
Distributing Text Mining tasks with librAIry
Carlos Badenes-Olmedo

cbadenes@�.upm.es
Universidad Politécnica de Madrid

Ontology Engineering Group
Boadilla del Monte, Spain

José Luis Redondo-Garcı́a
jlredondo@�.upm.es

Universidad Politécnica de Madrid
Ontology Engineering Group

Boadilla del Monte, Spain

Oscar Corcho
ocorcho@�.upm.es

Universidad Politécnica de Madrid
Ontology Engineering Group

Boadilla del Monte, Spain

ABSTRACT
We present librAIry, a novel architecture to store, process and an-
alyze large collections of textual resources, integrating existing
algorithms and tools into a common, distributed, high-performance
work�ow. Available text mining techniques can be incorporated as
independent plug&play modules working in a collaborative manner
into the framework. In the absence of a pre-de�ned �ow, librAIry
leverages on the aggregation of operations executed by di�erent
components in response to an emergent chain of events. Extensive
use of Linked Data (LD) and Representational State Transfer (REST)
principles are made to provide individually addressable resources
from textual documents. We have described the architecture design
and its implementation and tested its e�ectiveness in real-world
scenarios such as collections of research papers, patents or ICT aids,
with the objective of providing solutions for decision makers and
experts in those domains. Major advantages of the framework and
lessons-learned from these experiments are reported.

CCS CONCEPTS
•Applied computing→Documentmanagement and text pro-
cessing; •Computer systems organization → Architectures
;

KEYWORDS
large-scale text analysis; NLP; scholarly data; text mining; data
integration

1 INTRODUCTION
Given the huge amount of textual data about any domain that is
daily being produced or captured in any imaginable domain, it
becomes crucial to provide mechanisms for programmatically pro-
cessing this raw data so we can make sense out of it: discarding all
the noisy, non-relevant information and keeping only the data that
can bring value for the involved agents (general consumers, experts,
companies, investors…). While some speci�c tools already allow
for advanced sense-making operations, others opt for composing a

�is work is supported by project Datos 4.0 with reference TIN2016-78011-C4-4-R,
�nanced by the Spanish Ministry MINECO and co-�nanced by FEDER.
Author’s addresses: C. Badenes-Olmedo and J.L. Redondo-Garcı́a and O. Corcho ,
Ontology Engineering Group, Universidad Politécnica de Madrid.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
DocEng ’17, September 04–07, 2017, Valle�a, Malta.
© 2017 ACM. 978-1-4503-4689-4/17/09. . . $15.00
DOI: h�ps://doi.org/10.1145/3103010.3121040

solution where di�erent analysis techniques are integrated under a
uniform data schema. However, this integration involves signi�-
cant e�orts on reconciling data sources, coordinating processing
operations, and e�ciently exploiting results from the execution of
those techniques. �ere is the need for a more �exible paradigm
where tools and algorithms for textual document analysis, from
di�erent programming languages and technologies, can operate
independently and in a collaborative manner creating a common
document oriented work-�ow through their actions. In the context
of the scienti�c publications, the personalized recommendation
of research papers based on their content is a key novel feature
for performing a smart selection of relevant resources over very
big collections of scienti�c content. From the set of values and
di�erent a�ributes extracted from the papers and by generating
advanced knowledge models about the information they contain
we can bridge across the di�erent relevant pieces of information
and allow users to navigate them in a more e�cient and powerful
way. �is knowledge about a speci�c document is frequently ac-
quired by di�erent techniques focused on revealing certain aspects
of it, that are later combined to achieve one particular task. �e
architecture presented in this paper aims to ease the way di�erent
so�ware modules work together and lays the foundation for e�-
ciently process big volumes of textual documents in a distributed,
decoupled manner.

2 RELATEDWORK
�e annotation of human-readable documents is a well-known
problem in the Arti�cial Intelligence domain in general and Infor-
mation Retrieval and Natural Language Processing �elds in par-
ticular. �ere already exist a broad set of tools and frameworks
able to analyze text for automatically producing such annotations,
at very di�erent levels of granularity: from minimal units such as
terms and entities, to descriptors at the level of the entire collec-
tion such as topics or summaries. For example, StanfordNLP [7]
framework allows to perform di�erent operations such as PoS or
Named Entity Recognition in various languages. Others like Mal-
let1 or SparkLDA2 perform topic modeling and clustering. �e
system we propose looks at the transversal problem of making
those standalone tools coexisting under the same solution. Being
able to e�ectively integrating them under a common ecosystem
helps to seamlessly obtain di�erent kind of annotations and boost
the way those solutions can make sense of document collections.

Certain systems among the research and industrial communities
have already integrated some of the annotation tools introduced

1h�p://mallet.cs.umass.edu
2h�ps://spark.apache.org/mllib/

http://mallet.cs.umass.edu
https://spark.apache.org/mllib/


above. For example, [2] works with records from the biomedi-
cal domain, where robustness and high precision are prioritized.
�erefore they rely on techniques supported by GATE3 framework,
which widely supports hand-cra�ed, domain speci�c techniques
such as rules or �nite state transducers. On the other side of the
spectrum we �nd [6], where the authors try to annotate text from
a much noisier, sparser and error-prone medium: a tweet stream.
�erefore they do not rely on any linguistic feature, due to the
unpredictable way short social media post are wri�en. We observe
how each of those examples has very speci�c needs and leverages
on certain annotation tools in order to accomplish the tasks it was
originally created for. In both systems the involved components are
highly coupled so they can not be easily extended to contemplate
complementary annotation tools or alternative modules. On the
contrary, librAIry advocates loosely interconnected components
that make the architecture more reusable and expandable in other
systems across domains.

One crucial problem regarding the re-usability and expansion
possibilities of those systems and the tools they leverage on is the
language they have been developed in. For example, Mallet uses
Java, but others like spaCy 4 are python-based. To the best of our
knowledge, there has not been any signi�cant e�orts on reconciling
into a single architecture such heterogeneous set of tools, therefore
minimizing the engineering e�ort and maximizing scalability of the
system so it can be applied to very di�erent domains and textual
annotation tasks.

In addition, available annotation systems rely on certain storage
solutions that are suited for some tasks but are less adequate others.
For example [5] uses a relational database (MySQL5) to ensure
reliability and speed in managing the indexed information. In [8],
the authors leverage on Virtuoso triple-store to provide native
graph operations over the data. But new requirements may be
considered for those systems so di�erent storage needs can come
into play. For example, column oriented databases (Cassandra6)
can help to be�er handle high-volume queries on speci�c data
�elds. Same goes with text oriented indexes such as ElasticSearch
7, which can provide customized text-based search operations over
the available information. librAIry straightforward supports the
coexistence of di�erent storage solutions, so it can be agnostic to
the kind of underlying storage modules implemented. �anks to the
distributed nature of the proposed architecture, di�erent databases
can be synchronized under the same common environment working
together to store and deliver results in a more e�cient manner.

3 LIBRAIRY
librAIry is a framework where di�erent text mining tools, available
in various languages and technologies, can operate in a distributed,
high-performance and isolated manner creating a common work-
�ow through their actions. Instead to work towards a pre-de�ned
sequence of actions, synchronization across modules is achieved
through the aggregation of the operations executed by them in
response to an emergent chain of events. �is raises both technical

3h�ps://gate.ac.uk/
4h�ps://spacy.io
5h�ps://www.mysql.com/
6h�p://cassandra.apache.org
7h�ps://www.elastic.co

Figure 1: Domain deleted �ow.

and functional challenges to coordinate multiple executions. From
the technical point of view, isolated environments and communica-
tion mechanisms are provided so initially dissimilar tools can be
executed with maximum guarantees. From the functional point
of view, all executions are coordinated to reach a �nal result as
aggregation of partial results derived from each execution.

3.1 Functional Features
�e architecture is articulated around three main concepts: (1) the
resource such as document, a part of a document, or a domain. (2)
the actions performed over them: create, update or delete a resource.
And (3) the new state that is reached by the resource a�er an action
is performed, such as created, updated or deleted. An event is a
message containing details about those three aspects, published on
a shared event-bus available for all the modules deployed in the
framework. �is will, in turn, allow that any module can perform
actions on one or more resources in response to a new state reached
by a given resource. Actions executed in parallel from distributed
environments.

3.1.1 Resources. Two main kinds of resources are considered:
those derived from external sources such as (1) documents from
textual �les (e.g. a research paper), (2) parts from logical divisions
of a document (e.g. rhetorical classes or sections), and (3) domains
from sets of documents (e.g. a conference or journal), and those
derived from processing the previous ones such as annotations.

To be�er illustrate this model, consider to explore the research
papers published at the SIGGRAPH conference in 2016. First, ev-
ery paper will be materialized as a new document containing the
full-text. Immediately a�er, the document will be automatically
associated to several parts, each of them grouping sentences by
rhetorical class (e.g. approach, background, challenge, future work
and outcome) and by section (e.g abstract, introduction). Finally,
a new domain will be created grouping all these documents. Dif-
ferent analysis will be performed extending the initial set of re-
sources with more annotations at several representational levels:
at document level, full-text based annotations are provided such as
named-entities, compounds and descriptive tags. At relational level,
connection between resources are found (e.g. semantic similarity-
based relationships). And �nally, at domain level annotations such
as tags and summaries are composed describing the corpus of doc-
uments.

3.1.2 Event-based Paradigm. An event illustrates a performed
action, i.e. a resource and its new state. It follows the Representa-
tional State Transfer (REST)[4] paradigm, but taking into account

https://gate.ac.uk/
https://spacy.io
https://www.mysql.com/
http://cassandra.apache.org
https://www.elastic.co


Figure 2: Resource states.

the state reached a�er an action, i.e created, deleted or updated. �us,
an event contains the resource type and the new state reached by a
speci�c resource.

3.1.3 Linked Data Principles . Data in librAIry is individually
addressable and linkable [9] following the Linked Data principles
de�ned by T. Berners-Lee [1]. �us, resources (i.e. a domain, a
document, a part or an annotations) have: (1) a URI as name, (2) a
retrievable (or dereferenceable) HTTP URI so that it can be looked
up, (3) a useful information provided by using standard notation
(e.g. JavaScript Object Notation (JSON)) when it is looked up by
URI, and (4) links to other URIs so that other resources can be
discovered from it.

3.2 Framework Architecture
Following a publisher/subscriber approach, all the modules in the
framework can publish and read events to notify and to be noti-
�ed about the state of a resource. �erefore, the system �ow is
not unique and is not explicitly implemented, instead distributed
and emergent �ows can appear according to particular actions on
resources.

3.2.1 Event-Bus. We use the Advanced Message �euing Pro-
tocol (AMQP) as the messaging standard in librAIry to avoid any
cross-platform problem and any dependency to the selected mes-
sage broker. �is protocol de�nes: exchanges, queues, routing-keys
and binding-keys to communicate publishers and consumers.A mes-
sage sent by a publisher to an exchange is tagged with a routing-key.
Consumers matching that routing-key with the binding-key used to
link the queue to that exchange will receive the message. In librAIry
this key follows the structure: resource.status.Since a wildcard-based
de�nition can be used to set the key, this paradigm allow modules
both listening to individual type events (e.g. d́omains.createdf́or
new domains), or multiple type events (e.g. #.created for all new
resources).

3.2.2 API. A HTTP-Rest Application Program Interface (API)
was designed for interaction with end-users. Any external oper-
ation motivated by a user will be handled here. Some of them,
usually those related to reading operations, will be completely
managed by this module ge�ing all the data from the internal stor-
age. However, those operations implying a modi�cation of the
status of some resource (e.g. creation of a document), may be also
performed by other modules listening for that type of event asyn-
chronously. �is module publishes to the following routing-keys:
domain.(created;updated;deleted), document.(created;updated;deleted),
part.(created;updated;deleted), and annotation.(created;updated;deleted).

Figure 3: Modules.

3.2.3 Storage. Multiple types of data can be handled in this
ecosystem. Inspired in the Data Access Object (DAO) pa�ern, we
have created a Uni�ed Data Manager (UDM) providing access to
any type of data used in the system. �ree types of databases have
been considered:

• column-oriented database: Focused on unique identi-
�ed and/or structured data. �is storage allow us searching
key elements across resources.

• document-oriented database: Focused on indexing raw
text. �is storage allow us to execute advanced search
operations over all the information gathered about a textual
resource.

• graph database: Focused on relations. �is storage allow
us exploring resources through the relationships between
them.

3.2.4 Modules. �e modules composing librAIry have been de-
signed following the microservices architectural style. A module is
a cohesive (i.e. it implements only functionalities strongly related to
the concern that it is meant to model [3]) and independent process
working on the framework with a speci�c purpose. �is purpose is
de�ned by both the routing-key and the binding-key associated to
the events handled by the module.

�ese are the main types of modules identi�ed in librAIry:
• Harvester: creates system resources such as documents,

parts and domains, from local or remote located textual
�les.
– Listening for: nothing
– Publishing to: document.(created), part.(created),

domain.(created;updated)
• Annotator: retrieves named-entities, compounds, lem-

mas and other annotations resulting of Natural Language
Processing (NLP) task execution from documents and parts.
– Listening for: document.(created;updated),

part.(created;updated)
– Publishing to: annotation.(created;deleted)

• Modeler: builds representational models from a given
domain.
– Listening for: domain.(created;updated)
– Publishing to: annotation.(created;deleted)

4 EXPERIMENTS AND LESSONS-LEARNED
librAIry has been used in some real scenarios such as a research-
paper repository for the European project DrInventor 8, a support
to decision makers for analyzing patents and public aids for the
8h�p://drinventor.eu



ICT sector, and also as a book recommender for an online content
platform. �is has allowed us to identify some weak and strong
points of the framework and iterate over the architecture to come
with the described solution.

�e following modules have been developed9: (1) a general-
purpose harvester which retrieves text and meta-information
from PDF �les in local or remote �le-system; (2) a research paper-
oriented harvester focused on collecting and processing more
speci�c textual �les (e.g. scienti�c papers) creating both docu-
ments and parts inferred from the rhetorical classes of the paper; (3)
a Stanford CoreNLP-based Annotator which discovers named-
entities, compounds and lemmas from documents and parts; (4) a
Topic Modeler based on Latent Dirichlet Allocation (LDA) which
creates probabilistic topic models for each domain in the frame-
work. �ey are annotated with the set of topics (i.e. ranked list of
words) discovered from the corpus, and both documents and parts
of that domain are also annotated by the vector of probabilities
to belong to these topics. It uses the Spark implementation of the
algorithm; and (5) a Word Embedding Modeler which creates a
word2vec model from the documents contained in a domain.

Due to linear scalability and high performance features, Cassan-
dra has been used to support the column-oriented storage func-
tionality, Elasticsearch as document-oriented storage and Neo4j as
graph-oriented storage.

All modules in librAIry have been packaged as Docker 10 con-
tainers and uploaded to Docker-Hub 11 to facilitate the installation
of the system.

Maximizing information re-usability and minimize irrelevant
data, becomes specially important when the system handles large
collections of data (around million of documents). Fine-grained
resource de�nitions have been key to achieve this, so modules exe-
cute actions only when really necessary. When a new domain is
created, for instance, a new Topic Model is trained for that domain
and is used to calculate the semantic similarity between the docu-
ments (and the parts) in that domain. If a new document (or part) is
added to that domain, the model is trained again and the semantic
similarities are re-calculated. However, this becomes unfeasible
when the domain is frequently updated and it is composed by a
large number of documents. One solution has been to de�ne a
new type of resource between domains and documents, models,
that describes the representational state (e.g. topic model) of a
collection of documents. �us the model is only re-trained when
a signi�cant amount of documents are added to the sampling data
set and not to the entire domain. �is less transient model is used
to calculate semantic similarities between the document collection
(and parts) inside a domain in a more e�cient way. Following this
more precise execution of tasks, the routing-keys should include
the URI of the implied resource into the de�nition, not only in
the content of the message. It would allow modules listening to
both the type of a resource or to a speci�c resource (or subsets, via
regular expressions).

While the storage modules are always used to save/update/delete
a resource, they are not always required from the end-user. �e
graph storage, for instance, makes sense when a path between two
9h�ps://github.com/librairy
10h�ps://www.docker.com
11h�ps://hub.docker.com/u/librairy/

documents or parts is requested for a given domain. However, some
domains are not intended to be explored by their linked resources. A
more �ne/grained de�nition of resources will allow graph-storage
being only used when necessary.

On the other hand, distributed execution of NLP tasks (not only
in threads, but also in machines) has proved to be especially useful
to handle large collection of documents. It requires less processing
time than a monolithic solution (e.g. CoreNLP application) and it
also provides a dynamic load balancing between modules.

5 CONCLUSIONS AND FUTUREWORK
In librAIry, existing algorithms and tools coming from di�erent
technologies can work collaboratively to process and analyze large
collections of textual resources which has been successful applied
to some real scenarios 12.

A new model de�nition based on the previously mentioned prin-
ciple of maximizing information re-usability and minimize irrele-
vant data is being studied to create a more �ne-grained resource
design. New domains, in the sense of particular vocabularies or
speci�c textual formats, are also being analyzed to be included into
the system via speci�c harvesters and/or more precise annotators.
Moreover, a template-based mechanism oriented to facilitate the
integration of new tools and techniques into the system is being
built to make easier to develop new modules as well as increasing
the available modules at Docker-Hub.

REFERENCES
[1] Christian Bizer, T Heath, and T Berners-Lee. 2009. Linked data-the story so far.

International journal on Semantic Web and Information Systems 5, 3 (2009), 1–22.
DOI:h�p://dx.doi.org/10.4018/jswis.2009081901

[2] Hamish Cunningham, Valentin Tablan, Angus Roberts, and Kalina Bontcheva.
2013. Ge�ing More Out of Biomedical Documents with GATE’s Full Lifecycle
Open Source Text Analytics. PLOS Computational Biology (2013). DOI:h�p:
//dx.doi.org/10.1371/journal.pcbi.1002854

[3] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Musta�n, and Larisa Sa�na. 2016. Microser-
vices: yesterday, today, and tomorrow. CoRR abs/1606.0 (2016), 1–17. DOI:
h�p://dx.doi.org/10.13140/RG.2.1.3257.4961

[4] Roy T Fielding and Richard N Taylor. 2002. Principled Design of the Modern
Web Architecture. ACM Transactions on Internet Technology 2, 2 (2002), 407–416.
DOI:h�p://dx.doi.org/10.1145/514183.514185

[5] Laura I Furlong, Holger Dach, Martin Hofmann-Apitius, and Ferran Sanz. 2008.
OSIRISv1. 2: a named entity recognition system for sequence variants of genes
in biomedical literature. BMC bioinformatics 9, 1 (2008), 84.

[6] Chenliang Li, Jianshu Weng, Qi He, Yuxia Yao, Anwitaman Da�a, Aixin Sun,
and Bu-Sung Lee. 2012. TwiNER: Named Entity Recognition in Targeted Twi�er
Stream. ACM, New York, NY, USA, 721–730. DOI:h�p://dx.doi.org/10.1145/
2348283.2348380

[7] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. 2014. �e Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations. DOI:h�p://dx.doi.org/10.3115/v1/
P14-5010

[8] Giuseppe Rizzo, Raphäel Troncy, Oscar Corcho, Anthony Jameson, Julien Plu,
Juan Carlos Ballesteros Hermida, Ahmad Assaf, Catalin Barbu, Adrian Spirescu,
Kai-Dominik Kuhn, and others. 2015. 3cixty@ Expo Milano 2015: Enabling
Visitors to Explore a Smart City. (2015).

[9] S Turchi, L Cio�, F Paganelli, F Pirri, and D Giuli. 2012. Designing EPCIS through
Linked Data and REST principles. So�ware, Telecommunications and Computer
Networks ({So�COM)}, 2012 20th International Conference on (2012), 1–6.

12h�p://drinventor.dia.�.upm.es

http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.1371/journal.pcbi.1002854
http://dx.doi.org/10.1371/journal.pcbi.1002854
http://dx.doi.org/10.13140/RG.2.1.3257.4961
http://dx.doi.org/10.1145/514183.514185
http://dx.doi.org/10.1145/2348283.2348380
http://dx.doi.org/10.1145/2348283.2348380
http://dx.doi.org/10.3115/v1/P14-5010
http://dx.doi.org/10.3115/v1/P14-5010
http://drinventor.dia.fi.upm.es

	Abstract
	1 Introduction
	2 Related Work
	3 librAIry
	3.1 Functional Features
	3.2 Framework Architecture

	4 Experiments and Lessons-Learned
	5 Conclusions and Future Work
	References

