Re-architecting datacenter networks and stacks for low
latency and high performance

Mark Handley
University College London
London, UK
m.handley @cs.ucl.ac.uk

ABSTRACT

Modern datacenter networks provide very high capacity via redun-
dant Clos topologies and low switch latency, but transport protocols
rarely deliver matching performance. We present NDP, a novel data-
center transport architecture that achieves near-optimal completion
times for short transfers and high flow throughput in a wide range
of scenarios, including incast. NDP switch buffers are very shal-
low and when they fill the switches trim packets to headers and
priority forward the headers. This gives receivers a full view of
instantaneous demand from all senders, and is the basis for our
novel, high-performance, multipath-aware transport protocol that
can deal gracefully with massive incast events and prioritize traffic
from different senders on RTT timescales. We implemented NDP in
Linux hosts with DPDK, in a software switch, in a NetFPGA-based
hardware switch, and in P4. We evaluate NDP’s performance in
our implementations and in large-scale simulations, simultaneously
demonstrating support for very low-latency and high throughput.

CCS CONCEPTS

* Networks — Network protocols; Data center networks;

KEYWORDS

Datacenters; Network Stacks; Transport Protocols

ACM Reference format:

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, An-
drew W. Moore, Gianni Antichi, and Marcin Wéjcik. 2017. Re-architecting
datacenter networks and stacks for low latency and high performance. In
Proceedings of , , , 14 pages. https://doi.org/10.1145/3098822.3098825

1 INTRODUCTION

Datacenters have evolved rapidly over the last few years, with Clos[1,
17] topologies becoming commonplace, and a new emphasis on low
latency, first with improved transport protocols such as DCTCP[4]
and more recently with solutions such as RDMA over Converged

Costin Raiciu
Alexandru Agache
Andrei Voinescu
University Politehnica of Bucharest
Bucharest, Romania
firstname.lastname @cs.pub.ro

Andrew W. Moore
Gianni Antichi
Marcin Wjcik

University of Cambridge
Cambridge, UK
firstname.lastname @cl.cam.ac.uk

Ethernet v2[25] that use Ethernet flow control in switches[23] to
avoid packet loss caused by congestion.

In a lightly loaded network, Ethernet flow control can give very
good low-delay performance[20] for request/response flows that
dominate datacenter workloads. Packets are queued rather than lost,
if necessary producing back-pressure, pausing forwarding across sev-
eral switches, and so no time is wasted on being overly conservative
at start-up or waiting for retransmission timeouts. However, based
on experience deploying RoCEv2 at Microsoft[20], Gau et al.note
that a lossless network does not guarantee low latency. When con-
gestion occurs, queues build up and PFC pause frames are generated.
Both queues and PFC pause frames increase network latency. They
conclude “how to achieve low network latency and high network
throughput at the same time for RDMA is still an open problem.”

In this paper we present a new datacenter protocol architecture,
NDP, that takes a different approach to simultaneously achieving
both low delay and high throughput. NDP has no connection setup
handshake, and allows flows to start sending instantly at full rate.
We use per-packet multipath load balancing, which avoids core
network congestion at the expense of reordering, and in switches
use an approach similar to Cut Payload (CP)[9], which trims the
payloads of packets when a switch queue fills. This gives a network
that is lossless for metadata, but not for traffic payloads. In spite of
reordering, lossless metadata gives the receiver a complete picture
regarding inbound traffic and we take advantage of it to build a
radical new transport protocol that achieves very low latency for
short flows, with minimal interference between flows to different
destinations even in pathological traffic patterns.

We have implemented NDP in Linux hosts, in a software switch,
in a hardware switch based on NetFPGA SUME[41], in P4[29], and
in simulation. We will demonstrate that NDP achieves:

Better short-flow performance than DCTCP or DCQCN.
Greater than 95% of the maximum network capacity in a heavily
loaded network with switch queues of only eight packets.
Near-perfect delay and fairness in incast[18] scenarios.
Minimal interference between flows to different hosts.
Effective prioritization of straggler traffic during incasts.

2 DESIGN SPACE

Intra-datacenter network traffic primarily consists of request/response
RPC-like protocols. Mean network utilization is rarely very high,
but applications can be very bursty. The big problem today is latency,
especially for short RPC-like workloads. At the cost of head-of-line

https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3098822.3098825

blocking, today’s applications often reuse TCP connections across
multiple requests to amortize the latency cost of the TCP handshake.

Is it possible to improve the protocol stack so much that every
request could use a new connection and at the same time expect
to get close to the raw latency and bandwidth of the underlying
network, even under heavy load? We will show that these goals
are achievable, but to do so involves changes to how traffic is routed,
how switches cope with overload, and most importantly, requires
a completely different transport protocol from those used today.
Before we describe our solution in §3, we first highlight the key
architectural points that must be considered.

2.1 End-to-end Service Demands

What do applications want from a datacenter network?

Location Independence. It shouldn’t matter which machine in a
datacenter the elements of a distributed application are run on. This is
commonly achieved using high-capacity parallel Clos topologies|1,
17]. Such topologies have sufficient cross-sectional bandwidth that
the core network should not be a bottleneck.

Low Latency. Clos networks can supply bandwidth, modulo issues
with load balancing between paths, but often fall short in providing
low latency service. Predictable very low latency request/response
behavior is the key application demand, and it is the hardest to satisfy.
This is more important than large file transfer performance, though
high throughput is still a requirement, especially for storage servers.
The strategy must be to optimize for low latency first.

Incast. Datacenter workloads often require sending requests to large
numbers of workers and then handling their near-simultaneous re-
sponses, causing a problem called incast. A good networking stack
should shield applications from the side-effects of incast traffic pat-
terns gracefully while providing low latency.

Priority. It is also common for a receiver to handle many incom-
ing flows corresponding to different requests simultaneously. For
example, it may have fanned out two different requests to workers,
and the responses to those requests are now arriving with the last
responses to the first request overlapping the first responses to the
second request. Many applications need all the responses to a request
before they can proceed. A very desirable property is for the receiver
to be able to prioritize arriving traffic from stragglers. The receiver
is the only entity that can dynamically prioritize its inbound traffic,
and this impacts protocol design.

2.2 Transport Protocol

Current datacenter transport protocols satisfy some of these appli-
cation requirements, but satisfying all of them places some unusual
demands on datacenter transport protocols.

Zero-RTT connection setup. To minimize latency, many applica-
tions would like zero-RTT delivery for small outgoing transfers (or
one RTT for request/response). We need a protocol that doesn’t
require a handshake to complete before sending data, but this poses
security and correctness issues.

Fast start. Another implication of zero-RTT delivery is that a trans-
port protocol can’t probe for available bandwidth—to minimize
latency, it must assume bandwidth is available, optimistically send
a full initial window, and then react appropriately when it isn’t. In
contrast to the Internet, simpler solutions are possible in datacenter

Handley et al.

environments, because link speeds and network delays (except for
queuing delays) can mostly be known in advance.

Per-packet ECMP. One problem with Clos topologies is that per-
flow ECMP hashing of flows to paths can cause unintended flow
collisions; one deployment[20] found this reduced throughput by
40%. For large transfers, multipath protocols such as MPTCP can
establish enough subflows to find unused paths[31], but they can
do little to help with the latency of very short transfers. The only
solution here is to stripe across multiple paths on a per-packet basis.
This complicates transport protocol design.

Reorder-tolerant handshake. If we perform a zero-RTT transfer
with per-packet multipath forwarding in a Clos network, even the
very first window of packets may arrive in a random order. This effect
has implications for connection setup: the first packet to arrive will
not be the first packet of the connection. Such a transport protocol
must be capable of establishing connection state no matter which
packet from the initial window is first to arrive.

Optimized for Incast. Although Clos networks are well-provisioned
for core-capacity, incast traffic can make life difficult for any trans-
port protocol when applications fan out requests to many workers
simultaneously. Such traffic patterns can cause high packet loss rates,
especially if the transport protocol is aggressive in the first RTT. To
handle this gracefully requires some assistance from the switches.

2.3 Switch Service Model

Application requirements, the transport protocol and the service
model at network switches are tightly coupled, and need to be op-
timized holistically. Of particular relevance is what happens when
a switch port is congested. The switch service model heavily in-
fluences the design space of both protocol and congestion control
algorithms, and couples tightly with forwarding behavior: per-packet
multipath load balancing is ideal as it minimizes hotspots, but it com-
plicates the ability of end-systems to infer network congestion and
increases importance of graceful overload behavior.

Loss as a congestion feedback mechanism has the advantage that
dropped packets don’t use bottleneck bandwidth, and loss only im-
pacts flows traversing the congested link—not all schemes have
these properties. The downside is that it leads to uncertainty as to
a packet’s outcome. Duplicate or selective ACKs to trigger retrans-
missions only work well for long-lived flows. With short flows, tail
loss is common, and then you have to fall back on retransmission
timeouts (RTO). Short RTOs are only safe if you can constrain the
delay in the network, so you need to maintain short queues[4] which
in turn constrain the congestion control schemes you can use. Loss
also couples badly with per-packet multipath forwarding; because
the packets of a flow arrive out of order, loss detection is greatly
complicated - fast retransmit is often not possible because its not
rare for a packet to arrive out of sequence by a whole window.

ECN helps significantly. DCTCP uses ECN[32] with a sharp
threshold for packet marking, and a congestion control scheme that
aims to push in and out of the marking regime. This greatly reduces
loss for long-lived flows, and allows the use of small buffers, re-
ducing queuing delay. For short flows though, ECN has less benefit
because the flow doesn’t have time to react to the ECN feedback. In
practice switches use large shared buffers in conjunction with ECN
and this reduces incast losses, but retransmit timers must be less

Datacenter networks for low latency and high performance.

Clos Per-packet Fast Flow Small
Network Multipath start queues

Low latency =

uncongested
core Packet
Incastand . T]
reordering, but

receiver has
full information

New
Receiver
Driven
Protocol

Ctrl packet Receiver Fast Zero RTT
Priority Pacing RTX connect

Figure 1: Key components of NDP

aggressive. ECN does have the advantage though that it interacts
quite well with per-packet multipath forwarding, given a transport
protocol design that can tolerate reordering.

Lossless Ethernet using 802.3X Pause frames [23] or 802.1 Qbb
priority-based flow control (PFC)[24] can prevent loss, avoiding
the need for aggressive RTO in protocols. At low utilizations, this
can be effective at achieving low delay—a burst will arrive at the
maximum rate that the link can forward, with no need to wait for
retransmissions. The problem comes at higher utilizations in tiered
topologies, where flows that happen to hash to the same outgoing
port, and use the same priority in the case of 802.1Qbb, can cause
incoming ports to be paused. This causes collateral damage to other
flows traversing the same incoming port destined for different output
ports. With large incasts, pausing can cascade back up towards core
switches. Lossless Ethernet also interacts badly with per-packet mul-
tipath forwarding, as different switches may pause traffic at different
times, exacerbating reordering and complicating end-system design.

Cut Payload (CP)[9] tries to get the benefits of lossless with-
out quite being lossless. It drops packet payloads, but not packet
headers, relieving overload while avoiding uncertainty as to packet
outcomes. It shows great promise, but there are two problems. First,
in severe overload, it is susceptible to congestion collapse, where
only headers get forwarded. Second, because the headers are queued
in a FIFO manner, tail "loss" costs at least one RTT. In addition, CP,
as originally proposed uses single-path forwarding for each flow.

3 DESIGN

Our primary goals are low completion latency for short flows, and
predictable high throughput for longer flows. To fully satisfy these
goals, NDP impacts the whole stack, including switch behavior,
routing, and a completely new transport protocol. We lead with
a brief but simplified design rationale to show how the pieces in
Figure 1 fit together, then fill in the details in the rest of this section.

A Clos topology has sufficient bandwidth in the core to satisfy
all demand, so long as it is perfectly load-balanced. To avoid flow
collisions on core links, which impact both latency and throughput,
load-balancing each flow across many paths is essential. Balanc-
ing short flows requires per-packet multipath load-balancing, but
inevitably packets will get reordered.

To achieve minimal short-flow latency, senders cannot probe
before sending: they must send the first RTT at line rate. This works
well most of the time. When senders perform per-packet multipath

100 fs T T T T T T T T T

[e]
o

NDP switch, mean
NDP switch, worst 10% ------==-"
CP switch, mean
switch, worst 10% ===

[o2]
o

N b
o o
T

Percent of fair
goodput achieved

Mgt I I 1
0 20 40 60 80 100 120 140 160 180 200

1

o

Number of flows

Figure 2: Collapse and Phase Problems with CP

load balancing, if sending at line rate causes congestion, it is because
several senders are sending to the same receiver. Even then, the
receiver’s link is fully occupied, so this is not, by itself, a problem.

To guarantee low latency, switch queues must be small. This
means colliding flows will overflow the queue. Packet loss, com-
bined with multipath reordering, make it impossible to infer what
happened and retransmit quickly enough to avoid impacting latency;
this violates the low latency goal. Completely preventing packet loss
adds queuing delays; if this is done by pausing inbound traffic, as
with lossless Ethernet, this impacts other unrelated traffic, violating
its low latency and predictable high throughput goals. We seek a
middle ground between packet loss and lossless.

Packet trimming, similar to that performed by CP, is such a middle
ground. Switch queues can be small, and the receiver still discov-
ers which packets were sent by examining the trimmed headers it
receives. However, to minimize retransmission latency, trimmed
headers and control packets need to be prioritized. Arriving trimmed
headers tell the receiver exactly what the demand is, so by using
a receiver-pulled protocol, the receiver can then precisely control
incoming traffic. This avoids persistent overload and allows more
important packets to be pulled first, at the receiver’s discretion.

3.1 NDP Switch Service Model

With CP, when the queue at a switch fills beyond a fixed thresh-
old, rather than dropping a packet, the switch trims off the packet
payload, queuing just the header. The rationale is that packets are
not lost silently, allowing rapid retransmission without waiting for
a timeout. With the short distances in a datacenter network, such
retransmissions can arrive very quickly.

Alongside switch changes, CP proposes minor changes to TCP
to improve incast performance. We wish to go well beyond CP, and
use packet trimming as the basis of an extremely aggressive network
architecture, focused on very low delay service. However, there are
several problems that can arise if vanilla CP is used.

First, CP can suffer from a form of congestion collapse. Figure 2
shows what happens when packets arrive at a switch at a signifi-
cantly higher rate than can be supported by the outgoing link. Many
unresponsive flows converge on a 10Gb/s link that can only support
one of them, as in extreme server incast scenarios. The figure shows
the percent of the ideal fair-share goodput that is achieved. The mean
goodput of the CP flows decreases, as an increasing fraction of the
link is occupied by trimmed packet headers. This figure shows the
best case for CP, with 9KB jumbograms. With 1500 byte packets the
collapse is much faster.

Second, datacenter networks are very regular, so phase effects[14]
can occur, leading to unfair throughput. The dashed curves in Fig-
ure 2 show the mean goodput of the worst performing 10% of the
flows. Phase effects can render CP very unfair, though we note
that this figure shows simulation results; real-world phase effects
can sometimes be reduced by variability in the timing of packet
transmissions due to OS scheduling.

Finally, CP aims to provide low delay feedback that packets have
been lost. However, because CP uses a FIFO queue, feedback can
only be sent after all the preceding packets have been received,
resulting in a delay before a retransmission is elicited. We would like
to run very small buffers in the switches, have one of those queues
overflow, and for the retransmission to arrive before the queue has
had a chance to drain. This isn’t possible with FIFO queuing.

NDP switches make three main changes to CP. First, an NDP
switch maintains two queues: a lower priority queue for data packets
and a higher priority queue for trimmed headers, ACKs and NACKs!,
This may seem counter-intuitive, but it provides the earliest possible
feedback that a packet didn’t make it, usually allowing a retransmis-
sion to arrive before the offending queue had even had time to drain.
This can provide at least as good low delay behavior as lossless
Ethernet, without the collateral damage caused by pausing.

Second, the switch performs weighted round robin between the
high priority “header queue” and the lower priority “data packet
queue”. With a 10:1 ratio of headers to packets, this allows early
feedback without being susceptible to congestion collapse.

Finally, when a data packet arrives and the low priority queue is
full, the switch decides with 50% probability whether to trim the
newly arrived packet, or the data packet at the tail of the low priority
queue. This breaks up phase effects. Figure 2 shows how an NDP
switch avoids CP’s collapse, and also avoids strong phase effects.

3.1.1 Routing

We want NDP switches to perform per-packet multihop forwarding,
so as to evenly distribute traffic bursts across all the parallel paths
that are available between source and destination. This could be
done in at least four ways:

e Perform per-packet ECMP; switches randomly choose the next

hop for each packet;

o Explicitly source-route the traffic;

e Use label-switched paths; the sender chooses the label;

e Destination addresses indicates the path to be taken; the sender

chooses between destination addresses.
For load-balancing purposes the latter three are equivalent—the
sender chooses a path—they differ in how the sender expresses that
path. Our experiments show that if the senders choose the paths, they
can do a better job of load balancing than if the switches randomly
choose paths. This allows the use of slightly smaller switch buffers.
Unlike in the Internet, in a datacenter, senders can know the

topology, so know how many paths are available to a destination.
Each NDP sender takes the list of paths to a destination, randomly
permutes it, then sends packets on paths in this order. After it has
sent one packet on each path, it randomly permutes the list of paths
again, and the process repeats. This spreads packets equally across
all paths while avoiding inadvertent synchronization between two

! Also PULL packets, which we will introduce shortly.

Handley et al.

senders. Such load-balancing is important to achieving very low
delay. If we use very small data packet queues (only eight packets),
our experiments show that this simple scheme can increase the
maximum capacity of the network by as much as 10% over a per-
packet random path choice.

Depending on whether the network is L2 or L3-switched, either
label-switched paths or destination addresses can be used to choose
a path. In an L2 FatTree network for example, a label-switched path
only needs to be set up as far as each core switch, with destination
L2 addresses taking over from there, as a FatTree only has one path
from a core switch to each host. In an L3 FatTree, each host gets
multiple IP addresses, one for each core switch. By choosing the
destination address, the sender chooses the core switch a packet
traverses.

3.2 Transport Protocol

NDP uses a receiver-driven transport protocol designed specifically
to take advantage of multipath forwarding, packet trimming, and
short switch queues. The goal at each step is first to minimize delay
for short transfers, then to maximize throughput for larger transfers.

When starting up a connection, a transport protocol could be pes-
simistic, like TCP, and assume that there is minimal spare network
capacity. TCP starts sending data after the three-way handshake com-
pletes, initially with a small congestion window[11], and doubles it
each RTT until it has filled the pipe. Starting slowly is appropriate
in the Internet, where RTTs and link bandwidths differ by orders of
magnitude, and where the consequences of being more aggressive
are severe. In a datacenter, though, link speeds and baseline RTTs
are much more homogeneous, and can be known in advance. Also,
network utilization is often relatively low [7]. In such a network,
to minimize delay we must be optimistic and assume there will
be enough capacity to send a full window of data in the first RTT
of a connection without probing. If switch buffers are small, in a
low-delay datacenter environment a full window is likely to be only
about 12 packets given the speed-of-light latencies and hop-counts.

However, if it turns outs that there is insufficient capacity, packets
will be lost. With a normal transport protocol, the combination
of per-packet multipath forwarding and being aggressive in the
first RTT is a recipe for confusion. Some packets arrive, but in a
random order, and some don’t. It is impossible to tell quickly what
actually happened, and so the sender must fall back on conservative
retransmission timeouts to remedy the situation.

Increasing switch buffering could mitigate this situation some-
what, at the expense of increasing delay, but can’t prevent loss with
large incasts. ECN also cannot prevent loss with aggressive short
flows. Pause frames can prevent loss, and could help significantly
here, but we will show in § 6.1 that this brings its own significant
problems in terms of delay to unrelated flows.

This is where packet trimming in the NDP switches really comes
into its own. Headers of trimmed packets arriving at the receiver con-
sume little bottleneck bandwidth, but inform the receiver precisely
which packets were sent. The order of packet arrivals is unimportant
when it comes to inferring what happened. Priority queuing ensures
that these headers arrive quickly, and that control packets such as
NACKs returned to the sender arrive quickly; indeed quickly enough
to elicit a retransmission that arrives before the overflowing queue

Datacenter networks for low latency and high performance.

Src ToR Agg Core

AEg ToR Dst
t

theader

trtx R 9

trim

t

enqueue

t

arrive

Figure 3: Packet trimming enables low-delay retransmission

has had time to drain, so the link does not go idle. This is illustrated

in Figure 3. At time t;,;, packets from nine different sources arrive

nearly simultaneously at the ToR switch. The eight-packet queue to
the destination link fills, and the packet from source 9 is trimmed.

After packet 1 finishes being forwarded, packet 9’s header gets pri-

ority treatment. At tj,44, it atrives at the receiver, which generates

a NACK packetz. Packet 9 is retransmitted at t,;5 and arrives at the

ToR switch queue while packet 7 is still being forwarded. The link

to the destination never goes idle, and packet 9 arrives at t4rrive,

the same time it would have arrived if PFC had prevented its loss by
pausing the upstream switch.

In a Clos topology employing per-packet multipath, the only hot
spots that can build are when traffic from many sources converges on
a receiver. With NDP, trimmed headers indicate the precise demand
to the receiver; it knows exactly which senders want to send which
data to it, so it is best placed to decide what to do after the first RTT
of a connection. After sending a full window of data at line rate,
NDP senders stop sending. From then on, the protocol is receiver-
driven. An NDP receiver requests packets from the senders, pacing
the sending of those requests so that the data packets they elicit arrive
at a rate that matches the receiver’s link speed. The data requested
can be retransmissions of trimmed packets, or can be new data from
the rest of the transfer. The protocol thus works as follows:

o The sender sends a full window of data without waiting for a
response. Data packets carry packet sequence numbers.

For each header that arrives, the receiver immediately sends a

NACK to inform the sender to prepare the packet for retransmis-

sion (but not yet send it).

For each data packet that arrives, the receiver immediately sends

an ACK to inform the sender that the packet arrived, and so the

buffer can be freed.

o For every header or packet that arrives, the receiver adds a PULL
packet to its pull queue that will, in due course, be sent to the
corresponding sender. A receiver only has one pull queue, shared
by all connections for which it is the receiver.

e A PULL packet contains the connection ID and a per-sender pull
counter that increments on each PULL packet sent to that sender.

e The receiver sends out PULL packets from the per-interface pull
queue, paced so that the data packets they elicit from the sender
then arrive at the receiver’s link rate. Pull packets from different
connections are serviced fairly by default, or with strict prioriti-
zation when a flow has higher priority.

2This NACK has the PULL bit set, requesting retransmission.
3When we refer to headers in this context, we are referring to the headers of packets
whose payload was trimmed off by a switch

e When a PULL packet arrives at the sender, the sender will send as
many data packets as the pull counter increments by. Any packets
queued for retransmission are sent first, followed by new data.

e When the sender runs out of data to send, it marks the last packet.
When the last packet arrives, the receiver removes any pull pack-
ets for that sender from its pull queue to avoid sending unneces-
sary pull packets. Any subsequent data the sender later wants to
send will be pushed rather than pulled.

Due to packet trimming, it is very rare for a packet to be actually
lost; usually this is due to corruption. As ACKs and NACKs are
sent immediately, are priority-forwarded, and all switch queues are
small, the sender can know very quickly if a packet was actually lost.
With eight packet switch queues, 9KB jumbograms, and store-and-
forward switches in a 10Gb/s FatTree topology, each packet takes
7.2ps to serialize. Taking into account NDP’s priority queuing, the
worst-case network RTT is approximately 400us, with typical RTTs
being much shorter. This allows a very short retransmission timeout
to be used to provide reliability for such corrupted packets.

PULL packets perform a role similar to TCP’s ACK-clock, but are
usually4 separated from ACKs to allow them to be paced without
impacting the retransmission timeout mechanism. For example, in a
large incast scenario, PULLs may spend a comparatively long time
in the receiver’s pull queue before the pacer allows them to be sent,
but we don’t want to also delay ACKs because doing so requires
being much more conservative with retransmission timeouts.

The emergent behavior is that the first RTT of data in a connection
is pushed, and subsequent RTTs of data are pulled so as to arrive
at the receiver’s line rate. In an incast scenario, if many senders
send simultaneously, many of their first window of packets will be
trimmed, but subsequently receiver pulling ensures that the aggregate
arrival rate from all senders matches the receiver’s link speed, with
few or no packets being trimmed.

3.2.1 Coping with Reordering

Due to per-packet multipath forwarding, it is normal for both data
packets and reverse-path ACKs, NACKs and PULLs to be reordered.
The basic protocol design is robust to reordering, as it does not need
to make inference about loss from other packets’ sequence numbers.
However, reordering still needs to be taken into account.

Although PULL packets are priority-queued, they don’t preempt
data packets, so PULL packets sent on different paths often arrive out
of order, increasing the burstiness of retransmissions. To reduce this,
PULLSs carry a pull sequence number. The receiver has a separate pull
sequence space for each connection, incrementing it by one for each
pull sent. On receipt of a PULL, the sender transmits as many packets
as the pull sequence number increases by. For example, if a PULL is
delayed, the next PULL sent may arrive first via a different path, and
will pull two packets rather than one. This reduces burstiness a little.

3.2.2 The First RTT
Unlike in TCP, where the SYN/SYN-ACK handshake happens ahead
of data exchange, we wish NDP data to be sent in the first RTT. This
adds three new requirements:

o Be robust to requests that spoof source IP addresses.

4If there is only one sender, PULL packets don’t need extra pacing because data packets
arrive paced appropriately. In such cases we can send combined PULLACK.

e Ensure no connection is inadvertently processed twice.
e Cope with multipath reordering within the first RTT.

T/TCP[8] and TCP Fast Open[10] both extend TCP to send data in
the first RTT. TFO prevents spoofing by presenting a token given
by the server in a previous connection, but does not ensure at-most-
once semantics. T/TCP uses monotonically increasing connection
IDs giving at-most-once semantics, but it is not robust to spoofing.
Neither copes well if the SYN is not the first packet to arrive.

NDP’s requirements are slightly different. Spoofing can be pre-
vented in the hypervisor or NIC, or using VXLAN for multi-tenant
datacenters, so isn’t a big problem. At-most-once semantics are
crucial though, but T/TCP’s solution is not robust to multipath re-
ordering between back-to-back short connections. NDP solves this
by instead by keeping time-wait state at both the client and server,
so either can reject duplicate connections. As the maximum segment
lifetime is under 1ms, the amount of extra state is fairly small.

Finally, multiple packets may be sent in the first RTT, but the
first to arrive is often not the first sent. To be robust, every packet
in the first RTT carries the SYN flag, together with the offset of its
sequence number from the first packet in the connection. This allows
connection state to be established by whichever packet arrives first.

3.2.3 Robustness Optimizations

If the network behaves properly, the protocol above performs very
well. However, sometimes links or switches fail. This is normally
detected by a routing protocol, and the failure is then routed around.
NDP packets are source-routed, so NDP hosts also need to receive
these routing updates to know which paths to avoid. However, before
the routing protocol has informed everyone, packets arriving at a
failed link will be lost. Other more subtle failures are also possible,
such as a 10Gb/s link deciding to negotiate to 1Gb/s, resulting in a
hot spot that will not immediately be detected by routing. Previous
work has shown that using single-path congestion control (e.g. TCP)
and in-network packet-spraying results in heavily reduced perfor-
mance in these scenarios, because the transport protocol is not aware
that only one of its paths is misbehaving [12, 31].

NDP incorporates optimizations that greatly improve performance
in such cases. Senders keep a scoreboard for paths, and the sender
keeps track of which path each packet traverses. When an ACK or
NACK arrives, the ACK or NACK-count for the path the data packet
was sent over is incremented. Normally, in a Clos topology running
NDP, all paths should have a very similar ratio of ACKs to NACKSs.
However, if a failure has caused asymmetry, some links will have
excessive NACK counts. When the sender permutes the path list, it
temporarily removes outliers from the path set.

Packet loss should almost never occur. An NDP sender that re-
transmits a lost packet always resends it on a different path. A path
loss counter is also incremented each time a packet is lost. Any paths
that are outliers with regards to packet loss are also temporarily
removed from the path set.

These mechanisms allow NDP to be robust to networks where
paths no longer have similar performance, for whatever reason, with
minimal loss in performance. Traditional protocols that rely on per-
flow ECMP multipath forwarding have a harder time with such
failures, and rely on routing to detect and avoid bad paths.

Handley et al.

1 AP it
0.8 | .
w 0.6 [1
O - Perphulation i
0.4 Random ——
0.2 + ‘ Incast, 100 flgw's of 135KB ———
ows of 1350KB
0 il 1l bl PR

10 100 1000 10000C
Latency (us)

10000

Figure 4: Delivery Latency with various traffic matrices.

3.2.4 Return-to-Sender

Packet trimming can cope with large incasts without needing to drop
any headers. However, extremely large incasts may overflow the
header queue, causing loss. The missing packets would be resent
rapidly, when the sender’s RTO expires. With small queues ensuring
a 400ps maximum RTT, the maximum RTO could safely be as low
as 1ms. During incast, a top-of-rack switch queue can hold eight
9KB packets and (in the same amount of memory) 1125 64-byte
headers before it overflows. The receiver will PULL retransmissions
of these 1125 packets, pacing their arrival to keep its link saturated.
At 10Gb/s, 1125 packets of 9KB will occupy the receiver’s link for
8ms so any packets resent due to RTO could still reach the queue
that overflowed before the link goes idle.

However, sometimes a whole transfer will fit in a single packet,
and that transfer may be of high priority—it may, for example, be
the straggler from a previous request. If such a packet is lost, relying
on the RTO adds unnecessary delay. As an optimization, when
the header queue overflows, the switch can swap the sender and
receiver’s addresses, and return the header to the sender. The sender
could then resend the offending packet. However, always resending
could cause an echo of the original incast. NDP only resends if it
is not expecting more PULLs—i.e, there are no packets ACKed or
NAcCKed but not yet pulled, or if all other packets from the first
window were also returned. This avoids incast echo, but keeps the
pull-clock going. NDP also resends if most packets recently were
AckKed rather than NACKed—this indicates an asymmetric network,
where resending on a different working path makes sense.

Return-to-sender is an optimization; in our experience it only
kicks in with very large incasts. In a Clos topology it essentially
makes NDP lossless for metadata; an RTO only triggers when pack-
ets are corrupted or there is a failure.

Figure 4 shows results from a 432-node FatTree simulation that
demonstrates these mechanisms in action, giving a CDF of latency
from when a packet is first sent to when it is Acked at the sender,
including any delay due to retransmissions. The Permutation curve
shows when every host sends and receives from one other host and
Random shows when each host sends to a random host - in both
cases these fully load the FatTree, but the median latency remains
around 100ps. The Incast curves show what happens when 100
nodes send simultaneously to a single node; they differ in the size of
the transfer. With 135KB, all nodes send the entire file in the first
RTT; this not only results in high trimming rates, but also overflows
the header queue, with 25% of headers being returned to sender.
Despite this, the last packet arrives in 11,055us, only 2% later than
the theoretical best arrival time. With 1350KB, the first window of

Datacenter networks for low latency and high performance.

data takes the same amount of time as the 135KB transfers, but the
remainder of the transfer proceeds smoothly with no trimming and a
median latency of 95us.

Congestion Control

The astute reader may by now be wondering what NDP does for
congestion control. The answer is simple: NDP performs no con-
gestion control whatsoever in a Clos topology. As we will show,
congestion control is simply unnecessary with the right combination
of network service model and transport protocol. Broadly speaking,
Internet congestion control serves two roles: it avoids congestion
collapse, and it ensures fairness. NDP achieves both without having
an explicit window adaptation mechanism.

Avoiding congestion collapse. As we saw in Section 2.3, NDP
switches avoid CP’s congestion collapse by ensuring that most of
a link is used by data packets. Collapse might also occur if packets
were discarded at the receiver, as with pre-Jacobson retransmission
timeouts[26] or with fragmentation[27, 33]. Due to packet trimming,
NDP senders rarely need to rely on the RTO, so collapse due to
unnecessary retransmissions is not possible.

Collapse could happen if a large fraction of packets are discarded
close to the receiver having already displaced other packets earlier on
their path[15]. However, in a Clos topology with NDP’s per-packet
multipath routing, packets are almost never trimmed on the uplinks to
the core switches because it is not possible to concentrate traffic there.
When they are trimmed on uplinks, this is due to imperfect load
balancing; this is where NDP’s source-based load balancing provides
a win over per-packet random ECMP performed by switches. Even
under high load, packets trimmed here comprise a tiny fraction of
overall traffic—for example, in simulations of a 128-node FatTree
running a full permutation traffic matrix, where every node receives
from one node and sends to another node at its linkspeed of 10Gb/s,
we see 0.01% of packets trimmed on uplinks when the sources load
balance, compared to 2.4% when the switches load-balance.

Significant trimming only really happens during incasts, with
most packets being trimmed on the links from top-of-rack switches
to hosts, and a few being trimmed between upper pod switches
and lower pod switches. Thus packets that are trimmed by the ToR
switches have only rarely displaced packets earlier in the topology.

Fairness. NDP achieves excellent fairness without needing addi-
tional mechanisms. All competing flows start with the same win-
dow, so there’s no need to worry about convergence. The primary
point when flows compete is for capacity to the receiver, and the
receiver has a complete view of what is happening. Receiver fair-
ness is achieved by using a fair queuing scheme for packets in the
pull-queue that belong to different connections. Finally, deliberate
unfairness is possible, because the receiver knows its own priorities,
and can pull high priority traffic more often than low priority traffic.

One case of unfairness that cannot be receiver-managed is where
a flow to one receiver competes with an incast to another receiver
on the same ToR switch. NDP mitigates such unfairness in one RTT
because, after that, receiver-pacing of PULLs removes the overload.

Limitations of NDP

Our experimental evaluation in §5 and §6 shows that NDP is very
close to optimal in fully-provisioned folded Clos topologies, even

NDP Figure 5: NDP software

Core implementation architec-
Process

ture.
e

with asymmetries, and regardless of the traffic patterns. Here we
discuss NDP’s limitations outside such networks.

In asymmetric topologies such as BCube [19] and Jellyfish [36],
NDP will behave poorly because it will spray packets on different
length paths that are costly to use when the network is heavily loaded.
For such networks, sender-based per-path multipath congestion con-
trol has been shown to work well [31]; it remains an open question
how to reconcile per-path congestion control with our pull-based
receiver driven protocol.

Congestion control would also be desirable on heavily oversub-
scribed networks where the core is persistently congested, as NDP’s
aggressive design will lead to continuous packet trimming even
after the first RTT. We show in our evaluation that NDP still pro-
vides better performance than DCTCP in such cases (see §6.3), but
some form of congestion control would be useful to reduce server
retransmission load.

One final question regards deployment: when P4 switches are
widely deployed in datacenters, running NDP is as simple as de-
ploying the switch implementation (§4) and the end-system stack.
However, NDP may shut out competing TCP traffic. It is, however,
simple to ensure coexistence with TCP by serving NDP and TCP
from different queues, fair-queuing between them. The TCP queue
will be larger (100s of packets) while NDP’s will be small (8 pack-
ets), coupled with a similarly sized header queue.

Userspace

4 IMPLEMENTATION

We implemented NDP in Linux end-systems, a software switch
based on DPDK][13], a hardware switch using the 10Gb/s NetFPGA
SUME[41] platform, and in P4[29]. We also implemented NDP in
the htsim high-speed network simulator, based on datacenter net-
work implementations from [31]. We use the Linux and NetFPGA
implementations to demonstrate performance at small scale on real
hardware, and the simulations to demonstrate NDP’s scaling prop-
erties. We have also developed a P4 implementation of the NDP
switch as a proof of concept that NDP processing is simple enough
to be easily deployed in programmable switches.

Linux Implementation. The goal of our Linux NDP implementa-
tion is to investigate NDP performance and validate the NDP proto-
col design. Normally we would expect NDP to be implemented in
the OS kernel to allow accurate control of timing. To permit rapid ex-
perimentation, our approach instead implements NDP in userspace,
using the DPDK library to achieve low-latency network access, and
using a dedicated core to ensure accurate PULL pacing and low
latency retransmissions. The architecture is shown in Figure 5. The
NDP core process mediates NIC access and maintains the pull queue
as all NDP connections must share this. The core process also han-
dles fast retransmissions caused by NACKs. A library provides the
NDP API to applications, and interacts with the core process via

Input Interface Queues

Output Interface Queues

Priorityj[m
2 NDP _ [T}

Switching — o
Logic 8l RS I I I

Figure 6: NDP switch architecture on NetFPGA-SUME

shared memory, passing commands such as connect and listen via
a communications ring buffer, and data for each active socket via
three ring buffers: RX, TX and RTX, and a shared buffer pool. The
library also handles packet retransmissions due to timeouts.

The NDP core main loop checks for new application registrations,
runs commands from library instances, sends the first RTT of packets
from the TX ring of new connections, and handles incoming packets.
Arriving data, ACK and NACK packets are placed in the appropriate
socket’s RX ring. Arriving PULLs cause data packets to be sent from
the socket’s RTX or TX ring, with RTX given priority. Arriving data
packets (or headers) cause PULLS to be added to the pull queue.

A separate pull queue thread, running on its own CPU core, de-
queues these PULLs one-by-one at the appropriate time and sends
them; currently this thread spins to ensure appropriate granularity,
but in the future this overhead might be avoided with NIC support.

Data packets can also trigger the initialization of a new socket
if the SYN bit is set and listen was previously called. NACKs are
passed to the library to avoid spurious timeouts, but the NDP core
also adds the corresponding buffer index to the socket’s RTX ring,
allowing very fast retransmission.

Since NDP is a zero-RTT protocol, the connect command from
the library only informs the NDP core about a new active socket.
The connection will be established when data is sent. The listen
command informs the NDP core about a new passive socket, but
it also reserves a number of sockets for any incoming connections
because the lack of an initial handshake means we must be ready to
accept incoming packet trains on the fly.

NDP-enabled Hardware Switch. Ideally NDP’s trimming and pri-
ority queuing would be implemented in switch ASICs. We proto-
typed such a solution using the NetFPGA-SUME platform [41], a
reconfigurable hardware platform with four 10Gb/s Ethernet inter-
faces incorporating a Xilinx Virtex-7 FPGA together with QDRII+
and DDR3 memory resources.

Figure 6 shows the high level NDP switch design. Packets enter
through one of the 10Gb/s interfaces and are stored in a 36Kbit
interface input queue. The arbiter takes packets from the input queues
using a deficit round-robin (DRR) scheduling policy, and feeds them
to the L2 switching logic via a 256bit wide 200MHz bus, fast enough
to support more than 40Gb/s. When many small packets arrive on
one interface and many large ones arrive on others, DRR ensures
that the input queue receiving small packets does not overflow.

After a conventional L2 forwarding decision is made, the packet
reaches the NDP logic. Each output port has a low priority and a
high priority output queue, each 12KByte long. NDP control packets
are forwarded to the high priority queue. For remaining packets,
the NDP logic checks the low priority queue length, enqueuing the
packet if there is space. Otherwise the packet is trimmed and placed
in the high-priority queue. If that queue is full, the packet is dropped.
Note that a full implementation should randomly decide whether

Handley et al.

Directprio table

Match Action

Ingress

O//Q Normal
& Queue

A,

Action

>

0-12KB Prio=0 N Priority
Read gs gs+=pkt.size Y| Queue
from > 12kB Prio=1,
register NDP.flags=hdr
Truncate data

Decrement table
Match Prio Action

Figure 7: NDP switch implementation in P4.

to trim the last packet in the packet queue or the current packet, to
break up phase effects.

The NDP switch uses 63561 LUTs (using 14.6% of the Virtex7’s
capacity), 77176 FlipFlops (8.9%) and 231 blocks of RAM (15.7%).
In comparison, the reference L2 switch uses 11.4%, 8.1% and 13.2%
respectively, so the complexity added by NDP is small. Of the addi-
tional resources, 80% is used for the priority output queues.

NDP Switch implementation in P4. The design, shown in Fig. 7,
assumes the existence of at least two queues between the ingress and
egress pipelines, with the egress_priority metadata deciding
which packet goes into which queue. The NDP modifications are
demonstrated on the simple switch device assuming a single out-
put interface, but they could be added to any P4 switch and easily
modified to handle multiple output ports.

The implementation needs to know the size of the two per-port
queues to decide whether the packet should be trimmed. To this end,
it could leverage current queue size registers to make the decision of
whether to send packets to the priority queue or not; however not all
P4 platforms will have this register, so we have chosen to implement
a register with a similar functionality by counting all packets that
go into the normal buffer and packets that enter the egress pipeline.
As Match/Action tables in P4 only match on packet data, we use an
additional table (Readregister) to read gs from the register and save
it as packet metadata. If gs is below the allowed buffer size, packets
will go in the normal queue. Once we hit the threshold, packets will
be truncated (using a P4 primitive action called truncate) and
fed into the priority queue. NDP packets without a data payload
automatically enter the priority queue, due to the Directprio table.
The egress pipeline only handles queue size book-keeping: the gs
register is decreased if the packet came from the normal queue.

S EVALUATION

We wish to understand how NDP will perform in large datacenters
with real workloads, but lack the ability to run such tests at this
time. Instead we profile our Linux NDP implementation using the
NetFPGA NDP switch to understand small scale performance and
how NDP interacts with the host OS. Next, we compare the Linux
implementation with our simulator to determine the extent to which
real-world artifacts impact the faithfulness of simulation. Finally we
evaluate NDP in simulation to examine how it scales. We use a wide
range of traffic patterns and scenarios, and compare its behavior to

Datacenter networks for low latency and high performance.

C] 220 F 90 S :
2 [1 @ 200 b oo 80 - 15 3 .
70k 4 E 30 NDP Median 0 3 N]
& 60 - 2 NDP 90% ------ & 60 £ IS .
w 50F a o o b = TCP Median w 50 - S 5 =
5 i 8 2l 8 1 saf e 5 BrsflE = |
30 - 7] 9 ! Theoretical optim 30 - £ e 7
. = £
20 - .y g 10 20 - s = 7
10 n 5] 10 - = B
0 | | | 1 | 2 0 . !] O | | | |
[72]
0 50 100 150 200 250 300 350 400 g 0 200 400 600 800 1000 0 200 400 600 800 1000

Latency (us)

Figure 8: Time to perform a 1IKB RPC
over NDP, TCP Fast Open & TCP.

MPTCP, DCTCP using ECN in the switches, and DCQCN[40] using
lossless Ethernet.

We also ran tests with our P4 NDP switch using the reference P4
switch to verify its correctness; we omit results from these runs due
to the poor performance of the reference P4 software switch.

5.1 Linux NDP Performance

NDP aims to provide a low-latency transport. To evaluate the latency
of our Linux implementation with no confounding factors, we con-
nected two servers back-to-back, and ran an application that makes
repeated RPC calls, sending and receiving 1KB of data to measure
the application-level delay. We compare our NDP prototype to Linux
kernel TCP and to TCP Fast Open (TFO), a TCP optimization pro-
posed by Google that allows sending data on TCP SYNs. Note that
TFO does not guarantee that connections are processed only once,
whereas NDP does.

As Figure 8 shows, median latency using NDP is 62 us. TCP
Fast Open takes four times longer and regular TCP takes five times
longer. NDP RPC latency is comparable to RDMA latency reported
in recent works ([20], Fig. 6).

How does NDP achieve such low latency? To understand, we also
implemented a simple ping application over DPDK, and measured
latency with 1KB pings. It takes only 22us to send a ping using
DPDK and get the reply. This implies that NDP protocol processing
and application processing (40 us) dominate the NDP RPC time.
NDP relies on DPDK, dedicating a core to packet processing, with
NIC buffers mapped directly to user space. In contrast, TCP uses
interrupts and also copies data between kernel and user space.

To understand the gains achieved by NDP, we initially examined
the cost of interupts and packet copies, but these overheads were at
most 50us, so do not explain the large differences we observe, espe-
cially compared to TFO. After further examination, we found that
deep CPU sleep states were to blame for most of the difference: as
both TFO and TCP rely on interrupts, the CPU goes into deep sleep
and it takes roughly 160 ps to wake up, severely inflating latency.
We disable sleep states deeper than C1 and plot the latency of TFO
and TCP in Fig. 8. TFO and TCP now do better, but NDP’s latency
is still just over half that of TFO and a third that of TCP. In principle,
TFO could be further optimized to obtain similar performance to
NDP if it spun polling for data rather than using interrupts.

Incast. The most difficult traffic pattern for a transport protocol to
handle with low latency is incast. We will evaluate small incasts
using our Linux stack and NetFPGA switches, and larger incasts

Response size (KB)

Figure 9: Seven-to-one incast with vary-
ing file sizes in our testbed.

Flow Completion Time (us)

Figure 10: Prioritizing a short flow over
six long flows to the same host.

in simulation. Our testbed is a 8-server two-tier FatTree topology
constructed using six four-port NetFPGA NDP switches.

As our first experiment, we ran a 7 to 1 incast: the frontend
application on one server makes simultaneous requests to the other
seven servers, which immediately reply. Traffic will concentrate on
many switches in the topology, potentially leading to unfairness for
the more remote servers. We vary the size of the incast responses,
and measure the completion time of the last flow. Figure 9 shows
the median and 90th percentile completion times for TCP and NDP
for response sizes between 10KB and 1MB. NDP is within 5% of
the theoretical optimal completion time, and the 90% percentile for
NDP is within 10% of the median; the two lines overlap in the figure.

TCP’s median flow completion time also grows linearly with re-
sponse size, but NDP is four times faster. TCP’s median flows do not
suffer timeouts, recovering from loss using fast retransmission. There
are several other reasons why TCP is slower, including the three-way
handshake, interrupt delays, stack processing, additional data copies,
process scheduling and sub-optimal congestion responses. These all
add up, hurting response time. TCP’s 90th percentile is dominated
by retransmit timeouts, as MinRTO is 200ms in Linux. This impact
might be reduced by lowering MinRTO and disabling delayed ACKs
to avoid them triggering spurious retransmissions.

Benefits of prioritization. NDP’s pull-based design gives it good
control over flow completion times, especially in the common case
where the destination link is the bottleneck; this sets NDP apart
from most existing solutions where the transport is built around
sender-based congestion control.

We examine a case where a host receives a short flow from one
sender and long flows from six other senders; all flows start simulta-
neously, so there is a great deal of contention especially for the last
hop in the first round trip time. By default, NDP will pace all senders
to 7 of the link. In this case, however, the receiver prioritizes the
short flow by sending its pulls before those of the long flows.

Fig. 10 shows the results for when the short flow sends 200KB:
we measure the flow completion time (FCT) when there is no com-
peting traffic (labelled “idle”), and compare against the FCT when
competing with the six other senders, both with and without prioriti-
zation. Prioritization works remarkably well: the FCT of the short
flow increases by only 50us when competing with the long flows
when priority is used, compared to 500us when it is not. We tested
flow sizes ranging from 10KB to 1MB: in all cases, the difference
between idle and priority was under S0us. After the first RTT, during
which a few tens of packets from the long flows are also delivered,
the short flow fully occupies the receiver’s link until it finishes.

Initial Window (pkts)

Latency (us)

Handley et al.

Flow size (KB)

» 10 = 25
Q 100 r—‘—‘—
3 8 < 80 1 Zoor
= 6 < = L
2, nder CDF —— L ig 15008 90008 o
= Perfect o % 10 |-
o 2 Experimental —s— | 20 . S 5| Perfect pulls == |
£ 0 L L L L L 0 L ! . I I I = ‘ E‘xperir‘nental‘ pulls ‘—x—‘
4 8 16 32 64 128 256 0.250.5 2 4 8 16 32 64 0
0 20 40 60 80 100 120

Figure 11: Throughput as a function of /W Figure 12: Pull spacing measured at the
sender for different packet sizes.

in simulation and practice

6 SIMULATION

Before looking at large scale experiments, we examine how the
behavior of our simulator diverges from that of our Linux imple-
mentation in the same setting. The main differences we identified
are host processing delays, and the pacing of PULLs. While our
simulator perfectly paces PULLs, our implementation can not.

To understand the effect of processing delays, we connected two
servers back-to-back and measuring the achieved throughput as a
function of the initial window (IW). Fig. 11 shows that to achieve
similar throughput the initial window of the prototype must be 25
packets instead of 15 (i.e. 15KB larger); these extra packets are
buffered in the end systems, and are needed to cover host processing
delays not modelled by the simulator. This implies that NDP latency
results from simulation are slightly over-optimistic. However, un-
modelled processing delays for TCP are higher, so any comparison
from simulations is slightly biased in favor of TCP.

Fig. 12 shows the actual spacing of PULLs for both 1500B and
9000B packets, as measured by the sender. While the median values
match the target spacing (1.2pus and 7.2us respectively), there is
some variance with 1500B packets.

To observe the effect of this imperfect pull spacing, we added
code to the simulator that draws pull spacing intervals from the
experimentally measured distribution. First, we re-ran the pairwise
transfer in Fig. 11 above; the result labelled “Sender CDF” overlays
the “Perfect” curve: pull spacing does not affect throughput because
the window is large enough to cover small “gaps” in PULLs.

Next, we ran a permutation experiment, where each node in a
432 node FatTree sends to one node and receives from another node,
fully loading the datacenter. We used 1500B packets and compared
perfect pull spacing to pull spacing from our experimental results.
The difference in throughput is 1.2%, which is negligible.

Finally, we ran a 200:1 incast experiment varying incast flow
size and measuring completion time of the last flow. Fig. 13 shows,
there is no discernible difference in the flow completion times when
imperfect pull spacing is used. Together, these experiments show
that real-world artifacts have minimal impact on NDP and provide
confidence in predictions based on large-scale simulation results.

6.1 Comparisons to existing works

We measure the ability of NDP to utilize Clos datacenter networks by
running a permutation: this is a worst-case traffic matrix where each
server opens a single long-running connection to another random
server such that each server has exactly one incoming connection.
We compare NDP with Multipath TCP [31], DCTCP and the newly

Figure 13: Incast performance: perfect
versus measured pull spacing.

—_

- 10
2 y .
o gl J | Figure 14
g’ 6 K/ N / | Per-flow
=3 e
24t //W:’{I'CP — th“’“g:'l:}“’
2, _— DCTCP | permutai 101}
£ P DCQCN traffic matrix,
F oo \ \ \ \ \ ! \ \ 432-node

0 50 100 150 200 250 300 350 400 FatTree.

Flow rank

proposed DCQCN protocol which is, essentially, a way of running
DCTCP over lossless Ethernet networks. NDP switches use 8-packet
output queues whereas, to ensure good performance, DCTCP and
MPTCP use 200 packet output queues and DCQCN uses 200 buffers
per port, shared between interfaces. DCTCP and DCQCN marking
thresholds are 30 and 20 packets respectively, as recommended.

Fig. 14 shows the throughput achieved by each host in increas-
ing order. DCTCP and DCQCN use a single path and suffer from
collisions resulting from ECMP: mean utilization is around 40%,
and there are some flows that achieve less than 1Gb/s, despite there
being sufficient capacity provisioned to offer every flow 10Gb/s.
Multipath TCP does much better: utilization is 89%, and the worst
flow achieves 6Gb/s. NDP has an utilization of 92% and offers much
better fairness across the flows: even the slowest flow gets 9Gb/s.

What is the effect of buffer size on small flow completion times?
We expect NDP should benefit from smaller in-network buffers, with
DCTCP and DCQCN having longer flow completion times. Two
nodes repeatedly exchange 90KB transfers to test latency, while
all the other nodes each source four long running connections to
a random destination. As there is no contention at the source or
destination of the 90KB flows, this tests the effect of standing queues
in the network on short flows run by otherwise idle hosts.

A CDF of short flow completion times is shown in Fig. 15. NDP’s
worst case latency is just twice the theoretical optimum transfer time
in an idle network, and is three times lower in the median and four
times lower at the 99% compared to DCTCP. The main reason for
this difference is that NDP’s buffers are much smaller than those
achieved by DCTCP in an overloaded Fat Tree network. DCQCN
has slightly worse performance than DCTCP because PAUSE frames
are triggered sporadically. MPTCP achieves the worst FCT of all
solutions, with a median and tail ten times larger than those of NDP,
due to its greedy filling of network buffers. During these experiments
NDP and MPTCP achieved 80% network utilization, wheras DCTCP
and DCQCN achieve ~75%.

Datacenter networks for low latency and high performance.

100 £ 300
oL 1 go2s0
—_ 7 = — =
g 0r 1 g
w 50| NDP —— | & 150
30 - DCQCN 48
20 - MPTCP —— 1 5 0
10 & f 1 1 e § 0
o o5 1 15 2 25 =

Flow completion time (ms)

Number of backend servers involved in incast

~
o
T

8pkt Buffer,9K MTU ——
10pkt Buffer, 9K MTU —»—
8pkt Buffer,1.5K MTU —&—
| | | | | | |

T T 1

Network utilization(%)
(2]
o

0 50 100 150 200 250 300 350 400 5 10 15 20 25 30 35 40

Initial Window (pkts)

Figure 15: FCT for 90KB flows with ran- Figure 16: Incast performance vs number Figure 17: Effects of IW and switch

dom background load, 432 node FatTree.

Long ﬂow\ ‘ I /

‘V
Aggregation|
Switch|

Incast traffic

Tor Figure 18: Experimental
Switch setup to measure collat-
eral damage of incast on

nearby flows.

Next, we test an incast traffic pattern where a frontend fans out
work to many backend servers and then receives their replies; such
use cases are common in web-search applications, among others.
Simultaneous arrival of responses causes tremendous buffer pressure
for the switch port leading to the frontend, resulting in synchronized
losses. We vary the number of backend servers while keeping the
response size constant (450KB) and measure the flow completion
times. In general, the last flow completion time is the metric of
interest, but in Fig. 16 we also show the completion time of the
fastest flow to highlight the “fairness” of the different schemes.

Even if we use aggressively small timers of Vasudevan et al.[38],
MPTCP (and any tail-loss TCP variant) is crippled by synchronized
losses leading to large and unpredictable FCTs. DCTCP uses ECN
to get early feedback, as well as large shared buffer switches to
absorb initial bursts, so it does significantly better than traditional
TCP over tail drop switches. DCTCP is, on average, just 5% slower
than the theoretical optimal. DCQCN and NDP do even better, with
a completion time just 1% slower than optimal.

Next, note the spread in flow completion times for the different
protocols. DCTCP has a wide range (as high as seven times) between
its fastest and slowest flow. NDP has a very balanced allocation,
with the slowest flow taking at most 20% longer to finish than the
fastest one; this is a direct consequence of the NDP switch. Finally,
DCQCN has a very tight allocation up until 350KB response size,
when it operates in ECN-marking regime (with a smaller threshold
than DCTCP). Beyond that, lossless operation kicks in and severely
skews flow completion times.

We also enabled prioritization in NDP for a single incast sender:
its pulls will be placed at the head of the pull queue of the receiver.
Prioritization is very effective: the preferred flow’s completion time
is just 1ms with 100 incast senders, and 3.5ms with 432.

6.1.1 Side effects of Incast Traffic

How does incast affect nearby traffic? We run two separate experi-
ments, each involving a large incast. In the first experiment the incast
is long-lived and runs alongside a permutation traffic matrix. The

of senders, 432-node FatTree.

buffer sizes on permutation throughput.

'l T T T T
— L
Long DCTGP Flow;
64 Flows jncast;

Goodput
(Gb/s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

— 15 T T T T T T T
3% 10 .
g 8 5 Lpng DCQCN Flow
8= } 64 Flows Incast -
0 "
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
o 15 T T T T T T
3% 10
S a i Long NDP Flow
S e 5 i 64 Flows Incast
0 :

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (s)
Figure 19: Collateral damage caused by 64-flow incast with
DCTCP (top), DCQCN (center), NDP (bottom).

metric of interest here is total network utilization: NDP reaches 92%
and DCTCP 40% utilization, the same as the permutation running
alone. With DCQCN, however, the network suffers congestion col-
lapse: utilization drops to 17% as the incast triggers PFC, severely
affecting the throughput of most flows in the datacenter.

In our second experiment, shown in Fig. 18, we run one long-lived
flow to host 1, then start a short-lived 64-to-1 incast traffic pattern to
host 2, with each incast flow sending 900KB. Both hosts are on the
same ToR switch. The results are shown in Fig. 19. With DCTCP,
the incast causes loss both at the ToR switch, and at the aggregation
switch port leading to the ToR. Both the long flow and the incast
flows take some time to recover. The burst above 10Gb/s at t=0.17
appears when retransmissions arrive, allowing already received data
to finally be released in-order to the application.

With DCQCN, loss is prevented, and the incast flows finish
quickly (note the different x-axis), but PFC causes the upstream
switches to be paused repeatedly, impacting the long flow. This sort
of collateral damage due to pausing is the primary downside of PFC.

With NDP, incast causes trimming during the first RTT. The long
flow suffers a small dip in throughput of less than 1ms due to this
initial burst. After the first RTT, the receiver paces the remaining
incast packets and the long flow recovers to get full throughput again.

NDP, IW=23 ——
4l NDP, IW=10 —— -
NDP, IW=1 ——

Percent overhead

1 1 1
1 10 100 1000 10000
Size of incast (flows)

(a) Completion time overhead, over best possible

T . T
1.4 - RTX (Bounces), IW=23 - b

2
s 12 F RTX (Nacks), IW=23 —— o]
5 RTX (Bounces), IW=10
o 1r RTX (Nacks), IW=10 h
2 o8}l RTX (Bounces), IW=1 i
° acks), IW=1 ——=
2 06 g
5 oaf) -
2 N .
g o2y SN A
g o0 ' — G

1 10 100 1000 10000

Size of incast (flows)
(b) Retransmission overhead costs

Figure 20: Overhead vs size of incast, 8192-node FatTree

6.2 Sensitivity analysis

NDP uses very small switch buffers and a fixed initial window
(IW) at the sender; these are the only two parameters in a NDP
network. The IW incorporates information about the bottleneck
speed and network latency, and will be set by administrators. We use
simulation to understand how these parameters impact performance,
and whether good performance requires careful tuning.

The most important metric here is throughput in the worst-case
traffic matrix, the permutation. We vary the values for IW and mea-
sure the mean throughput achieved by each host for a variety of
switch buffer sizes; we plot the results in figure 17. First, notice
that an IW of 20 packets is needed to fully utilize the network; fur-
ther, when IW is less than 15 the size of the switch buffers does
not matter. Regardless the value of IW, using six packet buffers
slightly underutilizes the network (90% utilization). Slightly larger
queues (8 packets) result in more than 95% utilization; and this is
the queue size we have used throughout this paper. Finally, notice
how further increasing the IW decreases throughput slightly: this is
because more buffer pressure is created that results in more headers.
When using 1.5KB packets, an IW of thirty packets results in 95%
network utilization. The results are remarkable, given the total size
of the switch buffers in bytes is just 12KB.

For incast workloads, a smaller IW is preferable as fewer packets

are trimmed in the first RTT. We used an IW of 30, both in simulation
and in deployment, except where noted otherwise.
Larger topologies. Although our packet-level simulator is fast, it
still takes tens of minutes to simulate a permutation matrix in a
432 node FatTree, which is the topology we used throughout our
evaluation. Previous work has shown that the permutation traffic
matrix has similar macroscopic behavior for 128, 1024 and 8192-
node Fat Trees [31] when 100 packet buffers are used in conjunction
with Multipath TCP. Are eight packet switch buffers enough to
guarantee high utilization with NDP in large networks too?

Handley et al.

We ran a permutation experiment with increasingly larger topolo-
gies using eight packet buffers, 9KB MTU and IW of 30. Network
utilization gently decreases from 98% (128 node FatTree) to 90%
in a 8192 node FatTree. NDP achieves 5% more utilization than
MPTCP with eight subflows ([31],Fig. 2) while using less than a
tenth of its buffers.

Large scale incast Is there any fundamental limit to the size of an
incast that NDP can cope with? We ran incasts ranging from one
flow (no incast) up to 8000 simultaneous flows, each of 270,000
bytes (30 packets) in an 8192-node FatTree and measured the flow
completion time of the last flow. Fig. 20a shows the time overhead
as a percentage of the best theoretical last-flow completion time;
this assumes the link to the receiver is completely saturated until
the last flow finishes, and every packet is received only once. With
a 23 packet IW (suggested by Fig. 11 as a good default for non-
incast traffic), small incasts see the worst overheads, but still finish
within 2% of optimal. These overheads are due to headers forwarded
in the first RTT and due to not quite filling the receiver’s link in
the final RTT. For larger incasts, the time overhead is negligible.
Low though these overheads are, they can be reduced further if the
application knows a large incast is likely. Curves for initial windows
of a ten packets and one packet are shown. Ten packets is close to
the smallest window that can fill the pipe with an unloaded network
and store-and-forward switches. For incasts smaller than eight flows,
the overhead using a one-packet IW is high as there need to be at
least eight packets sent per RTT to fill the receiver’s link.

Although we care most about delay, it is also interesting to exam-
ine the cost senders pay to achieve this low delay. Fig. 20b shows
the mean number of retransmissions per packet, and the mechanism
(return-to-sender bounce or NACK) by which the sender was in-
formed of the need to resend. For smaller incasts, NACKs are the
main mechanism. Above 100 flows, return-to-sender becomes the
main mechanism. Above 2000 flows, some packets suffer a second
return-to-sender before getting through. Even with the largest incasts
and a 23-packet IW, the mean number of retransmissions barely
exceeds one. However, it would make sense for applications that
know they will create a large incast to reduce the initial window.

Sender-limited traffic. Consider the traffic pattern in Fig. 21, where
host A sends to hosts B,C,D and E, and host F also sends to host
E. Under normal incast, traffic to E would be equally split between
sources A and F, but in this case A cannot send enough to fill half of
E’s link. Do the pulls from E get wasted?

We simulated this scenario; the throughputs are listed in Fig. 21.
Both the link from A and the link to E are saturated, and the four
flows sourced by A divide the capacity almost perfectly. How does
NDP achieve such a good outcome? The reason is that E performs
fair queuing on its pull queue. At E, there are always PULL packets
queued for F. However, as packets from A arrive less often, the fair
queue ensures that PULL packets for A are sent as soon as arriving
data packets can generate them. This ensures E sends pull packets to
A at the same rate A sends data packets to E. The remainder of E’s
PULLs go to F, ensuring E’s link remains full. B, C and D cannot
send PULLs to A any faster than data packets from A arrive. Thus
PULLs arrive at A roughly equally from B, C, D, and E, and this
ensures A’s outgoing link is both full and equally shared.

Datacenter networks for low latency and high performance.

10 120
— il e— NDP, Med ——
L 88 //— 7 199 beTCP, Med ~
A ’BHCHDHE‘ ’F‘ 6 . & 80 NDP, High - /£~ 7
A—B 251 Gbls 2 Al MPng | u 60 -DCTCP, High # /- i
2 . f O 40 - K -
A—C 2.50 Gb/s 3 5 without path penalty - - - - | 20 o
A—D 251 Gb/s £ DCTCP —— - . .
. 0 | | | | | | 0 i L | m
A—E 2.38 Gb/s Total from A: 9.90Gb/s 20 40 60 80 100 120 140 0.01 04 ; 0 100
F—E 7.55Gb/s Total to E: 9.93Gb/s Flow number FOT (9
ms

Figure 21: Sender limited topology and
achieved throughputs.

is dropped to 1Gbps.

Who needs packet trimming? A valid question is whether we can
get the benefits of NDP without changing network switches. PHost
[16] is a receiver-driven transport that runs very small packet buffers
and per-packet ECMP, but does not use packet trimming. We have
implemented pHost by changing TCP in htsim; pHost senders burst
at line-rate in the first RTT to get the best short flow performance. To
understand the merits of pHost and the added value of trimming, we
ran pHost on regular drop-tail 432-node FatTree networks with eight
packet buffers. The 432-to-1 incast in Fig. 16 takes pHost 1s to 1.5s
to complete. Not only is this ten times worse than NDP (140ms), it is
also 4-5 times worse than MPTCP. We also ran a permutation traffic
matrix, finding that pHost only achieves 70% utilization despite its
use of packet spraying (NDP reaches 95% utilization).

Handling asymmetry. All networks we tested so far are symmetric;
per-packet ECMP work wells in such scenarios. It is more difficult to
do well when networks are asymmetric, for instance due to failures.
We ran a permutation experiment in a 128-node topology where the
speed of one link between a core and upper pod switch is reduced
to 1Gbps. The results in Fig. 22 show that both NDP and MPTCP
handle the failure really well because they keep per-path congestion
information and pull traffic away from congested paths. The path
penalty mechanism NDP uses (see §3.2.3) is crucial in asymmetric
topologies: without it NDP does quite poorly, with 15 flows reaching
just 3Gbps of throughput. A few DCTCP flows are also affected: the
worst hit connection only achieves 0.4Gbps.

Overload. On a fully provisioned Clos topology NDP’s behaviour
is near optimal. However, not all datacenters provide full cross-
sectional bandwidth; what happens when the core network is over-
subscribed, or where packet sizes are smaller than an MTU? In such
cases, we expect NDP to trim many packets and also achieve a lower
compression ratio when trimming occurs.

We use measurements from Facebook’s network to setup our
experiment [34]. The simulated topology is a three-tier FatTree
containing 512 servers connected via 10Gbps links to ToR switch.
The uplink connectivity from ToRs to aggregation switches is four
times less than the server connectivity, giving 4:1 oversubscription.

Of the three types of network traffic presented in [34] (web, cache
and Hadoop), we use the least favourable to NDP: the web traf-
fic pattern has really small packets, giving poor compression, and
almost no rack-level locality, meaning that almost all traffic must
traverse the oversubscribed core. The flow sizes are drawn from the
distribution in [34] (Fig.6.a) and flow arrivals are closed loop with
a median inter-flow gap of 1ms. We vary load by increasing the

Figure 22: Permutation throughput with
failures: a core switch to upper-pod link

Figure 23: FCTs for the Facebook web
workload in the oversubscribed topology.

number of simultaneous connections per host and measure load by
examining the core utilization.

We compare NDP with DCTCP and plot the flow completion
times distribution in Fig. 23. We run two separate tests: first, we
run a moderately loaded network (five simultaneous connections
per host) where 40% of all packets sent by NDP hosts are trimmed
by the ToR switch. In this case, NDP’s median FCT is half that of
DCTCP’s, and a third in the 99th percentile.

Next, we load the network even more, with each host sourcing ten
connections simultaneously to other randomly chosen hosts. 70%
of packets are trimmed at the first ToR switch; this is very close to
the worst case given the core network is 4:1 oversubscribed. Despite
this, NDP performs robustly, providing slightly better performance
than DCTCP both in the median and the tail. NDP does not suffer
from congestion collapse; we observe that if a packet makes it past
the ToR switch, it is likely to reach the destination, with a probability
of being trimmed of only 2-5%.

To conclude, NDP is robust even in this oversubscribed network,
performing better than DCTCP. This is not to say than NDP should
be used as is in massively congested networks: the number of packets
trimmed in such cases is wasteful. When most packets are trimmed
a simple congestion control algorithm could reduce the pull rate,
avoiding persistent overload, but there is no need to be conservative
as NDP works well enough with no congestion control.

7 RELATED WORK

There is a large body of work aiming to tackle various aspects of
datacenter transport: most focuses on either achieving low latency [5,
6, 16, 22, 28, 30] or high throughput [2, 12, 31]. We have discussed
at length and compared to the most relevant deployed previous
works, namely DCTCP/ DCQCN for low delay and MPTCP for high
throughput; here we overview the rest.

pFabric [6] aims for shortest-flow first scheduling at datacenter
scale by switching packets based on strict priorities. While enticing
in theory, pFabric is difficult to deploy as it entrusts hosts to cor-
rectly prioritize their traffic. Hull [5] reserves capacity to ensure low
latency for short flows and uses phantom queues to identify potential
congestion; it requires accurate packet pacing at endpoints. Fastpass
[30] uses centralized scheduling to achieve low latency but is scale-
limited. If one can modify applications to explicitly state deadlines,
there is a wide range of proposals that will help including PDQ,
Deadline-aware Datacenter TCP (D*TCP) and D* [22, 37, 39].

TIMELY [28], an alternative congestion control mechanism to
DCQCN for lossless networks, relies exclusively on RTT as a conges-
tion metric. As with DCQCN, TIMELY cannot completely prevent
pause frames and their negative impact on innocent network traf-
fic. Overall, the greatest limitations of all these works is that they
only focus on low latency, while ignoring network utilization or
large-flow performance.

At the other end of the spectrum, researchers have been keen to
tackle collisions due to per-flow ECMP with centralized scheduling
in Hedera [2], via protocol changes in Packet Spraying [12] and
Presto [21], or via network subflow-treatment in Conga [3] and
switch-redesign of LocalFlow [35]. These works do not target short
flow completion times, and obtain FCTs comparable to those of an
unoptimized network running large packet buffers.

NDP stands out because it achieves both low latency and high
throughput in all traffic conditions.

8 CONCLUSIONS

We presented NDP, a new architecture for datacenter networking
that includes a modified switch queuing algorithm, together with
per-packet multipath forwarding, and a novel transport protocol
that takes advantage of these network mechanisms. NDP exhibits
excellent low-latency behavior, both in our implementation, and in
large scale simulations. It provides much better isolation between
different workloads than mechanisms such DCQCN that rely on
lossless Ethernet to achieve low delay.

Our current implementation is moderately expensive in terms of
CPU resources required from end systems, because of the need for
accurate pacing of PULLs and low-latency retransmissions. Both
these functions would be very simple for Ethernet NICs to imple-
ment; indeed, cheap WiFi NICs already handle retransmissions and
careful packet timing. Were NDP to be deployed at scale, we expect
that smart NICs would greatly reduce the CPU overhead of NDP.

Acknowledgements

This work was partly funded by the SSICLOPS H2020 project
(644866). We would like to thank Giuseppe Lettieri, the anony-
mous reviewers and our shepherd Amin Vahdat for their very useful
feedback that helped us improve this paper.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. In Proc. ACM SIGCOMM, Aug. 2010.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera:

Dynamic flow scheduling for data center networks. In Proc. Usenix NSDI, 2010.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut,

V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed

Congestion-aware Load Balancing for Datacenters. In Proc. ACM SIGCOMM

2014, pages 503-514.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-

gupta, , and M. Sridharan. Data center TCP (DCTCP). In Proc. ACM SIGCOMM,

Aug. 2010.

M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda.

Less is more: trading a little bandwidth for ultra-low latency in the data center. In

Proc. Usenix NSDI, pages 253-266, 2012.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker. pFabric: Minimal near-optimal datacenter transport. In Proc. ACM

SIGCOMM 2013.

T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data

centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, pages 267-280. ACM, 2010.

3

[4

&

6

[7

(8]
91
[10]
[11]
[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]
(251
(26]
27]
(28]
[29]
(301

[31]

[32]
[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

Handley et al.

R. Braden. RFC 1644: T/TCP — TCP extensions for transactions functional
specification. Technical report, RFC Editor, July 1994.

P. Cheng, F. Ren, R. Shu, and C. Lin. Catch the whole lot in an action: Rapid
precise packet loss notification in data centers. In Proc. Usenix NSDI, 2014.

Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. RFC 7413: TCP fast open.
Technical report, RFC Editor, Dec. 2014.

J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. RFC 6928: Increasing TCP’s
initial window. Technical report, RFC Editor, Apr. 2013.

A. Dixit, P. Prakash, Y. Hu, and R. Kompella. On the impact of packet spraying in
data center networks. In Proc. IEEE INFOCOM 2013, 2013.

DPDK Data Plane Development Kit. http://dpdk.org. Accessed: 2017-01-27.

S. Floyd and V. Jacobson. Traffic phase effects in packet-switched gateways.
SIGCOMM Comput. Commun. Rev., 21(2):26-42, Apr. 1991.

S. Floyd and J. Kempf. RFC 3714: IAB concerns regarding congestion control for
voice traffic in the internet. Technical report, RFC Editor, Mar. 2004.

P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker.
pHost: Distributed Near-optimal Datacenter Transport Over Commodity Network
Fabric. In Proc. ACM CoNEXT, 2015.

A. Greenberg el al. VL2: a scalable and flexible data center network. In Proc.
ACM SIGCOMM, Aug. 2009.

R. Griffith, Y. Chen, J. Liu, A. Joseph, and R. Katz. Understanding TCP incast
throughput collapse in datacenter networks. In Proc. WREN Workshop, 2009.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu.
Bcube: A high performance, server-centric network architecture for modular data
centers. In Proc. ACM SIGCOMM 2009.

C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn. Rdma over
commodity ethernet at scale. In Proc. ACM SIGCOMM 2016, pages 202-215.
K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella. Presto: Edge-
based load balancing for fast datacenter networks. In Proc. ACM SIGCOMM 2015,
pages 465-478.

C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with preemptive
scheduling. In Proc. ACM SIGCOMM 2012.

IEEE DCB. 802.3bd - MAC Control Frame for Priority-based Flow Control
Project. http://www.ieee802.0rg/3/bd/, 2010. Superseding IEEE 802.3x Full

Duplex and Flow Control.

IEEE DCB. 802.1Qbb - Priority-based Flow Control.
http:/fwww.ieee802.0rg/1/pages/802.1bb.html, 2011.

Infiniband Trade Association. RoCEv2.

https://cw.infinibandta.org/document/dl/7781, Sept. 2014.

V. Jacobson and M. J. Karels. Congestion avoidance and control. In Proc. ACM
SIGCOMM, Stanford, CA, Aug. 1988.

C. Kent and J. Mogul. Fragmentation considered harmful. In Proc. ACM SIG-
COMM, Aug. 1987.

R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, and D. Zats. Timely: Rtt-based congestion control for the
datacenter. In Proce. ACM SIGCOMM 2015, pages 537-550.

The P4 Language Consortium. P44¢ language specification version 1.0.0. 2016.
J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: A
centralized "zero-queue" datacenter network. In Proc. ACM SIGCOMM 2014.
C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.
Improving datacenter performance and robustness with Multipath TCP. In Proc.
ACM SIGCOMM, Aug. 2011.

K. Ramakrishnan, S. Floyd, and D. Black. RFC 3168: the addition of explicit
congestion notification (ECN) to IP. Technical report, RFC Editor, Sept. 2001.
A. Romanow and S. Floyd. Dynamics of TCP traffic over ATM networks. In Proc.
ACM SIGCOMM, London, 1994.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social
network’s (datacenter) network. In Proc. ACM SIGCOMM 2015, pages 123-137.
S. Sen, D. Shue, S. Thm, and M. J. Freedman. Scalable, optimal flow routing in
datacenters via local link balancing. In Proc. ACM CoNEXT 2013, pages 151-162.
A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data
centers randomly. In Proc. Usenix NSDI 2012.

B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter tcp (d2tcp).
ACM SIGCOMM Computer Communication Review, 42(4):115-126, 2012.

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and B. Mueller. Safe and effective fine-grained tcp retransmissions
for datacenter communication. In Proc. ACM SIGCOMM 2009, pages 303-314.
C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late:
Meeting deadlines in datacenter networks. In Proc. SIGCOMM ’11,2011.

Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Rain-
del, M. H. Yahia, and M. Zhang. Congestion control for large-scale rdma deploy-
ments. In Proc. ACM SIGCOMM 2015, pages 523-536.

N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore. NetFPGA
SUME: Toward 100 Gbps as research commodity. Micro, 34(5), 2014.

http://dpdk.org

	Abstract
	1 Introduction
	2 Design Space
	2.1 End-to-end Service Demands
	2.2 Transport Protocol
	2.3 Switch Service Model

	3 Design
	3.1 NDP Switch Service Model
	3.2 Transport Protocol

	4 Implementation
	5 Evaluation
	5.1 Linux NDP Performance

	6 Simulation
	6.1 Comparisons to existing works
	6.2 Sensitivity analysis

	7 Related work
	8 Conclusions
	References

