
ar
X

iv
:1

70
6.

05
85

1v
1

 [
cs

.P
L

]
 1

9
Ju

n
20

17

Generic Approach to Certified Static Checking
of Module-like Constructs

Julia Belyakova
Southern Federal University

Rostov-on-Don, Russia

julbinb@gmail.com

Abstract

In this paper we consider the problemof certified static checking of

module-like constructs of programming languages. We argue that

there are algorithms and properties related to modules that can

be defined and proven in an abstract way. We advocate the design

of a generic Coq library, which is aimed to provide three building

blocks for each checking mechanism: propositional, computable,

and correctness proofs. Implemented part of the library is justified

by applying it to a certified static checker of an extension of STLC.

CCS Concepts • Software and its engineering → Modules /

packages; Semantics;

Keywords certified software, Coq, generic programming, mod-

ules, interpreters, compilers

ACM Reference format:

Julia Belyakova. 2017. Generic Approach to Certified Static Checking of

Module-like Constructs. In Proceedings of FTFJP’17, Barcelona , Spain, June

18-23, 2017, 2 pages.

h�ps://doi.org/10.1145/3103111.3104045

1 Introduction

Interactive theorem provers, such as Coq, Agda, orHOL, have been

used for bothmechanising formalmodels of programming languages

(Featherweight Java [5, 6], Scala DOT-calculus [7], JavaScript [4],

Dependent Haskell [9]) and development of certified software, in-

cluding certified compilers and interpreters (CompCert [3], JSRef [4],

CakeML [8]). In this context “certified” means that the behaviour

of an interpreter/compiled code corresponds to the formal model

of a programming language. For example, a JavaScript interpreter

JSRef is proven to satisfy the JSCert [4] formalization of JavaScript.

Generally, the structure of a certified interpreter1 can be de-

scribed with three layers:

1. Formal model of a programming language (typing relation,

operational semantics) defined in propositional style.

2. Interpreter itself (static checks, evaluator) defined in terms

of computable functions.

3. Proof of correctness of the interpreter with regard to the

formal model.

1For brevity, we only talk about certified interpreters from this point, but the same
reasoning is applied to certified compilers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FTFJP’17, June 18-23, 2017, Barcelona , Spain

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5098-3/17/06. . . $15.00
h�ps://doi.org/10.1145/3103111.3104045

For instance, the typechecking task could be lined up as follows [2]:

1. Typing relation has_type : Expr × Ty → Prop.

2. Typechecking algorithm: type_check : Expr → option Ty.

3. Proof of correctness2:

∀e, τ .has_type(e, τ) ⇔ type_check(e) = Some τ .

Whereas such tasks as typechecking depend a lot on a program-

ming language, it seems that there are certain parts of interpreter

that can be implemented in an abstract manner. Thus, for exam-

ple, most of the mainstream programming languages have some

notion of module. Or even more broadly, a notion of list of declara-

tions/definitions. It could be a list of class declarations in a package,

method declarations in an interface, type and function definitions

in a module, etc. The well-definedness condition for a list of decla-

rations can be abstractly formulated as follows:

1. All names in the list are different.

2. Every declaration in the list is well-defined.

To get a concretewell-definedness property for a particularmodule-

like construct, it suffices to substitute abstract parts, such as “name”

or “well-defined declaration”, with concrete types and predicates.

We suggest that a substantial part of propositions (layer 1), algo-

rithms (layer 2), and proofs (layer 3) related to certified checking

ofmodule-like language constructs can be implemented in abstract

way, as a generic Coq library. Partial implementation of the library

is available in GitHub [1]. We provide two sorts of generic code.

The first one is more low-level, related to the efficient representa-

tion of finite maps (see more in Sec. 2). The second one is more

high-level, connected with the semantics of modules (Sec. 3).

2 Efficiency Matters

One subtlety in building certified interpreters is efficiency. Note

that formal models are aimed to reason about programming lan-

guages but are not supposed to run. Therefore, in particular, there

is no need to use efficient data structures for representation of pro-

grams, contexts, or types. Interpreters, by contrast, are to be exe-

cuted. Therefore, they better use efficient data structures and algo-

rithms to represent, analyse, and run programs. However, efficient

code could be harder to reason about. Furthermore, as we want

to certify an interpreter against a model, it means that the model

and the interpreter could share some code. This, in turn, leads to

more sophisticated reasoning about the model itself. Thus, there is

a conflict between efficiency and ease of reasoning.

In the context of module-like constructs, an example of such

a conflict is the representation of finite maps. In the first place

a program is given in the form of an abstract syntax tree (AST).

If such an AST contains a well-defined list of declarations, an in-

terpreter can convert the list to a finite map from names (identi-

fiers) to some data. Or, alternatively, it can further use the AST

as is. The latter way is less efficient but more straightforward, as

2Completeness condition (⇐) does not always hold.

http://arxiv.org/abs/1706.05851v1
https://doi.org/10.1145/3103111.3104045
https://doi.org/10.1145/3103111.3104045

FTFJP’17, June 18-23, 2017, Barcelona , Spain Julia Belyakova

no extra proofs are needed to show that the result finite map is

“equivalent” to the source AST. That is why this approach is nor-

mally used in mechanised formal models [5–7] to describe records,

classes, and namespaces. By contrast, the CompCert compiler uses

efficient tree-based finite maps for representation of programs (a

program is defined as a list of function and variable declarations).

Specifically, if there is a function map_from_list which con-

verts a list of declarations into a finite map, one has to prove a

bunch of properties about it. For example, assuming that an AST of

declarations list is represented by list of pairs (<name>, <data>),

it must be proven that ∀n,d .[n 7→ d] ∈ (map_from_list decls) ⇒

(n,d) ∈ decls. Such kind of properties are proven in our library for

a transformation of a list of pairs into a generic interface of finite

maps FMap (from the Coq standard library3). There are some other

proven-to-be-correct functions, e.g. generic ids_are_unique, which

checks repetitions in a list using an auxiliary set.

3 Modules

As we mentioned in Sec. 1, many programming languages support

some kind of module-like constructs that introduce namespaces.

But what is more important, “modules” provide an instrument of

abstraction — they allow for separation of interface from imple-

mentation. Examples could be interfaces and classes in Java, pro-

tocols and classes in Swift, signatures and modules in ML, type

classes and instances in Haskell. The main difference between a

module-interface and a module-implementation is that the former

one must be well-defined, and the latter one must be well-defined

with respect to the former one. Although, in presence of structural

subtyping, well-definedness of a module-interface can also depend

on some other interfaces.

Our ultimate goal is a generic Coq library, which provides build-

ing blocks for certified checking of modules of different flavours.

For instance, compare Java 7 and Java 8 interfaces. The latter sup-

port default method implementations, while the former do not. It

means that Java 7 class, which extends an interface, is well-defined

only if all interface member are defined. But Java 8 class is well-

defined under the relaxed condition, if all not-implemented inter-

face members are defined. Another difference in presence of de-

fault implementations is a way method declarations are checked

(part 2 of ourwell-definedness property). In Java 8 interfaces, method

bodies can refer to other methods of the same interface, whereas

in Java 7 there is no need to take into account a local context. A

bit of a different approach is needed for ML signatures/modules,

where declarations can only refer to previously-defined ones. One

more variation of well-definedness is required for mutually recur-

sive definitions.

Following the structure of certified interpreter, our library con-

sists of the triples: propositional definitions of well-definedness,

computable functions for checking well-definedness, proofs of cor-

rectness. Every part of a triple is a functor parameterized over type

of identifiers, decidable equality of identifiers, type of data, type of

context, and some other things. As an example, consider the sim-

plest possible semantics of module-interfaces, where all declara-

tions can be checked independently of each other. Assuming that

an interface is given as a list of pairs (id, ty), a “propositional”

functor might look as follows:

Module SimpleIntrfs_Defs (Import ...).

3CompCert does some similar things for its own interface of finite maps.

Definition types_ok (c : ctx) (tps : list ty) : Prop :=

List.Forall (fun tp => is_ok c tp) tps.

Definition module_ok (c : ctx) (ds : list (id * ty)) : Prop :=

let (nms , tps) := split ds in

(** all names are distinct , all types are well -defined *)

List.NoDup nms /\ types_ok c tps.

In addition to other parameters, SimpleIntrfs_Defs depends on

the proposition is_ok : ctx → ty → Prop, which defines what

it means for a type to be well-defined in the given global context.

A functor with computable functions is defined in a similar way

and implements functions types_ok_b and module_ok_b, which

return bool. Finally, there is a proofs functor,which proves that the

computable functions are correct with respect to the propositions.

We justify this generic implementation by applying it to an ex-

tension of simply typed lambda calculus with simple modules —

concepts and models, which is proven to be type sound. “Con-

cept” represents module-interface, it consists of name-type pairs.

“Model” represents module-implementation for a particular con-

cept: it consists of name-term pairs, with terms referring to the

previously defined ones and having types declared in the concept.

Terms are terms of STLC extendedwithmodule-related constructs:

(1) Concept abstraction λc#C. e , which allows e to refer to themem-

bers of concept C via concept variable c .

(2) Member invocation c::f .

(3) Model application e # M, which is valid only if e is a concept

abstraction λc # C. e ′, with M being a model of C.

Typing of terms is a five-place relation, which takes into account

contexts of concepts and models: CT∗MT; Γ ⊢ t : τ . Contexts CT and

MT are required to be well-defined. We use our generic library four

times to typecheck a program in this language. Namely, we use

it to check a single concept/model definition, a section of concept

definitions, and a section of model definitions. More complicated

strategies of dealing with modules is a subject for future work.

References
[1] Julia Belyakova. 2017. Concept Parameters. (2017).

h�ps://github.com/julbinb/concept-params
[2] Benjamin C. Pierce and Arthur Azevedo de Amorim and Chris Casinghino

and Marco Gaboardi and Michael Greenberg and Cǎtǎlin Hriţcu and Vilhelm
Sjöberg and Brent Yorgey. 2016. Software Foundations. Electronic textbook.
h�p://www.cis.upenn.edu/~bcpierce/sf Version 4.0.

[3] Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the Clight
subset of the C language. Journal of Automated Reasoning 43, 3 (2009), 263–288.
h�p://gallium.inria.fr/~xleroy/publi/Clight.pdf

[4] Bodin, Martin and Chargueraud, Arthur and Filaretti, Daniele and Gardner,
Philippa and Maffeis, Sergio and Naudziuniene, Daiva and Schmitt, Alan
and Smith, Gareth. 2014. A Trusted Mechanised JavaScript Specification.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’14). ACM, New York, NY, USA, 87–100.
h�ps://doi.org/10.1145/2535838.2535876

[5] Benjamin Delaware, William Cook, and Don Batory. 2011. Prod-
uct Lines of Theorems. SIGPLAN Not. 46, 10 (Oct. 2011), 595–608.
h�ps://doi.org/10.1145/2076021.2048113

[6] Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and Nicholas
Cameron. 2012. Encoding Featherweight Java with Assignment and Immutabil-
ity Using the Coq Proof Assistant. In Proceedings of the 14thWorkshop on Formal
Techniques for Java-like Programs (FTfJP ’12). ACM, New York, NY, USA, 11–19.
h�ps://doi.org/10.1145/2318202.2318206

[7] Tiark Rompf and Nada Amin. 2016. Type Soundness for Depen-
dent Object Types (DOT). SIGPLAN Not. 51, 10 (Oct. 2016), 624–641.
h�ps://doi.org/10.1145/3022671.2984008

[8] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott
Owens, and Michael Norrish. 2016. A New Verified Compiler Backend for
CakeML. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming (ICFP 2016). ACM, New York, NY, USA, 60–73.
h�ps://doi.org/10.1145/2951913.2951924

[9] Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and
Eisenbergm Richard A. 2017. A Specification for Dependent Types in Haskell.
(2017). To appear at ICFP’17.

https://github.com/julbinb/concept-params
http://www.cis.upenn.edu/~bcpierce/sf
http://gallium.inria.fr/~xleroy/publi/Clight.pdf
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/2076021.2048113
https://doi.org/10.1145/2318202.2318206
https://doi.org/10.1145/3022671.2984008
https://doi.org/10.1145/2951913.2951924

	Abstract
	1 Introduction
	2 Efficiency Matters
	3 Modules
	References

