mz — 227 )y (2:)

+ (1 +2M)a)y(z) = 0.

Its associated recurrence relation in the basis (2')ien 48 :

—2(i—M1)ys+(M3i4+14+M3)yir1 +(0+2) i+ 14+ M) yipo = 0.

The set E is empty. If you compute the recurrence relation
in the basis of the Hermite polynomials, then you get :

(M —d)yi
20+ 2)(i +2 — My —

+ (1 + Ms(i + 1))yin
Mo)yive + 2Ma(i 4+ 2)(i 4+ 3)yivs =0
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If ma is zero then the set E is empty else it is equal to
{(0,0),(1,1)}. So the set E is reduced to {(i — mu1,i + 1)}.
Let us chovse N =1 and set C(i) =i+ co. Then the condi-
tion (Cs) 1s satisfied if and only if ¢ = ;3?, ma =1, my =
—2my — 1, cq = 2m?. One easily checks that the conditions
(C2), (Cs) and (C4) are also satisfied.

Let Ty = {{m1,m2,m3)/ m1 € N, m3g = 2m; — 1, m>»
1, ms # 0}. For each (m1,ma2, ms) in Ty there is ¢ polyno-
mial solution of degree mi (which does not have any fized
value) to the initial differential equation.

The question that one can ask is : when can we con-
struct non empty sets T such that the degree d of the finite
hypergeometric sequence (y;) (or of the polynomial y) does
not depend on N 7 We answer this question for a particular
class of equations whose recurrence relation has three terms
and is of order two.

5.2 An application to a particular family of equa-
tions

Let us consider the recurrence relation (2) :
oDy + i (Dyivr + o2(Dyiy2 =0

and the recurrence relation

Qo()C3E) + QLE)C(+ 1)+ @()CE+2) =0 (4)
where
Qo(t) = o20i—1)
{ Qi) = caq (i)
Qa2(i)) = aoli+1)

and cis in K.

Proposition 3 Assume

(Hl):{

Let T be the set of all the (1, ..., ) such that there exists
a nonzero ¢ such that the equation (4) has got a polynomial
sequence solution (C(4))iem satisfying

Vie{0,...,m1},C() #0.

ao(i) =i— M,
a2(i) = (i 4+ 2)a=2 (1) _ _
«v2(7) 45 monic and without root in{—1,0,...}

Then for each (my,...,ms) in T such that m; is in N, the
homogeneous linear recurrence (2) has got a finite solution
which is defined in the following way:

yo £ 0
. (i
(t): < Vie{0,...,m1}, yiy1 =c a—‘:?}_‘—)l—) é(f)”‘/l
Vi€ Z/N,y =0
Proof

It suffices to apply the previous theorem with A(2) = (%)
and B(i) = a2(¢ — 1) and notice that Py(i)C (i) + P1(2)C (i +
1)+ P (3)C(i+2) = ao(2)az(i)(Qo(d)C(7) + @1 (H)C(i + 1) +
Q200)C (G +2))=0.

Remark 3 The hypothesis ‘aa(i) monic’ could be avoided;
it just enables a simpler exposition. Furthermore, as the
polynomial &2 has no root in {—1,0,...}, for any integer io
in {—1,0,...} the set Vi, constructed in the section 4.1 is
emnpty. Indeed there is no parameter satisfying a2(io) = 0.



We have constructed here a two terms recurrence relation :
cao(R)C( + Dy — a2(i — 1)C(D)yitr = 0.

The question that remains is : can we find a polynomial C
which satisfies (4) and whose degree is independent of the
degree m; of the possible polynomial solution of L(y) = 07
The following lemma gives an answer to this question under
some new hypotheses.

Lemma 3 Let us assume that (H,) is satisfied and let as-
sume .

Qo(d) =" + uni + we

Q1 (1) = e(voi® + vii + )

(H2) : o € QF
vi, w1 € Q(Ms, ..., M)
Let (m1,...,ms) such that the recurrence relation (4) has

got a nonzero polynomial solution, then its degree does not
depend upon m;.

Proof

Let C(i) = i" +en— iV "'+, Then Qo(i)C(H)+Q1(1)C(i+

1) +@Q2 (1)C(1+2) (1 +cvo)z’\ T4 (env—1(14+cva) + (Nevo +

2+ e + 101))2 "+l 4 ..., 50 necessarily, cuo + 1 = 0 and

(cvo)N + ¢ +evy + w1 = 0.

As ug, vo, u1, v1 and ¢ do not depend upon m;, N also does

not depend upon m;. 0
The following proposition gives a matrix characterization

of the polynomial C.

Proposition 4 Let us assume that the hypotheses (Hv) and
(Hz) are satisfied. Let N be a numerically fired integer and
(m1,. .., 1, ¢) such that (cvo)N+c2 e +wy = 14cvy = 0.
A polynomial C' of degree N satisfies the recurrence (4) if and
only if

Mc (C0)---C(N) =0
where
_{ Mnyg
Mc = ( CI,N+_§ ) !
My N1 =
Q:1(-1)  Q2(-1)
Qo(0) @:(0) Q2(0)
Qo(N=2) Qi(N=2) QaN-2)
Ling = [ L ... Iny1 ]
with
Vie{l,....N=1} li=Qs(N — 1)¢(N +1,i — 1)

=Qo(N—1)+Qa(N—1)p(N +1,N — 1)

Ing1 = Q1N — 1)+ Q2N - 1)¢(N + 1, N)
N - .
where (i, k) = - H iijj
J=0.g#k

Proof
Let C' be a polynomial of degree N.
Let us assume that C is a solution of (4).

-1,...

Then for i in
,IN—2}, we get a linear system which can be written

My v (CO) -+ C(N)) =0.
Ifi = N — 1 then

Qo(N-1DC(N-1)+Q1(N-1)C(N)+Q:(N-1)C(N+1) =0

N
now C(N +1) = Z C(k)d(N + 1,k). So we get
k=0
Lin41 (CO) - C(N)) =
Let us assume now that
Mc HC(0) - C(N)) =0.

then for each 7 in {-1,..., N — 1}, the relation (4) is satis-
fied. One can easily see that the degree of the polynomial
Qo) CH+ QD CEF )+ Q2 (z)C(i +2) is N (using the
hypothesis 1 + cug = (cvo)N + ¢* + cvy + wq = 0 which en-
ables to cancel the terms of degree N 42 and NV + 1) but it
has N + 1 roots so it is identically zero. To conclude

Vi€ Z,Qo(1)CE)+ Q:1(D)CE+1) + Q2()CHE+2) =0

]
From the two last propositions and the last lemia one
deduces the following proposition :

Proposition 5 Let us assume that (H,) and (H>) are sai-
isfied. Let N be in IN and let Ty be the set of all the
(m1,...,ms) such that

1+cvo=—viN +1—vov1 + vows = 0 and det(Mc) = 0.

For (my,...,ms) in Tn, let C be a polynomial of degree N
such that

HC0) - C(N) =0
Then for each (m.l,...,m.s) n T such that my is in N
and C(i) has no integer root in {0,...,m1}, there exists a
nonzero finite solution to the recurrence relation (2).

Example 5 We handle the recurrence relation defined in
the third ezample (section 4.2) by the conditions (x). We
assume that 8 is not an integer. We notice that ¢ = 1. Let

us choose N = 2. Then
'U(:)’JV +1—wvov1 + 'u(";'wl =0&5=

The matric Mc 1s

1-v-1/23 — 1t 0
1-73 1-v+1/28 —pn+1
2—p —2-283+4+3p 5—v+3/23-3pu

Let T, be the set of all (3,7, p, v) such that det(Mc¢) = 0 and
there exists o polynomial C of degree 2 with no nonnegative
root satisfying Mc *(C(0),C(1),C(2)) = 0.

Then for each (3,7, 1, v) in T2 such that p is an integer, the
equation Lp = 0 has got a nonzero polynomial solution.
Note that we can find this last condition applying the method
of the section 4.2 to the recurrence relation associuted to Ly
in the basis (x + 1)

G-y —1/23+2v — 3y — 43 + By + 2u
+($-28-27)i + 2y — (E+ DE+H2 - Y)Yire =0



Conclusion

The following problem ‘deciding for which values of the pa-
rameters a given linear differential equation depending on
parameters has got polynomial solutions’ is undecidable.
When the degree docs not depend on the parameters then
the problem can be solved. Otherwise, even when we work
modulo the Diophantine problems, the question is still open.
No machine can handle this problem in its generality. How-
ever, we can provide computer tools (in maple) that can
help such a study. Any two terms recursion can be treated.
During the study of the hypergeometric solutions of three
terms recurrence relations, we have provided finite sets of
conditions on the paramecters. Each of these sets leads to
a polynomial solution provided that the left indicial equa-
tion has integer solutions; this last condition which was only
necessary in the general case becomes then a necessary and
sufficient condition.

We have seen in this article that our tools enable to char-
acterize some liouvillian solutions of equations of order two
given in [5]. Combined to the computation of the exponen-
tial parts, the study of the polynomial solutions also enables
to give necessary conditions for the integrability of Hamilto-
nian systems([13], [4]).

The study of the scalar two terms recursions can also he
partially generalized to some matrix two terms recurrence
relations. Lastly, the use of the orthogonal polynomials as
new basis of K[z] may be fruitful for the search of hyperge-
ometric finite solutions to linear recurrence relations.
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