
Synthesis of Low-Overhead Interfaces for

Power-E�cient Communication over Wide Buses

L. Benini � A. Macii z E. Macii z M. Poncino z R. Scarsi z

� Universit�a di Bologna

Bologna, ITALY 40136

z Politecnico di Torino

Torino, ITALY 10129

Abstract

In this paper we present algorithms for the synthesis of en-

coding and decoding interface logic that minimizes the average

number of transitions on heavily-loaded global bus lines. The

approach automatically constructs low-transition activity codes

and hardware implementation of encoders and decoders, given

information on word-level statistics. We present an accurate

method that is applicable to low-width buses, as well as approx-

imate methods that scale well with bus width. Furthermore,

we introduce an adaptive architecture that automatically adjusts

encoding to reduce transition activity on buses whose word-level

statistics are not known a-priori. Experimental results demon-
strate that our approach well outperforms low-power encoding

schemes presented in the past.

1 Introduction

O�-chip and on-chip global bus lines in VLSI circuits are gener-
ally loaded with large capacitances, up to three orders of magni-
tude larger than the average on-chip interconnect capacitance.
When using standard CMOS signalling, the power dissipated
by bus drivers is proportional to the product of average number
of signal transitions and line capacitance. Hence, one way of
reducing power dissipation on bus drivers is to encode the data
sent on the bus with encoding schemes that reduce the average
number of signal transitions.
Based on this observation, several researchers have proposed en-
coding schemes that reduce the average number of signal transi-
tions. Some codes [1, 2, 3] exploit spatial redundancy, i.e., they
increase the number of bus lines, while others exploit temporal
redundancy, i.e., they increase the number of bits transmitted
in successive bus cycles [4]. A few codes do not rely on spatial
nor temporal redundancy [5, 6].
Theoretical issues in bus encoding for low transition activity
are investigated in [7]. In this work, the authors introduce an
information-theoretic framework for studying low-transition en-
coding, and prove a useful lower bound on minimum achievable
average transition activity. Several redundant and irredundant
codes are then analyzed and compared to the theoretical bounds
to assess their quality. In [8], the same authors introduce a
generic encoder-decoder architecture that can be specialized to
obtain an entire class of low-transition coding schemes. A few
personalizations of the generic architecture are described, and
the reductions in transition activity are compared.

In [8], no systematic method is provided for obtaining optimum
codes from the generic architecture. Also, the hardware com-
plexity and cost of encoders and decoders is not studied in detail.
Finally, all presented encoding schemes assume some knowledge
of the statistical properties of the streams that must be encoded.
These issues are addressed in this work.
We propose a generic encoder-decoder architecture and we de-
scribe an algorithm for customizing it to obtain implementations
that minimize bus transition activity, given a detailed statistical
characterization of the target stream. We also introduce two
heuristic approximations of the basic algorithm that produce
low-transition codes and low-complexity encoders and decoders.
These codes are tailored for fast and wide buses, where encoders
and decoders are subject to tight performance and hardware
cost constraints, and for streams whose statistical properties
are not known exactly. Finally, we describe a general-purpose,
e�cient encoder-decoderarchitecture that can be used to reduce
bus transition activity for generic data streams with completely
unknown statistical properties. This architecture is capable of
on-line adaptation of the encoding scheme to the data stream
currently being transmitted over the bus.
One desirable feature of our approach is that not only the ab-
stract speci�cation, but also the circuit implementation of en-
coder and decoder is automatically synthesized. Moreover, we
o�er the possibility of trading o� bus switching activity reduc-
tion for encoder-decoder complexity. Designers can exploit our
interface synthesis approach to rapidly explore the power-saving
opportunities enabled by low-transition encodings.

2 Basic Concepts
Consider a data source that generates symbols over alphabet
X . We assume that the cardinality of the alphabet is jX j =
2W . Each symbol x 2 X is represented as a W -bit word x =
[b1; b2; : : : ; bW ]. Notice that X is the Boolean space BW such
that everyW -bit con�guration has non-null probability of being
generated by the data source. Symbols x must be transmitted
over time on a communication bus of widthW . We assume here
a discrete-time setting, and we use the notation x(n) to indicate
the word transmitted at time period n.
The bus width W and the communication throughput T = 1
(one word transmitted in each time period)will be taken as tight
constraints. Such constraints rule out the possibility of consid-
ering space and/or time redundant codes, as well as variable-
length codes. The motivation for this assumption is that spa-
tial redundancy is hardly tolerated in global bus organization
because it changes pinout and interface speci�cation. Tempo-
ral redundancy and variable-length coding do not change bus
width, but introduce variable latency in communication, which
may be unacceptable.

_

___________________________
Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F309847.309898&domain=pdf&date_stamp=1999-06-01


2.1 General Codec Architecture
We propose the general encoder-decoder (codec, for brevity) ar-
chitecture shown in Figure 1. The encoder takes as input the
stream of W -bit input words x(n); n = 0; 1; : : :. It consists of
three blocks: (i) A register that stores x(n�1) when the input is
x(n); (ii) A combinational encoding function E : BW�BW ! B,
that generates the encoded word y(n) as a function of x(n),
x(n � 1); (iii) A decorrelator [4, 8], that simply translates 1-
valued bits of y(n) into transitions on the corresponding bus
lines (0-valued bits correspond to stationary values on the bus
lines).

x(n) y(n)

x(n−1)

E

Decorrelator

Bus & Buffers

z(n)

y(n)

D

x(n)

x(n−1)
Correlator

Figure 1: General Codec Architecture.

The decoder takes as input the word z(n) transmitted over the
bus and computes the original input word x(n). It consists of
three blocks: (i) A correlator which computes the inverse func-
tion of the decorrelator, and reconstructs y(n); (ii) A combina-
tional decoding function D : BW � BW ! B, that reconstructs
input word x(n) from y(n) and x(n � 1); (iii) A register that
stores x(n� 1) when the output of the decoder is x(n).
Before describing the salient features of functions E and D,
we briey review the operation of decorrelator and correlator.
These two blocks have transfer functions out(n) = in(n) �
out(n � 1) and out(n) = in(n) � in(n � 1), respectively (we
use symbol "�" to denote the exclusive-or operation). It is as-
sumed that when n = 0, in(n�1) = out(n�1) = 0. The transfer
functions of the two blocks are one the inverse of the other. The
main advantage of using correlator and decorrelator is that they
transform the problem of minimizing the number transitions on
the bus into the problem of minimizing the number of ones on
the decorrelator's input [4].
Encoding function E should minimize the average number of
ones at its output while guaranteeing that the encoded value
y(n) can still be uniquely decoded by D. The sole purpose of D
is to compute the correct value of x(n). Note that both E and
D exploit past values of the input stream for decoding and en-
coding. Clearly, the architecture of Figure 1 is a generic scheme
that can be customized by de�ning functionsD andE. It is pos-
sible to further generalize the architecture by considering more
than one past input words for encoding and decoding. Unfortu-
nately, hardware complexity of D and E rapidly increases with
the number of inputs, thus we will not consider more complex
schemes.

3 Low-Transition Encoding Algorithm
The algorithmpresented in this sectionmoves from the assump-
tion that a detailed statistical characterizationof the data source
is available. More speci�cally, we assume the availability of the
complete probability distribution of all pairs of consecutive val-
ues in the input stream x. In symbols, the probability:

Pxi;xj = Prob(x(n) = xi ^ x(n� 1) = xj )

is known 8xi; xj 2 X . We call this distribution joint probability
distribution (JPD). Furthermore, we assume that JPD is sta-
tionary, i.e., Prob(x(n) = xi ^ x(n� 1) = xj) does not depend
on the time index n.

The encoding algorithm builds the speci�cation (i.e., the truth
table) of function E in an enumerative fashion. Function D is
obtained as a by-product. The starting point of the algorithm
is a table (called code table) with three columns, labeled x(n),
x(n � 1) (current and past input words) and y(n) (current en-
coded word), respectively. The table has 22W rows, one for each
pair of input words. Initially, the third column is empty (i.e.,
no encoded word is speci�ed), while the �rst and second column
contain all (xi; xj) pairs, ordered for decreasing Pxi ;xj . The
value of the encoded word y corresponding to each pair (xi; xj)
is computed starting from the �rst row of the code table.
The pseudo-code of the algorithm is shown in Figure 2. Its only
input parameter is the initial code tableCodeTab (a matrix with
22W rows and 3 columns). First, Conicts is initialized. This
array has one element for each row of CodeTab and it will be
used to store forbidden values of the encoded word y. Initially,
any value can be assigned to any row. The external loop scans
the table from the top. For each row, the encoded word y (i.e.,
the third column of the table) is assigned by calling function
MinOneCode. This function assigns to y the W -bit word con-
taining the minimum number of ones that does not belong to
the set of forbidden codes for the row under consideration. As
the algorithm scans the table from top to bottom and assigns
values to the third column, the Conicts array is updated. The
key point of the algorithm is the update rule for array Conicts,
that will be discussed next. The algorithm terminates when the
code for the last row has been assigned and returns the complete
code table.

procedure BuildTable(CodeTab) f

for (row = 0; row < 22W ; row++) Conicts[row] = ;;

for (row = 0; row < 22W ; row++) f
CodeTab[row][2] = MinOneCode(Conicts[row]);
foreach (r s.t. CodeTab[r][1] == CodeTab[row][1]) f
Conicts[r] = Conicts[r] [ CodeTab[row][2];

g

g

return (CodeTab);
g

Figure 2: Code Construction Algorithm.

The need for storing and updating forbidden codes stems from
a fundamental decodability constraint. The encoding function
cannot be a 1-to-1 mapping, because its domain is B2W while
its co-domain is BW . Thus, many input pairs (x(n); x(n� 1))
are necessarily associated to a single output value y(n). How-
ever, this association cannot be arbitrary, because we need to
decode y(n). Decodability is ensured if any pair (x(n�1); y(n))
uniquely identi�es a single value x(n). This constraint must be
satis�ed for each row of the table. Hence, whenever we assign
a code yk to the table row with code xi and xj in the �rst two
columns, we must guarantee that the same code is not used for
any other row with the same value of xj.
The complete code table is the truth table for function E. The
�rst two columns are input minterms, the third column is the
output value. The coding function minimizes the probability
of generating ones on its outputs, within the constraints im-
posed by unique decodability. FunctionD is obtained by taking
columns y(n) and x(n�1) as inputs, and column x(n) as output.
The complexity of the algorithm is exponential in W , because
the number of rows in the code table is 22W . Clearly, com-
putation of the complete table becomes infeasible for large bus
widths. Besides the obvious computationalbottleneck, there are
a few more limitations. First, the knowledge of the JPD may be
incomplete or approximate. For instance, obtaining a reason-
ably accurate estimate of Pxi ;xj for every pair of input words



may be infeasible for large streams. Second, the implementation
of function E and D in hardware may be unacceptably large,
slow or power-consuming. In summary, the encoding algorithm
may become impractical for wide global buses in current VLSI
circuits. Hence, we need to resort to approximate algorithms
that scale well with bus width.

4 Approximate Algorithms

4.1 Clustered Encoding
The most intuitive approximation to the exact algorithm of the
previous section consists in partitioning the set of bus lines in
smaller clusters and apply the exact algorithm to each clus-
ter. We call this solution clustered encoding. In this scheme,
we privilege temporal correlation with respect to spatial corre-
lation, since we still base the encoding/decoding process on the
statistics of all possible input pairs, yet smaller than the total
bus width.
This solution exhibits an evident trade-o� between accuracyand
complexity; the smaller the clusters, the smaller the reduction
in the number of transitions, because the spatial correlation
between bits is partially lost. On the other hand, larger clusters
imply larger encoders and decoders and longer code construction
times, as in the case of the exact algorithm.
An important issue here is the criterion used to grow the clus-
ters. Since breaking a word into clusters of bits decreases the
spatial correlationbetween bits, it is reasonable trying to keep in
the same cluster bits with high mutual spatial correlation. Our
clustering algorithmwe have used is similar to the one proposed
in [6], and it is not reported here for space reasons.
The architecture generated by clustered encoding consists of
a set of encoder/decoder pairs, one for each cluster. The en-
coder/decoder logic is synthesized from a two-level description
that represents the code table of each cluster.

4.2 Discretized Encoding
An alternative approximate solution is to consider only the M
most probable pairs of consecutive words in the code, where
M << 2W . Let us denote such set as S. We call this approxi-
mate solution discretized encoding. The optimality loss in this
solution is due to the fact that we consider all pairs outside the
�rst most probableM as equiprobable. In this method spatial
correlation is privileged, since the statistics are computed on full
words; conversely, we neglect some temporal correlationbecause
the encoding/decoding process is driven only by a small set of
code-words.
The implementation of the discretized scheme can be realized
according to the conceptual architecture of Figure 3, where the
encoderE is shown. The block F (x(n); x(n�1)) implements the
encoding function for set S. The rest of the words in the alpha-
bet is left unchanged. This is realized by a generic background
function (denoted with B(x(n); x(n� 1))).
The reason for the existence of the background function is that
the architecture of Figure 3 represents one realization of the
block denoted with E in the general architecture of Figure 1,
whose output y(n) feeds the decorrelator. If the upper path
of Figure 3 must realize the identity function, the block B

must cancel the e�ect of the decorrelator that follows the block.
Therefore, block B actually implements a correlator, that is,
B(x(n);x(n� 1)) = x(n)� x(n� 1).
The block Sel determineswhich of the two functions, F or B has
to be applied to the current pair of words. In other terms, Sel
represents the characteristic function of the pairs that belong to
set S.

In the clustered architecture, splitting the bus width in smaller
blocks implies smaller encoding and decoding logic. Conversely,
in the discretized solution, encoder and decoder must still be
2W -input,W -output functions. The simpli�cation in the hard-
ware implementation of encoding and decoding functions comes
from the fact that the speci�cation has a large don't care set,
namely the set of all word pairs that are not encoded.

MUX
x(n) y(n)

SEL

x(n−1)
F(x(n),x(n−1))

0

1

B(x(n),x(n−1))

Figure 3: Architecture for Discretized Encoding.

The construction of the encoding function F , unlike the clus-
tered approximation, requires the modi�cation of the basic al-
gorithm of Section 3. Due to space limitations, we will only
outline the di�erences: In discretized encoding, constraints im-
posed by assigning a new code to a pair may create a conict
with another pair which is not expected to be encoded, because
it does not belong to S.
The modi�ed algorithm proceeds as in the exact case for what
concerns the assignment of a code to a given pair. After the lists
of conictshave been updated, however, the newly assigned code
always a�ects one of the background pairs, i.e., those outside S.
Consider the table row r identi�ed by the pair P1 = (xi; xj),
and assume that it has been assigned code yk . The conict
mechanism guarantees that this assignment is uniquely decod-
able with respect to the pairs in S. However, such assignment
a�ects one of the background pairs, and precisely the one that
has the last two columns equal to those of r, i.e., (xj; yk). This
pair is P2 = ((xj�yk ); xj), since it implements the background
function.
Because of this conict, we are forced to change the code as-
signed to P2, otherwise P1 and P2 will not be distinguishable
by the decoder. Changing the code for P2 (a background pair)
means bringing P2 into S, because it will not be encoded ac-
cording to the background function anymore.
When bringing P2 into S, we assign it a new code, say yl. Ob-
viously, code yl must neither conict with any other previously
assigned pair, nor with other background pairs. The only way
of satisfying these two requirements is to assign yl in such a way
that yl � xj = xi, that is, yl = xi � xj. The resulting line of
the code table for P2 would then be: ((xj � yk); xj; yl).
The rationale is that the entry for P2 is now potentially conict-
ing with the background entry ((xj � yl); xj; yl), because they
share the (xj; yl) in the last two columns. After some compu-
tations, this conicting entry can be simpli�ed to (xi; xj; yl),
which cannot belong to the background pairs, since (xi; xj) is
exactly P1. In some cases not described here, conict resolution
with background pairs requires complex operations.

5 Adaptive Encoding
The solutions described in Sections 3 and 4 require that word-
pair statistics are known before synthesizing the encoder and
decoder logic. This assumption may not hold in some applica-
tion domains. In this section, we present an encoding scheme
that does not require any a-priori knowledge of the input statis-
tics, and is capable of on-line adaptation of the the encoding to
stream statistics.



The proposed solution is approximate in the sense that it realizes
an adaptive scheme that operates bit-wise rather than word-
wise, and therefore ignores the spatial correlation between bits
of the same code-word. Such approximate solution is needed to
allow a low-cost implementation of the encoding and decoding
logic in terms of area, delay and power.
The basic idea behind the adaptive method is to apply the al-
gorithm of Section 3 on the basis of approximate statistical in-
formation, that are collected by observation of the bit stream
over a window of �xed size S. There is a trade-o� between the
window size S and the accuracy in the prediction of the bit-wise
JPD. The larger S, the more we will approach the exact bit-wise
joint probabilities. At the same time, increasing the window size
has a direct impact on the complexity of the hardware imple-
mentation. Experimental data have shown that a window size
of S = 64 o�ers a good compromise between complexity and
accuracy.
The application of the exact algorithm of Section 3 on a sin-
gle bit requires the knowledge of the four joint probabilities
P0;0; P0;1; P1;0, and P1;1, whose ranking determines the opti-
mal 1-bit code. In order to deal with integer quantities, that
simpli�es the hardware, we will use the occurrence frequen-
cies N00;N01;N10 and N11 instead of the joint probabilities.
Clearly, since the window size is �xed, the joint probabilities
can always be computed by dividing the occurrence frequencies
by S � 1, e.g. P0;0 = N00=(S � 1).
If we closely analyze the frequency distribution, we can observe
that not all the four occurrences are actually required. First,
the sum of the four occurrence frequencies is known; since there
are only S � 1 pairs over a window of size S, N00 + N01 +
N10 + N11 = S � 1. For practical window sizes, we can then
assume that S�1 � S. Second, the number of 0-to-1 and 1-to-0
transitions must be balanced over the observation window, that
is N01 = N10. The equality should be interpreted loosely; in
fact, N01 and N10 actually di�er by 1 at most.
In conclusion, it is su�cient to consider only two joint probabil-
ities to fully characterize the JPD, since their knowledge implies
the other two. Without loss of generality, we choose N00 and
N11.

5.1 Encoder Architecture
The basic scheme of the architecture for the 1-bit encoder is
shown in Figure 4 (for S = 64). The input x(n), and its previous
value x(n�1) feed some glue logic that triggers the two counters
that store the number of occurrences of the two consecutivepairs
(N00, N11). The counters count over a window size, and are
reset after each S cycles. This is realized by a window counter

(WinCnt) that properly resets the two counters. The window
counter is shared across all the bits in the bus.

INC

INC

6

6

N00

N11

L

x(n)

x(n−1)
y(n)

x(n)
CLR

CLR Sorting
Network

L

L

WinCnt TC

MUXF(x(n),x(n−1))

t00

t11

Figure 4: Conceptual Architecture for Adaptive Encoder.

The shaded block on the right computes the encoding y(n)
based on the knowledge of x(n); x(n � 1), and the values of
N00 and N11. Since there are only four possible combinations
of (x(n); x(n � 1)) we can explicitly enumerate all the possible
orderings of these four con�gurations, that corresponds to con-
sider 4! = 24 cases. These orderings can be further reduced by
observing that N01 = N10. We actually need to consider only
3! = 6 cases, corresponding to all the possible orderings of three
quantities: N00; N11, and one of N01 and N10. For ease of no-
tation, we will denote both N01 and N10 with the symbol NT ,
to denote the fact that they are indistinguishable.
The enumeration of the six orderings results in only four di�er-
ent encoding functions F (x(n); x(n� 1)):

a) y(n) = x(n) b) y(n) = x(n)0

c) y(n) = x(n)� x(n� 1) d) y(n) = x(n)�x(n� 1)

The block inside the shaded area denoted with Sorting Network

serves the purpose of selecting the proper encoding function
F (x(n); x(n� 1)) according to the JPD of the current window.
Such decision is taken as follows:(

y(n) = x(n) when N00 > NT > N11
y(n) = x(n)0 when N11 > NT > N00
y(n) = x(n)� x(n� 1) when NT < fN11; N00g

y(n) = x(n)�x(n� 1) when NT > fN11; N00g

(1)

This selection mechanism of the encoding functions has an in-
tuitive interpretation; for example, in the �rst case, since the
most probable pair of symbols is 00, it is reasonable to leave the
bits unchanged, since a 0 in the stream will result in no transi-
tion after the decorrelator in the scheme of Figure 1. Similarly,
when NT (i.e., a transition) is the most probable symbol, the
transitions are �rst eliminated by XOR-ing two consecutive bits
(in other terms, by using a correlator). This yields a sequence
of 1's, that has to be complemented before being fed to the
decorrelator. The latter example clearly shows how the general
scheme proposed includes the general framework structure of [8]
as a particular case.
The decision rules described in Equation 1 can be graphically
represented as in Figure 5, where the four regions denoted with
a), b), c) and d) correspond to the four di�erent encoding func-
tions. The regions are delimited by the square of size S in the
plane (N00;N11), and by three lines, that identify the possible
relations between (N00; N11), and NT .
The boundary lines are obtained by expressing all the inequal-
ities in terms of (N00 and N11), replacing thus NT with (S �
(N00 + N11))=2. The line equations are derived as follows:

NT > N00 !
(S � (N00 + N11))

2
> N00 ! N11 + 3N00 �S < 0

NT > N11 !
(S � (N00 + N11))

2
> N11 ! 3N11 +N00 �S < 0

N00

N11

S

S

N11=N00

N11=S−3N00 N11=1/3(S−N00)

0

c)

c)a)

b)d)

d)

Figure 5: Space of the Sorting Network.



5.2 Implementation
Concerning the hardware implementation of the sorting net-
work, we face two possibilities. The most intuitive choice is to
generate a two-level cover of the sorting network with a software
program, by exploring all the possible orderings and associating
an output value to each of them. This solution may result in
excessively large circuits.
Another option is to realize the sorting network by directly im-
plementing the decision regions of Figure 5. We observe that
counters N00 and N11 and the sorting network can be merged
together. The inequalities of Section 5.1 can be rewritten as:

N11 + 3N00 < S 3N11 + N00 < S (2)

Instead of computingN00 and N11, and derive the two l.h.s. of
the above inequalities from them arithmetically, we can directly
store in a register the quantities needed to take the decision,
i.e., N11 + 3N00 and 3N11 + N00. The magnitude of the l.h.s.
of the inequalities of Equation 2 are bounded by 4S, and can
then be stored in a register with (log2 S + 2) = 8 bits.
Figure 6 shows the optimized implementation that merges the
two counters of Figure 4 and the sorting network.

8

t00

t11

6

+

8

R00

8

R00[7] R00[6]

2

CLR
TC of window
  counter

Figure 6: E�cient Encoder Implementation.

Each counter is replaced by a cheaper register: Register R00 is
used to store N11+3N00, while registerR11 stores 3N11+N00.
Each register computes R = R+ C, where C is determined by
the values that are present on the signals t00 and t11 that detect
the 0-to-0 and 1-to-1 transitions. For example, for registerR00:
C = 0, if (t00; t11) = 00, while C = 1, if (t00; t11) = 01. Finally,
C = 3, if (t00; t11) = 10. The operations for R11 are similar,
and are obtained by exchanging the last two conditions. At the
end of the window, the condition of Equation 2 can be obtained
by looking at the second most signi�cant bit of the output (bit
7). If this is 1, we have exceeded the value S that can be stored
in 6 bits. The four combinations of (R00[7];R11[7]) can be used
to directly drive the output multiplexor, to select the proper
encoding function, as follows:

R11[7] R11[7] Condition Function

0 0 NT < fN00; N11g y(n) = x(n)� x(n� 1)
0 1 N11 > NT > N00 y(n) = x(n)0

1 0 N00 > NT > N11 y(n) = x(n)

1 1 NT > fN11; N00g y(n) = x(n)�x(n� 1)

Concerning the performance of the encoder, the critical path
runs through the block F and the multiplexor, in the upper
part of Figure 4. Since the encoding functions F consist of at
most one gate, we can conclude that in the worst case we have
two or three equivalent gates on the critical path, depending on
the multiplexor implementation.

5.3 Decoder Architecture
The architecture of the decoder is very similar to that of the
encoder, and is not shown here for space reasons. It computes
the same statistics as the encoder, that is N00 andN11, that are
derived by observing pairs of consecutive values of the decoded
output (x(n); x(n� 1)).
There are two main di�erencewith respect to the encoder. First,
according to the architectural scheme of Figure 1, the \true"
decoder D must take as inputs y(n) and x(n� 1). Second, the
decoding functions (block F�1(y(n); x(n � 1))) must compute
the inverse of the functions F in the encoder.
In this case, all the encoding functions of Equation 1 are exactly
the same as their inverse. For example, if y(n) = x(n)�x(n�1)
is selected in the encoder, x(n) = y(n)�x(n�1) is selected in the
decoder. Notice that the same hardware optimization employed
for the encoder can be used in the decoder as well.

6 Experimental Results

We have applied the proposedencoding scheme, in the exact, ap-
proximate, and adaptive variants, to a set of ten real-life streams
with various statistical pro�les. The streams we have considered
are the following:

� DCT, FFT: Traces obtained from a code pro�ler;

� Sound: A .WAV �le;

� M31: Image in .PPM format;

� SCREEN: Image in raw format captured from screen;

� HTML: HTML page containing some images;

� GOPHER, GZIP, GCC, BISON: Executable �les.

Table 1 reports the comparison between the proposed schemes
and the method of [8], in terms of reduction in the number of
transitions with respect to the original streams. To enable a
fair comparison with the method of [8], we implemented the
algorithm called in their work dbm-pbm, which provided the
best results for most of the streams used.
The results for the discretizedmethod (columnDiscretized) con-
sist of three sets of data (columnsM=20, M=50, M=100), cor-
responding to di�erent numbers of words considered. For the
clustered method (column Clustered), two sets of results are
shown, one for 8 clusters of size 4, the second for 4 clusters of
size 8.
The results support the claim that our exact algorithm outper-
forms the method of [8], because it is able to generalize the
scheme realized by their general framework. The average sav-
ings of our method is 93:9%, as opposed to the 67:5% of [8].
Another important observation is that the clustered algorithms
perform almost as well as the dbm-pbm. This is an important
result, because both our exact algorithm and the dbm-pbm have
only theoretical interest, but are of limited practical use due
to the size and complexity of the corresponding encoders and
decoders. Conversely, as the circuit implementation results of
Table 2 show, both the clustered and the discretized methods
can be successfully implemented in hardware; therefore, the re-
ported savings represent realistic power reductions.
The discretized encoding is, on average, less e�ective than the
clustered one, suggesting that preserving temporal correlation
is more important than preserving spatial correlation. Finally,
as expected, the adaptive method is obviously the one that pro-
vides the smallest savings for the reasons already discussed in
Section 5.



Stream Exact [8] Discretized Clustered Adaptive Bus Invert

20 50 100 8 4

DCT 86.8% 55.9% 37.2% 62.3% 67.4% 58.2% 75.4% 15.2% 0.01%

FFT 90.3% 56.9% 37.7% 52.7% 64.3% 55.9% 74.3% 5.5% 0.00%

Sound 99.0% 71.8% 0.8% 1.2% 1.4% 45.0% 49.5% 2.1% 8.27%

M31 97.4% 64.3% 1.0% 1.4% 1.7% 41.7% 42.3% 3.5% 0.78%

SCREEN 78.7% 61.4% 9.5% 25.7% 32.5% 39.0% 44.7% -3.4% 0.01%

HTML 98.3% 76.3% 4.4% 9.2% 14.6% 41.1% 60.0% 9.3% 0.72%

GOPHER 98.2% 73.1% 2.5% 3.6% 5.0% 52.9% 61.9% 19.0% 3.92%

GZIP 98.2% 72.5% 1.5% 2.5% 3.3% 51.1% 59.8% 16.3% 3.45%

GCC 95.7% 73.8% 2.4% 5.1% 8.3% 51.2% 65.3% 15.6% 3.53%

BISON 96.5% 69.4% 2.8% 3.9% 5.1% 51.6% 62.5% 17.4% 4.17%

Average 93.9% 67.5% 9.9% 16.7% 20.4% 48.7% 59.5% 10.1% 2.48%

Table 1: Comparison of Transition Reduction.

Stream Discretized Clustered Adaptive

20 50 100 8

A P D A P D A P D A P D A P D

DCT E 5472 6.86 2.31 10734 14.37 2.96 23670 30.69 3.67 29988 41.80 2.89

D 5468 6.86 2.31 11034 15.24 3.06 23730 31.02 3.62 32904 50.57 2.46

FFT E 7380 9.33 3.45 15408 18.61 3.86 31842 40.37 4.40 37242 52.91 2.95

D 7378 9.28 3.44 14356 17.84 3.81 31678 40.04 4.32 37386 55.52 2.48

Sound E 11790 12.02 2.85 40158 40.38 4.84 99522 110.88 6.98 87246 138.21 3.13

D 11730 11.98 2.80 39734 39.87 4.56 99462 108.68 6.68 95040 154.03 3.03

M31 E 13212 16.43 3.65 37494 48.63 4.55 112230 160.05 5.24 84780 129.77 2.77

D 13101 16.23 3.63 36573 47.23 4.67 111760 158.76 5.20 85122 140.47 2.95

SCREEN E 7308 9.37 2.57 19962 26.60 3.19 63522 82.53 5.00 78786 126.37 3.54

D 7298 9.12 2.56 20013 26.45 3.36 63500 82.48 5.00 74601 122.78 2.70

HTML E 53046 65.24 4.50 123336 176.64 5.26 237024 370.68 6.77 93416 148.23 3.06 187200 81.6 0.60

D 53012 65.13 4.34 117263 174.26 5.16 236890 369.31 6.70 95346 156.70 3.19

GOPHER E 24696 26.42 3.95 75564 95.45 5.29 154044 225.57 6.22 90428 138.45 3.02

D 24540 26.60 3.95 75164 93.45 5.17 153930 223.32 6.22 91368 149.33 3.19

GZIP E 40248 45.12 4.33 98784 128.98 4.91 192006 283.50 6.84 86748 136.46 3.11

D 40124 45.18 4.31 99987 129.23 4.93 192120 285.10 6.86 85518 138.95 3.15

GCC E 23184 26.63 3.79 84546 115.36 4.84 202914 287.33 7.10 87120 136.42 2.85

D 23206 26.70 3.75 85674 113.71 4.76 202506 285.12 7.06 88834 139.21 2.93

BISON E 27036 29.15 4.39 51426 63.44 5.02 112356 151.53 6.13 86724 136.25 2.89

D 26578 29.05 4.35 52376 64.25 5.12 113134 151.12 6.15 84569 138.13 2.85

Table 2: Comparison of Hardware Implementations for the Proposed Algorithms.

To fairly evaluate the e�ectiveness of the adaptive scheme, we
have compared its performance to the Bus Invert code [4]. Al-
though spatially redundant codes were excluded from our anal-
ysis because of our tight constraints on the bus width, we have
included these experiments because the Bus Invert is the only
low-power coding scheme that does not require any a-priori in-
formation about the stream that is transmitted, and can be
reasonably compared to our general-purpose, adaptive scheme.
The results are in favor of our algorithm. In fact, for most of
the streams we have considered, the Bus Invert yields negligi-
ble savings, and the peak improvement is 8:27%. The proposed
adaptive method is always better but in one case, where the
peculiar structure of the stream (long patterns of 0's and 1's)
results in a slight increase in the number of transitions.
Table 2 collects the implementation results of the encoders and
decoders (E and D in the table) for the cases of approximate
and adaptive schemes. The synthesis has been carried out using
Synopsys DesignCompiler on a 0:35�m industrial library. The
circuits have been optimized for speed, becausewe assumed that
the latency of the encoders and decoders is the most stringent
constraint. The results report the values of area (in �m2), power
(in mW ), and delay (in ns) for both encoders and decoders of
each stream. Power estimates are obtained from DesignPower
with a clock frequency of 500MHz.
For the discretized method, all three versions (M = 20;50;100)
were successfully implemented. As expected, the complexity
of the encoder and decoder logic tends to rapidly increase for
larger values of M . Concerning the clustered scheme, only the
version with 8 clusters of size 4 resulted in a cost-e�ective imple-
mentation. Notice that the values of area, power and delay for
the clustered method are comparable to those of the discretized
method with M = 50, that provides sensibly smaller savings.

The adaptive encoder (the decoder has a roughly identical im-
plementation) is typically larger than those of the approximate
solutions (except for theM = 50 discretized case, which is com-
parable). One desirable characteristics of this encoder is the
negligible delay (0:6ns), which is at least four times less than
the fastest among the other encoders/decoders.

7 Conclusions
We have presented novel algorithms for the automatic synthe-
sis of bus interface logic that targets the minimization of the
switching activity on global buses. We have benchmarked the
capabilities of the proposed encoding/decoding techniques on a
large set of data streams. In addition, we have investigated the
trade-o� between optimality of the encoding scheme and the
complexity of the encoding/decoding circuitry.

References
[1] M. R. Stan, W. P. Burleson, \Bus-Invert Coding for Low-Power

I/O,"

[2] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano, \Address
Bus Encoding Techniques for System-Level Power Optimization,"
DATE-98, pp. 861-866, Feb. 1998.

[3] E. Musoll, T. Lang, J. Cortadella, \Working-Zone Encoding for Re-
ducing the Energy in Microprocessor Address Buses," IEEE Trans.
on VLSI Systems, Vol. 6, No. 4, pp. 568-572, Dec. 1998.

[4] M. R. Stan, W. P. Burleson, \Low-Power Encodings for Global

Communication in CMOS VLSI," IEEE Trans. on VLSI Systems,
Vol. 5 No. 4, pp. 444-455, Dec. 1997.

[5] H. Mehta, R. M. Owens, M. J. Irwin, \Some Issues in Gray Code

Addressing," GLS-VLSI-96, pp. 178-180, Mar. 1996.

[6] L. Benini G. De Micheli, E. Macii, M. Poncino, S. Quer, \Reducing
Power Consumption of Core-Based Systems By Address Bus Encod-

ing", IEEE Trans. on VLSI Systems, Vol. 6, No. 4, pp. 554-562,
Dec. 1998.

[7] S. Ramprasad, N. R. Shanbhag, I. N. Hajj, \Achievable Bounds on
sIgnal Transition Activity," ICCAD-97, pp. 126-131, Nov. 1997.

[8] S. Ramprasad, N. R. Shanbhag, I. N. Hajj, \Signal Coding for Low
Power: Fundamental Limits and Practical Realizations," ISCAS-98,
pp. 1-4, Jun. 1998.


