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ABSTRACT

We study the problem of predicting Internet path changes and path

performance using traceroute measurements and machine lear-

ning models. Path changes are frequently linked to path in ation

and performance degradation, therefore the relevance of the pro-

blem. We introduce NETPerfTrace, an Internet Path Tracking sy-

stem to forecast path changes and path latency variations. By re-

lying on decision trees and using empirical distribution-based in-

put features, we show that NETPerfTrace can predict (i) the remai-

ning life time of a path before it actually changes and (ii) the num-

ber of path changes in a certain time period with relatively high

accuracy. Through extensive evaluation, we demonstrate that NET-

PerfTrace highly outperforms DTRACK, a previous system with

the same prediction targets. NETPerfTrace also o!ers path perfor-

mance forecasting capabilities. In particular, our tool can predict

path latency metrics, providing a system which can not only pre-

dict path changes, but also forecast their impact in terms of perfor-

mance variations. We release NETPerfTrace as open software to

the networking community, as well as all evaluation datasets.

CCS CONCEPTS

• Networks → Network performance modeling; • Compu-

tingmethodologies→ Supervised learning by regression; Fe-

ature selection;

KEYWORDS

distributed measurements; machine learning; traceroute; M-Lab;

DTRACK.
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1 INTRODUCTION

Internet paths change frequently due to inter/intra-domain rou-

ting changes, load balancing, and even miscon#gurations and failu-

res [8]. Some of these changes can seriously disrupt performance,

causing longer round-trip times, congestion, or even loss of con-

nectivity [5]. For example, Google reports that inter-domain rou-

ting changes caused more than 40% of the cases in which clients ex-

perienced a latency increase of at least 100 ms [12]. These changes

could not only impact the end users Quality of Experience (QoE),

but also might turn to be quite costly: Amazon claims that every

additional 100 ms of page load time could cost them 1% of their

sales, and that a page load slowdown of just one second could turn

into a $1.6 billion loss in sales each year. As such, predicting the

time when a path is likely to change, as well as how such a change

would impact end-to-end latency, becomes a highly relevant pro-

blem in practice.

To tackle this challenge, and similar to Cunha et al. [3, 4], we

predict the time when a path change would occur by relying on

traceroute measurements and supervised machine learning pre-

dictionmodels.We introduceNETPerfTrace, an Internet Path Tracking

system allowing to predict the number of path changes in a cer-

tain time slot, to forecast the most likely time when these paths

would actually change, as well as to predict their future path la-

tency. Extensive evaluations using highly distributed traceroute

measurements from M-Lab show that NETPerfTrace nearly per-

fectly predicts (i) the remaining life time of a path (i.e., the time

before a path change) in about 30% of the cases, (ii) the exact num-

ber of daily path changes in about 70% to 80% of the cases, and (iii)

the average RTT of a path in about 50% of the cases. In addition,

we show that NETPerfTrace highly outperforms DTRACK [3, 4],

a previous system conceived to predict Internet path changes.

NETPerfTrace relies on a standard random forest model for pre-

diction, which provides accurate results with very low computati-

onal overhead as compared to other evaluated machine learning

models; readers may refer to [9] for benchmarking results. We per-

form extensive evaluation on the impact of di!erent input features

by studying the correlations between the inputs and the prediction
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targets, as well as by using feature selection techniques. NETPerf-

Trace and the datasets used in this paper are freely available1, ma-

king results fully reproducible.We are currently extending our tool

DisNETPerf [11] by adding an automatic approach to dynamically

adapt the sampling rate of a path based on the remaining time until

a next path change, similar to [3].

The remainder of this paper is organized as follows: Section 2

brie y reviews the related work. Section 3 describes the main con-

cepts behind NETPerfTrace. Section 4 reports prediction results

for NETPerfTrace using M-Lab traceroute measurements, inclu-

ding an evaluation on the impact of di!erent input features, using

feature selection techniques. Section 5 reports the results obtai-

ned in the comparative evaluation of NETPerfTrace and DTRACK.

Section 6 concludes this work.

2 RELATED WORK

There is a very rich literature on using traceroute measurements

to track Internet path dynamics and performance. Since the early

work of Paxson on the analysis of end-to-end Internet routing be-

havior [8], multiple research e!orts have targeted the study of

Internet paths at a large scale. Systems such as DisNETPerf [11],

iPlane [7], Reverse traceroute [6], and Sibyl [1] are all distribu-

ted measurement systems relying on traceroute measurements

to track and predict Internet paths performance. DisNETPerf and

Reverse traceroute particularly target the problem of measuring

paths from arbitrary selected sources. iPlane and Sibyl both o!er

a service for predicting the performance of Internet paths, by buil-

ding a structural model of the Internet using traceroute and op-

portunistic measurements.

While the problem of analyzing path changes at the Internet

scale has attracted important attention in the past, only few papers

have focused on predicting such path changes [3–5, 12], which is

the target of this paper. Papers such as [5, 12] study the potential

causes leading to Internet path changes, particularly those causing

higher latencies [12]. Close to our work, authors in [3, 4] study the

problem of predicting path changes using both traceroute me-

asurements and machine-learning-based predictors. In particular,

they develop a model based on k-nearest neighbors to predict both

the remaining time of an established path before a change and the

number of changes experienced by a path during a certain time

period. Our work builds on these papers, using di!erent modeling

techniques and di!erent input features for prediction.

This paper is an extension of our early work on path dynamics

and performance prediction [10], presenting preliminary results

of the techniques described next. A more complete report of the

studies conducted in this work is available in [9].

3 PROBLEM STATEMENT

We de"ne a path P as the connectivity from a source s to a desti-

nation d . At any time t , path P(t) is realized by a speci"c route r :

this route consists of a speci"c sequence of links connecting s to d .

Route r has an associated initial time t0 when it becomes active or

in-place, and a "nal time tf which corresponds to the time when

P changes to another route realization, i.e., when the actual route

changes. From now on, we therefore refer to route changes instead

1https://github.com/SAWassermann/NETPerfTrace

of path changes. As such, a path P(t) can be considered as a sta-

tistical time process, composed of a set of time-contiguous routes

ri (t
i
0, t

i
f
). ri ∈ P indicates that ri realizes path P .

We additionally de"ne the duration of a route r asD(r ) = tf −t0,

its current life time or route age at time t as Lr (t) = t − t0, and its

remaining life (i.e., time before a route change) at time t as Rr (t) =

tf −t . Finally, we de"ne rcP (t) as the total number of route changes

observed so far at time t for path P and rcPT (t) as the number of

route changes observed so far at time t for path P in the current

time slotT .

Given a new traceroute measurement at time t , the prediction

problem solved by NETPerfTrace includes three prediction targets:

(i) the remaining life time of route r , namely R̂r (t), (ii) the number

of route changes a path P experiences over a speci"c future time

window of lengthT , de"ned as r̂cPT , and (iii) the average RTT that

path P will experience in the next traceroute measurement, de-

noted by �avдRTT P (t +ε), where ε represents the duration until the

next measurement. The "rst two targets correspond to path dyn-

amics prediction, whereas the third target consists of path perfor-

mance forecasting. In practice, when R̂r (t) becomes closer to zero,

we would increase the sampling rate to better monitor the path

performance in case of a route change. Predicting r̂cPT allows to

dynamically identify which paths are more prone to frequent chan-

ges, and thus to better allocate new traceroute measurements.

Based on previous results on route stability [2, 8] and similar to

[3], we focus on predicting the number of daily route changes for

the next day, i.e.,T = 24 hours. At last, predicting the average RTT

that a certain path P would experience next becomes highly re-

levant for dynamic tra#c engineering purposes: when combined

with the prediction of route changes, it can provide a very powerful

approach to forecast those performance-harmful route changes.

In order to predict these three targets, we use a rich set of input

features describing the statistical properties of route dynamics and

path latency. Table 1 describes these features, separated into three

di!erent groups. Note that we compute all these statistical features

from the traceroute measurements performed in an observation

period Tlearn of the monitored paths for learning purposes. The

"rst group of features, referred to as FA, includes 11 features rele-

vant to the prediction of Rr (t). These features describe the statis-

tical properties of the route duration D(r ) observed for each path

P . FA also includes information about the currently active route r

at time t , namely its route age Lr (t). The second group of features,

referred to as FB , includes 14 features relevant to the prediction of

rcPT . FB features take into account the statistical properties of rcPT .

In addition to that, FB contains information about the number of

route changes observed for path P and a binary feature indicating

whether a route change occurred for P in the current time slot T .

The third group of features, referred to as FC , includes 44 features

relevant to the prediction of avдRTTP (t + ε). FC features account

for the statistical properties (average, minimum, maximum, and

percentiles) of the four RTT metrics reported in traceroute me-

asurements, namely the average, minimum, maximum, and stan-

dard deviation of the end-to-end RTT. In addition, FC also includes

the current value of end-to-end RTT metrics at time t . As we show

next, these features are highly correlated to the corresponding pre-

diction targets, resulting in a strong forecasting power.
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Residual Life Time Rr feature set (FA) 11

average, minimum, and maximum of D(ri ), ∀ri ∈ P 3

5-, 10-, 25-, 50-, 75-, 90-, 95-percentiles of D(ri ), ∀ri ∈ P 7

route age of route r at time t for P 1

# Route Changes r cPT feature set (FB ) 14

average, minimum, and maximum of r cPT in P 3

5-, 10-, 25-, 50-, 75-, 90-, 95-percentiles of r cPT in P 7

total number of route changes in P 1

total number of route changes in P in T 1

number of route changes in P at time t in T 1

binary indication of a route change in T 1

Path Latency avдRTTP feature set (FC ) 44

average of RTT metrics in P :mean (avд/max/min/dev RTT ) 4

minimum of RTT metrics in P :min (avд/max/min/dev RTT ) 4

maximum of RTT metrics in P :max (avд/max/min/dev RTT ) 4

5-, 10-, 25-, 50-, 75-, 90-, 95-percentiles
28

of RTT metrics (avд/max/min/dev RTT ) in P

current RTT metrics (avд/max/min/dev RTT ) at time t 4

Table 1: Feature set used by NETPerfTrace.

NETPerfTrace uses random forest (RF) as the underlying pre-

diction model. In particular, we select a RF model with 10 trees

(RF10). In [9], we present an in-depth benchmark comparing se-

veral machine learning models for NETPerfTrace. We based our

preference for RF10 on both prediction performance and computa-

tional speed; see [9] for full insights.

4 NETPERFTRACE EVALUATION

In this section, we study the performance achieved by NETPerf-

Trace. Firstly, we introduce the evaluation dataset and study the

correlation among input features and prediction targets. Next, we

assess the prediction power of NETPerfTrace by comparing the

real and predicted values for the three targets. Finally, we analyze

the relevance of the input features in terms of prediction power,

and apply feature selection techniques to select the best ones for

each target. To avoid biased results, all evaluations in this paper

are done on a 10-fold cross-validation basis.

4.1 M-Lab Data Description

For the purpose of this study, we analyze a full week of Paris-

traceroute measurements performed through the M-Lab open

Internet measurement initiative2 . The M-Lab infrastructure con-

sists of a high number of servers distributed globally in multiple

provider networks and geographic regions. M-Lab makes all data

available, including packet traces and supplementary path measu-

rements data. The raw data  les are accessible through Google’s

BigQuery and Cloud Storage3.

The analyzed dataset corresponds to the  rst week of January

2016. During this week, we observe more than 450,000 di!erent

2https://www.measurementlab.net/
3https://console.cloud.google.com/storage/browser/m-lab/
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Figure 1: Linear correlation between features and prediction

targets, for feature sets FA, FB , and FC .

paths, sampled through Paris-traceroutemeasurements frommore

than 180 geo-distributed servers. Unfortunately, not all of these

paths are periodically sampled during thisweek, asM-Lab traceroute

measurements are normally triggered as part of other experiments;

traces are therefore known to be sporadic. Indeed, when analyzing

the number of traceroute measurements for each of these paths,

we found that only 15,725 paths have been sampled more than

10 times, and only 2,346 paths have at least 100 traceroute me-

asurements during the analyzed week. We use 100 as threshold

to avoid reducing the useful dataset even more, but naturally, the

more traceroute measurements or samples we have for a path,

the higher the visibility on potential route changes. Having 100

samples in a week means an average path sampling rate of one

traceroute every 100 minutes, which is quite low but still a good

starting point for the di!erent analyses. In fact, the time between

traceroute measurements in the resulting dataset is below 14 mi-

nutes for more than 50% of the measurements, and for more than

40% of the paths, the sampling rate is above one traceroute every

20 minutes. The total number of traceroute measurements in the

resulting  ltered dataset is above 550,000. Regarding path topology,

the resulting 2,346 paths are issued from 82 di!erent sources, dis-

tributed in 33 di!erent ASes, and leading to about 2,000 di!erent

destinations in 125 di!erent ASes. These paths traverse more than

260 di!erent ASes, and have an average length of ten hops and four

ASes. As such, we believe the used dataset is rich and representa-

tive of current Internet paths.

For each of these 2,346 paths P , we compute the distribution of

the aforementioned input features during an observation period

Tlearn = 1 week. As we mentioned before, while we use the full

week of measurements to compute the input features for NETPerf-

Trace, evaluations are done on a 10-fold cross-validation basis, li-

miting potential bias.
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(a) Rr (t ) relative prediction errors. (b) rcPT relative prediction errors. (c) avдRTTP relative prediction errors.

Figure 2: Relative prediction errors for (a) Rr (t), (b) rcPT (t), and (c) avдRTTP (t), using input feature sets FA, FB , and FC .

4.2 Feature Correlation

Let us start by analyzing the correlations among input features and

prediction targets. This would let us perform a  rst raw selection

of features for each prediction target. Figure 1 depicts the Pearson

linear correlation coe!cients (PLCCs) between the full set of input

features and the three prediction targets, discriminated by the fea-

ture sets FA, FB , and FC . The set is extended by adding the three

prediction targets, which are "agged by PLCC = 1 in the corre-

sponding plot. As expected, features from each set present high

positive correlation to the corresponding prediction target. Featu-

res from sets FA and FB are inversely correlated to targets rcPT
and Rr , respectively, which is coherent with the fact that more sta-

ble paths with smaller number of changes have longer life times.

In addition, there is negligible correlation between path stability

and path performance. Indeed, features from set FC are very we-

akly correlated to targets Rr and rcPT , and features from sets FA
and FB are very weakly correlated to avдRTTP . Based on these

initial observations, we consider each set of features FA, FB , and

FC as individual inputs to predict Rr , rcPT , and avдRTTP next. In

Section 4.4, we show that a more careful feature selection can im-

prove the performance of NETPerfTrace.

4.3 NETPerfTrace Performance

Figure 2 reports the prediction performance achieved by NETPerf-

Trace using input features sets FA, FB , and FC for predicting Rr ,

rcPT , and avдRTTP , respectively. Performance ismeasured in terms

of relative prediction errors (RE), i.e., RE = |X̂ −X |/X , where X and

X̂ are real and predicted values, respectively. Note that in the case

of rcPT prediction, wemight have time slots for which rcPT = 0. In-

deed, about 25% of the 24-hours time slots correspond to zero route

change slots in the studied dataset. Therefore, RE values are repor-

ted separately when it comes to the estimation of rcPT . A  rst ge-

neral observation is that predicting both Rr and avдRTTP is more

challenging than predicting rcPT . Indeed, REs aremuch higher, and

according to Figure 1, PLCCs are much smaller. In particular, and

as already pointed out by previous work [3, 4], predicting Rr is

di!cult and error-prone.

Figure 2 (a) reports the distribution of the obtained REs forRr (t).

NETPerfTrace correctly predicts Rr for only about 20% of the sam-

ples, and achieves relative errors below 100% for more than 70%

of the samples. Results are therefore quite disappointing, but as

we show in Section 5, NETPerfTrace actually highly improves pre-

vious work for Rr prediction. Finally, we found that NETPerfTrace

underestimatesRr for about 40%of the samples, and that prediction

errors tend to be higher for shorter residual life times.

Figure 2 (b) reports the distribution of the obtained REs for rcPT .

Relative prediction errors are small, with about 70% of the non-zero

route-change time slots being perfectly predicted and more than

90% of them with relative errors below 50%. The model correctly

predicts 38% of the zero route-change slots, achieving an overall

perfect prediction for 60% of the samples.

Finally, Figure 2 (c) reports the distribution of the obtained REs

for avдRTTP . In this case, relative prediction errors are almost zero

for about 50% of the samples, and below 30% for almost 90% of

them. Given that avдRTTP values are in general very low – below

130 ms for more than 75% of the samples –, such small relative

prediction errors are highly satisfactory.

4.4 Feature Selection

Based on the initial feature correlation results reported in Figure 1,

there is a strong correlation between features of group FA and FB
for the prediction of both Rr (t) and rcPT . This could be exploited

to improve prediction performance. We therefore explore now the

performance of NETPerfTrace when using as input the full set of

69 input features FA ∪ FB ∪ FC , and perform wrapper-based fea-

ture selection on top of this full set. Wrapper-based selection ranks

features based on their prediction power for a speci c prediction

model. We use RF10 in this case.

Table 2 reports the top  ve features selected by wrapper-based

selection out of the full set of features – we refer to these as 5/69

features – for the three prediction targets. We can easily spot out

that the most important features are not necessarily the ones inclu-

ded in the subsets FA, FB , and FC . A striking example are the top

 ve features selected for predicting Rr (t): only two out of the  ve

features were already in the subset FA. The other three are related

to the number of route changes, included in FB . We can see that

features in FA also help estimating rcPT . However, as expected, fe-

atures in set FC play a signi cant role only for the prediction of

avдRTTP .

To verify the prediction properties of the selected features, we

computed the relative prediction errors forRr (t), rcPT , and avдRTTP
when considering (i) the features on each independent set (i.e, FA,
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Top 5 features Residual life time # route changes in time slots average RTT

#1 feature # route changes in current time slot head distribution # route changes mean(avдRTTP )

#2 feature route age of current route avg # route changes in time slots current avдRTTP

#3 feature max of all D(ri ), ∀ri ∈ P total # route changes currentmaxRTT

#4 feature route change binary  ag # route changes in current time slot currentminRTT

#5 feature current # route changes in present time slot avg of D(ri ), ∀ri ∈ P route age of current route

Table 2: Feature selection for the three prediction targets when considering all the 69 features.

FB , and FC ), (ii) the full set of 69 features, and (iii) the 5/69 features

reported in Table 2.

The performance increase for the prediction of Rr (t) with respect

to the one achieved with FA features is impressive: simply by using

the 5/69 features, we observe a major reduction in the relative pre-

diction errors. Indeed, the relative prediction errors are almost zero

for about 30% of the samples with 5/69 features (versus 20% with

FA), and below 100% for almost 90% of the samples (about 70%with

FA). Using the full set of 69 features has no signi!cant changes in

the relative prediction errors with respect to the FA set.

Regarding the estimation of rcPT , the 5/69 features do not pro-

vide any relevant improvement with respect to FB features. Ho-

wever, in this case, there is a signi!cant improvement when con-

sidering the full set of 69 features. The overall perfect prediction

performance increases from 60% to more than 80%, and the distri-

bution of relative prediction errors shows an important decrease.

Still, for the sake of reducing the model complexity and the num-

ber of input features, the !nal release of NETPerfTrace uses the

5/69 features as input.

Finally, and as expected, there are no signi!cant changes in the

prediction performance of avдRTTP when using either the 5/69

or the full set of features. As a general conclusion of the feature

selection analysis, the !nal implementation of NETPerfTrace uses

the 5/69 features reported in Table 2 as input for the prediction of

the three corresponding targets.

5 NETPERFTRACE VERSUS DTRACK

We now compare the performance of NETPerfTrace with the state

of the art, using RF10 as underlying model and the previously se-

lected 5/69 features as input. In particular, we compare NETPerf-

Trace to DTRACK [3, 4]. DTRACK predicts only path dynamics

and not path performance, as its focus is on the prediction of Rr (t)

and rcPT . The system uses a Nearest Neighbors (NN)-based model

as underlying prediction model, and takes as input the following

four features: (i) route age of route r , (ii) prevalence of route r in

the current time slotT (i.e., proportion of time r is active), (iii) num-

ber of previous occurrences of route r in T for path P , and (iv) the

total number of route changes in T for path P , i.e., rcPT . In [3, 4],

Cunha et al. also evaluate the usage of another prediction model

for DTRACK, called RuleFit. However, the model was !nally only

used for feature selection, as its computational complexity and run-

ning time make it inapplicable in an operational deployment. The

RF10model used byNETPerfTrace is extremely fast [9], even faster

than the ones tested for DTRACK. Cunha et al. named DTRACK’s

underlying algorithm NN4 (detailed in [3, 4, 9]), as it works on top

of the four aforementioned features.
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Figure 3: NETPerfTrace-NN5 vs. DTRACK.

The comparison of NETPerfTrace and DTRACK is performed

along three distinct dimensions: features, models, and systems. Fir-

stly, we compare the input features used by both systems, using a

NNX model (X = 4 for DTRACK andX = 5 for NETPerfTrace) and

a RF10 model. Secondly, we compare the performance of the un-

derlying prediction models, by using NETPerfTrace input features

and the two di"erent prediction models – NN5 and RF10. Finally,

we directly compare NETPerfTrace and DTRACK systems on the

dataset presented in Section 4.1, using their default con!gurations

(i.e., models and input features).

5.1 NETPerfTrace vs. DTRACK: Features

Figure 3 compares the performance of NETPerfTrace andDTRACK

using their corresponding input features and NNX as underlying

predictionmodel. Figure 3 (a) reveals only a slight reduction on the

relative prediction errors for Rr (t)when using NNX with NETPerf-

Trace top 5/69 input features (NPT-NN5) as compared to DTRACK

features. Figure 3 (b) shows that the performance improvement is

muchmore relevant when considering the prediction of rcPT . NPT-

NN5 correctly predictsmore than 25% of the non-zero-change time

slots, while DTRACK does it for only 10%. The overall perfect pre-

diction rate for NPT-NN5 rounds 47%, whereas it reduces to only

2% for DTRACK. Repeating the same evaluations by using RF10 as

underlying prediction model shows better results for both input fe-

ature sets, but without relevant comparative di"erence. As a !rst

conclusion, the 5/69 features used by NETPerfTrace provide in ge-

neral much better results than those used by DTRACK, for both

NNX and RF10.

5.2 NN5 vs. RF10 with NETPerfTrace

We now compare the prediction power of the two underlying mo-

dels used by NETPerfTrace and DTRACK, using as input the 5/69

features used by NETPerfTrace by default. Figure 4 shows a sig-

ni!cant performance improvement when using the RF10 model
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Figure 4: NETPerfTrace using NN5 vs. RF10.

as compared to DTRACK’s NN5 model. For example, Figure 4 (a)

shows that about 30% of the relative prediction errors are close to

0%when using RF10, whereas almost no zero relative prediction er-

rors are observed for NN5. Figure 4 (b) shows that for nearly 70%

of the samples, RF10 predicts the correct number of non-zero route

changes, which drops to only 25% for NN5. As a second conclusion,

the prediction model used by NETPerfTrace clearly outperforms

the one used by DTRACK.

5.3 NETPerfTrace vs. DTRACK: Wrap-up

To conclude, we now focus on the performance of both NETPerf-

Trace and DTRACK systems using their default con gurations in

terms of model and input features. Figure 5 shows that NETPerf-

Trace largely outperforms DTRACK for predicting path dynamics.

According to Figure 5 (a), NETPerfTrace can predict Rr (t) with

relative errors below 10% for about 50% of the samples, whereas

DTRACK only does so for 10% of the samples. In addition, almost

30% of the predictions with NETPerfTrace yield a relative error

close to 0%, whereas almost no zero relative prediction errors are

observed for DTRACK. In terms of daily number of route chan-

ges, Figure 5 (b) shows that NETPerfTrace correctly predicts al-

most 70% of the non-zero route changes, whereas DTRACK cor-

rectly forecasts only 10% of the changes. Overall, NETPerfTrace

predicts the correct number of route changes for about 65% of the

samples (including the zero route changes), whereas DTRACK cor-

rectly does so for only 8% of the samples.

As a general conclusion, presented results evidence that NET-

PerfTrace largely outperforms DTRACK when forecasting both

Rr (t) and rcPT , by using only one additional feature to tackle both

prediction problems. On the one hand, this is explained by the bet-

ter prediction power of the selected features. Note that we have

selected speci c feature sets for the prediction of Rr (t) and rcPT ,

respectively, whereas DTRACK uses the same set of features for

predicting both targets. On the other hand, NETPerfTrace relies

on a much more powerful prediction model than DTRACK, which

greatly contributes to the overall higher accuracy of the system.

6 CONCLUDING REMARKS

We have addressed the problem of predicting Internet path chan-

ges and path performance using traceroute measurements and

machine learning models. We have introduced and evaluated NET-

PerfTrace, an Internet Path Tracking system allowing to forecast

the remaining life time of a path before it actually changes, the

daily number of path changes in the next day, and the average RTT
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Figure 5: NETPerfTrace vs. DTRACK.

of the next traceroute measurement, with relatively high accu-

racy. By carefully engineering the model behind NETPerfTrace

and input features, we have shown that NETPerfTrace highly out-

performs DTRACK, a previous system with the same prediction

targets. Finally, we have released NETPerfTrace as open software

to the community.
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