skip to main content
10.1145/3098822.3098846acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Public Access

Wi-Fi Goes to Town: Rapid Picocell Switching for Wireless Transit Networks

Published:07 August 2017Publication History

ABSTRACT

This paper presents the design and implementation of Wi-Fi Goes to Town, the first Wi-Fi based roadside hotspot network designed to operate at vehicular speeds with meter-sized picocells. Wi-Fi Goes to Town APs make delivery decisions to the vehicular clients they serve at millisecond-level granularities, exploiting path diversity in roadside networks. In order to accomplish this, we introduce new buffer management algorithms that allow participating APs to manage each others' queues, rapidly quenching each others' transmissions and flushing each others' queues. We furthermore integrate our fine-grained AP selection and queue management into 802.11's frame aggregation and block acknowledgement functions, making the system effective at modern 802.11 bit rates that need frame aggregation to maintain high spectral efficiency. We have implemented our system in an eight-AP network alongside a nearby road, and evaluate its performance with mobile clients moving at up to 35 mph. Depending on the clients' speed, Wi-Fi Goes to Town achieves a 2.4-4.7x TCP throughput improvement over a baseline fast handover protocol that captures the state of the art in Wi-Fi roaming, including the recent IEEE 802.11k and 802.11r standards.

Skip Supplemental Material Section

Supplemental Material

wifigoestotownrapidpicocellswitchingforwirelesstransitnetworks.webm

webm

87.6 MB

References

  1. 802.11r, 802.11k, and 802.11w Deployment Guide, Cisco IOS-XE Release 3.3. Website.Google ScholarGoogle Scholar
  2. A. Balasubramanian, R. Mahajan, A. Venkataramani, B. N. Levine, J. Zahorjan. Interactive Wi-Fi connectivity for moving vehicles. SIGCOMM, 2008.Google ScholarGoogle Scholar
  3. V. Brik, A. Mishra, S. Banerjee. Eliminating handoff latencies in 802.11 WLANs using multiple radios: Applications, experience, and evaluation. IMC, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, S. Madden. A measurement study of vehicular internet access using in situ wireless networks. MobiCom, 2006.Google ScholarGoogle Scholar
  5. Building a Can antenna. Website.Google ScholarGoogle Scholar
  6. R. Chandra, P. Bahl, P. Bahl. MultiNet: Connecting to multiple IEEE 802.11 networks using a single wireless card. Infocom, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  7. Y.-S. Chen, M.-C. Chuang, C.-K. Chen. DeuceScan: Deuce-based fast handoff scheme in IEEE 802.11 wireless networks. IEEE Transactions on Vehicular Technology, 2008.Google ScholarGoogle Scholar
  8. Y.-C. Cheng, Y. Chawathe, A. LaMarca, J. Krumm. Accuracy characterization for metropolitan-scale Wi-Fi localization. MobiSys, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. The Click modular router project. Website.Google ScholarGoogle Scholar
  10. Cooper's Law. Website.Google ScholarGoogle Scholar
  11. A. Croitoru, D. Niculescu, C. Raiciu. Towards Wi-Fi mobility without fast handover. NSDI, 2015.Google ScholarGoogle Scholar
  12. Linksys EA7500 MAX-STREAM AC1900 Wi-Fi router. Website.Google ScholarGoogle Scholar
  13. J. Eriksson, H. Balakrishnan, S. Madden. Cabernet: Vehicular content delivery using WiFi. MobiCom, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Extrecom multiSeries 1000 wireless LAN switch. Website.Google ScholarGoogle Scholar
  15. A. Ford, C. Raiciu, M. Handley, O. Bonaventure. TCP extensions for multipath operation with multiple addresses. Tech. rep., RFC-6824, 2013.Google ScholarGoogle Scholar
  16. R. Gass, J. Scott, C. Diot. Measurements of in-motion 802.11 networking. WMCSA, 2005.Google ScholarGoogle Scholar
  17. D. Halperin, W. Hu, A. Sheth, D. Wetherall. Predictable 802.11 packet delivery from wireless channel measurements. SIGCOMM, 2010.Google ScholarGoogle Scholar
  18. D. Halperin, W. Hu, A. Sheth, D. Wetherall. Tool release: Gathering 802.11n traces with channel state information. ACM SIGCOMM CCR, 2011.Google ScholarGoogle Scholar
  19. Google Hangouts. Website.Google ScholarGoogle Scholar
  20. B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakrishnan, S. Madden. CarTel: A distributed mobile sensor computing system. SenSys, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. IEEE 802.11k-2008---Amendment 1: Radio Resource Measurement of Wireless LANs, 2008.Google ScholarGoogle Scholar
  22. IEEE 802.11r-2008---Amendment 2: Fast Basic Service Set (BSS) Transition, 2008.Google ScholarGoogle Scholar
  23. Iperf3. Website.Google ScholarGoogle Scholar
  24. S. Kandula, K. Lin, T. Badirkhanli, D. Katabi. FatVAP: Aggregating AP backhaul capacity to maximize throughput. NSDI, 2008.Google ScholarGoogle Scholar
  25. E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek. The Click modular router. ACM Transactions on Computer Systems, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Laird GD24BP 2.4G directional antenna. Website.Google ScholarGoogle Scholar
  27. P. Lv, X. Wang, X. Xue, M. Xu. SWIMMING: Seamless and efficient WiFi-based internet access from moving vehicles. IEEE Transactions on Mobile Computing, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Miu, H. Balakrishnan, C. E. Koksal. Improving loss resilience with multi-radio diversity in wireless networks. MobiCom, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Miu, G. Tan, H. Balakrishnan, J. Apostolopoulos. Divert: Fine-grained path selection for wireless LANs. MobiSys, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Murty, J. Padhye, R. Chandra, A. Wolman, B. Zill. Designing high performance enterprise Wi-Fi networks. NSDI, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. V. Navda, A. Subramanian, K. Dhanasekaran, A. Timm-Giel, S. Das. MobiSteer: Using steerable beam directional antenna for vehicular network access. MobiSys, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Nicholson, Y. Chawathe, M. Chen, B. Noble, D. Wetherall. Improved access point selection. MobiSys, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Nicholson, B. Noble. BreadCrumbs: Forecasting mobile connectivity. MobiCom, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Nicholson, S. Wolchok, B. Noble. Juggler: Virtual networks for fun and profit. IEEE Transactions on Mobile Computing, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Openwrt Chaos Calmer v15.05.1. Website.Google ScholarGoogle Scholar
  36. J. Ott, D. Kutscher. Drive-thru internet: Ieee 802.11 b for" automobile" users. INFOCOM, 2004.Google ScholarGoogle Scholar
  37. S. Pack, J. Choi, T. Kwon, Y. Choi. Fast handoff support in IEEE 802.11 wireless networks. IEEE Communication Surveys and Tutorials, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. Perkins. IP Mobility Support. RFC 2002, IETF, 1996.Google ScholarGoogle Scholar
  39. I. Ramani, S. Savage. SyncScan: Practical fast handoff for 802.11 infrastructure networks. Infocom, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  40. Raspberry Pi. Website.Google ScholarGoogle Scholar
  41. M. Shin, A. Mishra, W. Arbaugh. Improving the latency of 802.11 hand-offs using neighbor graphs. MobiSys, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Skype. Website.Google ScholarGoogle Scholar
  43. A. Snoeren, H. Balakrishnan. An end-to-end approach to host mobility. MobiCom, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. H. Soroush, P. Gilbert, N. Banerjee, B. Levine, M. Corner, L. Cox. Concurrent Wi-Fi for mobile users: Analysis and measurements. CoNEXT, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Lenovo Thinkpad T430 laptop. Website.Google ScholarGoogle Scholar
  46. Tp-link N750 gigabit router. Website.Google ScholarGoogle Scholar
  47. D. Tse, P. Viswanath. Fundamentals of Wireless Communication. Cambridge University Press, 2005. Google ScholarGoogle ScholarCross RefCross Ref
  48. VideoLAN. Website.Google ScholarGoogle Scholar
  49. Y. Xie, Z. Li, M. Li. Precise power delay profiling with commodity Wi-Fi. ACM MobiCom, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Wi-Fi Goes to Town: Rapid Picocell Switching for Wireless Transit Networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication
      August 2017
      515 pages
      ISBN:9781450346535
      DOI:10.1145/3098822

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 August 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate554of3,547submissions,16%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader