1706.04741v1 [cs.SE] 15 Jun 2017

arxXiv

Software Model Checking:
A Promising Approach to Verify Mobile App Security”

— A Position Paper -
Irina Mariuca Asavoae Hoang Nga Nguyen
INRIA, Paris, France Coventry University, Coventry, UK
irina-mariuca.asavoae@inria.fr hoang.nguyen@coventry.ac.uk
Markus Roggenbach Siraj Ahmed Shaikh
Swansea University, Swansea, UK Coventry University, Coventry, UK
m.roggenbach@swansea.ac.uk siraj.shaikh@coventry.ac.uk
Abstract disassemble parse compile model check
In this position paper we advocate software model checking as a DEx > -
DeEX SMALI K MAUDE

technique suitable for security analysis of mobile apps. Our rec-
ommendation is based on promising results that we achieved on
analysing app collusion in the context of the Android operating
system. Broadly speaking, app collusion appears when, in perform-
ing a threat, several apps are working together, i.e., they exchange
information which they could not obtain on their own. In this con-
text, we developed the K-Android tool, which provides an encoding
of the Android/Smali code semantics within the K framework. K-
Android allows for software model checking of Android APK files.
Though our experience so far is limited to collusion, we believe the
approach to be applicable to further security properties as well as
other mobile operating systems.

Keywords Software Model Checking, Android, Collusion, Mobile
Security

ACM Reference format:

Irina Mariuca Asavoae, Hoang Nga Nguyen, Markus Roggenbach, and Siraj
Ahmed Shaikh. 2017. Software Model Checking:

A Promising Approach to Verify Mobile App Security. In Proceedings of
Formal Techniques for Java-like Programs, Barcelona, Spain, June 2017 (FIfjP
2017), 2 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction

We advocate as a promising research direction: applying software
model checking to Android apps for formal security analysis. This
uses abstract model checking, which is an abstract interpretation
technique. Here, we have already achieved a number of explorative
results. These include: defining and experimenting with two ex-
ecutable semantics on the byte-code level, one concrete and one
abstract. Both of them have been implemented in the K-Android
tool [4, 7], utilising the K framework [12] where Java/JVM seman-
tics had already been defined [6]. Our work targets however the
byte-code level and Android operating system (ART/Dalvik); the
work-flow of K-Android is described in Fig. 1. Currently we are

“This work was funded by EPSRC and received advice from Erwin R. Catesbeiana (Jr).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FIfJP 2017, Barcelona, Spain

© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM...$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

or
NO COLLUSION

Figure 1. Work-flow for model checking with the K framework.

pioneering (w.r.t. the formal executable semantics for a virtual ma-
chine targeted by Java) a formal proof utilizing a simulation relation
that these two semantics are in a sound relation.

In the followings we discuss a number of decisions underlying
the suggested approach, give a brief status report on our research,
and conclude by providing some insights that we gained.

Related work: Our work is closest to static analysis tools that
detect security properties in Android. For example, the tool Flow-
Droid [3] uses taint analysis to find connections between source
and sink. The app inter-component communication pattern is sub-
sequently analysed using a composite constant propagation tech-
nique [11]. We propose a similar approach, namely to track (sensi-
tive) information flow and to detect app communication, but using
model checking that gives witness traces in case of collusion detec-
tion. From the proof effort perspective, we mention CompCert [9]
that uses Coq theorem prover to validate a C compiler. Also, an
up-to-date survey on app collusion in Android can be found in [5].

2 Decisions

When setting up our framework for software model checking, we
took a number of decisions that we conceive to be fundamental:

Verify byte-code rather than high level language programs
When considering the language level, the input language of the vir-
tual machine appears to be the right level for investigating security
properties. Users download their apps as APKs hence this needs to
be the starting point for our investigation. Decompiling APKs is a
possibility however not 100% successful. A further advantage is that
a language such as Smali, which was designed to run on a Virtual
Machine, is far less complex than a high-level language such as Java.
Finally, Smali programs are independent of compiler optimisations:
verification addressing specific Java constructs might fail on the
byte code level as compiler optimisations might interfere.

Offer two semantics: a concrete and an abstract one We be-
lieve it to be essential to work with two different semantics. Objec-
tives of formulating a concrete semantics include:



C-01 To be close to the informal description of the language
instructions to ease modelling. For Android these are Smali
instructions as specified on the Android Project website [1].

C-02 To work with actual values as much as possible: this
allows to experiment with small example programs in order
to validate the given semantics. Note that the K framework
allows for executable specifications.

Objectives of formulating an abstract semantics include:
A-O1 To enable effective model checking by selecting suitable
abstraction principles. In K-Android we have chosen:
o virtual unrolling: this leads to finite flows [10];
e memory abstraction: to reduce the state space [2];
e constant propagation: this abstracts from concrete val-
ues and thus also helps in reducing the state space [8].

A-02 To be sound w.r.t. the security property under discus-

sion, in our case: collusion.

Provide a soundness proof In order to certify the correctness
of the overall approach, a soundness proof is needed. Though the
effort required in carrying out such a proof might appear as a high
price to pay, the overall setup has a number of advantages:

o The proof is done once; the savings of the abstract seman-
tics in time and space apply every time model checking is
carried out; moreover, the proof is re-usable as it is struc-
tured according to classes of Smali instructions — even when
changing the property, the abstract semantics for some of
these classes would stay the same.

o Working with a single semantics confuses objectives, namely
to be true to the informal descriptions (c.f. C-O1 and C-02)
and, at the same time to be effective (c.f. A-O1). This confu-
sion might compromise the overall objective of providing a
reliable analysis tool (c.f. A-O2).

3 Current Status of our work

Starting Read/write |

‘ Invoke/return ‘ ‘ Control

Figure 2. Semantic module structure.

In our tool K-Android [4, 7], we implement experimental ver-
sions of a concrete and an abstract semantics, which both cover the
whole Smali language-see Figure 2 for the chosen module structure.
We have successfully applied our tool to a number of Android apps
to analyse them for collusion. Here, the counter-example traces
provided by the model checking give good guidance for the code-
analysis that distinguishes between collusion and false positives.

Our correctness proof is "well on its way”-we covered the core
constructs, e.g., method calls and returns. Although the sheer
number of cases to consider (Smali has about 220 instructions)

makes the proof time consuming, we classified the instructions in
about 20 groups that share a similar build. This modularisation
provides the proof with flexibility and reusability characteristics.

4 First insights

Concerning the question if it would be possible to directly build a
suitable abstract semantics, our experience suggests that the two
step approach including a proof is a necessity. In our ongoing
proof, we learned that in some cases our originally implemented
semantics went wrong. Reflecting on the abstraction via a formal
simulation relation helped us to find the correct semantic clauses.

Concerning the applicability of our approach, experiments with
our concrete and abstract semantics indicate that, provided an
astute abstraction, software model checking for security is feasible
and might even scale even for demanding properties as collusion.

5 Conclusion

Our ongoing work demonstrates that software model checking is a
viable technique for analysing mobile apps for security. Verification
times are below a minute for small examples consisting of about
5K lines of Smali code. The concrete semantics provided as well
as the abstraction principles applied can be re-used to investigate
further security properties. Though K-Android is tailored to the
Android operating system, the concepts in other mobile operating
systems such as Symbian, MeeGo, i0S, Android, Tizen, etc. appear
to be similar enough that it should be possible to apply software
model checking also in their context. Compared to the predominant
static analysis methods traditionally applied in mobile security
verification, especially the possibility to obtain counter-example
traces makes software model checking a promising approach.

References

[1] Android Open Source Project. 2016. Dalvik Bytecode. https://source.android.
com/devices/tech/dalvik/dalvik-bytecode.html. (2016).

[2] Gilad Arnold, Roman Manevich, Mooly Sagiv, and Ran Shaham. 2006. Combining
Shape Analyses by Intersecting Abstractions. In VMCAI 2006 (Lecture Notes in
Computer Science), Vol. 3855. Springer, 33-48.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for Android apps. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI °14, Edinburgh, United Kingdom -
June 09 - 11, 2014. ACM, 29.

[4] Irina Mariuca Asavoae, Hoang Nga Nguyen, Markus Roggenbach, and
Siraj Ahmed Shaikh. 2016. Utilising K Semantics for Collusion Detection in
Android Applications. In FMICS-AVoCS 2016 (Lecture Notes in Computer Science),
Vol. 9933. Springer, 142-149.

[5] Shweta Bhandari, Wafa Ben Jaballah, Vineeta Jain, Vijay Laxmi, Akka Zemmari,
Manoj Singh Gaur, and Mauro Conti. 2016. Android App Collusion Threat and
Mitigation Techniques. CoRR abs/1611.10076 (2016). http://arxiv.org/abs/1611.
10076

[6] Denis Bogdanas and Grigore Rosu. 2015. K-Java: A Complete Semantics of Java.
In POPL 2015. ACM, 445-456.

[7] Kandroid ACID Team. 2017. Kandroid Tool. http://www.cs.swan.ac.uk/
~csmarkus/ProcessesAndData/androidsmali-semantics-k. (2017).

[8] Johannes Kinder, Florian Zuleger, and Helmut Veith. 2009. An Abstract
Interpretation-Based Framework for Control Flow Reconstruction from Binaries.
In VMCAI 2009 (Lecture Notes in Computer Science), Vol. 5403. Springer, 214-228.

[9] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM
52, 7 (2009), 107-115.

[10] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand. 1998.
Analysis of Loops. In Compiler Construction, 7th International Conference in
ETAPS’98 (Lecture Notes in Computer Science), Vol. 1383. Springer, 80-94.

[11] Damien Octeau, Daniel Luchaup, Somesh Jha, and Patrick D. McDaniel. 2016.
Composite Constant Propagation and its Application to Android Program Anal-
ysis. IEEE Trans. Software Eng. 42, 11 (2016), 999-1014.

[12] Grigore Rosu and Traian Florin Serbanuta. 2010. An Overview of the K Semantic
Framework. Journal of Logic and Algebraic Programming 79, 6 (2010), 397-434.


https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://arxiv.org/abs/1611.10076
http://arxiv.org/abs/1611.10076
http://www.cs.swan.ac.uk/~csmarkus/ProcessesAndData/androidsmali-semantics-k
http://www.cs.swan.ac.uk/~csmarkus/ProcessesAndData/androidsmali-semantics-k

	Abstract
	1 Introduction
	2 Decisions
	3 Current Status of our work
	4 First insights
	5 Conclusion
	References

