
Exploiting Intellectual Properties in ASIP Designs for
Embedded DSP Software

Hoon Choi, Ju Hwan Yi, Jong-Yeol Lee, In-Cheol Park, and Chong-Min Kyung
Department of Electrical Engineering,

Korea Advanced Institute of Science and Technology, Taejon, Korea
hchoi@ieee.org, icpark@ee.kaist.ac.kr

Abstract
The growing requirements on the correct design of a high-

performance system in a short time force us to use IP’s in many
designs. In this paper, we propose a new approach to select the
optimal set of IP’s and interfaces to make the application pro-
gram meet the performance constraints in ASIP designs. The
proposed approach selects IP’s with considering interfaces and
supports concurrent execution of parts of task in kernel as soft-
ware code with others in IP’s, while the previous state-of-the-art
approaches do not consider IP’s and interfaces simultaneously
and cannot support the concurrent execution. The experimental
results on real applications show that the proposed approach is
effective in making application programs meet the performance
constraints using IP’s.

1 Introduction
As time to market pressures and product complexities increase,

the pressure to reuse complex building blocks (also known as
Intellectual Property, or IP) increases significantly. Recently, a
study says that extreme reuse of IP’s will become crucial if chip-
design cost is to be kept reasonable. It concludes that systematic
and effective design reuse would reduce chip-development cost by
50 percent in three years and by more than 70 percent in six years,
compared with the cost of developing chips without reuse [1].

There have been a number of works on the automatic synthesis
of interfaces between IP’s using different communication proto-
cols [2-7]. However, there have not been many works for the effi-
cient use of IP’s as accelerators in the processor-core based de-
signs which are common in industries, e.g., ARM-core based
designs. In this case, the interface problem becomes relatively
simple because of the fixed processor-core. However, we have to
decide the parts of application program to be accelerated and IP’s
to be used for those. Since the use of IP requires additional area,
the IP should be used as little as possible if the performance con-
straint is met. In addition, we have to select the best interface for
the selected IP’s from those supported. The selected interface
should be as small as possible with meeting the performance con-
straint. Lastly, since the IP’s can run in parallel with the proces-
sor-core, we have to consider the possible parallel execution of
the processor-core and IP’s. A pair of IP and interface that is

minimal and satisfies the constraint has more favor. In addition to
those problems, if the processor-core is an ASIP-core, there is one
more problem: How to incorporate the added IP’s and interfaces
in the instruction set.

Though the work in [7] pointed out the importance of proces-
sor-core based designs and proposed a way to synthesis the inter-
face, it did not consider other problems. The work in [8] handled
the selection of hardware accelerators in an ASIP. However, the
hardware accelerators were very simple ones such as a multiplier
and a divider, thus it did not consider the interface problem and
possible parallel execution. These lead us to consider the problem
of efficient use of IP’s in ASIP’s. In this paper, we propose a new
approach to select the optimal set of IP’s and interfaces to make
the application program meet the performance constraints with
considering possible concurrent execution.

The rest of this paper is organized as follows. In section 2, we
briefly give some backgrounds on the target architecture of the
ASIP to be synthesized and our ASIP synthesis system. In section
3, we describe the interface methods we support, and the proposed
approach is described in section 4. Experimental results are shown
in section 5.

2 Backgrounds
The target ASIP consists of an ASIP-core (also called as ker-

nel) and IP’s selected to accelerate the application programs. The
ASIP-core architecture is a pipelined DSP processor controlled by
µ-programing. Like the most DSP processors, it has a separate
address generation unit (AGU), and can access two data-memories
(XDM and YDM) simultaneously to fetch operands. The µ-code
is composed of eight fields to enable parallel execution of an
arithmetic operation and a register move operation. Each opera-
tion in a field of the µ-code word is called an MOP (µ-operation).

The ASIP supports three classes of instructions: P, C and S
classes. First, P-class contains instructions that are not only
primitive but also essential in all applications, i.e., simple arith-
metic instructions and control instructions such as branch and
call. The P-class instructions are always supported in all of the
generated ASIP’s and executed in the kernel. Second, C-class is
composed of application specific instructions that are more com-
plex than P-class instructions. Though C-instructions are also
executed in the kernel with the assistance of µ-codes, they are
more powerful than P-instructions because they can control all of
the units in the kernel and can reduce the code-memory size and
the number of code-fetches [9]. Lastly, S-class is a set of instruc-
tions that are supported by the accelerators for high performance.
In other words, these are the instructions used to incorporate the
IP’s into the instruction set.

The overview of our ASIP synthesis system, Partita, is as fol-
lows. The inputs are the application program written in C, typical
input data for the application, and performance constraints such as
maximum execution time allowed. The application program is
transformed into a MOP list and sample-executed with the given

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F309847.310103&domain=pdf&date_stamp=1999-06-01

typical input data to obtain running frequency profile. The
matching of MOP list to the P-instructions, generation of C-
instructions, and that of S-instructions are performed sequentially
to find a cost-effective solution meeting the performance con-
straint. The details of these can be found in [9]. After generating
instructions we start to generate hardware modules required. If S-
instructions are generated, the corresponding IP’s are integrated
with appropriate interfaces. Other necessary hardware modules
such as the decoding unit and the fetch unit are also synthesized
with considering the newly generated C-instructions and S-
instructions. All newly generated instructions are encoded in the
instruction space, and the µ-ROM is optimized with including the
µ-codes for the C-instructions and S-instructions. In this paper,
we mainly focus on the S-instruction generation and the Interface
selection.

3 Interface Methods
Selecting the best interface method for each IP is crucial to use

the full power of IP. In this section, we explain the interface
methods we support. The general interface method is shown in
Fig. 1. It can have in/out-buffers if needed and the in/out-
controller that controls the interface scheme. The protocol trans-
former transforms IP specific various protocols into our standard
synchronous one. We have selected to use the synchronous proto-
col as our standard one due to the fact that many IP’s for DSP
applications operate in synchronous (and pipelined) mode. The
techniques for the transform have been researched in many works
[2-6] and we borrowed one from them, hence we will not go into
the subject in detail in this work. The operands in memory are
fetched by the in/out-controller and passed to the in-buffer. The
data in the in-buffer is passed to the IP via protocol transformer.
The results from the IP are stored in the out-buffer, and then
passed to memory under the control of the in/out-controller.

In-Buffer

s1

s2 s1

In/Out-
Controller

Out-Buffer

Protocol
Transform

Protocol
Transform

To IP

From IP

From memory
and/or kernel

To memory
and/or kernel

Fig. 1: General interface method
By changing the in/out-controller and/or by insert-

ing/eliminating the buffers, various interface methods are possi-
ble. The factors we consider in deciding a specific interface
method for an IP are as follows. First, input and output character-
istics of IP are considered: the number of input (output) ports, the
input (output) data rate, the number of input (output) data, the
latency from input to output, and whether the IP is pipelined or
not. For example, an IP having more than two in-ports requires
the in-buffer because the kernel can transfer only two operands at
a cycle to the IP. The input data rate determines whether we can
use software interface method or not. Second, parallel execution is
considered. Parallel execution enables additional reduction in
execution time by overlapping the execution of kernel with that of
IP’s as illustrated in Fig. 2.

IP:

C DAKernel: CA D

B B

Sequential execution Parallel execution

Overlap of
execution

Fig. 2: Execution of four code segments, A-D, in kernel and IP

However, it generally requires input and output buffers to
avoid memory contention between the kernel and IP’s. Hence, the
area penalty should be considered.

Now we address the characteristics of each type of interface we
support. Specifically, we support four interface types shown in
Fig. 3 to trade-off performance and cost.

PT

PT

S-IF codes
in kernel

X-Memory
Y-Memory

Type-0

FSM
PT

PT

X-Memory
Y-Memory

Type-2 FSM
PT

PT

X-Memory
Y-Memory

Type-3

PT

PT

S-IF codes
in kernel

X-Memory
Y-Memory

Type-1

Fig. 3: Four types of interfaces
 Type 0 (Software interface w/o buffer): This is the cheapest

one but has the lowest performance. The in/out-controller runs in
the kernel as software, and there are no in/out-buffers. Since the
kernel runs the controller, no other codes can run in parallel with
IP’s. The maximum number of operands that can be passed
to/from an IP in a cycle is limited to two, one from/to X-memory
and the other from/to Y-memory. Hence IP’s with more than two
in/out-ports cannot be supported by this type.

We generate this software interface from the template shown in
Fig. 4. It can support a pipelined IP with 4 clock-cycle data
in/out-rate. It is programmed in µ-codes and works as a S-
instruction. The template is composed of four parts. Initialization
codes come first in line 1. In lines 2-5, the pipeline of the IP is
filled up by the data from memory until the first result becomes
available. Passing operands from memory to IP and passing re-
sults from IP to memory are performed in line 6-9. In lines 7 and
8, several operations are processed in a cycle, since the kernel has
enough resources and the µ-codes can utilize them. In lines 10-13,
the data under processing in pipeline are fully processed, and the
results are passed to the memory.

As this interface is the cheapest one, we use this one as much
as possible if we can meet the performance constraint. For IP’s
whose in/out-rate is more than four clock-cycles, we can modify
the template by adding some NOPs. However, for IP’s with
in/out-rate less than four clock-cycles we have to slow down the
clock signal connected to IP to use this type of interface. In this
case, the performance degradation caused by the slow clocking is
also considered in the generation of instructions.

 S oftw are Interface T em p late for typ e 0
 1 cn tin _on ly = # of data in inp ut on ly part;
 cn tin _ou t = # of data in m idd le part;
 cn tou t_on ly = # of data in outpu t only part;
 2 in -d ata x = D M x[]; in -d atay = D M y[];
 3 IP in _x = in -d atax; IP in _y = in -d atay;
 4 cn tin _on ly = cn tin _on ly - 1 ;
 5 if(cn tin _on ly != 0) goto 2 ;
 6 in -d ata x = D M x[]; in -d atay = D M y[];
 7 IP in _x = in -d atax; IP in _y = in -d atay;
 ou t-d atax = IP ou t_x; out-d atay = IP ou t_y;
 8 D M x[] = ou t-d atax; D M y = ou t-d atay;
 cn tin _ou t = cn tin _ou t - 1 ;
 9 if(cn tin _ou t != 0) goto 6 ;
10 out-d atax = IP ou t_x; out-d atay = IP ou t_y;
11 D M x[] = ou t-d atax; D M y = ou t-d atay;
12 cn tou t_on ly = cn tou t_on ly - 1 ;
13 if(cn tou t_on ly != 0) goto 10 ;

Fig. 4: Interface template for type 0
Type 1 (Software interface w/ buffer): This type is similar to

type 0 except that it has in/out-buffers. The buffer enables to han-
dle an IP having more than two in(out)-ports by assigning a buffer
to each port and to transfer high-rate in/out-data. In fact, high-rate
transfer occurs between the buffer and the IP, while low-rate
transfer occurs between the buffer and kernel to fill the data re-

quired to start the IP into the buffer and to move results from the
buffer to memory after the IP finishes its job. In addition, parallel
execution without memory contention is possible because the IP
accesses the buffers instead of memory.

The template for this type is shown in Fig. 5. In lines 2-5, the
in-buffer is filled up, and then the IP is activated to run in line 6.
The IP runs between line 6 and 7 with getting operands from the
in-buffer and putting results to the out-buffer. The code to run in
kernel while the IP is working, henceforth parallel code for brev-
ity, comes between line 6 and 7. In lines 7-10, the results in the
out-buffer are moved to memory.

 Software Interface Template for type 1
 1 cntin = # of input data;
 cntout = # of results;
 2 in-datax = DM x[]; in-datay = DM y[];
 3 buffin[][] = in-datax; buffin[][] = in-datay;
 4 cntin = cntin - 1;
 5 if(cntin != 0) goto 2;
 6 IPstart = 1; /* activates IP */
 …
 /* Codes that will run in kernel while */
 /* IP runs com e here */
 …
 7 out-datax = buffout[][]; out-datay = buffout[][];
 8 DM x[] = out-datax; DM y[] = out-datay;
 9 cntout = cntout - 1;
10 if(cntout != 0) goto 7;

Fig. 5: Interface template for type 1
 Type 2 (Hardware interface w/o buffer): This is also similar

to type 0 except that the in/out-controller is implemented in a
FSM. The maximum number of operands that can be passed to
(from) IP in a single clock cycle and the maximum number of
in/out-ports that can be handled are the same as those of type 0.
Though the in/out-controller is not executed in kernel, this type
may not be adequate for parallel execution because of the memory
contention.

 Hardware Interface Template for type 2
 1 cntin_only = # of data in input only part;
 cntin_out = # of data in middle part;
 cntout_only = # of data in output only part;
 /* bus connection setting */
 IPin_x = datax_1; IPin_y = datay_1;
 datax_2 = IPout_x; datay_2 = IPout_y;
 2 repeat(cntin_only -- != 0)
 addrx_1 = …; addry_1 = …; rwx_1 = r; rwy_1 = r;
 3 repeat(cntin_out -- != 0)
 addrx_1 = …; addry_1 = …; rwx_1 = r; rwy_1 = r;
 addrx_2 = …; addry_2 = …; rwx_2 = w; rwy_2 = w;
 4 repeat(cntout_only -- != 0)
 addrx_2 = …; addry_2 = …; rwx_2 = w; rwy_2 = w;

Fig. 6: Interface template for type 2
The template for this type is shown in Fig. 6. It assumes a dual-

ported data memory, i.e., one read port and one write port that can
be accessed simultaneously, and operates in a DMA mode to pass
operands and results. In line 1, in/out-ports of the IP are con-
nected to those of data memories. One of data ports of X-memory,
datax_1, is connected to one in-port of the IP, IPin_x, and one out-
port of IP, IPout_x, is connected to the remaining data port of X-
memory, datax_2. A similar connection is applied to Y-memory
and the remaining ports of the IP. These connections are for the
DMA operation, and actually performed by MUXs and tri-state
buffers. In step 2, data are passed to the IP in the DMA mode to
fill the pipeline up. Line 3 is to pass operands to the IP and to
save results to memory. In line 4, results remaining in the pipeline
are moved to memory. Notice that each line requires only one

clock cycle by the help of hardware, hence for each clock the
maximum rate of input data passing is two and that of output data
passing is also two.

Type 3 (Hardware interface w/ buffer): This is the most ex-
pensive and powerful interface we support. By adding buffers to
type 2, type 3 can handle IP’s having more than two in(out)-ports
at a high-rate of in(out)-data transfer. In addition, parallel execu-
tion is possible. The template for this type is shown in Fig. 7.

 Hardware Interface Template for type 3
 1 cntin = # of input data;
 cntout = # of results;
 /* bus connection setting */
 buffin[][] = datax; buffin[][] = datay;
 datax = buffout[][]; datay = buffout[][];
 2 repeat(cntin -- != 0)
 addrx = …; addry = …; rwx = r; rwy = r;
 …
 /* Codes that will run while IP runs */
 /* come here */
 …
 3 repeat(cntout -- != 0)
 addrx = …; addry = …; rwx = w; rwy = w;

Fig. 7: Interface template for type 3
Different input and output data rates

Hitherto, interface templates are described with assuming that
input data rate and output data rate are the same. However, in
some IP’s such as an interpolation filter, the rates can be different.
Such an IP can be handled in type 2 by dividing the in/out-
controller into an in-controller and an out-controller that run sepa-
rately at their data rate. Type 1 and type 3 interfaces are also able
to handle such an IP by running the in-buffer controller and the
out-buffer controller separately. However, we have to change the
software template for type 0 to meet the different in/out data rates,
which is very hard and not always possible. Therefore, we support
only type 1, type 2 and type 3 for such an IP.
Performance gain and implementation cost

Given a pipelined IP, if type 0 or type 2 interface is employed,
passing data to/from the IP occurs in parallel with the operation of
the IP. Hence the execution time can be expressed as MAX(TIP,
TIF) where TIP is the total execution time of the IP, and TIF is that
of interface. Given that TSW is the execution time of software for
the same task, the performance gain can be defined as TSW -
MAX(T IP, TIF).

In type 1 and type 3, buffer filling is first performed before an
IP runs. After the IP finishes its operation, results in buffers are
moved to memory. The execution time is TIF_IN + MAX(TIP, TB) +
TIF_OUT, where TIF_IN is the time to fill the in-buffer, TB is the time
to pass data between the buffer and the IP by a buffer controller,
and TIF_OUT is to move results from the out-buffer to memory. If a
parallel code is available, the execution time is effectively reduced
by MIN(TIP, TC) where TC is the execution time of the parallel
code. Thus the overall performance gain is TSW - (TIF_IN +
MAX(T IP, TB) + TIF_OUT - MIN(TIP, TC)). This equation clearly
shows that in terms of overall performance a slower IP with a
parallel code can be better than a faster one with no parallel code.

The cost of implementation area can be expressed as AIP +
ACNT + AB, where AIP is the area for the IP, ACNT for the in/out-
controller, and AB for buffers (applied only to type 1 and type 3).
For type 0 and type 1, ACNT is the code-memory area needed for
storing interface codes, while for type 2 and type 3, it is the area
for a FSM.

4 Optimal Selection of IP’s and Interfaces
The optimal selection of IP’s and the interfaces is the same as

that of S-instructions and their implementation methods, called as
optimal S-instruction generation problem. In this section, we deal
with this problem. Specifically, we select S-instructions from S-
instruction candidates with considering their implementation
methods.

Definition 1: A function call in C-source code can be an S-
instruction candidate if the function can be implemented using an
IP. For brevity, we will use the term s-call.

Definition 2: An S-IP is an IP that can perform only a single
function, and an M-IP is an IP that can perform multi-functions.
Definition of Parallel Code

Definition 3: Given a CDFG (Control Data Flow Graph) repre-
sentation of MOP list, where each node represents a MOP and a
directed edge between two nodes represents the data/control de-
pendency, a node that has no transitive closure edges with a s-calli

is regarded as an independent code to the s-calli (ICi).
Definition 4: An Independent code segment to a s-calli (ICSi)

is a set of ICi’s that are in the same execution branch, e.g., in the
same conditional branch, and can be listed in a sequence.

Definition 5: Parallel code to a s-calli (PCi) is the largest ICSi

in execution time that is in the same execution branch with s-calli

and can be arranged right after s-calli.
Informally, PCi is the longest code segment in execution time

that can start to run in kernel right after the s-calli, and can run
concurrently with the IP corresponding to the s-calli. Note that
actually not all of the codes in PCi run in parallel with the IP.
Only a part of PCi whose execution time is no more than that of IP
actually does. Given that there are multiple execution paths after a
s-calli, we compute PCi’s for all the execution paths and use the
shortest one as PCi to guarantee the minimum performance gain
for all execution paths.

4.1 ILP formulation
We first tackle a restricted version of problem, Problem 1, and

then show how to extend the formulation for a more general
problem, Problem 2.

Problem 1: This is the optimal S-instruction generation prob-
lem under the following restrictions.

• PCi cannot contain other s-calls.
• Multiple s-calls to the same function are always implemented

in the same way.
As an illustration, in Fig. 8 showing four execution paths after

fir(), the parallel code of the fir() is the code segment between the
fir() and dct() of path P4. And the two fir()’s are always imple-
mented in the same way.

fir()

P3P1 P2 P4

dct()

fir()
iir()

Fig. 8: Example for problem 1
• s-calls to different functions can be implemented in a single

M-IP.
All s-calls in Fig. 8, i.e., two fir()’s, dct() and iir(), can be

mapped into a single M-IP. By mapping several s-calls to a single
M-IP, we can reduce area cost. However, such a scheme can be
bad in performance point of view because an M-IP, in general, is
not as good in performance as an S-IP optimized for a single
function.

• To meet the performance constraint, some of s-calls may be
mapped into S-IP’s instead of M-IP’s that can reduce the area.

In Fig. 8, for instance, given that the single M-IP for all s-calls
cannot meet the performance constraint in P4, we may use S-IP
for dct() to speed up.

Problem 1 can be formulated in Integer Linear Programming
(ILP) as follows. Terms that will be used in the formulation are
described below.

• SCi: s-calli.
• SCS: Set of all SCi’s.
• IMPi: All possible implementation methods for SCi. Each im-

plementation method contains interface method, IP, parallel code,
area, power and performance gain.

• IMPi = ∪j IMPij, where IMPij is the j’th possible implementa-
tion method for SCi using IP’s.

• sijk: 1 if IMPij uses k’th IP, otherwise 0.
The data base of IMPi is built up and the sijk is computed using

the MOP list and IP library.
• Ti : Required performance gain for path Pi to meet the per-

formance constraint.

Decision variables are:
• xij: 1 if IMPij is used to implement SCi, otherwise 0.
We have to solve the problem under the following constraints.
1) For each SCi, at most one implementation method can be

selected.

xij
j

∑ ≤1 (1)

Note that if Eq. 1 is equal to 0, SCi will be implemented fully
in software without IP’s. Thus only the SCi whose Eq. 1 is equal
to 1 is implemented using IP’s and becomes an S-instruction.

2) For each path, required performance gain should be satis-
fied.

∀

 ≥∑∑P x g Tk ij ij

j
k

SC in Pi k

,
 (2)

where gij is the performance gain corresponding to IMPij.
The objective is to minimize the total area which is the sum of

areas for IP’s and interfaces. The area for IP’s is
z ak k

k
∑

where zk = 1 if ∑i,j sijkxij > 0 and 0 otherwise (i.e., zk is 1 if and
only if the k’th IP is used at least once in the overall code), and ak

is the area of the k’th IP. Notice that even if IPk is used more than
once for the implementation of several SCi’s, it is actually in-
cluded only once in a chip. Thus the area of IPk should be counted
only one time.

The area for interface is
x cij ij

i j,
∑

where cij is the area for the interface method of IMPij.
Thus, the total area to minimize is

z a x ck k
k

ij ij
i j

∑ ∑+
,

 (3)

zk is linearized as follows by using a technique for fixed charge
problem [10].

s x Mz z or M is a value xijk ij
i j

k k ij
i j, ,

(,)∑ ∑≤ = ≥0 1

If the left-hand side of equation is larger than 0, zk becomes 1.
On the other hand, if the left size is 0, zk can be 1 or 0. However,
the objective function forces zk to be 0.
Removing restrictions of Problem 1

In Problem 1, the case that an s-call can be implemented in
software as a parallel code of another s-call is not considered due

to the following two restrictions: 1) Multiple s-calls to the same
function are always implemented in the same way, and 2) PCi

cannot contain s-calls. In this part, we remove those restrictions.
Followings are two examples motivating the removing.

IP

Kernel

TTotal

fir() fir() fir() fir() fir()

fir()

Solution in Problem 1 Better Solution

Fig. 9: Motivating example for eliminating restrictions
Fig. 9 shows two different executions of three fir()’s, given that

a fir() is independent of others and the software implementation of
all three fir()’s cannot meet the performance constraint. The best
solution in Problem 1 is to map all fir()’s into an IP. In the solu-
tion, the kernel has nothing to do, hence the total execution
time(TTotal) is the same as that of IP. However, the better solution
is to run one fir() in the kernel and other twos in the IP. To find
this solution, we have to remove the restrictions of Problem 1.

Fig. 10 shows two execution paths, P1 and P2(shaded one),
have a common s-call, fir(). Assume that P1 has performance
margin large enough to allow one of three fir()’s to be imple-
mented in software. In addition, assume that for P2 to meet the
performance constraint, fir() has to be the parallel code of dct(). In
this case, the only solution is to implement the common fir() in
software and other fir()’s of P1 using IP. However, such a solu-
tion is not allowed in Problem 1.

fir() fir() fir()…

dct()

iir()
P1

P2

…

Common s-call in
two paths

Fig. 10: Motivating example for eliminating restrictions
By removing the restrictions, the followings are possible.
• s-calls to the same function can be implemented in different

ways.
• PCi can contain software implementations of other s-calls.
We call this problem as Problem 2. In Problem 2, software im-

plementation of fir() can be PC of dct() in Fig. 10. In addition, the
sequence of software implementations of fir() and iir() can be the
PC of dct(). However, selecting fir() as a parallel code of dct()
prevents fir() from being implemented in the IP. Similarly, se-
lecting fir() and iir() as parallel codes of dct() hinders IP-based
implementations of fir() and iir(). This can be formally stated as
follows:

Let IMP-A and IMP-B are any two of ∪i IMPi, i.e., all the
IMPs for all SCi’s.

• IMP-A and IMP-B are said to have SC conflict if they are for
the same SCi.

• IMP-A and IMP-B are said to have SC-PC conflict if IMP-A
is for SCi and IMP-B uses software implementation of the SCi as
a parallel code, and vice versa.

Selection rule: We cannot select both of IMP-A and IMP-B as
the solution if they have SC conflict and/or SC-PC conflict, i.e.,
only one of them can be selected.

Now we explain how to extend the ILP formulation for Prob-
lem 1 for Problem 2. First, new possible IMPs having software
implementations of s-calls as parallel code are added to the IMP
data base. Second, to keep the selection rule, we add the following
equation for any two IMP’s, say IMPij and IMPkl, having a SC-PC
conflict.

x xij kl+ ≤ 1.

Note that for two IMPs having a SC conflict, we do not have to
add any equations to keep the selection rule because Eq. 1 that is
already in the formulation prevents such a solution.

Handling Hierarchy
Heretofore, we have not considered the hierarchy in the appli-

cation. Fig. 11 shows an example code for image processing that
has hierarchy.

dct2d()

dct1d()

jpeg()

dct2d()

dct1d()

dct1d()

dct1d()

dct1d()

level 2 level 1 level 0

Fig. 11: An application having hierarchy
Main routine calls jpeg(), jpeg() calls dct2d(), and so on. Given

that IP’s for dct1d(), dct2d() and jpeg() are available, we use the
technique IMP flatten to handle the hierarchy in the ILP formula-
tion. In computing IMPs of upper-level s-call, all possible IMPs
of lower-level s-calls are considered. For example, IMPs of
dct1d() at level 0 are considered in computing those of dct2d() at
level 1, and those are considered for computing the IMPs of
jpeg(). In this way, all the IMPs of lower levels s-calls are in-
cluded in those of top level s-calls to which ILP formulation is
applied.

5 Experimental Results
The proposed method has been implemented in C language on

a SPARC-20 workstation with 128 Mbyte main memory. We
tested the proposed method on two real DSP applications:
GSM(TDMA) system and JPEG system. For a given program, we
first transform it into a MOP list, and then mapped it into the P-
instructions. Then we employed the proposed method to reduce
the execution cycle.

5.1 GSM(TDMA) System
For the encoder part having 18 s-calls, a set of 23 IP’s includ-

ing several filters, correlators and quantizers were prepared. For
some s-calls, there were two or three different IP’s available.
IMP’s were generated for each s-call, and the total number of
IMP’s was 42. Among them, one was generated with considering
the hierarchy between s-calls, and three of them exploited the
parallel code. And among the three, one used the software imple-
mentation of other s-call as its parallel code.

Table 1 shows the results - selected s-calls and their imple-
mentation methods to meet the required performance gain (RG).
The actual gain (G) and the relative area cost (A) of the imple-
mentations are also listed in the table. Each implementation
method shows IP, interface type, gain and area cost for the s-call
to be implemented using the IP. For example, “SC13: IP12, IF0,
115037, 3” means that s-call SC13 has to be implemented using
IP12 and type 0 interface, and the gain and area cost are 115037
and 3, respectively. The column S shows the number of S-
instructions. This is always no more than that of the selected s-
calls (shown in column O) because s-calls to be implemented in
the same way, i.e., the same IP and the same interface method, can
be merged and implemented in a single S-instruction. We can see
the followings from the result. First, in many cases type-0 inter-
face, the cheapest one, was used to reduce area cost. Second, SCs
that can be implemented using the same IP are selected as many as
possible to reduce the area cost by sharing the IP. This also re-
duces the number of S-instructions. Third, as the required gain
increases, more powerful IP’s and interface types are employed.
For example, IP13 becomes to be used as RG becomes 238702,
and when RG becomes 381923 its interface changes from type-1

to type-3 to obtain more gain by including parallel execution gain.
Be aware that such a solution was not possible in the previous
approach because it neither supported the parallel execution nor
considered the interface method with IP’s.

Table 2 shows the results for the decoder part. We supported
10 IP’s for 11 s-calls, and the total number of IMP’s was 27. In
this case, software interface was employed for all IMP’s of the
solution except the one for SC10 when RG is 211286. We can see
that interface method for SC10 changed from type 0 to type 2 to
get more gain when RG is 211286.

5.2 JPEG System
The JPEG encoder has 2D-DCT as its main function. 2D-DCT

consists of two 1D-DCTs, and 1D-DCT calls FFT. In FFT, a
number of complex number multiplications are performed. We
supported five IP’s: one for 2D-DCT, one for 1D-DCT, one for
FFT, one for complex multiplication, and one for zig_zag func-
tion. Seven IMP’s were generated for 2D-DCT with considering
the hierarchy and two IMP’s were generated for zig_zag.

Table 3 shows the results. It clearly shows the change of IP and
interface method as RG increases. When RG is 12157384, only
the complex multiplication was implemented using an IP. How-
ever, the IP for 2D-DCT with type-3 interface was used in the last
row to meet the required gain. Similar results were obtained for
the decoder part.

6 Conclusions
In this paper, we proposed a new approach to select the optimal

set of IP’s and interfaces to make the application program meet
the performance constraints in processor-core based designs. We
selected IP’s with considering the interfaces and supported con-
current execution of codes in the kernel and IP’s. We first pre-
sented an ILP formulation for a restricted problem, and then de-
scribed how to extend it for a generalized problem and how to
handle hierarchy. The experimental results indicate that the pro-
posed approach is so effective that we can make the application
program meet the performance constraints using IP’s.

References
[1] M. Keating, “A Financial Model for Design Reuse,”

http://www.synopsys.com/roi/, Sept. 1998.
[2] R. Passerone, J. A. Rowson and A. Sangiovanni-Vincentelli,

“Automatic Synthesis of Interfaces between Incompatible Proto-
cols,” 35th Design Automation Conference, pp. 8-13, 1998.

[3] J. Smith and G. De Micheli, “Automated Composition of Hardware
Components,” 35th Design Automation Conference, pp. 14-19,
1998.

[4] K. S. Chung, R. K. Gupta and C. L. Liu, “An Algorithm for Synthe-
sis of System-Level Interface Circuits,” International Conference on
Computer-Aided Design, pp. 442-447, 1996.

[5] S. Narayan and D. Gajski, “Interfacing Incompatible Protocols using
Interface Process Generation,” 32nd Design Automation Conference,
pp. 468-473, 1995.

[6] R. B. Ortega, L. Lavagno and G. Borriello, “Models and Methods
for HW/SW Intellectual Property Interfacing,” NATO ASI Proceed-
ings on System Synthesis, 1998.

[7] P. Chou, R. B. Ortega, G. Borriello, “Synthesis of the Hard-
ware/Software Interface in Microcontroller-Based Systems,” Inter-
national Conference on Computer-Aided Design, pp. 488-495,
1992.

[8] A. Alomary, T. Nakata, Y. Honma, M. Imai and N. Hikichi, “An
ASIP Instruction Set Optimization Algorithm with Functional Mod-
ule Sharing Constraint,” International Conference on Computer-
Aided Design, pp. 526-532, 1993.

[9] H. Choi, I.-C. Park, S. H. Hwang and C.-M. Kyung, “Synthesis of
Application Specific Instructions for Embedded DSP Software,” In-

ternational Conference on Computer-Aided Design, pp. 665-671,
1998.

[10] H. A. Taha, Operations Research, Prentice Hall, 1997, Chapter 9,
pp. 367-373

RG Implementation Method G A S O
47740 SC13: IP12,IF0,115037,3 115037 3 1 1
95480 SC13: IP12,IF0,115037,3 115037 3 1 1

143221 SC7:IP12,IF0,12531,3, SC9:IP12,IF0,13489, 3,
SC11:IP12,IF0,12531,3, SC13:IP12,IF0,
115037,3

153588 3 1 4

190961 SC2:IP3,IF1,41670,14, SC7:IP12,IF0, 12531,2,
SC9:IP12,IF0,13489,3, SC11: IP12,
IF0,12531,3, SC13:IP12,IF0,115037,3

195258 17 2 5

238702 SC7:IP12,IF0,12531,3, SC9:IP12,IF0, 13489,3,
SC11:IP12,IF0,12531,3,SC13:IP12,IF0,115037,
3, SC14:IP13,IF1,162612,15

316200 18 2 5

286442 SC7: IP12,IF0,12531,3, SC9:IP12,IF0,
13489,3, SC11:IP12,IF0,12531,3, SC13:IP12,
IF0,115037,3, SC14:IP13,IF1,162612,15

316200 18 2 5

334182 SC7:IP12,IF0,12531,3, SC9:IP12,IF0,13489, 3,
SC11:IP12,IF0,12531,3, SC13:IP12,IF0,
115037,3, SC15:IP16,IF2,8200,3, SC14: IP13,
IF1,162612,15, SC16:IP17,IF0,11576,3

335976 24 4 7

381923 SC2:IP3,IF1,41670,14, SC6:IP10,IF0,978,2,
SC7:IP12,IF0,12531,3, SC9:IP12,IF0,13489, 3,
SC10:IP10,IF0,978,2, SC11:IP12,IF0, 12531,3,
SC12:IP10,IF0,978,2, SC13:IP12,IF0,115037,3,
SC14:IP13,IF3,164532,15.5,SC15:IP16,IF2,820
0,3.5, SC16:IP17,IF0,11576,3

382500 41 6 11

Table 1: Experimental results for GSM encoder

RG Implementation Method G A S O
22240 SC4:IP5,IF0,14787,4, SC6:IP5,IF0,13737,4 28524 4 1 2
44481 SC8:IP5,IF0,126087,4 126087 4 1 1

111203 SC8:IP5,IF0,126087,4 126087 4 1 1
133444 SC6:IP5,IF0,13737,4, SC8:IP5,IF0,126087,4 139824 4 1 2
155684 SC2:IP5,IF0,13737,4, SC4:IP5,IF0,14787,4,

SC6:IP5,IF0,13737,4, SC8:IP5,IF0,126087,4
168348 4 1 4

177925 SC2:IP5,IF0,13737,4, SC4:IP5,IF0,14787,4,
SC6:IP5,IF0,13737,4, SC8:IP5,IF0,126087,4,
SC10:IP6,IF0,14544,3

182892 7 2 5

200166 SC2:IP5,IF0,13737,4, SC6:IP5,IF0,13737,4,
SC9:IP8,IF0,8568,5, SC11:IP10,IF0,9028,3,
SC4:IP5,IF0,14787,4, SC8:IP5,IF0,126087,4,
SC10:IP6,IF0,14544,3

200488 15 4 7

211286 SC1:IP2,IF0,978,2, SC2:IP4,IF0,14235,32,
SC3:IP2,IF0,978,2, SC4:IP4,IF0,15327,32,
SC5:IP2,IF0,978,2, SC6:IP4,IF0,14235,32,
SC7:IP2,IF0,978,2, SC8:IP4,IF0,131079,32,
SC9:IP8,IF0,8568,5, SC11:IP10,IF0,9028,3,
SC10:IP6,IF2,15048,3

211432 45 5 11

Table 2: Experimental results for GSM decoder

RG Implementation Method G A S O
12157384 SC1:IP4,IF0,15040512,4 15040512 4 1 1
20262307 SC1:IP2,IF1,37081088,11 37081088 11 1 1
37195000 SC1:IP2,IF1,37081088,11,

SC2:IP5,IF2,113984,5.5
37195072 16.5 2 2

37282645 SC1:IP1,IF1,37717440,27 37717440 27 1 1
37843700 SC1:IP1,IF3,37729728,27.5,

SC2:IP5,IF2,113984,5.5
37843712 33 2 2

Table 3: Experimental results for JPEG encoder (IP1: 2D-
DCT, IP2: 1D_DCT, IP3: FFT, IP4: C-MUL, IP5: ZIG_ZAG)

