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Abstract—Distributed Hash Tables (DHT) are a common
architecture for decentralized applications and, therefore, would
be suited for privacy-aware applications. However, currently
existing DHTs allow every peer to access any index. To build
privacy-aware applications, we need to control this access. In
this paper, we present k-rAC, a privacy-aware fine-grained AC for
DHTs. For authentication, we present three different mechanisms
based on public-key cryptography, zero-knowledge-proofs, and
cryptographic hashes. For authorization, we use distributed AC
lists. The security of our approach is based on k-resilience. We
show that our approach introduces an acceptable overhead and
discuss its suitability for different scenarios.

I. INTRODUCTION

A Distributed Hash Table (DHT) is a convenient way to uti-
lize the power of highly scalable Peer-to-Peer (P2P) networks.
Currently, there exist numerous ways to build such a DHT,
e.g., Chord [31], CAN [27], Kademlia [23]. Some of those are
used in existing products, mostly for file sharing. For instance,
BitTorrent [20] uses Kademlia to find other peers offering
the same file (trackers). In general, the scalability and the
architecture of DHTs are well researched. However, security
issues like access control or storing confidential data in such
a DHT are still mostly unsolved. While the existing solutions
are suitable for currently existing products, there are scenarios
where we require a reliable and lightweight access control for
protecting confidential data. Access control is usually defined
as the combination of authentication and authorization [30].
The purpose of authentication is to determine whether a user is
allowed to access a system. In contrast, authorization regulates
the access to various system resources.

Applying this general definition to an access control for a
DHT, authentication means the regulation of the participation
in the P2P network. In the literature, this is referred to as
a coarse-grained access control. Accordingly, authorization
regulates the access to entries in the DHT. In our work, we
additionally separate user permissions for reading or writing
each single entry. By combining the authentication with this
expanded authorization, we consider the access control as fine-
grained.

However, implementing such a fine-grained access control
for a DHT is challenging due to the architecture of a DHT.
Generally, DHTs offer the following two operations:

• put (key, value) - store a key-value pair for a certain
key, i.e., write a value,

• get (key) - retrieve the value for a certain key, i.e.,
read a value.

Without further modification, any peer can read or write
any key via the above operations. Additionally, peers have full
access to entries under their own control. We must consider
that some peers might act maliciously, e.g., manipulate values
under their control. Therefore, we need to control the read and
write access to each individual entry of the DHT.

A scenario where a fine-grained access control is required
is the Social Link project [6]. Their goal is a new communi-
cation paradigm for supporting the work-life balance based on
appraisal of users’ context for the implicit communication. A
DHT is used for storing the users contexts with sensitive data,
e.g., localization, activity or calendar data. Therefore, access
to this data must be secured in such a way that it should be
possible to assign the write and/or read access to specific users.
Another scenario is the Data Revocation Service (DRS) [15]
for supporting the deletion of personal data objects on the
Internet. With the DRS, users store status information of
their data objects in a DHT. By requesting this status for a
certain data object with the DRS, providers verify whether
they are allowed to deliver this data object. Since the status
information must be accessible for anyone, only the write
access must be protected for updating the status information by
the authorized user. Another scenario are P2P-based massively
multiuser virtual environments (MMVEs) allowing many users
to participate in a shared virtual environment via the Internet.
MMVEs can be implemented as a DHT as proposed in [37].
The participants of a large scale system typically do not know
each other and, therefore, cannot trust each other, since it is
possible that users may pose as somebody else or steal other
users’ data.

Although there exist approaches to implement an access
control scheme for P2P networks, to the best of our knowledge,
there is none combining the following features:

• individual restriction for the read and write access to
a single DHT entry,

• revocation of put or get access for a certain user,

• delegation of administration for put and get access,

• guaranteed resilience against up to k malicious peers,
where k is a system parameter.

Hence, in this paper we present k-rAC, a fine-grained
access control to read or write any key, even if a certain
number of peers are subverted by an attacker. Additionally,
k-rAC allows the delegation of access rights to other users.
The contribution of this paper is twofold: First, we propose
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three different generic access control mechanisms for k-rAC
to regulate the read and write accesses in a modular way (cf.
Section VI). Secondly, we provide detailed evaluation of these
mechanisms regarding the additional effort in comparison to a
classical DHT without any access control.

The rest of this paper is organized as follows: We first
discuss existing access control mechanisms for P2P networks
in Section II. In Section III, we present our assumptions,
and motivate our requirements for a privacy-aware k-resilient
access control in P2P networks in Section IV. Based on those,
we discuss the design rationale of k-rAC in Section V and
the novel access control scheme in Section VI. Afterwards,
in Section VII, we analytically evaluate our approach and
determine its performance by simulation. Finally, we conclude
our paper in Section VIII with a brief summary and provide
an outlook on future research.

II. RELATED WORK

As mentioned above, access control schemes are comprised
of authentication and authorization. Authentication mecha-
nisms have been already studied extensively and there are reli-
able approaches available. The basic idea of these approaches
is the usage of a public key infrastructure (PKI). Hereby, each
peer uses a signed certificate from a certification authority
(CA) to authenticate itself. Furthermore, it can be used to real-
ize confidential communication between arbitrary peers. This
coarse-grained access control is used, e.g., in [3]. However, this
approach treats all peers equal and, thus, allows all authenti-
cated peers to access any information in the system. In [34],
the authors also proposed an authentication-only approach but
based on a distributed Merkle tree. They focused on achieving
consistent updates in the DHT and resilience against replay
attacks. The authors of [21] pursue an anonyme authentication
mechanism based on a Zero-Knowledge Proof [7]. Takeda et
al. [33] propose a decentralized mutual authentication mech-
anism for each pair of nodes to avoid performance issues of
a PKI approach. In [14], the authors build on the reputation-
based trust management to realize the authentication of peers.
Here, a DHT is used only for storing the trust levels of each
user. The authorization part is solved by storing the data locally
on the owners computer. The data owner requests the trust
levels from the DHT to decide whether to allow the access to
data on her computer for a certain user. In [4], the authors
extend the PKI approach by trusted groups to regulate the
access to resources based on group memberships. MacQuire
et al. [22] propose an improved routing protocol for DHTs
tailored for highly heterogeneous peers. The main idea of their
approach is that peers with different capabilities have different
roles in the DHT. To do so, they also extend the PKI-approach
to include permissions for authenticated peers. However, the
above approaches do not consider the fine-grained protection
of the get and put operations for individual DHT entries.

In [18], the authors propose OceanStore, an architecture for
a global-scale persistence storage. Regarding the authorization,
they mention that the data should be encrypted. Although
they propose to use access control lists (ACL) for the reader
and writer restrictions, they do not propose a specific solution
how to protect this ACL from manipulation. In general, they
provide only abstract details about the realisation of their
access control, as their focus is on the global architecture.

Another difference is that they offer read protection only out-
of-band, i.e., the users need to distribute encryption keys. In
contrast, we specified the details of our access control and
offer an in-band key exchange for the read protection. The
proposed fine-grained access control mechanism in [32] is
build on a hierarchical model of peers. Here, the developers
connect servers with dozens of users into a P2P network and do
not consider home office computers. A single server manages
the access control policies of its users and collaborates with
other servers to delegate access control to other peers and
users. Therefore, the proposed approach is closely tied to their
scenario and requires a central server. In contrast, our approach
is a general access control for a DHT and fully decentralized.
Furthermore, the proposed approaches in [12], [35] are not
applicable for regulating the fine-grained access control in a
DHT, since they also use centralized components to manage
access policies.

There are approaches with similar goals as ours. In [26],
Palomar et al. propose a PKI-based access control scheme by
extending certificates with authorization capabilities. However,
their approach relies on trusted groups and does not allow
for a fine-grained access control where individual permissions
can be set for each entry in the DHT. In P-Hera [5], the
access control scheme allows data owners to specify fine-
grained restrictions on who can access their data. For this,
they use super nodes to manage access policies. In contrast,
our approach does not rely on any centralized components.
In [25], they use ACLs for controlling the access to individual
keys of a DHT. However, they protect these ACLs by using
trusted groups, whereas we propose to use the more general k-
resilience. Further, in [28], the authors propose a protocol for
delegating access control to intermediaries in such a way that
requesters do not learn the access policy, and the intermediates
do not learn the privileges. Although the authors’ focus is
privacy, they do not distinguish between put and get operation
to secure the access to a single DHT entry.

The closest work to k-rAC is DECENT [13] that proposes
an architecture for enforcing access control in a decentralized
online social network (OSN). Although based on a DHT, this
architecture is specifically tailored to the OSNs. Similar to
us, the authors aim to regulate the read and write access to a
single DHT entry, and to delegate access rights to other users.
To achieve that, they use public key cryptography and describe
how to apply it for the OSN scenario. We, in contrast, propose
three different access control mechanisms: one is also based on
the public key cryptography, the second is based on the zero
knowledge proof, and the third one is derived from password
hashes. The three mechanisms are all generic for the usage in a
DHT for arbitrary scenarios. Moreover, we compare them with
each other and consider in which scenarios they suit better.
To cope with malicious peers, the authors rely on replication.
However, they do not mention any further details or specify a
protection method against malicious peers. With k-rAC, we
propose a specific mechanism to enable resilience up to k
malicious peers. Hence, with k, we introduce a parameter to
achieve a certain security guarantee. Furthermore, we evaluate
our access control scheme by detailing the effort for the three
access control mechanisms. With our evaluation, researcher
and engineers are able to decide which particular mechanisms
is suitable for a specific scenario. Contrarily, the authors of
DECENT evaluated only the public key approach for the OSN
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Fig. 1. System Model

scenario.

In summary, the existing approaches are either limited to
a certain scenario or do not offer a viable solution for fine-
grained access control. In contrast, we propose a fine-grained
access control for DHTs without the need of any centralized
components, trusted groups, or super nodes.

III. SYSTEM MODEL

Our system is a P2P-based network forming a DHT based
on any of the existing approaches. This DHT must cope
with churn, scalability, availability, persistence, consistence
and routing, e.g., Kademlia [23]. With other words, we do not
propose a new DHT but an extension to an arbitrary existing
one. Participating peers offer the operations put and get (cf.
Section I) to the application, i.e., to users. Peers implement the
DHT-algorithm and interact with each other via messages over
an arbitrary network, e.g., the Internet. In a DHT, each peer
has a unique ID determining its position in the DHT space.
We assume that the ID is determined by the system, and the
peer cannot influence it. This can be achieved by, e.g., hashing
the IP address. Further, there is an authentication mechanism
for the peers, e.g., a CA issuing individual certificates to each
peer as proposed in [25]. Every message sent from a peer is
signed with its own individual certificate. Thus, we can verify
the authenticity and the integrity of each received message.
Any message without a valid signature is discarded. By doing
so, only the authenticated peers can participate in the network.
Additionally, confidentiality can be achieved.

The DHT space comprises a certain number of DHT
entries. A DHT entry consists of an index and a value. The
index, also referred to as the key, uniquely identifies an entry.
However, for the rest of this paper, we use the term index to
avoid the confusion with cryptographic keys. For each index in
the DHT, there is at least one responsible peer for storing the
DHT value. The value can contain additional metadata about
the stored object. To differentiate, we call the entire object
stored under a certain index a DHT value or value. When we
refer only to the stored data, we call this the data object.

The user interacts with the DHT via the application in-
terface (API) of one or more arbitrary peers. In our system,
we assume that the application software (i.e., the user) does
not necessarily run on the same node as the P2P-software
(i.e., the peer). The application software accesses the peers
via secure channels (e.g., SSL/TLS). Hence, we assume a
clear separation of users and peers (cf. Figure 1). Specifically,
the user calls the put or get operation in order to store or
retrieve a value, respectively. Furthermore, we assume that our
application requires a fine-grained access control. A user is
allowed to read or write only those DHT entries to which she
has the appropriate rights.

We assume the presence of an attacker with the goal to
circumvent the access control, i.e., to gain access to values in
the DHT without the proper access rights. For this, the attacker
is able to compromise arbitrary peers of the underlying P2P
network. For an external attacker, we rely on existing solutions
to regulate the access to the network with a CA (e.g., [4]).
Furthermore, we assume that the attacker can subvert at most
k arbitrary peers at any time. A subverted peer is under full
control of the attacker, specifically, the attacker has access to
the individual certificate of the subverted peer. Therefore, the
attacker can send, receive, discard, replay, and forge messages
on behalf of the peer. However, we assume that a user is not
compromised, i.e., the attacker cannot subvert the application
software.

IV. REQUIREMENTS

In this section, we describe and motivate the requirements
for our novel access control scheme.

Access (A): A user must be able to perform only the actions
if and only if she has the appropriate rights.

Ownership (O): For our fine-grained access control
scheme, we require a mechanism to uniquely determine the
owner of a certain DHT entry. Once the ownership is set, it
must be impossible for an attacker to steal the ownership. Only
the owner must be able to revoke her ownership.

Granularity (G): The owner must be able to manage read
and write right separately for each of her entries in the DHT.
These rights can be assigned to individual users. Additionally,
the owner must also be able to delegate the handling of read
and write rights to other users.

Privacy (P): When protection of user’s privacy and
anonymity is required (e.g., [15]), it must be impossible to
deduce the owner from the DHT entries. Specifically, our
scheme must not introduce new ways to deduce the owner
of a DHT entry. Further, our scheme must not provide a way
for any entity to find all DHT entries of a certain owner. In
general, our scheme must not introduce new privacy risks for
anyone.

Scalability (S): DHTs are built with a high scalability
in mind, i.e., they can handle a multitude of simultaneous
read and write operations (get/put). Any access control scheme
added on top of such a DHT must not degrade this property.
Thus, the communication and processing overhead for any
operation in the DHT must not increase significantly.

k-Resilience (R): In our P2P network, the attacker can
compromise at most k arbitrary peers. Therefore, we require
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that our access control scheme remains functional even if the
attacker controls up to k peers. Specifically, even in this worst
case, our other requirements, i.e., A, O, G, P, and S, must still
be fulfilled.

V. DESIGN RATIONALE

Before enforcing a fine-grained access control as intro-
duced in Section I, we must determine the ownership of an
entry in the DHT. This is necessary because by default each
entry can be written and read by any peer (cf. Section III). To
determine the ownership, we propose to use the approach from
[37] and determine the owner of an entry by the first access to
this entry. Specifically, the user who first writes a value under
a certain key becomes automatically the owner of this entry.
After that, only she can access this value or delegate the access
rights to other users.

Any operation in a DHT, i.e., put or get, is initiated by
a user through a requesting peer, routed through the network,
and finally replied by a responsible peer. Hence, we can either
control the access on the requesting peer or control the reply
on the responsible peer. We follow the notation from [25] and
call this controlled queries (CQ) and controlled replies (CR).
CQ are based on encrypted DHT values, and the access policy
is enforced by providing the encryption key to authorized
users. With CR, the responsible peer must only deliver the
values according to the access policy. In k-rAC, to fulfill the
R-requirement, we apply both concepts, i.e., CQ and CR.
The rationale behind this is that the read access can only be
achieved with CQ, while the write access can only be achieved
with CR. In the following, we elaborate on this rationale.

With our R-requirement, controlling the read access cannot
be achieved with CR since we must cope with the attacker
compromising up to k peers. By controlling only the replies,
there might be a peer under the attacker’s control which ignores
the access policy and delivers the result anyway. Thus, the
attacker would gain read access to the DHT entry, which
violates our A-requirement. Therefore, we must enforce the
read access with CQ. For this, the user encrypts her data
before saving it in the DHT. After that, she distributes the
encryption key to other users which are allowed to read the
corresponding data. By doing so, the responsible peer does
not have to verify whether the requesting user is authorized to
read the data – without the encryption key, she cannot read the
encrypted data anyway. Here, the challenge is the distribution
of the encryption key to other users. In Section VI, we suggest
how this challenge can be solved.

Similarly, we cannot enforce the write access with CQ,
because the peer which intends to write might be under the
attacker’s control. A malicious peer could ignore the permis-
sions and write the data in the DHT anyway, thereby violating
our A-requirement. Therefore, we enforce the write access
control on the receiver side, i.e., with CR. To do so, we first
authenticate the user and then verify whether she is authorized
to write to the requested DHT index. The user authentication
mechanism must also fulfil the requirements from Section IV.
In Section VI, we present several approaches how to realize
the write access control.

Due to our R-requirement, the user never trusts a single
peer, more specifically, she does not trust any group of up

to k peers. Therefore, to cope with up to k subverted peers,
she always interacts with the API of 2k + 1 different peers.
Using these peers, she stores each DHT value at 2k + 1 dif-
ferent indexes. With evenly distributed indexes and sufficient
peers participating in our P2P network, we assume that these
2k+1 indexes are managed by different peers. All subsequent
operations must be always executed on these 2k + 1 peers.
Accordingly, while storing, each of these different responsible
peers performs the access control. However, per definition at
most k do not. Hence, when performing a get operation, i.e.,
reading all 2k + 1 indexes, she receives at least k + 1 correct
values. Afterwards, she calculates a majority function over
all received values and considers only the value which she
received more than k-times.

VI. ACCESS CONTROL SCHEME

We propose to use an access control list (ACL) for each
DHT entry. For this, we assign an ACL to each non empty
entry in the local storage of each responsible peer. A single
ACL item contains the user’s authentication auth and her
access rights. We define the following user access rights:

• read (r) – the right to read the value,

• write (w) – the right to write the value,

• admin (a) – the right to change, add, or remove the
read or write access of other users,

• owner (o) – this right implies r, w, and a. Additionally,
it allows to set the a-right, i.e., the owner can pass the
admin-right to other users.

While the owner is set by the system on first access, the
other rights can be arbitrary managed by the owner or users
with the admin right for a specific entry. This implies the
access hierarchy o > a > (r|w), where > is defined as
‘includes right’. To verify these access rights, the user must
first be authenticated. For this, we extend the standard DHT
operations put and get with an additional parameter for the
user authentication, named auth. When a user performs an
operation on the DHT (via the peer API), the responsible peer
uses the user’s auth to verify whether she is authorized to
execute the requested operation. Additionally, we introduce
the new operation set for solely managing the access rights
on a DHT value. The put and the set operation are closely
related as we could manage the access rights also with the put
operation by including an acl parameter. However, for the sake
of simplicity, we preferred a clear separation of managing the
data object and the ACL. Hence, the operations for our access
controlled DHT are:

• put (index, data, auth) – stores the data object data at
the index in the DHT. The user is authenticated with
the auth parameter.

• get (index, [auth]) – retrieves a data object from the
given index. The user authentication auth is optional,
since the read access control is done with CQ, i.e., it
is enforced by distributing the encryption key.

• set (index, acl, auth) – modifies the ACL without
modifying the data object.
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To implement this, we extend the DHT value to house the
users’ access rights besides the data. An empty entry has no
ACL and is not owned by anyone. The first access via a put or
set operation to a previously empty entry determines the owner
of this entry. This means, the peer stores in the ACL the auth
of the user who first accessed this entry and set her access
right to o. Therefore, the smallest possible ACL is a list with
the owner as a single item, whereby the stored auth depends
on the used authentication mechanism and will be described
later. We integrate the ACL in the DHT value as presented in
Listing 1.

1 d h t v a l u e {
a c l : l i s t <a c l i t e m >; / / a l i s t w i th a c l i t e m s

3 d a t a : o b j e c t ; / / t h e s t o r e d d a t a o b j e c t
}

5

a c l i t e m {
7 a u t h : a u t h e n t i c a t o r ; / / t h e u s e r ’ s a u t h e n t i c a t o r

key : e n c r y p t e d s e s s i o n k e y ; / / d a t a e n c r y p t i o n key
9 r i g h t s : {o , a , w, r } ;
}

Listing 1. Access Control Data Structures

As motivated in Section V, we propose that each DHT
value is stored with 2k + 1 different peers and by using
2k + 1 different peer APIs. To achieve this, the user stores
the value for the index index within the DHT at positions
posi := h(index |i), for all i with 1 ≤ i ≤ (2k+1) and i ∈ N.
With the concatenation of index and i, the user first calculates
2k+1 different storing positions. However, these positions are
consecutive and probably stored with the same peer. Hence,
she additionally applies a cryptographic hash function h(x) to
evenly distribute all replicas of a value within the DHT space.

A. User Authentication Mechanisms

For the user authentication, we consider three different
mechanisms with different properties. It depends on the spe-
cific scenario which of them suits better. Common to all three
mechanism is their resilience against up to k subverted peers.
In each mechanism, the auth-parameter in a DHT operation is
used to authenticate the user.

Public-key Cryptography Each user generates a pub-
lic/private key pair (pk, sk). According to that, the authen-
ticator auth includes the public key pk, a counter ctr , and
a signed hash of the data object concatenated with the
counter, i.e., auth := {pk, ctr , signature} where signature :=
encryptsk(h(data|ctr)) and h(x) is an arbitrary cryptographic
hash function. The responsible peers for the accessed index
store upon first access the user’s public key pk in the auth field
of the ACL item. By doing so, this public key is now pinned to
that index, and the user is defined as the owner (cf. VI-B). In
subsequent requests, the responsible peer verifies the validity
of the signature with the stored public key. Only the user in
possession of the right private key is able to generate a valid
signature. To prevent replay attacks, we rely on the standard
approach with a sliding window, similarly to IPsec [8]. With
this approach, the peer stores at most w old counters, where
w is the window size. The user also stores the counter locally.
Thus, the freshness of the message is ensured, and the user
is authenticated on subsequent requests for any operation with
a valid signature. We summarize the message flow of the PK
authentication in Figure 2.

Since the ACL does not contain personal information about
the user, this approach does not leak information about user’s
identity. However, if a user owns multiple DHT indexes, an
attacker could determine all her DHT entries by comparing
the stored public keys. In some scenarios, this is not desirable
and must be prevented, e.g., [15]. Here, the user should use
different public/private key pairs for each index. This way, no
connection between any two indexes can be established, even
with an all-powerful attacker who could read the entire DHT.

Zero-Knowledge Proof With a zero-knowledge proof
(ZKP) [10], a prover proves to a verifier that she possess a
secret without revealing it. It works as a challenge/response
system, where the prover has a chance of 50% to cheat in any
single round. Therefore, the proof must be performed n times
to achieve a high confidence.

We applied the ZKP to a DHT by building on the Feige-
Fiat-Shamir protocol [7]. Here, the user generates a secret ran-
dom number s. The square of this secret, i.e., v := s2 mod p, is
stored as her authenticator on first access in the ACL item for
the requested index, i.e., auth := {v}. On subsequent accesses,
the received v is used to identify the corresponding ACL item.
If the received v is not part of the ACL, the request is rejected.
To authenticate, the responsible peer sends a message with
n challenges to the requesting user. If the user replies with
n correct responses, she is authenticated. Since each request
is authenticated with new challenges/responses, the freshness
of the messages is ensured and no additional mechanisms to
prevent replay attacks are needed. After a successful authenti-
cation, the peer proceeds with the requested operation if this
user has the appropriate rights (cf. Section VI-B). In Figure 3,
we present the message flow of the ZKP authentication.

With this authentication scheme, the most costly part are
the challenge/response messages for the authentication. As an
optimisation, a peer could first check with the ACL whether
the requesting user ist authorized to perform the corresponding
operation for the requested index. If the user does not have the
appropriate rights, the peer suspends the requested operation
without performing the challenge/response.

Also with this approach, there is no personal information
leaking about the user. The only information an attacker could
get is the squared number v used as the authenticator. However,
similarly to the public/private key approach, an attacker could
determine all indexes belonging to the same user by comparing
the v. Again, this can be avoided by choosing different secrets
for different DHT indexes.

One-Time-Hash The classical way to authenticate a user
in client/server systems is with password hashes. In such an
authentication scheme, the user authenticates with a secret, i.e.,
her password. On the server side, only the hash of the password
is stored. To verify whether the user has the correct password,
she sends it to the server. Then the server hashes and compares
it with the stored hash. If they match, the user is authenticated.
To prevent the usage of precalculated hash tables, an additional
salt [24] is usually stored. Salt is a random number, which is
usually appended to the secret before hashing. To still verify
the password, the salt is stored in clear alongside the hash.

Due to our R-requirement, we cannot use this classical way
to authenticate a user in a DHT. With this scheme, the user
must submit her secret when calling our modified put, get, or
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set operations. The secret would be the user’s authenticator
for all 2k + 1 peers. By doing so, each peer which transports
this message (at least all 2k + 1 responsible peers) would get
to know the secret. Hence, even by subverting only one of
these peers, the attacker would get access to the user’s secret
contradicting our R-requirement.

To overcome this drawback, we extend the classical hash-
based authentication by introducing an individual secret for
each of the 2k + 1 peers, i.e., an individual authenticator for
each of the responsible peers. However, instead of storing
h(s|salt), the user uses an HMAC-function [17] to create
2k + 1 individual secrets. Specifically, she calculates the
individual secrets with si = HMACs(index |i) for all i with
1 ≤ i ≤ (2k + 1), i ∈ N and sends the hashes of
these secrets h(si|salt i) together with an individual salt index
to the responsible peers. She also stores the salt index for
the index locally. For our P -requirement, we include the

index in the calculation of these secrets resulting in different
secrets for each index. For the same reason, we use different
salt-values for different indexes. The responsible peers store
the received hashes and salt index as the authenticator, i.e.,
authi := {h(si|salt index ), salt index}. Subsequently, the user
sends the individual secret si to each of the responsible peers
to authenticate herself. Each responsible peer verifies this by
hashing the received secret and comparing it to the stored
hash. The message flow of the OTH authentication is shown
in Figure 4.

It is impossible to determine the secret si from the stored
hash h(si|salt index ). Hence, after the initial access and be-
fore the first authentication, no subverted peer is able to
impersonate the user. However, to authenticate, the user needs
to send the secrets si to all peers. In a P2P network, the
responsible peers for a certain index might change over time.
Therefore, some peers might still be able to collect some
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or all of the individual secrets. If the attacker manages to
collect more than k individual secrets, she can still impersonate
the corresponding user. To prevent this, we introduce our
second extension, the so-called one-time-extension. With this
extension, the individual secrets must only be used once,
i.e., we update it with each authenticated operation. More
specifically, the user generates a new individual secret for each
operation by hashing the current one, i.e., s′i = HMACs(si). In
an authenticated operation, the user sends {si, h(s′i|salt index )}
to the 2k + 1 responsible peers. For this to work, the user
must additionally store the current individual secrets si along
with the master secret s. The one-time-extension also provides
protection against replay attacks as each authenticated message
uses new secrets.

B. User Authorization Mechanisms

Any write operation starts with a user executing put(index,
data, auth) on 2k+1 peers. The steps for enforcing the access
policy during each single write access (put) are as follows: The
receiving peer checks whether the requested index is empty,
i.e., if there is already an owner or not. If the index is empty,
the user of the put operation becomes the owner of this entry
and the value is stored under the given index. Specifically, the
receiving peer creates a new dht value data structure and stores
the received value in the data field. Additionally, the acl field
is initialized with the minimal ACL, i.e., a single ACL item
for the requesting user with the o right. In contrast, if there
is already an owner for this index, the receiving peer verifies
the authenticity of the requesting user with the provided auth.
Then, the peer checks whether the authenticated user has the
right to write to this index. By having this right, the locally
stored data in the dht value is overwritten with the received
data.

A read access is mapped to the execution of get(index) on
2k+1 peers. Each individual operation returns the DHT value
for the given index. There is no verification of the ACL during
a read access (get), i.e., any user can read the value for any
index in the DHT. As mentioned before, the read access control
is enforced by encrypting the data object with a randomized
symmetric data encryption key (kd) and distributing it to the
intended users. This can be done out-of-band, e.g., per email or

instant messaging. Since in this case the DHT is not involved,
we do not need any additional mechanisms to protect the read
access. Another possibility to distribute kd is by using public
key cryptography. Here, each user needs a public/private key
pair. The key kd is encrypted with each public key of users
who should have read access. As a result, each authorized
user gets her individual decryption key. To distribute these
individual decryption keys, they are stored in the ACL, more
specifically in the key field of the ACL items (cf. Listing 1)
corresponding to the authorized users. When a user performs
the get operation for an entry, she gets the DHT value including
the corresponding ACL with kd. To decrypt the data object,
she first uses her private key to decrypt the encrypted kd
and then uses it to decrypt the data object. Thus, the read
access to the data object is enforced by having access to kd
or not. An optimisation for the public key approach would
be to include the auth parameter with the get operation, i.e.,
get(index, auth). With this additional information the receiving
peer could search for the user’s encrypted kd and reply it
together with the data object within the DHT value. Without
the auth, the user needs to search for her key after receiving
the DHT value. Alternatively, the read access can be realized
based on Shamir’s secret sharing algorithm [29] as done in
[13]. However, we decided to use the above described method
with encryption, as it suits better with our modular approach. If
no read access control ist required, we can omit the encryption
of the data object altogether (e.g., for DRS in [15]).

Besides enforcing the write and the read access to data
objects, we require a mechanism to administrate the access
rights. Thus, we need to provide the owner with a mechanism
to delegate the other rights, i.e., read, write and admin. For this,
we use set(index, acl, auth). While the put operation modifies
the data object, the set operation is intended to modify the
ACL. The access control for this operation is also handled on
the receiving peer, i.e., with CR, similarly to the put operation.
Whenever a peer receives a set operation for a certain index,
it first verifies whether there is already a value stored for this
index. If there is no value stored yet, the user who initiated the
set operation becomes the owner of this entry. Additionally,
any received access rights in acl are also applied to this
entry. If there is already a value for this index, the peer first
verifies whether the requesting user has the appropriate rights
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to change the ACL of this index. To change read or write
access, the requesting user needs at least admin rights, and to
change the admin right, she must be the owner.

With the set operation, we can also revoke the access of
a user to specific index by removing her from the ACL. Any
subsequent write access by the revoked user will be denied by
the responsible peers. To revoke a subsequent read access, we
need to re-encrypt the data object with a new key which is not
known to the revoked user. With our PK approach, this can
be achieved directly by using the put and the set operation.
Specifically, the user chooses a new encryption key and re-
encrypts the data object, which she then stores with a put
operation in the DHT. Afterwards, she uses the set operation
to set the new rights and the new encrypted data encryption
key for each authorized user, i.e., all from before with the
exception of the revoked one. Also with the ZKP and the OTH
approach, the data object must be re-encrypted and stored in
the DHT using a put operation. However, there is no integrated
key exchange with the ZKP and OTH approach. Thus, the
user must re-distributed this key out-of-band to all remaining
authorized users. The costs for revoking a user are the summed
effort of a put and a set operation, which we evaluate in the
next section.

C. Properties

With the above presented approach, we achieve all require-
ments from Section IV. By using one of the three proposed
authentication mechanisms together with an ACL for each
index, we achieve the A-requirement. The read protection is
achieved by encrypting the data, and the write protection is
achieved by replicating the data to 2k + 1 peers and using
majority voting. Malicious peers might still write in conflict
with the ACL, but their actions remain inert with respect to
the entire system.

With our approach, the owner of a DHT entry is uniquely
defined and cannot be altered by the attacker (O-requirement).
To take ownership of an DHT entry, the attacker would need
to circumvent the access control or insert herself as the owner
during the initial access. However, taking ownership during
initial access is secured by sending the request to 2k+1 peers.
If the attacker is not able to subvert a majority of these peers,
she cannot modify the initial access with success.

With an individual ACL for each index, we achieve the
fine-granularity, i.e., the G-requirement. We introduced four
different access rights (o, a, w, and r) and a new operation
– set – for delegating the rights to other users. The access to
the new set operation is handled with the same mechanisms
as with the put or get operation.

To fulfill the P -requirement, we use a different authentica-
tor for each index as described above with each authentication
mechanism.

The scalability (S-requirement) of our approach mainly
depends on the total number of messages used. As we show
in the next section, our approaches uses a constant factor
(≈ 2k . . . 4k) of additional messages with respect to a DHT
without any access control. As this factor does not depend on
the number of peers, our approach scales in the same way as
the underlying DHT architecture.

We achieve our R-requirement by replicating all DHT
values to 2k+1 different indexes. When reading a DHT entry,
we perform a majority voting. Hence, a value can only be
modified by altering a majority of all replicas.

VII. EVALUATION

In the following, we discuss the security properties and
present an analytical model of our approach. To compare
the different authentication mechanisms, we determine the
overhead by simulating the involved cryptographic operations.

A. Security Analysis

For the security analysis of k-rAC, we use the attacker
model described in Section III. As mentioned there, the main
goal of the attacker is to circumvent the access control.

In general, for any DHT operation, the user sends a request
to 2k+ 1 different indexes in the DHT. For this, the user uses
the API of 2k + 1 arbitrary but different peers. The 2k + 1
indexes are calculated by a cryptographic hash function and
are, therefore, evenly distributed over the entire DHT space.
Hence, the probability for housing these 2k + 1 indexes on
different peers increases with the total number of peers online.
That is, assuming there are enough peers online, each replica
is stored on a different peer. Therefore, the 2k + 1 requests
will take different paths through the P2P network. In [11], the
authors showed that these disjoint paths exist with Kademlia.
To manipulate a single request, the attacker would need to
subvert a responsible peer or a peer along the routing path of
the request. If the attacker can subvert at most k different peers,
she can modify at most k requests (or the corresponding data
objects). However, as each DHT operation always operates on
2k + 1 indexes, there are always at least k + 1 (a majority)
of indexes which the attacker cannot modify. Therefore, due
to the majority voting, only those values with more than k
replications are considered valid rendering the actions of the
attacker inert.

Even with more than k subverted peers, our approach
gracefully degrades. To manipulate a DHT value, the attacker
needs to control the majority of the responsible peers for the
corresponding index. However, she cannot freely choose the
index in the DHT for which she is responsible, it becomes
unlikely that she can subvert exactly the ‘right’ peers for
a specific index. Thus, she needs to subvert a much higher
number of peers to manipulate at least k + 1 indexes for a
specific index in the DHT.

The PK approach offers an additional security feature, i.e.,
the signature of the transmitted value. By using a signature,
the attacker cannot modify the value in transit through the P2P
network. This decreases the attacker’s possibilities: to modify a
value, she necessarily needs to subvert the responsible peers for
a specific index – subverting peers along the routing path of the
request is no longer sufficient. Hence, with the PK approach,
we achieve an even better graceful degradation in cases when
the attacker can subvert more than k peers.

B. Performance

Below, we establish an analytical model to determine the
performance of our access control scheme with respect to time,
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AS Response Time TAS (ms) Overhead ∆TAS

DHT w/o AC t ≈ 100 . . . 700 -
PK t ≈ 100 . . . 700 0

ZKP 2t ≈ 200 . . . 1400 t ≈ 100 . . . 700
OTH t ≈ 100 . . . 700 0

TABLE I. RESPONSE TIMES

message, storage, and computational overhead. We compare
our approach, especially our three authentication schemes
(AS), with a classical DHT without any access control (DHT
w/o AC). To quantify our analytical results, we exemplarily
apply well-known and suited cryptographic algorithms to our
approach. For this, we use performance data from the literature
and from own measurements.

1) Response Time: We assume that a put or a get operation
takes on average t ms for a single operation to succeed in a
DHT w/o AC. Our access control scheme does not change
this, as we build on top of these operations. Especially, we
do not change anything about the underlying mechanisms
of the specific DHT implementation, e.g., routing. In fact,
for our R-requirement, we must execute at least 2k + 1
classical operations for any authenticated operation. However,
these operations are executed in parallel. Hence, the average
time to complete an authenticated operation should not vary
significantly from the average time t ms of a single operation
in a DHT w/o AC. This is only true for the PK and OTH
approaches, i.e., TPK = TOTH = t ms. With the ZKP
approach, we need an additional request/reply. Hence, the
expected average time for ZKP is TZKP = 2t ms. Two well-
known implementations of DHTs are Kademlia and Chord.
Kovacevic et al. [16] analyzed the average time t for these
implementations, yielding tKademlia = 100 . . . 250 ms and
tChord = 450 . . . 700 ms. We summarize the results in Table I.
Accordingly, the PK and the OTH approaches have the same
response time as a DHT w/o AC, while the ZKP requires twice
as much.

2) Message Overhead: We assume that y messages are
required for put or get in a DHT w/o AC scheme. The PK
and OTH approaches use the same number of messages from
the requesting peer to a single responsible peer as a put or get
operation in a DHT w/o AC. However, since we need to send
the request to 2k + 1 different responsible peers, we require
in total mPK = mOTH = (2k + 1) · y messages. Thus, the
overhead of these approaches can be estimated with ∆mPK =
∆mOTH = mPK − y = 2ky. The ZKP approach requires
an additional request/reply pair of messages. Hence, the total
number of messages is mZKP = (2k+ 1) · 2y, and, therefore,
the overhead is ∆mZKP = mZKP − y = 4ky + y. These
results are shown in Table II. Comparing our approaches, PK
and OTH use the same number of messages, while ZKP uses
roughly twice as much.

The next metric is the message size overhead. In our
access control scheme, this is the additional auth-parameter
in each operation. In the PK approach, it contains a pub-
lic key, a counter, and a digital signature, i.e., auth =
{pk , ctr , signature} (cf. Section VI-A). We use a 32 bits
counter for preventing replay attacks. The sizes of the public
key and the signature depend upon the used asymmetric cryp-
tographic algorithm. Exemplarily, we use RSA 2048 and ECC
(Elliptic Curve Cryptography) 224, which provide roughly the

AS Number ∆mAS Size ∆sAS (B)

DHT w/o AC y -
PK with RSA 2ky 554
PK with ECC 2ky 147

ZKP (4k + 1) · y n · 83
OTH 2ky 64

TABLE II. MESSAGE OVERHEAD

same security. Here, the key lengths refer to the bit lengths
of the moduli (RSA) and the subgroup (ECC). However, the
actual number of bits required to store a public key for both
algorithms is larger, as the public key contains additional
parameters [19]. To determine the size of the auth-parameter,
we used OpenSSL [36] to generate a new key pair for both
cryptosystems and stored the public key in the binary DER
format [1]. This yields 294 bytes for the RSA key and 80
bytes for the ECC key. The signature in the authenticator is
an encrypted hash of the data object concatenated with the
counter, i.e., signature := encryptsk(h(data|ctr)). The size
of the signature also depends on the specific hash function
used. Here, we used SHA-256 (32 bytes) exemplarily and
encrypted the resulting hash with both asymmetric algorithms.
This results in 256 bytes for RSA and 63 bytes for the ECC
signature. Hence, our total overhead is ∆sRSA = 4 + 294 +
256 = 554 bytes and ∆sECC = 4 + 80 + 63 = 147
bytes. With the ZKP approach, we only consider the final
message when calculating the size overhead. The first and
the second message are new messages and already included
in ∆mZKP . Additionally, these messages are small: the first
message contains the initialization of the protocol and the
second message contains the challenges from the responsible
peer, which can be represented as n bits. A sound value for n
is, e.g., 20. In comparison, a put or a get message contains at
least the DHT index, e.g., 160 bit. The final message contains
n responses to the challenges from the second message (cf.
Figure 3). A single response represents a large number, big
enough to make the calculation for the discrete logarithm
infeasible. Hence, around 200 decimal places or 665 bits ≈
83 bytes. This yields an overhead of n · 83 bytes, i.e., with
n = 20, the overhead is 1660 bytes. Finally, with the OTH
approach, each message contains two additional hashes. By
using again SHA-256 as the hash function, we get an overhead
of 2 · 32 = 64 bytes. We summarize the results of this metric
in the second column of Table II. Comparing our approaches,
OTH and PK with ECC use the smallest overhead with respect
to message size.

3) Storage Overhead: With respect to a DHT w/o AC, the
storage overhead differs for the responsible peers and users.
We assume that the used DHT uses a 160-bit hash function
(e.g., SHA-1). Hence, for storing the index to a specific value
in the DHT w/o AC, the storage requirement for any user is
20 bytes. Furthermore, we assume that each responsible peer
uses a data structure (e.g., a hash table) to locally store the
DHT values.

User’s Storage Overhead Using the PK approach, the user
needs to store a different public/private key pair for each index
she has access to. Additionally, she must store a counter for the
freshness of the messages. We assume a 32-bit counter, hence 4
bytes. Since each index is mapped for the k-resilience to 2k+1
different positions in the DHT, she must store those positions,
i.e., (2k+1)·20 bytes. Similarly to our analysis of the message
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Fig. 5. Comparison of User’s Storage Overhead ∆SUAS

size overhead, we used OpenSSL to determine the size of a
RSA and a ECC key pair in DER format, i.e., 1192 bytes for
RSA and 113 bytes for ECC. Hence, the total amount the user
needs to store is SRSA = 1192+4+20·(2k+1) = 1216+40k
or SUECC = 113+4+20 ·(2k+1) = 137+40k. Since the user
would need to store one index (20 bytes) also in a DHT w/o
AC, the overhead for the PK approach is ∆SURSA = 1196+40k
or ∆SUECC = 117 + 40k.

With the ZKP approach, the user stores only her individual
secret for each DHT entry she has access to. As described in
our analysis of the message size overhead, we require ≈ 83
bytes for the responses. These responses are either the square
of the secret or a product of two large numbers. Thus, to store
the secret, we require ≈ 45 bytes. Hence, the total amount
she stores is SUZKP = 45 + 20 · (2k + 1). Similarly as before,
the overhead is 20 bytes less, since one index would be stored
anyway. Thus, the overhead of the ZKP approach is ∆SUZKP =
25 + 40k.

With OTH, the user stores once the master key (we assume
32 byte). For each DHT entry she has access to, she stores a
salt (16 byte), 2k + 1 current secrets (each 32 bytes), and the
corresponding 2k + 1 positions (cf. OTH in Section VI-A).
Hence, the total storage amount for a single index is SUOTH =
16+(2k+1) ·32+(2k+1) ·20. Hence, the overhead for each
index is ∆SUOTH = 48 + 104k bytes.

In Table III, we summarize the storage overhead for the
user having access to i different DHT entries. As with any
ACL mechanism, the storage overhead for the user depends
linearly from the number of DHT entries she has access to.
However, with k-rAC, it also depends on the resilience value
k as shown in Figure 5. Accordingly, the ZKP approach has
the least storage requirement. The PK approach with ECC
uses only slightly more storage and is also well suited, even
for higher k values. Since ECC includes the key exchange,
it offers more functionality than the ZKP approach. On the
other hand, the PK approach with RSA should be avoided due
to the overall higher storage requirement. In contrast to the
other approaches, the OTH approach does not scale well with
higher k values (higher slope). For k > 17, it even requires
more storage than the PK approach with RSA.

Peer’s Storage Overhead With the PK approach, the
responsible peer stores additional meta information for each

AS ∆SUAS (B) ∆SPAS (B)

PK with RSA i · (1196 + 40k) u · 679
PK with ECC i · (117 + 40k) u · 273

ZKP i · (25 + 40k) u · 84
OTH 32 + i · (48 + 104k) u · 49

TABLE III. STORAGE OVERHEAD

authorized user in the ACL according to Listing 1: the en-
crypted symmetric key, the user rights, and the authenticator.
We assume a symmetric key of 128 bits (16 bytes) and one
byte for the user rights. Encrypting the symmetric key yields
256 bytes for RSA and 64 bytes for ECC. The size of the
authenticator depends on the used authentication mechanism.
With the PK approach, the authenticator comprises the public
key and a sliding window of accepted counters. We used 32
bits for the counter and a window of 32 entries, i.e., 4·32 = 128
bytes. As before, the size of the public key is 294 bytes for
RSA and 80 bytes for ECC. Hence, the storage overhead for
each ACL item is ∆SPRSA = 256+1+128+294 = 679 bytes
for RSA and ∆SPECC = 64 + 1 + 128 + 80 = 273 bytes for
ECC.

With the ZKP and the OTH approach, the peers do not
store a symmetric encryption key, since they exchange it out-
of-band. Hence, with the ZKP approach the peers stores only
the square of the secret and the user rights, i.e., ∆SPZKP =
83 + 1 = 84 bytes for each ACL item.

Similarly, with the OTH approach, the peer only stores a
hash value (23 bytes), a salt value (16 bytes) and the user rights
(1 byte). Thus, the storage overhead is ∆SUOTH = 32+16+1 =
49 bytes. In Table III, we summarize the storage overhead for
a peer with an ACL containing u items. The storage overhead
for the peers is independent of k and scales linearly with the
number of ACL items. We get the lowest overhead with the
OTH and the ZKP approach, while the PK approaches use
three to fourteen times more storage.

4) Computational Overhead: To evaluate the computa-
tional overhead, we differentiate three metrics: First, we ana-
lyze the initial effort for the user on first access to any index
in the DHT, i.e., U0

AS . Secondly, we determine the effort
for the user during any subsequent authenticated access, i.e.,
UiAS . Finally, we analyze the computational overhead of the
responsible peers, i.e., PAS . For each of these metrics, we
consider the three authenticated operations (put, get, and set)
separately as they cause different effort.

User’s Initial Effort Initially, every DHT entry is empty
and does not have an owner. Albeit a get operation for an
empty entry is not forbidden, it returns a null data object.
Hence, in our system an initial get operation causes no
overhead with respect to a DHT w/o AC.

For a put operation using the PK approach, the user initially
creates a key pair for the accessed index. This key generation
operation (KG) depends on the used asymmetric cryptographic
algorithm, e.g., with RSA, it involves finding two large primes.
For the initial access, we do not sign the data object, as
there is no way for a peer to securely verify this signature
(the corresponding public key is in the same message). We
achieve the security of the initial put operation with the k-
resilience property of our approach. For the read access, the
data object is encrypted with a symmetric encryption algorithm
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AS User U0
AS

put set

PK KG + SO + a · AOpk KG + a · AOpk

ZKP MO + SO MO
OTH (2k + 1) · HO + SO (2k + 1) · HO

TABLE IV. INITIAL USER COMPUTATIONAL OVERHEAD

(SO). For a different ACL items, we encrypt this symmetric
encryption key with the public key of each authorized user
(AOpk). At the very least, the corresponding encryption key
is encrypted with the owner’s public key. Due to our clear
separation of managing data and managing the ACL, this
prepared ACL must be sent with a subsequent set operation.
Hence, the initial complexity of a put operation for the user
is U0

PK = KG + SO + a · AOpk. Similarly, for an initial set
operation, we generate a new key pair, i.e., KG . However,
as there is no data object in a set operation, there is also
no SO involved. Nevertheless, we still need to generate a
symmetric encryption key for encrypting the data object later
on. Hence, the user’s initial complexity for a set operation is
U0
PK = KG + a ·AOpk.

For an initial put or set operation using the ZKP approach,
the user generates a random number and calculates its modular
square. Assuming that the effort for generating a random
number is negligible, we only consider the modular operations
(MO). For a put operation, the data object is also encrypted
with an SO operation. Hence, the user’s initial effort for put
is U0

ZKP = MO + SO and for set U0
ZKP = MO .

With the OTH approach, the user initially calculates 2k+1
individual hashes for put or set. Similarly as before, the data
object is encrypted for put with an SO operation. In summary,
the user’s initial effort for the put operation is U0

OTH = (2k+
1)·HO+SO and for the set operation is U0

OTH = (2k+1)·HO .

We summarize the results for the user’s initial effort for all
cases in Table IV.

User’s Subsequent Effort For any subsequent get oper-
ation, the user does not have to authenticate, since the read
access control is done with CQ. She only has to retrieve
the data object and decrypt it. Hence, the user’s subsequent
effort for a get operation includes for all three authentication
schemes an SO operation for decrypting the data object.
With the ZKP and the OTH approach, the decryption key is
distributed out-of-band. Thus, there is no additional effort in
these cases. However, for the PK approach, we first need to
decrypt the encryption key using an asymmetric cryptographic
operation with the user’s private key (AOsk ). Hence, the user’s
subsequent effort can be determined with UiPK = AOsk+SO
for the PK approach and UiZKP = UiOTH = SO for the ZKP
and the OTH approach.

For a put operation with the PK approach, we encrypt the
data object with an SO operation. After that, the encryption
key is encrypted with the public keys of all authorized users,
i.e., a · AOpk. Again, this prepared ACL must be sent with
a subsequent set operation. Here, each message also contains
a signature which requires hashing (HO) and an asymmetric
operation with the private key (AOsk). Hence, the user’s total
subsequent effort can be determined by UiPK = SO + a ·
AOpk + HO + AOsk. For the set operation with the PK
approach, the user’s subsequent effort is similar to the put

AS Peers Ps

get put set

PK 0 AOpk + HO AOpk + HO
ZKP 0 n · 1.5 ·MO n · 1.5 ·MO
OTH 0 HO HO

TABLE VI. PEER COMPUTATIONAL OVERHEAD

operation but without the need to encrypt a data object, i.e.,
without the SO .

With the ZKP approach, we also encrypt the data object
for a put operation. To authenticate the operation, the user
calculates n responses to the challenges from each of the
2k + 1 peers. For this, she first chooses a random number
r and calculates its modular square (n MO). Depending on
the peer’s challenge (i.e., 1 or 0), the user replies with the
modular product of her secret with r or only r. On average,
there will be n/2 1s in the challenge yielding additional n/2
MOs. This involves on average n · 1.5 · (2k + 1) modular
operations (MO). Thus, the users’s subsequent effort for a put
operation is UiZKP = SO + (2k + 1) · n ·MO . Again, the set
operation needs the same effort but without the encryption of
the data object, i.e., UiZKP = (2k + 1) · n · 1.5 ·MO .

Finally, with the OTH approach, a put operation also
requires encrypting the data object. For the authentication,
we need to calculate 2k + 1 individual hashes. Hence, the
user’s subsequent effort for a put operation is UiOTH =
SO + (2k + 1) · HO . As with the other two approaches, the
only difference for the set operation is the lack of the data
object encryption, i.e., UiOTH = (2k + 1) ·HO .

In all three approaches, the user performs a majority
voting over all received results. However, this operation is
negligible in comparison to computational complex operations
like modular arithmetic or hash calculations. We summarize
our analytical results of the user’s subsequent effort in Table V.

Peer’s Effort Our final metric is the computational over-
head for the responsible peers. As we use CQ for the get
operation (cf. Section VI-A), we do not need to authenticate the
get requests. Hence, there is no overhead for the responsible
peers in comparison to a DHT w/o AC.

For a put and a set operation, the responsible peer needs
to authenticate the user. For the peer, there is no difference
whether it is an put or a set operation. With the PK approach,
the peer must verify the signature to authenticate the request.
This involves decrypting the signature with the public key and
hashing the data object. Hence, the resulting complexity is
PPK = HO + AOpk. With the ZKP and the OTH approach,
the integrity of the data object is not verified (we rely on the
k-resilience). Hence, there is no hash operation involved. The
authentication with the ZKP approach involves calculating n
times the modular square of the received response y (n MOs)
and comparing it either with the modular product v ·r2 or only
with r2, i.e., y2 ≡ vc ·r2 (mod p) for c ∈ {0, 1} (cf. Figure 3).
Whether we need to perform the modular product depends on
the challenge c. Hence, assuming that on average there are
about half of the challenge bits 1s, we need to perform n/2
MOs. This yields an average complexity of PZKP = n · 1.5 ·
MO . Finally, with the OTH approach, a responsible peer only
performs one hash calculation to verify the authenticity of the
user, i.e., POTH = HO . We summarize our results in Table VI.
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AS User Ui
s

get put set

PK AOsk + SO SO + a · AOpk + HO + AOsk a · AOpk + HO + AOsk

ZKP SO SO + (2k + 1) · n · 1.5 ·MO (2k + 1) · n · 1.5 ·MO
OTH SO SO + (2k + 1) · HO (2k + 1) · HO

TABLE V. SUBSEQUENT USER COMPUTATIONAL OVERHEAD

Operation Time

KG (RSA 2048) 317092 µs
KG (ECC 224) 685 µs

AOsk (RSA 2048) 5135 µs
AOsk (ECC 224) 170 µs

AOpk (RSA 2048) 148 µs
AOpk (ECC 224) 380 µs

HO (SHA 256) 176 µs (32 kB)
SO (AES 128) 33 µs (32 kB)
MO (665 Bits) 4 µs

TABLE VII. MEASUREMENT RESULTS

5) Simulation: To quantify the results of our analytical
analysis and to compare the three proposed authentication
mechanisms, we implemented the cryptographic operations by
using the built-in cryptographic engines from the cryptography
architecture [2] of Java SE 7. We measured the time for each
operations by taking the average of one Million executions of
the operation on a workstation (Intel i7-4900 MQ, 2.8 GHz, 32
GB RAM). Although the absolute values will vary on different
computer systems, the measurements allow to compare the pro-
posed authentication mechanisms. For the ECC-measurements,
we used the elliptic curve integrated encryption system with
AES (”ECIESwithAES”), which uses ECC together with AES
to build an asymmetric cryptosystem. In cases where only
a signature is required, it would suffice to use the Elliptic
Curve Digital Signature Algorithm (ECDSA). However, we
evaluated this and found that ECDSA is slightly slower than
ECIESwithAES. Therefore, we did not follow this further. The
time for SO and HO depends on the number of bytes encrypted
or hashed. We used 32 kB as an average size. We assume that
data objects stored in a DHT are rather small and usually fit
into a UDP packet (max 64 kB). However, even with bigger
data objects, the time needed to perform SO or HO is small
in comparison to other operations. This is probably caused
by the fact that the used processor uses hardware acceleration
for these operations (AES-NI). Nevertheless, we acknowledge
that for big data objects (several megabytes to gigabytes) this
operation can become a significant factor [9]. For MO, we
used a big integer number with 200 decimal places, i.e., 665
bits. With this size, the calculation of the discrete logarithm is
impractical. In Table VII, we summarize the measured times
in microseconds.

There are three parameters in our system, namely n, k, and
a. The parameter n is the number of challenges with our ZKP
approach. With n = 20, there is only one in a Million (1 : 220)
chance of fooling the AS. The parameter k is the number of
tolerated subverted peers. This parameter highly depends on
the possibilities of the attacker to add peers under his control
to the network. For our evaluation, we choose exemplarily k =
20. Finally, the parameter a is the amount of authenticated
users in an ACL. Exemplarily, we used a = 10.

In Figure 6, we present the resulting computational over-
head of our authentication mechanisms. For this, we used the
measured times from Table VII and the exemplary values

for the parameters from above together with the analytical
model. According to these results, the overhead for the peer
varies from 100 µs to approximately 600 µs. This overhead is
negligible in comparison to approximately 200 ms roundtrip
times for DHT operations [16].

When comparing the computational overhead of the get
operation, we must consider that the PK approaches include
the key distribution. Thus, a higher overhead for the PK
approaches is acceptable as they offer additional features.
Nevertheless, we see in Figure 6 that the overhead for the get
operation is negligible for all authentication mechanisms. The
highest overhead for the get operation is from the PK approach
with RSA, where a get operation needs approximately 5 ms.
Although this is still acceptable, the PK approach with RSA
additionally generates a notably higher overhead for put or set
during the initial access. Therefore, we suggest to use ECC
instead of RSA and consider in the remainder of this analysis
only the PK approach based on ECC.

For put and set, the OTH approach generates the highest
overhead – both on initial access and on subsequent accesses.
This is an interesting result, as the overhead for this authentica-
tion mechanism is similar to the overhead of hash chains. Hash
chains are usually preferred over asymmetric cryptography due
to their lower computational overhead. However, with OTH,
we need 2k+1 individual secrets to tolerate k subverted peers.
Therefore, its advantage disappears for a certain k. By ignoring
the overhead for the key distribution using the PK with ECC
approach (by setting a = 0), PK outperforms OTH already
for k ≈ 0.5. Also for the ZKP approach, we determined
that for a k > 1 the PK approach with ECC outperforms
ZKP for any subsequent access. However, the major advantage
of ZKP is the low overhead during initial access, where it
outperforms all other approaches. Additionally, on subsequent
accesses, ZKP needs approximately 1.5 times less resources
than OTH. However, this is just the computational overhead –
ZKP requires an additional message pair (cf. VII-B2).

In summary, the PK approach with ECC is a general
approach offering the most features with acceptable overhead.
For scenarios with more initial than subsequent accesses and
without controlled read access, ZKP is a resource friendly
alternative. An example for such a scenario is the DRS from
[15].

VIII. CONCLUSION

In this paper, we presented k-rAC, a novel fine-grained
k-resilient access control for DHTs. Currently existing DHTs
cannot be used in privacy aware applications because of the
lack of a reliable and practical access control. With our access
control, we open the door for using a DHT in such applications.
In our approach, the read or write access to each index in the
DHT can be regulated individually. We determined the owner
of a DHT entry by the initial access and provided privacy-
aware mechanisms to delegate access rights to other users.
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Fig. 6. Comparison of Authentication Mechanisms

The security of our approach is based on k-resilience, i.e., the
access control cannot be circumvented as long as the attacker
is not able to subvert more than k peers. Additionally, even in
cases when the attacker is able to subvert more than k peers,
our approach gracefully degrades. This is caused by the fact
that the attacker needs to subvert specific peers in order to
circumvent the access control for a specific index.

In our evaluation, we compared three different authentica-
tion mechanisms in terms of response time, message, storage
and computational overhead. We showed that the caused
overhead for all three approaches is acceptable. Since the
approaches have different advantages and disadvantages, it
depends on the requirements of a specific scenario which of the
authentication mechanisms should be used. The suitable au-
thentication mechanism can be determined with the presented
analytical model.

In the future, we will extend our fine-grained access control
scheme to additionally support permissions for arbitrary groups
and everyone similar to the flexible access control known from
UNIX for files. For this, we plan to store the mapping of users
to groups in the DHT.
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