
Performance-driven Integration of Retiming and Resynthesis�

Peichen Pan

Strategic CAD Labs

Intel Corporation, Hillsboro, OR 97124

Abstract { We present a novel approach to per-

formance optimization by integrating retiming and

resynthesis. The approach is oblivious of register

boundaries during resynthesis. In addition, it guides

resynthesis by a criterion that is directly tied to

the performance target. The proposed approach ob-

tains provable results. Experimental results further

demonstrate the e�ectiveness of our approach.

1 Introduction

Over the years, combinational timing optimization has
been intensively studied and a signi�cant level of maturity
has been attained [3, 11, 12]. In comparison, sequential tim-
ing optimization has been lagging behind, due to the addi-
tional complexity of handling registers.

Traditionally, sequential circuits are viewed as a special
case of combinational circuits and only the logic between reg-
isters is optimized. This approach not only results in strin-
gent resynthesis constraints, but also does not permit inter-
action between logic separated by registers. Retiming [7] is
another technique for sequential optimization. Although it
is very useful, the e�ectiveness of retiming is limited since it
does not change the logic.

E�orts have been made to improve upon the direct ap-
plication of combinational techniques to sequential circuits.
Techniques were proposed that take into consideration the
existence of post-resynthesis retiming during resynthesis by
generating a set of relaxed resynthesis constraints [5, 2]. In
another direction, techniques were proposed to exploit sig-
nal dependencies across register boundaries. The approach
proposed in [9] �rst retimes the circuit with the objective to
expose signal dependencies across register boundaries. Then,
it carries out resynthesis on the logic between registers in
the retimed circuit. These techniques can be improved by
repeating the retiming/resynthesis loop [6]. Attempts have
also been made to generalize combinational logic synthesis
techniques to sequential circuits [1, 4, 8].

Although these approaches have achieved some degree of
success, it is evident that a true integration of retiming and
resynthesis is still lacking since retiming and resynthesis are
carried out separately. Even when retiming and resynthesis
are tightly integrated, no e�ective criteria have been pro-

�This work was done while the author was with Clarkson Uni-

versity, Potsdam, NY.

vided to guide the application of these techniques. As a re-
sult, local logic transformations are not strongly tied to the
performance target.

In this paper, we propose a new approach to integrate
retiming and resynthesis for performance optimization. The
approach is based on two recent concepts: expanded circuits

and l-values which were originally proposed in the context
of FPGA technology mapping [10]. Our approach produces
provably good results under a very general assumption.

The rest of this paper is organized as follows. An overview
of the preliminary concepts underlying our approach is pre-
sented in Section 2. In Section 3, we introduce our approach.
Section 4 deals with the experimental results obtained. Sec-
tion 5 concludes the paper.

2 Preliminaries

A sequential circuit is represented as a directed graph.
Each node denotes either a primary input (PI), a primary

output (PO) or a gate, and each edge u
e

! v represents a
connection from node u to node v. Each edge e is weighted
by its number of registers, w(e). Each node has an area and
a delay associated with it. The cycle time of a sequential
circuit is the maximum delay on the combinational paths.

Retiming [7] is a transformation that repositions the reg-
isters in a circuit without altering its functionality. Retiming
a node by a value i is the operation of removing i registers
from each fan-out edge and adding i registers to each fan-
in edge of the node. In general, all nodes can be retimed
collectively to arrive at a retiming of the circuit.

To exploit the
exibility of dynamic register positions due
to retiming, we make use of expanded circuits [10]. The ex-
panded circuit at a node is formed by unrolling the circuit
over all time frames, starting from the node. It is essentially
the combinational logic for the node in the circuit. For ex-
ample, for the circuit in Fig. 1(1), Fig. 1(2) is a sketch of the
expanded circuit at g. The index of each node is the number
of backward time frames (registers) relative to the output
node g0. Expanded circuits has the following property [10].

a0 b1

i21i

i2
1

1g1i
0

0g

g

a0

i2
1

1i
0

b1

b2a1

... ...

g0

g1

i21i

a b

g

(2) (3)(1)

Figure 1: Expanded circuit and resynthesis cone.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

Theorem 1 Let ut be a node in the expanded circuit at node

v, any path from ut to the output v0 has exactly t registers.

If we take an output cone of the expanded circuit at a
node, the registers within the cone can be retimed out of
the cone to form a combinational subcircuit for the node.
Thus, the concept of expanded circuits is a systematic way to
extract logic across register boundaries. For example, from
the cone indicated in the expanded circuit in Fig. 1(2) we
have the combinational subcircuit for g in Fig. 1(3). We will
refer the combinational subcircuits derived from expanded
circuits as resynthesis cones as the proposed approach carries
out resynthesis on them.

We will employ the concept of l-values introduced in [10] to
guide resynthesis. The l-values are de�ned for a given target
cycle time �. The l-value of a node v in a circuit is de�ned as
the maximum weight of the paths from the PIs to v according
to a set of new edge weights de�ned as follows. For each edge
u

e

! v, the new weight of e, w1(e) = �� �w(e) + d(v), where
d(v) is the delay of node v. The l-values can be used to
predict whether the target cycle time � can be attained by
retiming, without actually relocating registers [10].

Theorem 2 If there is a PO whose l-value is greater than

�, the circuit cannot be retimed to a cycle time of �. On the

other hand, if the l-values of all POs are less than or equal to

�, the circuit can be retimed to a cycle time less than �+D,

where D is the largest gate delay.

3 The proposed approach
The basic idea in our approach is to extract resynthesis

cones and resynthesize them using a combinational timing
optimizer. Because of Theorem 2, instead of considering cy-
cle time directly, we want to resynthesize a circuit so that the
l-values of all POs are less than or equal to �. The following
is a precise de�nition of the problem:

Problem 1 Given a combinational timing optimizer T and

a set of cones C(v) for each node v, resynthesize one cone

in C(v) for each v such that the l-values of all POs in the

equivalent circuit formed by the resynthesized cones are less

than or equal to �.

We now present an algorithm for this problem. The al-
gorithm has two phases: a labeling phase and an assembly

phase. In the labeling phase, we compute a label and an
associated resynthesized cone for each node. Based on the
label we know whether there is a solution to Problem 1. If
the answer is a�rmative, we connect the resynthesized cones
together in the assembly phase to form a solution to the
problem.

In the labeling phase, we want to �nd the minimum l-value
that can be obtained for each node with resynthesis. We
determine the minimum l-values by iterative improvement.
For each node v, we maintain a label l(v), which is a lower
bound on the minimum l-value at v, and then successively
approximate the minimum l-value by updating it. We begin
by initializing the labels of the non-PI nodes to �1. The
labels of the PIs are set to zero assuming all input signals
arrive at the same clock edge. As the process of resynthesis
continues, the labels are gradually increased. If the label of

any PO ever exceeds �, the labeling procedure simply stops
and returns FAILURE as there is no solution to Problem 1,
based on the selected resynthesis cones and the combinational
timing optimizer. Fig. 2 shows the outline of the labeling
procedure where update is the procedure that updates the
label at each node.

ReRe(G; �) // G is the circuit

for each node v in G do

if v is a PI then l(v) 0;

else l(v) �1;

while (labels changed) do

for each non-PI node v in G do

ltmp update(v)

if ltmp > l(v) then

l(v) ltmp;

if v is a PO and l(v) > �

then return FAILURE

return SUCCESS;

Figure 2: The labeling procedure.

We now discuss how to update the label at each node.
To maintain l(v) as a lower bound on the minimum l-value
at v, we resynthesize the cones in C(v) in such a way that
the updated label is minimized. Suppose we resynthesize
c 2 C(v) and let c0 be the resulting cone. If we use c0 as
the logic for generating (the output signal of) v, then by the
de�nition of l-values, the l-value at v is at least as follows:

maxfl(u)� � � t+ du;t j u
t is an input to c

0
g;

where du;t is the maximum path delay from ut to the output
v in c0. Now suppose that we set the arrival time at ut to
l(u)�� � t as shown in Fig. 3. It is easy to see that the above
quantity is exactly the arrival time at the output v in c0.

.

.

l u()

l u()

()l v

output

ut

.

t

resynthesis
cone

u

arrival time - t

signals going
into the cone

v

Figure 3: Setting arrival times in a cone.

Consequently, we constrain the resynthesis of each cone
in C(v) by assigning appropriate arrival times at the inputs
of the cone as indicated in Fig. 3. Then we resynthesize
the cone to minimize the arrival time at the output of the
cone. Therefore, we translate the problem of determining
the new lower bound to that of resynthesizing each cone to
minimize the arrival time at the output. Among all cones in
C(v), we pick the one that has minimum arrival time after
resynthesis in order to minimize the new label at v. Let T (c)
denote the arrival time at the output v in c after resynthesis
(with appropriate arrival times at the inputs) using T . Then,
update(v) = minc2C(v) T (c).

We use an example to illustrate the labeling procedure.
Consider the circuit in Fig. 4(1) which has a cycle time of

g2

1g

2i

g3

1o

g4
i1

i3
1g g2

2i

g3
g4

i1
g4

1g

i3

g4

g

(2)

3

g2

1og2

(1)

Figure 4: A circuit and selected resynthesis cones.

three units, assuming that each gate has one unit of delay.
We want to resynthesize the circuit with a target cycle time
� = 2. Suppose that each node has the trivial cone formed
just by itself as shown in Fig. 4(2). (Note that the presence of
trivial represents that we may choose not to to resynthesize
at the node.) Suppose that node g4 has the two additional
resynthesis cones shown in Fig. 5(1) and (2). To simplify
our discussion, we assume that the combinational timing op-
timizer can only produce the resynthesized cones shown in
Fig. 5(3) and (4) for the cones in Fig. 5(1) and (2), respec-
tively, regardless of the arrival times at their inputs.

g2

1g g3
i3

g4

2i

g4

g4

1g

1g

g2

i3

g3

g2

i3

i1

g4

2i

i3

1

(1) (2)

(3) (4)

i

Figure 5: More resynthesis cones.

At the beginning, l(i1) = l(i2) = l(i3) = 0 and l(v) = �1

for all other nodes. Suppose we visit the nodes g1; g2; g3; g4
in this order in the labeling procedure. In the �rst iteration,
since g1 only has the trivial cone, we have l(g1) = maxfl(i1)+
1; l(g4) + 1g = maxf0 + 1;�1+ 1g = 1. Similarly, l(g2) = 1
and l(g3) = 1. For node g4, the arrival time from the trivial
cone is maxfl(g3) + 1; l(g2) � � + 1g = 2; from the cone in
Fig. 5(3) the arrival time is maxfl(i1) � � + 3; l(i2) � � +
3; l(g4)� �+ 2; l(i3) + 1g = 1; from the cone in Fig. 5(4) the
arrival time is maxfl(g1)��+2; l(g2)��+2; l(i3)+1g = 1.
Thus, l(g4) = 1. For the output node l(o1) = l(g2) = 1 from
the trivial cone at o1.

In the second iteration, since l(g4) = 1, we have l(g1) = 2,
l(g2) = 2, and l(g3) = 1. For node g4, the cone in Fig. 5(3)
gives the smallest arrival time 1, so l(g4) = 1. For the output
node l(o1) = l(g2) = 2. Since labels have changed, the proce-
dure goes to the third iteration. However, no more change in
labels will occur and the procedure stops by returning SUC-
CESS.

After the procedure outlined in Fig. 2 terminates with
SUCCESS, we proceed to generate the resynthesized circuit.
Recall that for each node in the initial circuit, we not only
have its label, but also an associated resynthesized cone that
realizes the label. In the assembly phase, we simply connect

i

i1

2i

i3

g4

g2
1o

2i

i1

2i

i3

g
2

4

(2)

g2
1o

(1)

Figure 6: Resynthesized circuits.

together the resynthesized cones that realize the labels. This
is followed by a cleanup step to remove nodes that do not
drive, directly or indirectly, the POs of the circuit. For the
example in Fig. 4, the resynthesized cone in Fig. 5(3) realizes
the label at g4. For each of the other nodes, its label is real-
ized by its trivial cone. The resulting resynthesized circuit is
shown in Fig. 6(1).

Given a single-output combinational circuit, a set of ar-
rival times at its inputs is pairwise smaller than another set
if the arrival time at each input in the set is less than or
equal to the corresponding arrival time in the other set. A
combinational timing optimizer is order-respecting if a pair-
wise smaller set of arrival times at the inputs results in a
resynthesized circuit with a smaller or the same arrival time
at the output.

Theorem 3 Assuming that T is order-respecting, there is a

solution to Problem 1 i� the procedure returns SUCCESS.

To obtain a circuit with the target cycle time �, we can
simply retime the circuit generated in the assembly phase to
minimize its cycle time. The resulting circuit is guaranteed
to have a cycle time less than � plus a largest gate delay.
For the resynthesized circuit in Fig. 6(1), after retiming, we
obtain the circuit in Fig. 6(2) which has the desired cycle
time of two units.

We introduce a factor called the depth to limit the size
of the resynthesis cones selected from the expanded circuit
for each node. This factor determines the size of the logic of
the node that will be passed on to the combinational logic
optimizer. A large value results in a large cone, which in turn,
presents better resynthesis potential. On the other hand,
area overhead and computation time could be large too. An
optimal choice balances the overhead and the potential for
resynthesis.

Ideally, one would like to consider many cones for each
node. In practice, however, resynthesizing several cones at
each node may greatly increase the computation time. Our
strategy to overcome this problem is to dynamically select one
cone to resynthesize at each node in each iteration during the
labeling phase.

In practice, only a small set of nodes constrain the per-
formance of a circuit. Moreover resynthesizing nodes that do
not contribute to achieving the target cycle time may result
in unnecessary area overhead and computation time. This
suggests the need for an e�ective technique for selecting a
few \strategic" nodes for resynthesis. Resynthesis is directed
towards this set of nodes �rst. We designed an e�ective tech-
nique for node selection. The details of the technique is omit-
ted here due to space limitation.

4 Experimental results

This section describes our experimental results on the se-
quential benchmark circuits in ISCAS89 suite with Adden-
dum93. Our program, referred to as SeqRe, is integrated with
the logic synthesis tool SIS. Combinational resynthesis is per-
formed by speed up in SIS. A min-cost based node selection
technique was also implemented.

SeqRe performs repeated calls to ReRe outlined in Fig. 2,
to target a cycle time that is less than the current one until
the cycle time cannot be reduced. Our program introduces a
parameter step, to control the di�erence between the current
and targeted cycle times. We set step to one initially. If
we come across a failure to meet the target cycle time, we
then increase it to two and attempt once more. The other
parameter depth that controls the size of the resynthesis cones
is set to 4 in our experiments. Throughout the experiment,
the unit-delay model is used.

circuit initial retiming SeqRe

name gates FFs � FFs � gates FFs �

s208 81 8 10 8 10 79 15 7

s298 107 14 8 24 5 116 42 4

s344 121 15 14 26 11 132 22 7

s349 124 15 14 27 11 150 35 7

s382 140 21 9 30 6 139 38 5

s386 167 6 10 6 10 189 14 7

s400 147 21 9 30 6 152 37 5

s420 175 16 12 16 12 172 25 9

s444 159 21 10 46 6 175 56 5

s499 209 22 12 22 12 403 109 8

s510 225 6 11 6 11 260 25 8

s526 227 21 8 40 6 231 59 5

s526n 226 21 8 35 6 226 61 5

s635 220 32 35 36 20 267 56 7

s641 169 19 20 19 20 245 27 11

s713 180 19 20 19 20 249 24 11

s820 400 5 11 6 10 406 6 9

s832 410 5 11 6 10 414 6 9

s838 363 32 16 32 16 342 45 11

s938 363 32 16 32 16 342 45 11

s953 371 29 13 31 11 438 87 8

s967 390 29 12 29 11 453 61 8

s991 317 18 40 19 38 462 57 13

s1196 499 18 19 18 19 582 18 13

s1238 552 18 21 18 21 642 18 15

s1269 515 37 28 82 17 624 112 12

s1423 504 74 55 78 49 1004 134 14

s1488 689 6 12 6 12 701 6 11

s1494 698 6 12 6 12 712 6 11

s1512 523 57 19 60 16 626 91 8

s3271 1246 116 21 176 12 1298 235 9

s3330 999 132 20 137 9 1040 136 8

s3384 1221 183 55 190 26 1094 254 9

s4863 1822 104 52 129 28 2006 189 21

s5378 1530 179 16 235 12 1447 262 10

s6669 2455 239 81 306 22 2599 366 16

s9234 2246 211 31 248 20 1390 250 10

prolog 1032 136 20 159 9 1068 126 8

s13207 3210 638 32 492 29 3015 490 22

s15850 4049 534 44 621 33 3817 743 23

s35932 11980 1728 19 1728 19 12905 1909 11

s38417 9783 1636 29 1671 24 9951 1707 20

s38584 14200 1426 30 1669 25 13207 1682 20

total 65044 7905 945 8574 698 65770 9686 451

ratio 0.99 0.82 2.10 0.89 1.55 1 1 1

Table 1: Experimental results.

We report, in Table 1, the results of SeqRe on all the
benchmark circuits. For each benchmark we list the num-
ber of gates, number of registers and the cycle time, of the
initial, retimed and SeqRe optimized circuits. It is evi-
dent from the table, signi�cant improvement in cycle time is
achieved by SeqRe over the initial circuits | over 50% re-
duction overall. From Table 1, we can also see that SeqRe

achieves much better results than retiming alone. On the
whole SeqRe reduces the cycle time by an additional 35%
(with a 13% increase in the number of registers and a 1%

increase in the number of gates) over the optimally retimed
circuits. We point out that our current program does not try
to minimize the number of registers. We expect the num-
ber of registers can be reduced considerably once a register
minimization step is added. Comparison with existing re-
timing and resynthesis methods has been done although not
reported here due to space limitation.

5 Conclusions
We have developed a novel timing optimization approach

that integrates retiming with resynthesis to form a power-
ful combined technique. This approach has several impor-
tant features. Firstly, it extracts combinational logic out of
a circuit for resynthesis instead of carrying out resynthesis
directly on the circuit (or its retimed one) to expose signal
dependencies. By doing so, it becomes truly oblivious of reg-
ister boundaries. Secondly, it tightly constrains logic resyn-
thesis so that the resynthesized circuit is guaranteed to meet
the performance target. Thirdly, it is independent of the
combinational timing optimizer. Experimental results show
that the proposed approach can improve the performance of
a sequential circuit signi�cantly.

References
[1] S. Bommu, M. Ciesielski, N. O'Neill, and P. Kalla. Retiming-

based factorization for multi-level logic optimization. In Intl.

Workshop on Logic Synthesis, 1997.

[2] S. T. Chakradhar, S. Dey, M. Potkonjak, and S. G. Roth-

weiler. Sequential circuit delay optimization using global path

delays. In ACM/IEEE Design Automation Conf. (DAC),

pages 483{489, 1993.

[3] K. C. Chen and S. Muroga. Timing optimization for multi-

level combinational circuits. In ACM/IEEE Design Automa-

tion Conf. (DAC), pages 339{344, 1990.

[4] G. DeMicheli. Synchronous logic synthesis: algorithms for

cycle-time minimization. IEEE Trans. on Computer-Aided

Design, 10:63{73, 1991.

[5] S. Dey, M. Potkonjak, and S. G. Rothweiler. Performance op-

timization of sequential circuits by eliminating retiming bot-

tlenecks. In Intl. Conf. on Computer-Aided Design (ICCAD),

pages 504{509, 1992.

[6] S. Hassoun and C. Ebeling. Experiments in the iterative ap-

plication of resynthesis and retiming. In Intl. Workshop on

Timing Issues in the Speci�cation and Synthesis of Digital

Systems, 1997.

[7] C. E. Leiserson and J. B. Saxe. Retiming synchronous cir-

cuitry. Algorithmica, 6:5{35, 1991.

[8] B. Lin. Restructuring of synchronous logic circuits. In Euro-

pean Conf. on Design Automation, pages 205{209, 1993.

[9] S. Malik, K. J. Singh, R. Brayton, and A. L. Sangiovanni-

Vincentelli. Performance optimization of pipelined logic cir-

cuits using peripheral retiming and resynthesis. IEEE Trans.

on Computer-Aided Design, 12:568{578, 1993.

[10] P. Pan and C.L. Liu. Optimal clock period FPGA technology

mapping for sequential circuits with retiming. ACM Trans.

on Design Automation of Electronic Systems, 3(3), 1998.

[11] K. J. Singh, A. R. Wang, R. Brayton, and A. L. Sangiovanni-

Vincentelli. Timing optimization of combinational logic. In

Intl. Conf. on Computer-Aided Design (ICCAD), pages 282{

285, 1988.

[12] H. J. Touati, H. Savoj, and R. K. Brayton. Delay optimiza-

tion of combinational logic circuits by clustering and partial

collapsing. In Intl. Conf. on Computer-Aided Design (IC-

CAD), pages 188{191, 1991.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

