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ABSTRACT

Knowledge Graphs have been recognized as a valuable source
for background information in many data mining, informa-
tion retrieval, natural language processing, and knowledge
extraction tasks. However, obtaining a suitable feature vec-
tor representation from RDF graphs is a challenging task. In
this paper, we extend the RDF2Vec approach, which lever-
ages language modeling techniques for unsupervised feature
extraction from sequences of entities. We generate sequences
by exploiting local information from graph sub-structures,
harvested by graph walks, and learn latent numerical repre-
sentations of entities in RDF graphs. We extend the way
we compute feature vector representations by comparing
twelve different edge weighting functions for performing bi-
ased walks on the RDF graph, in order to generate higher
quality graph embeddings. We evaluate our approach using
different machine learning, as well as entity and document
modeling benchmark data sets, and show that the naive
RDF2Vec approach can be improved by exploiting Biased
Graph Walks.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval
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Linked Open Data (LOD) [40], and in particular large-
scale, cross-domain knowledge graphs such as DBpedia [17],
have been recognized as a valuable source of background
knowledge in many data mining tasks and knowledge dis-
covery in general [37]. Augmenting a dataset with features
taken from knowledge graphs can, in many cases, improve
the results of a data mining problem at hand, while exter-
nalizing the cost of maintaining that background knowledge
[28, 37].

Most data mining algorithms work with a propositional
feature vector representation of the data, i.e., each instance
is represented as a vector of features ⟨f1, f2, ..., fn⟩, where
the features are either binary (i.e., fi ∈ {true, false}), nu-
merical (i.e., fi ∈ R), or nominal (i.e., fi ∈ S, where S is
a finite set of symbols). Knowledge graphs, however, are
graphs by nature, connecting resources with types and rela-
tions, backed by a schema or ontology.

Thus, for accessing knowledge graphs with existing data
mining tools and algorithms, transformations have to be per-
formed, which create propositional features from the graphs,
i.e., a process called propositionalization [15]. Usually, bi-
nary features (e.g., true if a type or relation exists, false
otherwise) or numerical features (e.g., counting the number
of relations of a certain type) are used [30, 35]. Other vari-
ants, e.g., counting different graph sub-structures are possi-
ble [6], which are not suitable for large datasets or graphs,
as they produce a large number of features.

In [36], we have introduced RDF2Vec, a generic method
for embedding entities in knowledge graphs into lower-dimensional
vector spaces. The approach adapts neural language model-
ing techniques, specifically word2vec, which takes sequences
of words to embed words into vector spaces [21, 20]. We
have shown that it is possible to compute and reuse such
embeddings for large-scale knowledge graphs.

For adapting word2vec for knowledge graphs, the first step
is to extract meaningful sequences of entities from a knowl-
edge graph, which capture the surrounding knowledge of
each entity. Our results in [36] have shown that random
walks are a feasible and, in contrast to other techniques
such as kernels, also a well scalable approach for extract-



ing sequences.
In this paper, we examine methods to direct the random

walks in more meaningful ways, i.e., being able to capture
more important information about each entity in the graph.
We test a dozen weighting schemes which influence the walks
and, thus, the resulting sequences. The experiments show
that the choice of weights has a crucial influence on the
utility of the resulting embeddings.
The rest of this paper is structured as follows. In Sec-

tion 2, we give an overview of related work. In Section 3, we
provide a short introduction to neural language models. In
Section 4, we introduce our approach, followed by an eval-
uation in Section 5. We conclude with a summary and an
outlook on future work.

2. RELATEDWORK
In the recent past, a few approaches for generating data

mining features from Linked Open Data have been proposed.
Many of those approaches are supervised, i.e., they let the
user formulate SPARQL queries, and a fully automatic fea-
ture generation is not possible. LiDDM [13] allows the users
to declare SPARQL queries for retrieving features from LOD
that can be used in different machine learning techniques.
Similarly, Cheng et al. [3] propose an approach for fea-
ture generation which requires the user to specify SPARQL
queries. A similar approach has been used in the Rapid-
Miner1 semweb plugin [14], which preprocesses RDF data
in a way that it can be further processed directly in Rapid-
Miner. Mynarz et al. [23] have considered using user speci-
fied SPARQL queries in combination with SPARQL aggre-
gates.
FeGeLOD [30] and its successor, the RapidMiner Linked

Open Data Extension [33], have been the first fully auto-
matic unsupervised approach for enriching data with fea-
tures that are derived from LOD. The approach uses six
different unsupervised feature generation strategies, explor-
ing specific or generic relations. It has been shown that
such feature generation strategies can be used in many data
mining tasks [31, 33].
A similar problem is handled by Kernel functions, which

compute the distance between two data instances by count-
ing common substructures in the graphs of the instances, i.e.
walks, paths, and trees. In the past, many graph kernels
have been proposed that are tailored towards specific ap-
plications [12], or towards specific semantic representations
[9]. Only a few approaches are general enough to be applied
on any given RDF data, regardless the data mining task.
Lösch et al. [19] introduce two general RDF graph kernels,
based on intersection graphs and intersection trees. Later,
the intersection tree path kernel was simplified by de Vries
et al. [5]. In another work, de Vries et al. [4, 6] introduce
an approximation of the state-of-the-art Weisfeiler-Lehman
graph kernel algorithm aimed at improving the computa-
tional time of the kernel when applied to RDF. Furthermore,
the kernel implementation allows for explicit calculation of
the instances’ feature vectors, instead of pairwise similari-
ties.
The RDF2Vec approach is closely related to the approaches

DeepWalk [32] and Deep Graph Kernels [45]. DeepWalk
uses language modeling approaches to learn social repre-
sentations of vertices of graphs by modeling short random-

1http://www.rapidminer.com/

walks on large social graphs, like BlogCatalog, Flickr, and
YouTube. The Deep Graph Kernel approach extends the
DeepWalk approach, by modeling graph substructures, like
graphlets, instead of graph walks. In this paper, we pursue
and deepen the idea of random and biased walks since those,
unlike other transformation approaches, such as graph ker-
nels, walks have proven to be scalable even to large RDF
graphs. Node2vec [10] is another approach very similar to
DeepWalk, which uses second order random walks to pre-
serve the network neighborhood of the nodes.

Furthermore, there have been proposed multiple approaches
for knowledge graph embeddings for the task of link pre-
diction [25], which could also be considered as approaches
for generating propositional features from graphs. RESCAL
[26] is one of the earliest approaches, which is based on fac-
torization of a three-way tensor. The approach is later ex-
tended into Neural Tensor Networks (NTN) [41] which can
be used for the same purpose. One of the most successful
approaches is the model based on translating embeddings,
TransE [1]. This model builds entity and relation embed-
dings by regarding a relation as translation from head entity
to tail entity. This approach assumes some relationships be-
tween words could be computed by their vector difference
in the embedding space. However, this approach cannot
deal with reflexive, one-to-many, many-to-one, and many-
to-many relations. This problem was resolved in the TransH
model [44], which models a relation as a hyperplane together
with a translation operation on it. More precisely, each rela-
tion is characterized by two vectors, the norm vector of the
hyperplane, and the translation vector on the hyperplane.
While both TransE and TransH, embed the relations and
the entities in the same semantic space, the TransR model
[18] builds entity and relation embeddings in separate entity
space and multiple relation spaces. This approach is able
to model entities that have multiple aspects, and various
relations that focus on different aspects of entities.

3. PRELIMINARIES
Neural language models have been developed in the NLP

field as an alternative to represent texts as a bag of words,
and hence, a binary feature vector, where each vector index
represents one word. While such approaches are simple and
robust, they suffer from several drawbacks, e.g., high dimen-
sionality and severe data sparsity, which limits the perfor-
mance of such techniques. To overcome such limitations,
neural language models have been proposed, inducing low-
dimensional, distributed embeddings of words by means of
neural networks. The goal of such approaches is to estimate
the likelihood of a specific sequence of words appearing in a
corpus, explicitly modeling the assumption that closer words
in the word sequence are statistically more dependent.

While some of the initially proposed approaches suffered
from inefficient training of the neural network models, with
the recent advancements in the field several efficient ap-
proaches has been proposed. One of the most popular and
widely used is the word2vec neural language model [20, 21].
Word2vec is a particularly computationally-efficient two-layer
neural net model for learning word embeddings from raw
text. There are two different algorithms, the Continuous
Bag-of-Words model (CBOW) and the Skip-Gram model.

3.1 Continuous Bag-of-Words Model
The CBOW model predicts target words from context



words within a given window. The model architecture is
shown in Fig. 1. The input layer is comprised from all the
surrounding words for which the input vectors are retrieved
from the input weight matrix, averaged, and projected in
the projection layer. Then, using the weights from the out-
put weight matrix, a score for each word in the vocabulary
is computed, which is the probability of the word being a
target word. Formally, given a sequence of training words
w1, w2, w3, ..., wT , and a context window c, the objective of
the CBOW model is to maximize the average log probabil-
ity:

1

T

T∑
t=1

log p(wt|wt−c...wt+c), (1)

where the probability p(wt|wt−c...wt+c) is calculated using
the softmax function:

p(wt|wt−c...wt+c) =
exp(v̄T v′wt

)∑V
w=1 exp(v̄

T v′w)
, (2)

where v′w is the output vector of the word w, V is the com-
plete vocabulary of words, and v̄ is the averaged input vector
of all the context words:

v̄ =
1

2c

∑
−c≤j≤c,j ̸=0

vwt+j (3)

3.2 Skip-Gram Model
The skip-grammodel does the inverse of the CBOWmodel

and tries to predict the context words from the target words
(Fig. 2). More formally, given a sequence of training words
w1, w2, w3, ..., wT , and a context window c, the objective of
the skip-gram model is to maximize the following average
log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j |wt), (4)

where the probability p(wt+j |wt) is calculated using the soft-
max function:

p(wo|wi) =
exp(v′Twovwi)∑V
w=1 exp(v

′T
w vwi)

, (5)

where vw and v′w are the input and the output vector of the
word w, and V is the complete vocabulary of words.
In both cases, calculating the softmax function is com-

putationally inefficient, as the cost for computing is pro-
portional to the size of the vocabulary. Therefore, two op-
timization techniques have been proposed, i.e., hierarchical
softmax and negative sampling [21]. Empirical studies haven
shown that in most cases negative sampling leads to a bet-
ter performance than hierarchical softmax, which depends
on the selected negative samples, but it has higher runtime.
Once the training is finished, all words (or, in our case,

knowledge base entities) are projected into a lower-dimensional
feature space, and semantically similar words are positioned
close to each other.

4. APPROACH
In our approach, we adapt neural language models for

RDF graph embeddings. Such approaches take advantage
of the word order in text documents, explicitly modeling
the assumption that closer words in the word sequences are

Figure 1: CBOW architecture

Figure 2: Skip-gram architecture

statistically more dependent. In the case of RDF graphs,
we consider entities and relations between entities instead
of word sequences. Thus, in order to apply such approaches
on RDF graph data, we first have to transform the graph
data into sequences of entities, which can be considered as
sentences. Using those sequences, we can train the same
neural language models to represent each entity in the RDF
graph as a vector of numerical values in a latent feature
space.

We use graph walks for converting graphs into a set of
sequences of entities. An example of an entity sequence ex-
tracted using graph walks from DBpedia would be: dbr :
Trent Reznor → dbo : associatedBand→ dbr : Nine Inch Nails
→ dbo : genre → dbr : Industrial Rock. To perform these
walks on RDF graphs, we represent the graph as a set of ver-
tices (the entities in the RDF graph) and a set of directed
edges (the relations between the entities).

The objective of the walk functions is for each vertex v ∈
V to generate a set of sequences Sv, where the first token of
each sequence s ∈ Sv is the vertex v followed by a sequence
of tokens, which might be the labels of edges, vertices, or
any substructure extracted from the RDF graph, in an order
that reflects the relations between the vertex v and the rest
of the tokens, as well as among those tokens.

What we want to achieve is a biasing of these walks to
make them more meaningful, i.e., being able to capture
the most important information about the observed enti-
ties. Therefore, we augment the edges to not only have a
label, but also a weight. We apply twelve different strate-



gies for assigning these weights to the edges of the graph.
These weights will then in turn bias the random walks on
the graph. In particular, when a walk arrives in a vertex v
with out edges vo1, . . . vod, then the walk will follow edge vol
with a probability computed by

Pr[follow edge vol] =
weight(vol)∑d
i=1 weight(voi)

In other words, the normalized edge weights are directly
interpreted as the probability to follow a particular edge.
To obtain these edge weights, we make use of different

statistics computed on the RDF data. The statistics com-
puted are the following:

Predicate Frequency for each predicate in the dataset,
we count the number of times the predicate occurs
(only occurrences as a predicate are counted).

Object Frequency for each resource in the dataset, we
count the number of times it occurs as the object of a
triple.

Predicate-Object frequency for each pair of a predicate
and an object in the dataset, we count the number
of times there is a statement with this predicate and
object.

Besides these statistics, we also use PageRank [2] com-
puted for the entities in the knowledge graph [42]. This
PageRank is computed based on links between theWikipedia
articles representing the respective entities. When using
the PageRank computed for DBpedia, not each node has a
value assigned, as only entities which have a corresponding
Wikipedia page are accounted for in the PageRank compu-
tation. Examples of nodes which do not have a PageRank in-
clude DBpedia types or categories, like http://dbpedia.org/
ontology/Place and http://dbpedia.org/resource/Category:
Central Europe. Therefore, we assigned a fixed PageRank
to all nodes which are not entities. We chose a value of
0.2, which is roughly the median PageRank [43], in the non-
normalized page rank values we used.
Note that there are essentially two types of metrics, those

assigned to nodes, and those assigned to edges. The pred-
icate frequency and predicate-object frequency, as well as
the inverses of these, can be directly used as weights for
edges. Therefore, we call these weighting methods edge-
centric. In the case of predicate frequency each predicate
edge with that label is assigned the weight in question. In
the case of predicate-object frequency, each predicate edge
which ends in a given object gets assigned the predicate-
object frequency. When computing the inverse metrics, not
the absolute frequency is assigned, but its multiplicative in-
verse.
In contrast, the object frequency, and also the used Page-

Rank metric, assign a numeric score to each node in the
graph. Therefore, we call weighting approaches based on
them node-centric. To obtain a weight for the edges, we
either push the number down or split the number down to
all in edges. By pushing down, we mean that the number
assigned to a node is used as the weight of all in edges. By
splitting down, we mean that the weight is divided by the
number of in edges and then assigned to all edges. Then,
these weights can be normalized as described above. If split
is not mentioned explicitly in node centric weighting strate-
gies, then it is a push down strategy.

In total, we inspected twelve different approaches for weight-
ing edges using the metrics defined above.

Note that uniform weights are equivalent to using object
frequency with splitting the weights. To see why this holds
true, we have to follow the steps which will be taken. First,
each node gets assigned the amount of times it is used as
an object. This number is equal to the number of in edges
to the node. Then, this number is split over the in edges,
i.e., each in edge gets assigned the number 1. Finally, this
weight is normalized, assigning to each out link a uniform
weight. Hence, this strategy would result in the same walks
as using unbiased random walks over the graph.

So, even if we add unbiased random walks to the list of
weighting strategies, we retain 12 unique ones, each with
their own characteristics. These strategies are:
Uniform approach:

1. Uniform Weight = Object Frequency Split Weight –
This is the most straight forward approach, also taken
by the standard RDF2Vec models. At first glance, it
also looks like the most neutral strategy. However,
the input graph does not have a regular structure in
the sense that some entities have a (much) higher in
degree as others and hence they are more likely to be
visited. Thus, more strongly connected entities will
have a higher influence on the resulting embeddings.

Edge-centric approaches:

2. Predicate Frequency Weight –With this strategy, edges
with predicates which are commonly used in the dataset
are more often followed. The effect of this is that many
uncommon predicates are never followed in our exper-
iments and, as a result of that, many entities are also
never visited in the walks. On the other hand,there
are a few entities which have a very high in degree,
and which thus attract a lot of walks towards them.

3. Inverse Predicate Frequency Weight – This strategy
has at first sight a similar effect as the previous, but
for other nodes. Those predicates which are rare will
be followed often. However, predicates follow a long-
tail distribution, and there are more predicates which
are rare than common, thus, the diversity of predicates
occurring in the walks is higher. Moreover, despite
having a low probability, also edges with a common
predicate are followed once in a while as they occur so
often in the dataset.

4. Predicate-Object Frequency Weight – This is similar
to the Predicate Frequency Weight, but differentiates
between the objects as well. If we have for exam-
ple an outgoing link with label rdf:type with object
owl:Thing, then this link will be followed more of-
ten than, e.g., the same predicate with object dbpe-

dia:AdministrativeRegion.

5. Inverse Predicate-Object Frequency Weight – The in-
verse of the previous, with similar features to Inverse
Predicate Frequency Weight. We measured that this
approach results in walks in which nodes occur most
uniformly.

Node-centric object freq. approaches (See also strategy 1):

6. Object Frequency Weight – This weighting does essen-
tially ignore the predicate altogether and just ensures



that entities which have a high in degree get visited
even more often.

7. Inverse Object Frequency Weight – This approach also
ignores the predicate, but makes the probability for
nodes to be visited more equally distributed. Hence,
according to our measurements entities occur nearly
as uniformly in walks as for Inverse Predicate-Object
Frequency Weight.

8. Inverse Object Frequency Split Weight – The general
statistics for these walks look surprisingly similar to
the non inverted strategy.

Node-centric PageRank approaches:

9. PageRank Weight – Similar to Object FrequencyWeight,
this strategy makes some nodes more important and
hence there will be resources which are more frequent
in the walks as others.

10. Inverse PageRank Weight – One would expect that
this approach would have a similar effect as Inverse
Object Frequency Weight, however, our measurements
show that the inversion does not cause more uniform
occurrence of entities as strongly as that strategy.

11. PageRank Split Weight – Both this approach and the
next one are somewhat difficult to predict as they do
not only depend on the structure on the graph. Our
analysis of the walks show that nodes are fairly uni-
formly used in these walks. Furthermore, these strate-
gies result in a high uniformity in the absolute fre-
quency of predicates.

12. Inverse PageRank Split Weight – The generated walks
have similar statistics as PageRank Split Weight. The
expectation is, however, that in this metric tends to
include more unimportant nodes in the walks.

For each set of the twelve sets of sequences created us-
ing those metrics, we build one CBOW and one skip-gram
model, as described in Section 3. Hence, we compare a total
of 24 different embeddings.

5. EVALUATION
First, we evaluate the different weighting strategies on a

number of classification and regression tasks, comparing the
results of different feature extraction strategies combined
with different learning algorithms. Second, we evaluate the
weighting strategies on entity and document modeling tasks,
i.e., entity relatedness and document similarity.
To build the neural language models, we generate 250

walks per entity with depths of 2,4,6, and 8 for each of the
twelve edge weighting strategies. A depth of eight means
four hops in the graph, as each hop adds two elements to
the sequence (i.e., the predicate and the object). Since, the
entity which is the source of the walk is also include in the
path, the corresponding path lengths are 3,5,7, and 9. When
the walk reaches a “dead end”, i.e., a node without any out-
going edges, the walk ends in that node, even if the maxi-
mum depth is not reached.
We use the corpora of sequences to build both CBOW

and Skip-Gram models with the following parameters: win-
dow size = 5; number of iterations = 5; negative sampling

for optimization; negative samples = 25; dimensions = 200;
with average input vector for CBOW. The parameters are
selected based on recommendations from the literature. All
the models, as well as the code, are publicly available2.

5.1 Machine Learning Tasks
Linking entities in a machine learning task to those in

the LOD cloud helps generating additional features, which
may help improving the overall learning outcome [37]. For
example, when learning a predictive model for the success
of a movie, adding knowledge from the LOD cloud (such as
the movie’s budget, director, genre, etc.) can lead to a more
accurate model. In this case, for each entity in the dataset,
we use the correposing entity’s embedded vector from the
knowledge base as a feature vector.

5.1.1 Datasets

We evaluate our approach on DBpedia [17]. We use the
English version of the 2016-04 DBpedia dataset, which con-
tains 4, 678, 230 instances and 1, 379 mapping-based proper-
ties. In our evaluation we only consider object properties,
and ignore datatype properties and literals.

We use the entity embeddings on five different datasets
from different domains, for the tasks of classification and
regression [34]. Those five datasets are used to provide clas-
sification/regression targets for the large RDF datasets (see
Table 1).

• The Cities dataset contains a list of cities and their
quality of living, as captured by Mercer3. We use the
dataset both for regression and classification.

• The Metacritic Movies dataset is retrieved from Meta-
critic.com4, which contains an average rating of all
time reviews for a list of movies [38]. The initial dataset
contained around 10, 000 movies, from which we se-
lected 1, 000 movies from the top of the list, and 1, 000
movies from the bottom of the list. We use the dataset
both for regression and classification.

• Similarly, the Metacritic Albums dataset is retrieved
from Metacritic.com5, which contains an average rat-
ing of all time reviews for a list of albums [39].

• The AAUP (American Association of University Pro-
fessors) dataset contains a list of universities, including
eight target variables describing the salary of different
staff at the universities6. We use the average salary as
a target variable both for regression and classification,
discretizing the target variable into “high”, “medium”
and “low”, using equal frequency binning.

• The Forbes dataset contains a list of companies in-
cluding several features of the companies, which was
generated from the Forbes list of leading companies

2http://data.dws.informatik.uni-mannheim.de/rdf2vec/
3https://www.imercer.com/content/mobility/
quality-of-living-city-rankings.html
4http://www.metacritic.com/browse/movies/score/
metascore/all
5http://www.metacritic.com/browse/albums/score/
metascore/all
6http://www.amstat.org/publications/jse/jse\ data\
archive.htm



Table 1: Classification and regression datasets
overview. For each dataset, we depict the number of
instances, the machine learning tasks in which the
dataset is used (C stands for classification, and R
stands for regression) and the source of the dataset.

Dataset #Instances ML Task Original Source
Cities 212 R/C (c=3) Mercer

Metacritic Albums 1600 R/C (c=2) Metacritic
Metacritic Movies 2000 R/C (c=2) Metacritic

AAUP 960 R/C (c=3) JSE
Forbes 1585 R/C (c=3) Forbes

20157. The target is to predict the company’s market
value as a regression task. To use it for the task of clas-
sification we discretize the target variable into “high”,
“medium”, and “low”, using equal frequency binning.

5.1.2 Experimental Setup

As in [36], we compare our approach to several baselines.
For generating the data mining features, we use three strate-
gies that take into account the direct relations to other re-
sources in the graph [30], and two strategies for features
derived from graph sub-structures [6]:

• Features derived from specific relations. In the ex-
periments we use the relations rdf:type (types), and
dcterms:subject (categories).

• Features derived from generic relations, i.e., we gen-
erate a feature for each incoming (rel in) or outgoing
relation (rel out) of an entity, ignoring the value or
target entity of the relation.

• Features derived from generic relations-values, i.e, we
generate feature for each incoming (rel-vals in) or out-
going relation (rel-vals out) of an entity including the
value of the relation.

• Kernels that count substructures in the RDF graph
around the instance node. These substructures are
explicitly generated and represented as sparse feature
vectors.

– TheWeisfeiler-Lehman (WL) graph kernel for RDF [6]
counts full subtrees in the subgraph around the
instance node. This kernel has two parameters,
the subgraph depth d and the number of itera-
tions h (which determines the depth of the sub-
trees). We use two pairs of settings, d = 1, h = 2
and d = 2, h = 3.

– The Intersection Tree Path kernel for RDF [6]
counts the walks in the subtree that spans from
the instance node. Only the walks that go through
the instance node are considered. We will there-
fore refer to it as the root Walk Count (WC) ker-
nel. The root WC kernel has one parameter: the
length of the paths l, for which we test 2 and 3.

Furthermore, we compare the results to the state-of-the
art graph embeddings approaches: TransE, TransH and TransR.
We use an existing implementation and build models on the
the DBpedia data with the default parameters.8

7http://www.forbes.com/global2000/list/
8https://github.com/thunlp/KB2E/

We perform two learning tasks, i.e., classification and re-
gression. For classification tasks, we use Naive Bayes, k-
Nearest Neighbors (k=3), C4.5 decision tree, and Support
Vector Machines. For the SVM classifier we optimize the
parameter C in the range {10−3, 10−2, 0.1, 1, 10, 102, 103}.
For regression, we use Linear Regression, M5Rules, and k-
Nearest Neighbors (k=3). The results are calculated using
stratified 10-fold cross validation.

The strategies for creating propositional features from Linked
Open Data are implemented in the RapidMiner LOD exten-
sion9 [31, 33]. The experiments, including the feature gener-
ation and the evaluation, were performed using the Rapid-
Miner data analytics platform.10 The RapidMiner processes
and the complete results can be found online.11

For comparing the approaches, we follow the approach
introduced by Demšar [7]. The approach proposes to first
rank the strategies for each dataset in isolation, and then to
compute a significance level for the difference of ranks using
a Friedman test. While the Friedman test only determines
whether there is a significant difference between any of the
compared approaches, pairwise significance levels are com-
puted with a post-hoc Nemenyi test [24]. The results of the
post-hoc test allows for concluding if one approach signifi-
cantly outperforms another one. For the Friedman test we
select a significance level of α = 0.10, and for the post-hoc
Nemenyi test we use critical values q = 0.05. We carry out
the test on each learning method separately.

5.1.3 Results

The results for the task of classification on the five differ-
ent datasets using four different learning methods are given
in Table 2. For each of the datasets and for each learning
method, we select the best performing results of all the base-
lines, and report it under Best baseline. Using the Friedman
test, the null hypothesis was rejected for the performances
of the strategies when using Naive Bayes and KNN, mean-
ing there is a significant performance difference between the
strategies.

The results for the task of regression on the five different
datasets using four different learning methods are given in
Table 3. Using the Friedman test, the null hypothesis was re-
jected for the performances of the strategies when using Lin-
ear Regression, meaning there is a significant performance
difference between the strategies.

From the results for both tasks we can conclude that
the RDF2Vec approach outperforms the baseline approaches
and also outperforms the state-of-the art graph embeddings
models. Furthermore, Inverse PageRank Weight and Page-
Rank Split Weight strategies perform well for different learn-
ing methods. Overall, the skip-gram models outperform the
corresponding CBOWmodels for most of the strategies. Un-
expectedly, the Uniform Weight strategy also yields compet-
itive results.

However, for the variety of tasks at hand, there is no uni-
versal approach, i.e., embedding model and a machine learn-
ing method, that consistently outperforms the others.

5.2 Entity and Document Modeling

9http://dws.informatik.uni-mannheim.de/en/research/
rapidminer-lod-extension

10https://rapidminer.com/
11http://data.dws.informatik.uni-mannheim.de/rmlod/
LOD\ ML\ Datasets/



Table 2: Classification average rank results. The best ranked results for each method are marked in bold.
The learning models for which the strategies were shown to have significant difference based on the Friedman
test with α < 0.05 are marked with *. The single values marked with ∗ mean that are significantly worse
than the best strategy at significance level q = 0.05

Method NB* KNN* SVM C4.5

Uniform Weight CBOW 14.4 9.7 12.8 9.4
SG 6.4 3.3 10.0 6.6

Edge-centric approaches

Predicate Frequency Weight
CBOW 14.0 11.3 12.6 14.0
SG 11.6 11.1 10.4 12.8

Inverse Predicate Frequency Weight
CBOW 24.6* 25.6* 22.5 19.8
SG 23.0 19.4 15.8 18.2

Predicate Object Frequency Weight
CBOW 20.5 20.9 17.9 20.8
SG 20.4 20.3 16.7 20.6

Inverse Predicate Object Frequency Weight
CBOW 19.0 16.8 15.3 15.4
SG 17.2 15.6 10.6 12.2

Node-centric object freq. approaches

Object Frequency Weight
CBOW 19.1 20.2 17.9 21.0
SG 17.8 14.6 14.0 15.8

Inverse Object Frequency Weight
CBOW 7.0 10.6 10.2 7.6
SG 19.6 19.4 15.7 21.0

Inverse Object Frequency Split Weight
CBOW 18.8 16.7 16.0 13.4
SG 7.4 10.9 13.1 14.2

Node-centric PageRank approaches

PageRank Weight
CBOW 25.2* 22.6 20.9 19.0
SG 14.2 9.8 9.8 13.0

Inverse PageRank Weight
CBOW 8.2 14.8 12.4 10.6
SG 4.8 10.0 9.8 9.0

PageRank Split Weight
CBOW 23.4 10.9 17.0 15.2
SG 4.4 4.7 6.7 8.4

Inverse PageRank Split Weight
CBOW 13.4 11.3 17.9 15.6
SG 7.4 8.9 11.6 10.6

Baseline and related approaches
Best Baseline 12.0 15.0 19.0 7.8

TransE 10.0 16.7 16.8 16.6
TransH 9.8 15.8 16.3 17.2
TransR 12.4 19.1 16.3 20.2

Calculating entity relatedness and similarity are funda-
mental problems in numerous tasks in information retrieval,
natural language processing, and Web-based knowledge ex-
tractions. While similarity only considers subsumption re-
lations to assess how two objects are alike, relatedness takes
into account a broader range of relations, i.e., the notion of
relatedness is wider than that of similarity. For example,
“Facebook” and “Google” are both entities of the class com-
pany, and they have high similarity and relatedness score.
On the other hand, “Facebook” and “Mark Zuckerberg” are
not similar at all, but are highly related. While “Google”
and “Mark Zuckerberg” are not similar at all, and have low
relatedness value.
As previously mentioned, in the RDF2Vec feature embed-

ding space (see Section 4) semantically similar entities ap-
pear close to each other in the feature space. Therefore, the
problem of calculating the similarity between two instances
is a matter of calculating the distance between two instances
in the given feature space. To do so, we use the standard
cosine similarity measure, which is applied on the vectors of
the entities. Formally, the similarity between two entities e1
and e2, with vectors V1 and V2, is calculated as the cosine

similarity between the vectors V1 and V2:

sim(e1, e2) =
V1 · V2

||V1|| · ||V2||
(6)

We use the entity similarity approach in the task of cal-
culating semantic document similarity. We follow similar
approach as the one presented in [27], where two documents
are considered to be similar if many entities of the one docu-
ment are similar to at least one entity in the other document.
More precisely, we try to identify the most similar pairs of
entities in both documents, ignoring the similarity of all the
other 1-1 similarities values.

Given two documents d1 and d2, the similarity between
the documents sim(d1, d2) is calculated as follows:

1. Extract the sets of entities E1 and E2 in the documents
d1 and d2.

2. Calculate the similarity score sim(e1i, e2j) for each
pair of entities in document d1 and d2, where e1i ∈ E1

and e2j ∈ E2

3. For each entity e1i in d1 identify the maximum simi-
larity to an entity in d2 max sim(e1i, e2j ∈ E2), and



Table 3: Regression average rank results. The best ranked results for each method are marked in bold. The
learning models for which the strategies were shown to have significant difference based on the Friedman test
with α < 0.05 are marked with *. The single values marked with ∗ mean that are significantly worse than
the best strategy at significance level q = 0.05

Method LR* KNN M5

Uniform Weight CBOW 8.0 7.4 9.0
SG 4.4 7.6 8.8

Edge-centric approaches

Predicate Frequency Weight
CBOW 10.8 13.4 10.8
SG 15.0 11.6 16.4

Inverse Predicate Frequency Weight
CBOW 22.0 16.8 21.6
SG 13.0 15.4 17.2

Predicate Object Frequency Weight
CBOW 24.6* 22.4 24.2
SG 24.8* 23.6 24.8

Inverse Predicate Object Frequency Weight
CBOW 12.6 14.0 13.4
SG 6.2 10.6 8.2

Node-centric object freq. approaches

Object Frequency Weight
CBOW 22.8 22.2 21.6
SG 10.8 15.0 14.6

Inverse Object Frequency Weight
CBOW 6.8 10.0 9.4
SG 26.0* 22.8 23.8

Inverse Object Frequency Split Weight
CBOW 21.0 20.2 19.0
SG 13.2 15.6 13.2

Node-centric PageRank approaches

PageRank Weight
CBOW 25.8* 18.0 25.6
SG 7.0 15.4 7.8

Inverse PageRank Weight
CBOW 11.4 8.8 13.0
SG 7.4 6.8 6.2

PageRank Split Weight
CBOW 17.6 12.2 17.8
SG 8.6 10.2 8.4

Inverse PageRank Split Weight
CBOW 17.6 18.2 17.8
SG 9.4 11.2 7.2

Baseline and related approaches
Best Baseline 17.4 9.6 9.6

TransE 12.8 16.7 13.0
TransH 12.8 14.1 12.4
TransR 16.2 16.2 11.2

vice versa.

4. Calculate the similarity score between the documents
d1 and d2 as:

sim(d1, d2) =
∑|E1|

i=1 max sim(e1i,e2j∈E2)+
∑|E2|

j=1 max sim(e2j ,e1i∈E1)

|E1|+|E2|
(7)

For entity similarity, we assume that two entities are re-
lated if they often appear in the same context. For exam-
ple, “Facebook” and “Mark Zuckerberg”, which are highly
related, are often used in the same context in many sen-
tences. To calculate the probability of two entities being
in the same context, we make use of the RDF2Vec models
and the set of sequences of entities generated as described in
Section 4. Given an RDF2Vec model and a set of sequences
of entities, we calculate the relatedness between two enti-
ties e1 and e2, as the probability p(e1|e2) calculated using
the softmax function. In the case of a CBOW model, the
probability is calculated as:

p(e1|e2) =
exp(vTe2v

′
e1)∑V

e=1 exp(v
T
e2v

′
e)
,

where v′e is the output vector of the entity e, and V is the
complete vocabulary of entities.

In the case of a skip-gram model, the probability is calcu-
lated as:

p(e1|e2) =
exp(v′Te1 ve2)∑V
e=1 exp(v

′T
e ve2)

, (8)

where ve and v′e are the input and the output vector of the
entity e, and V is the complete vocabulary of entities.

5.2.1 Datasets

For both tasks of determining entity relatedness and doc-
ument similarity, benchmark datasets exist. We use those
datasets to compare the use of RDF2Vec models against
state of the art approaches.

For evaluating the entity relatedness approach, we use the
KORE dataset [11]. The dataset consists of 21 main entities,
whose relatedness to the other 20 entities each has been
manually assessed, leading to 420 rated entity pairs. We use
the Spearman’s rank correlation as an evaluation metric.

To evaluate the document similarity approach, we use
the LP50 dataset [16], namely a collection of 50 news arti-
cles from the Australian Broadcasting Corporation (ABC),



Table 4: Entity relatedness Spearman’s rank corre-
lation results
Method ρ

Uniform Weight
CBOW 0.384
SG 0.564

Edge-centric approaches

Predicate Frequency Weight
CBOW -0.058
SG -0.123

Inverse Predicate Frequency Weight
CBOW 0.468
SG 0.584

Predicate Object Frequency Weight
CBOW 0.076
SG -0.043

Inverse Predicate Object Frequency
CBOW 0.578
SG 0.610

Node-centric object freq. approaches

Object Frequency Weight
CBOW -0.096
SG -0.102

Inverse Object Frequency Weight
CBOW 0.429
SG 0.554

Inverse Object Frequency Split Weight
CBOW 0.447
SG 0.489

Node-centric PageRank approaches

PageRank Weight
CBOW 0.378
SG 0.456

Inverse PageRank Weight
CBOW 0.411
SG 0.426

PageRank Split Weight
CBOW 0.621
SG 0.634

Inverse PageRank Split Weight
CBOW 0.462
SG 0.487

Related approaches
TransE 0.091
TransH 0.050
TransR 0.058

which were pairwise annotated with similarity rating on a
Likert scale from 1 (very different) to 5 (very similar) by 8
to 12 different human annotators. To obtain the final sim-
ilarity judgments, the scores are averaged for each pair the
scores of all annotators. As a evaluation metrics we use
Pearson’s linear correlation coefficient and Spearman’s rank
correlation plus their harmonic mean.

5.2.2 Results

In this section we evaluate the different weighting strate-
gies and compare them to the state of the art graph embed-
ding approaches TransE, TransH and TransR, on the entity
relatedness and document similarity tasks.
The results for the entity relatedness task are shown in

Table 4. We can observe that the translating embeddings
models perform rather poor, becuase we use the simple co-
sine similarity between the entitites to calculate the similar-
ity. The best results are achieved when using the PageRank
Split Weight strategy, using skip-gram model.
The results for the document similarity task are shown

in Table 5. Again, the RDF2Vec models outperform the
translating embeddings models. As for the entity relatedness
task, the best results are obtained using the PageRank Split
Weight strategy.

5.3 Walk statistics

As we already partially discussed in section 4, each strat-
egy results in different characteristics for the random walks.
In particular, the walks can have different lengths, since
each strategy has a different likelihood to steer the walks
into “dead ends”, i.e., nodes with no outgoing edges, more
quickly. Thus, for the DBpedia dataset which we used, we
further analyzed the length of the walks generated using the
different strategies. The histograms for the walk lengths
for each of the strategies are plotted together in fig. 3. We
can observe that the uniform weight, predicate frequency
weight, object frequency weight and predicate object fre-
quency weight strategies result in a lot of short walks. These
are exactly the strategies which give extra weight to edges
going into specific popular nodes. It appears that these en-
tities are then often also end points of the walk, i.e, there
are no out edges from these nodes. We observe that the
other strategies produce walks of maximum length most of
the time.

However, we cannot derive that longer or shorter paths
are better, as the three best performing approaches, i.e.,
uniform, inverse page rank, and page rank split, have very
different behaviors: the first favors shorter sequences, the
second produces an equal distribution of sequences of differ-
ent lengths, and the third favors longer sequences.

6. CONCLUSION
Vector space embeddings for RDF graphs have been proven

a high utility and powerful approach for transforming RDF
data and knowledge graphs to propositional forms. The
RDF2Vec approach, first introduced in [36], leverages ran-
dom walks for transforming RDF graphs to token sequences,
which is a necessary approach to be able to apply standard
vector space embeddings techniques like CBOW and Skip-
Gram.

In this paper, we have examined the influence of edge
weights and transition probabilities to guide the walks, i.e.,
to make them less uniformly random. We have shown that
introducing biases to the walks can lead to significant im-
provements. In particular, the PageRank split and the in-
verse PageRank weighting schemes provide good results.

So far, we have based our evaluations on machine learning
and document modeling tasks. For future work, we will also
study the effect on other tasks in which knowledge graph
embeddings have been applied successfully, such as content-
based recommender systems [8], as well as link predictions,
type prediction, graph completion and error detection in
knowledge graphs [29], as discussed in [22, 25].

In our experiments, we have also experienced that there
is not a one-size-fits-all solution for the weighting schemes.
Although there are some trends that can be observed, the
performance of the weighting schemes is hard to predict in
individual cases. Among others, we assume that one cru-
cial factor is the popularity of entities: for example, for very
popular entities, the PageRank heuristic is assumed to work
well, because it extracts more sequences containing popular
entities, while for tail entities, the inverse PageRank heuris-
tic will lead to better results. Future evaluations should
examine those effects more deeply.

Summarizing, RDF and knowledge graph embeddings are
a useful approach for leveraging background knowledge in
those sources. With this paper, we have explored one crucial
factor which influences the utility of those embeddings. We



Table 5: Document similarity results - Pearson’s linear correlation coefficient (r) Spearman’s rank correlation
(ρ) and their harmonic mean µ

Method r ρ µ

Uniform Weight
CBOW 0.562 0.480 0.518
SG 0.608 0.448 0.516

Edge-centric approaches

Predicate Frequency Weight
CBOW 0.547 0.454 0.496
SG 0.355 0.284 0.316

Inverse Predicate Frequency Weight
CBOW 0.560 0.395 0.463
SG 0.653 0.487 0.558

Predicate Object Frequency Weight
CBOW 0.339 0.302 0.319
SG 0.238 0.183 0.207

Inverse Predicate Object Frequency Weight
CBOW 0.549 0.473 0.508
SG 0.628 0.491 0.551

Node-centric object freq. approaches

Object Frequency Weight
CBOW 0.372 0.317 0.342
SG 0.255 0.190 0.218

Inverse Object Frequency Weight
CBOW 0.552 0.455 0.499
SG 0.585 0.452 0.510

Inverse Object Frequency Split Weight
CBOW 0.501 0.405 0.448
SG 0.469 0.335 0.391

Node-centric PageRank approaches

PageRank Weight
CBOW 0.530 0.303 0.386
SG 0.589 0.384 0.465

Inverse PageRank Weight
CBOW 0.588 0.491 0.535
SG 0.467 0.390 0.425

PageRank Split Weight
CBOW 0.578 0.426 0.490
SG 0.658 0.476 0.552

Inverse PageRank Split Weight
CBOW 0.525 0.419 0.466
SG 0.369 0.292 0.326

Related approaches
TransE 0.550 0.430 0.483
TransH 0.517 0.414 0.460
TransR 0.568 0.431 0.490

believe that this work will be a helpful milestone towards
exploiting the full power of RDF graph embeddings.
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