
Too Much of a Good Thing?
Identifying and Resolving Bloat in the User Interface: A CHI 98 Workshop
Leah Kaufman and Brad Weed

In t roduct ion

Computer industry criticisms of 'bloat'
are not a new occurrence. Typically,
users and pundits alike complain about
how slowly applications load and run or
the amount of RAM required to run a
single, let alone multiple, programs. In
recent years, however, we've seen addi-
tional criticism of bloat in the software
interface design and the sheer number
of f~atures built into products. A 1992
critique [1] stated that:

"7~4aybe we've been blitzed by too many
kitchen-sink demos. But we do notice a
troublesome trend: A lot o f new GUI
products have become really, really hard
to figure out. l~b keep seeing screens bur-
ied in layer upon layer o f dialog boxes
and windows, cluttered with random~
placed icons, file directories, pick lists,
radio buttons, data entry flelds, and
other graphical furniture."

Blame for this bloat in the interface lay-
out and controls is usually attributed to
a steady increase in the functions and
features built into each new version of
software products. As MS-NBC colum-
nist Joan Connell explicitly stated:

'Tn 1992, there were311 commands in
the word-processing program I use to
write this column. In 1995 it took 647
commands to arrange sentences and
paragraphs, check spelling and do all the
other mysterious things necessary to
transmute human thought to a com-
puter and deliver it to whoever wishes to
read. And today, Microsoft Word has
become so adept a human helper that
there now are 1,O16 commands
required to accomplish roughly the same
task... "

What impact does this sheer increase in
number of functions have on users try-

ing to do their work? How does it affect
the visual design and layout of the inter-
face? Is the problem perceptual and due
to poor visual design? Or is it concep-
tual and rooted in an overabundance of
features?

We've reached a point in the software
industry where its important to under-
stand the source of this problem, it's
effect on users, and figure out how it
might be resolved.

This workshop brought together usabil-
ity researchers and interface designers to
jointly examine the problem of feature
bloat in software. Through discussion,
presentations, shared insights and expe-
rience with interface design, testing, and
use, we worked towards a clear under-
standing of this issue and recommenda-
tions for addressing and studying it.

O p e n i n g Exercise

The workshop began with an affinity
exercise - we posted three pairs o f pic-
tures each showing an early and later
model of given device: a telephone, a
watch, and a computer game. The
workshop participants considered each
pair of pictures, noted the differences,
put a phrase or description of each dif-
ference on a post-it note, and placed the
note next to the picture. Then, after
removing the pictures the participants
organized all of the post-it notes into
categories. The labels they gave to each
category became our springboard for
discussing how the changes in product
design become a source of bloat.

Aspects of Bloat

Each aspect represents one of the cate-
gories from the affinity exercise. These
descriptions were built through group

discussion and sharing our experiences
with observing users and using and
designing software.

Feature richness
A device with many features makes it
possible to do many things with that
one object or tool. Feature richness
turns into bloat when there are more
features than you want to use.

Not obvious how to accomplish a task
When using a feature-rich device, it can
be difficult to match the features to spe-
cific tasks, especially if the features are
poorly organized or displayed.

Unnecessary information
The tasks we do and the devices we
make for doing them both vary in com-
plexity. Bloat arises when the user
expects the task to be simple and the
device for doing the task is unnecessarily
complicated.

Visual Clutter
When the user interface contains a lot to
look at, you get a sense of crowding and
clutter, especially when the organization
isn't recognizable

Misuse of Color and Design Elements
If color is overused then too many parts
of the interface compete for the user's
attention.

Physical constraints of the context
Some interface designs end up feeling
bloated because of physical constraints
such as not enough space or limits on
how graphical elements can convey
organization.

Too many widgets?
Some bloated interface designs contain
too many indistinguishable buttons and
controls. The controls may also be
poorly designed for their task.

46 October 1998 Volume 30, Number 4 SIGCI-II Bulleti*n

http://crossmark.crossref.org/dialog/?doi=10.1145%2F310307.310370&domain=pdf&date_stamp=1998-10-01

System fragility

Too many unknown features can cause
users to worry about whether their
actions are correct and if the system is
liable to break. They become afraid that
one wrong move will bring the system
down.

Excessive learning time

There should be a comparable payofffor
putting the time into learning how to
use a feature. Bloat happens when the
amount of effort needed to learn a fea-
ture isn't commensurate with its utility.

We decided that these categories can act
as a diagnostic tool for explaining why
an interface might feel bloated. They
also imply the characteristics of an
unbloated UI: visually engaging, recog-
nizable organization, appropriate use of
color, all of which support efficient'use
of the features. We also noted that bloat
may differ for novice and experienced
users. Novices may he overwhelmed by
the objects, by the number of unfamiliar
visual elements. Experts, because they
more readily recognize the interface ele-
ments, may be more attuned to actions
and how quickly they can do their tasks.

We concluded that even with these cri-
teria for identifying bloat in the inter-
face, software with a lot of features is not
inherently bad, hard to use, poorly
designed, or bloated. Instead, we believe
it's the combination of the user's soft-
ware experience, goals and tasks, and
how well the software matches these
that leads to the experience of bloat in
the UI.

Why does Bloat happen?

We next considered why software bloat
occurs and came up with a range of
answers. First, consumers frequently
believe that more is better, hence, users
buy products that have more features.
This is buoyed by the desire to be effi-
cient in spending and 'get the most for
your money'. Secondly, users like to feel
smart; buying the more advanced, com-
prehensive version of the software may
make them feel good about themselves.

From the software company's perspec-
tive new features help distinguish their

software from competitors and keeping
the o18 features means that current users
can still do tasks the way that they're
used to doing them. Within the com-
pany programmers like to be creative, to
design and implement new features.
Some new features are so easy to add it
seems that there's no good reason not to
include it.

Finally, in our concern for making the
software customizable and usable for a
wide range of users we inadvertently
contribute to bloat when we add on
multiple methods for doing a task and
include even more explanations on how
to use the software.

Presentations

Each participant gave a presentation on
an aspect of bloat, either problems, solu-
tions, or information about users and
their reactions to bloat. Andrea Manko-
ski (JavaSoft) looked at legacy features
and challenged us about whether fea-
tures used by 3% of users could be cut
from a product. Avi Parush (HIT, Tel
Aviv University) examined the usability
and design issues in five different sched-
uling products. Joyce Westerink (Phil-
lips Research Labs) pointed out that the
drive to incorporate new technologies is
usually considered more important than
making products more usable.

Joanna McGrenere (University of
Toronto) characterized unbloated soft-
ware as software that makes a good
match between the set of skills needed
to operate the system and the set of skills
the user brings to the system. From this
perspective, users are more successful
with a system when there's less to learn.
Similarly, Sean Draine (Microsoft)
reported that users like feature growth
but hate UI growth because it means
problems of discoverability, learning,
and command confusion.

Donna Wallace (Microsoft) described a
UI that gave a simplified initial interface
for new users and allowed experienced
users the option of building a more
complex UI by adding advanced fea-
tures to their screen. This comple-
mented Erica Seidel's (Sony Research
Labs) presentation on using different

interface modes for distinguishing
between classes of tasks.

Finally, Brian K. Smith (MIT Media
Lab) noted that software works best
when its tools match users expectations.
His research showed that removing
already working tools just because
another technology is available, isn't a
viable solution.

In addition, the authors presentated two
topics: The difficulty of creating simple
designs for complex tasks; and results
from usability tests that demonstrating
that performance-wise, bloat is a func-
tion of the proportion of unfamiliar fea-
tures in the interface.

projected Research

To wrap up the workshop we discussed
the research questions provoked by the
day's work. We want to know how
quickly do users skill sets change. What
percentage of people are satisfied doing
intermediate-level work and don't need
more sophisticated features in their soft-
ware? How much are users willing to
customize their software? Would mak-
ing this easier create interfaces that bet-
ter fit each user and their tasks? Can we
design general purpose software that is
also appropriate for particular tasks?

References

1. Interfaces: a complaint about clutter.
Soft Letter, Feb 22, 1992 v9 n7 p5(2)

About the Authors

Leah Kaufman is a Usability Engineer
for Microsoft Office.

Brad Weed is the Product Design Group
Manager for Microsoft Office at Micro-
soft.

Addresses

Leah Kaufman: leahk@microsoft.com;

Brad Weed
1 Microsoft Way
Redmond, WA 98052-6399, USA

Bradwe@microsoft.com

SiGCHI Bulletin Volume 30, Number 4 Oclobe; 1998 47

