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Abstract: This article presents a survey on automatic software repair. Automatic soft-
ware repair consists of automatically finding a solution to software bugs, without human
intervention. This article considers all kinds of repair. First, it discusses behavioral repair
where test-suites, contracts, models, crashing inputs are taken as oracle. Second, it dis-
cusses state repair, also known as runtime repair or runtime recovery, with techniques such
as checkpoint and restart, reconfiguration, invariant restoration. The uniqueness of this ar-
ticle is that it spans the research communities that contribute to this body of knowledge:
software engineering, dependability, operating systems, programming languages and secu-
rity. It provides a novel and structured overview of the diversity of bug oracles and repair
operators used in the literature.

1. INTRODUCTION
This paper presents an annotated bibliography on automatic software repair. Automatic

software repair consists of automatically finding a solution to software bugs1, without hu-
man intervention. This idea of automatically repairing software bugs is both important and
challenging. It is important because software has eaten the world2, but unfortunately each
bite comes with bugs. The software we daily use sometimes crashes, sometimes gives erro-
neous results, and sometimes even kills people [86]. We do have millions of bugs in the wild,
and many of them are being created every day in the new software products and releases
we ship in production. To sum up, if automatic software repair could only repair a fraction
of those bugs, it would bring value to society and humanity.

Automatic software repair is challenging because fixing bugs is a difficult task. Of course
there are stupid bugs – “blunder” as Knuth puts it [81] – that can be trivially fixed. However,
any programmer, whether professional or hobbyist, remembers a bug that took her hours,
if not days and weeks to be understood and fixed, these are the “hairiest bugs” [42]. For
those bugs, automatic repair is a challenging human-competitive task.

The goal of this paper is to draw the big picture of automatic software repair. In partic-
ular, it aims at presenting together the two main families of automatic repair techniques:
behavioral repair and state repair. The former is about automatically modifying the pro-
gram code; the latter is about automatically modifying the execution state at runtime. The
primary intended audience consists of researchers in computer science, with a focus on the
research communities that contribute to this body of knowledge: software engineering, de-
pendability, operating systems, programming languages and software security. Each section
also provides an introductory explanation of the key concepts behind automatic repair,
which could be of high interest for practitioners and curious students. This survey aims at
covering all important works in the field or automatic software repair, with an emphasis on
empiricism: the covered technique must apply to some programs done in industry and bugs
that happen in practice. Works are included as follows: for each paper, the importance is
qualified according to the visibility and reputation of the venue or the novelty of the idea
presented in the paper. If several papers contain the same idea, only the most representative
one is discussed and cited. It is to be noted that the same concept “repair” has several names
in the literature: patch, fix, heal, recover, etc. Table I lists the main ones, as well as example

1Automatic repair and tolerance against hardware bugs is out of the scope of this paper.
2paraphrasing Silicon Valley’s entrepreneur Marc Andreessen
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Table I. The diverse terminology of automatic software repair

Expression Example Ref.
automatic repair (program repair, self-repair) [90, 105, 136, 125]
automatic fixing (bug fixing, program fixing) [101, 185]
automatic patching [186, 158, 100, 79]
healing (self-healing) [55, 154, 159]
automatic correction (self-correcting) [89, 78]
automatic recovery (self-recovering) [168, 20]
resilience [154, 28]
automatic workaround [24]
survive (survival, survivability) [122, 141, 146]
rejuvenation [64]
biological metaphors: allergies, immunity, vaccination [141, 160, 104, 72]

notable references that use the term. In this paper, the name “repair” is chosen, because a
program has something mechanical in nature, which fits well the daily usage of the word
“repair”. Also, it is the name used by most excellent papers in the field.

To my knowledge, there is no comparable bibliography in the literature. The look-back
paper by Le Goues et al. [91] is close but only covers a fraction of the papers, and only on
behavioral repair. On the contrary, Rinard [146] only focused on runtime repair. Yet, there
are surveys in related fields, for instance for fault-tolerance [178], fault localization[152, 190],
algorithmic debugging [161] to only name a few.

To sum, the contribution of this paper is a survey on automatic software repair:

—This survey is across different research areas and includes contributions from the following
communities: software engineering, dependability, operating systems, programming lan-
guages and software security. Similarly, it abstracts over terminology (automatic repair,
self-healing, automatic recovery, etc.).

—This survey provides the reader with an in-depth analysis of the literature according to the
type of repair they perform (behavioral versus state repair) and the oracle they consider.

The remainder of this paper reads as follows. Section 2 briefly presents the core concepts of
automatic repair. Section 3 discusses the main approaches of behavioral repair and Section 4
is about state repair. Section 5 is dedicated to the empirical works that aim at understanding
the foundations of automatic repair. Section 6 is an account on papers that are not directly
about automatic repair yet have a close connection.

2. CORE CONCEPTS FOR AUTOMATIC REPAIR
Automatic repair is about bugs. The literature is full of synonyms for “bug”: defect, fault,

error, failure, mistake, etc. There are rather accepted definitions between faults, errors
and failures [9]: a failure is an observed unacceptable behavior; an error is a propagating
incorrect state prior to the failure (without yet having been noticed); a fault is the root
cause of the error (in particular incorrect code). Although the relative clarity of those three
concepts, one can hardly say that the literature, incl. the most recent papers, sticks to
those definitions. Furthermore, if we only consider the repair literature, there is absolutely
no emerging separation between “automatic repair of failures”, “automatic repair of errors”
and “automatic repair of faults”. However, we need a common concept for all words and in
this paper, the term “bug” is used as an umbrella word because of its intuitiveness and wide
usage, with the following definition: A bug is a deviation between the expected behavior of
a program execution and what it actually happened.3

3Note that some authors use “intended” instead of “expected”, the latter is taken because it’s really the
viewpoint of the user or client that matters, not the viewpoint of the engineer who designed and developed
the software.
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This definition of bug involves the notions of “behavior”, “execution”, “program“ but has an
implicit third subject: the observer, or reference point, that deems the behavior unexpected.
This “observer” can obviously be a human user saying “this output is not correct”. It is also
classically a specification, in its most general meaning: a specification is a set of expected
behaviors. Specifications are polymorphic: they can be natural language documents, formal
logic formulas, test suites, etc. They can even be implicit: for instance the specification
“the program shall not crash on any input” holds for many programs while not often being
explicitly written. To some extent, the user saying “this output is not correct”, is stating the
specification on the fly. Consequently, automatic repair always refers to a specification and
yields the following definition of automatic repair. Automatic repair is the transformation
of an unacceptable behavior of a program execution into an acceptable one according to a
specification.

A concept that is close to the one of specification is the one of oracle. Simply put, an
oracle determines whether the result of executing a program is correct [169]. To this ex-
tent, specification and oracle refer to the same thing: expectation, acceptability, correctness.
However, there is a major difference between both. An oracle is only a part of specifications,
it is the part related to the expected output (when one such exists). In addition, a speci-
fication contains information about the input ranges, about non-functional properties, etc.
For instance, a test suite is a specification, it contains test cases, which themselves contain
assertions, the latter being the oracles.

With respect to repair, the oracles can be split in two: the bug oracle refers to the oracle
that detects the unexpected behaviors; the regression oracle refers to the oracles that check
that no new bugs have been introduced during repair. The reason is that the program upon
repair already satisfies all regression oracles, but a repair transformation may accidentally
introduce a regression. There are more formal definitions of specification and oracle in the
literature [169, 11] but they do not bring much in the context of this paper.

Finally, a repair technique often targets a bug class4. A bug class is an abstract concept
referring to a family of bugs that have something in common: the same symptoms, the same
root cause, the same solution [124]. For instance, well known bug classes include off-by-one
errors, memory leaks, etc. However, there are many bug classes for which there are no clear
definition and scope in the literature, and some of them even miss a name. While some
initial taxonomies exist [180, 41], building a comprehensive taxonomy of bug classes will
require years of research.

3. BEHAVIORAL REPAIR

Behavioral repair consists of changing the behavior of the program under repair, i.e.
changing its code. The modification can be done on source code, but also on binary
code (e.g. Java bytecode or x86 native code). Behavioral repair can be done offline or
online at runtime.

When done offline, behavioral repair may happen in the development environment (IDE)
of maintenance developers or in a continuous integration server. Online behavioral repairs
means repair done on deployed software. Technically, behavioral repair at runtime involves
a kind of dynamic software update (DSU), which is a research topic per se.

Behavioral repair involves a repair operator5 which is a kind of modification on the pro-
gram code. For instance, one repair operator is the addition of a precondition, as shown
below.

4or fault class, or error class, etc.
5or “repair action”
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Table II. Examples of repair operators for behavioral repair

Operator Example Ref.
add/remove/replace code [186, 6]
add a precondition [34, 100]
replace a condition [34, 128]
replace assignment RHS [57, 128, 73]
addition or removal of method calls [31]
adding a modulo for array read, truncating data for
array write

[100]

+ i f ( age>=18)
serve_adult_content ( )

The literature defines many different repair operators, that will be presented below and
that are summarized in Table II. Sometimes the repair operator involves a repair template6,
which is a parameterized snippet of code which targets the repair a specific bug class. A
repair model [114] is a set of repair operators.

For instance, when considering a test suite as specification 3.1.1, a problem statement
of behavioral repair is given a program and its test suite with at least one failing test case,
create a patch that makes the whole test suite passing. This problem statement can be
called test-suite based repair [124], and has been famously explored by Genprog, presented
in Section 3.1.1

3.1. Repair & Oracles
As presented in Section 2, automatic repair is with respect to an oracle. Consequently,

this section is organized according to the kind of oracle considered in the literature.

3.1.1. Test Suites. A test suite is an input-output based specification. In modern object-
oriented software, the input can be as complex as a set of interrelated objects built with a
rich sequence of method calls, and the output can also be a sequence of method calls that
observe the execution state and behavior in various ways. In test-suite based repair, the
failing test case acts as a bug oracle, the remaining passing test cases act as a regression
oracle.

Genprog is a seminal and archetypal test-suite based repair system developed at the
University of Virginia [186, 188, 45]. Genprog uses three repair operators that are mutations
over the abstract syntax trees (AST): deletion of AST nodes ; addition of AST nodes;
replacement of existing nodes. For addition and replacement, the nodes are taken from
elsewhere in the code base. This is called the redundancy assumption [115, 12]. Genprog is
able to handle real-world large scale C code. The largest evaluation of Genprog [90] claims
that 55 out of 105 bugs can be fixed by Genprog. Those results have been later questioned,
as discussed in 5. The Genprog thread of ideas yielded other papers in the original team
[151, 93] and other laboratories [137, 139]. Now that the core ideas of Genprog are well
known and accepted, work needs to be done to improve the core repair operators (such as
[132]).

Much before Genprog, in the mid 90ies, Stumptner and Wotawa [170] have proposed
automatic repair in a simple toy language called EXP. The specification is a set of test
cases (i.e. a test suite). To my knowledge, it is the first occurrence of test-suite based repair
in the literature.

Arcuri [7, 5, 6] defines 7 repair operators based on abstract syntax tree modification. For
instance, for “promote mutation”, a node is replaced by one of its child. The operators are
stacked in a random way. The prototype implementation, called Jaff, handles a subset of
Java and is evaluated on toy programs.

6or “repair strategy” or “fix schema” [185]
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Debroy and Wong [33, 130] propose to use standard mutations from the mutation testing
literature to fix programs. Consequently, their repair models are: replacement of an arith-
metic, relational, logical, increment/decrement, or assignment operator by another operator
from the same class; decision negation in an if or while statement. Conventionally, they lo-
cate fault statements with spectrum based fault localization technique. Nica et al. [130] also
use mutations for repair. Compared to Debroy and Wong, they comprehensively explore the
space of all mutations.

The key idea of Kern and Esparza [78] is to generate a meta-program that integrates
all possible mutations according to a mutation operator. The mutations that are actually
executed are driven by meta-variables. A repair is a set of values for those meta-variables.
The meta-variables are valued using symbolic execution.

NGuyen et al. [128] proposed an approach called Semfix for repair based on symbolic
execution and code synthesis. The location of the repair is found with angelic debugging [25],
then the repaired expression is synthesized with input-output component synthesis [68]. The
repaired locations are right hand side (RHS) of assignments and boolean conditionals, the
synthesized expressions mix arithmetic and first-order logics. One problem with Semfix is
scalability. To overcome this problem, the same group has proposed Angelix [116]. Angelix is
a repair system alike Sefix, where the symbolic execution phase has been seriously optimized
in order to scale to large programs and obtain more than one angelic value, this is an “angelic
forest”.

The PAR system [79] is an approach for automatically fixing bugs of Java code. PAR is
based on repair templates: each of PAR’s ten repair templates represents a common way
to fix a common kind of bug. For instance, a common bug is the access to a null pointer,
and a common fix of this bug is to add a nullness check just before the undesired access:
this is template “Null Pointer Checker”. Some templates are parameterized by variables,
for instance the “Null Pointer Checker” template takes a variable name as parameter. The
templates are applied and tested in a random search manner.

Nopol [34] targets a specific fault class: conditional bugs. It repairs programs by either
modifying an existing if-condition or adding a precondition (aka. a guard) to any statement
or block in the code. The modified or inserted condition is synthesized via input-output
based code synthesis with SMT [68] and predicate switching [194]. The Nopol system has
been extended for also repairing infinite loops [87].

Tan and Roychoudhury proposed Relifix, a repair system dedicated to fixing regression
bugs [175]. The approach consists of 8 repair templates, some being transformation oper-
ators, the other being parameterized repair templates. The key idea of Relifix is that the
templates application are driven by the past changes, for instance, template “add statement”
only add statements that were involved in the previous commits related to the regression.

Mechtaev et al. also perform test-suite based repair [117], with the noble goal of syn-
thesizing simple patches. In order to do so, the assume a very specific kind of programs:
those that can be expressed as trace formulas (related to boolean programs of [58]). Under
this assumption, they can state the repair problem as a Maximum Satisfiability (MaxSAT)
problem, where the smallest patch is the one that satisfies the most constraints.

SPR [109] defines a set of staged repair operators so as to early discard many candidate
repairs that cannot pass the supplied test suite. This allows for exhaustively exploring a
small and valuable search space.

The idea of CodePhage [156] is to transfer a check from one application to another
application to avoid crashes. The system assumes an error-triggering input that crashes one
application but not the other one. The considered errors are out of bounds access, integer
overflow, and divide by zero errors. The missing check is inferred from a symbolic expression
over the input fields and validated by a regression test suite.

Ke and colleagues proposes SearchRepair [77], a system inspired from code search.
SearchRepair first indexes code fragments as SMT constraints, then at repair time, a frag-
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ment is retrieved by combining the desired input-output pairs and the fragments in a single
constraint problem. The system is evaluated on small C programs written by students in
an online course.

Prophet [108] is a repair system that uses past commits to drive the repair. What is
learned on past commits from version control systems is a probability distribution over a
set of features of the patch. This probability distribution is then used to both speed up
the repair and increase the likelihood to find correct patches. The evaluation is done on
69 real world defects from the Genprog benchmark, and shows that 15 correct repairs are
found. Le et al. [94] also use history to select the most likely patch. Contrary to Prophet,
the experiments were made on Java programs.

3.1.2. Pre- and Post Conditions. Some works use classical pre- and post-conditions à la
design-by-contract [123] as oracle for repair.

He and Gupta [61] use pre- and post-conditions to compute “hypothesized program states”
(from the post condition) and “actual program states’ (from the failing input). The repair
operators consist of changing the LHS or RHS of assignments, or changing a boolean con-
dition with simple modifications (change variable, change relational operator) so that the
hypothesized program state becomes compatible with the actual program state. A classical
test suite is used for detecting regressions.

AutoFix-E is an approach by Wei et al. [185, 193], it generates fixes for Eiffel programs,
relying on contacts (pre-conditions, post-conditions, invariants). AutoFix-E uses four repair
templates that consist of a snippet and an empty conditional expression to be synthesized.
The key intuition behind AutoFix-E is that both the snippet code and the conditional
expression are taken from the existing contracts.

Gopinath et al. [57] uses pre- and post-conditions written in the Alloy specification lan-
guage. The function body is also translated to Alloy formulas. Then, the bounded verifica-
tion mechanism of Alloy is used both to detect bugs (similar to [65]) and to identify the
repair. The repair operators are changing the RHS of assignments and modifying existing
if-conditions.

Könighofer and Bloem [83] considers assertions as specifications in programs that can
be translated to SMT. The approach is static and the repair is shown to not violate the
assertion for the considered input domain. The approach is based on repair templates,
such as changing the RHS of assignments or changing an arithmetic expression by a linear
combination. The templates holes are filled by the SMT solver.

3.1.3. Abstract Behavioral Models. An abstract behavioral model, such as a state machine
encoding the object state and the corresponding allowed method calls can be used to drive
the repair.

In 2006, before Genprog, Weimer [187] proposed a first patch generation technique. It
requires as input a safety policy (i.e. a typestate property or an API usage rule) and the
control-flow graph of a method. The whole approach is static: the bug is detected as a static
violation of the safety property, and the correctness condition of the patch is only to pass
the safety check. Interestingly, the word does not mention the term “repair”, it was not in
the Zeitgeist at this time.

Dallmeier et al. [31] presented Pachika, an approach for repairing Java programs. The idea
of Pachika is to first infer an object usage model from executions, and then to generate a fix
for failing runs in order to match the inferred expectedly correct behavior. The evaluation
consists of fixing 18 bugs of ASPECTJ (75KLOC) and 8 of RHINO (38KLOC). The two
repair operators of Pachika are addition and removal of method calls. The main difference
with the previous approach is that the behavioral model is mined, and not given.

ACM Computing Surveys, Vol. online, No. , Article , Publication date: June 2017.



:7

3.2. Static Analysis
Static analysis tools outputs errors and warnings. It is possible to automatically repair

them. In this case, the correctness oracle is the static analysis itself.
Logozzo and Ball [105] proposes a repair approach on top of their static analysis toolchain

for .Net code. For a set of fault class identified statically (e.g. off-by-one errors), they propose
a corresponding repair operations. The repair operators are specific to each fault class, for
instance, it is adding a precondition, changing the size of an array allocation, etc. The static
analysis is run again to verify the correctness of the repair.

Logozzo and Martel [106] targets a specific fault class in integer arithmetic (linear combi-
nations). The arithmetic overflow is detected statically, and the suggested fix is a re-ordering
of the arithmetic operations. The fix ensures that the overflow cannot happen anymore. On
arithmetic overflows, there is also the work by Cocker et al. [27].

Gao et al. [49] present an approach for automatically fixing memory leaks for C pro-
grams. The approach consists of statically detecting and fixing memory leaks by inserting
a deallocation statement. The evaluation is done on 14 programs in which 242 allocations
are considered.

Gupta et al. [59] devise an approach for repairing compiler errors, which is a static oracle.
The originality of DeepFix is to use a language model based on deep learning to suggest
fixes. They evaluate their approach by repairing student programs from an online course.

Muntean etl al. [126] statically detects buffer overflows. Then they have templates pa-
rameterized by a variable. The correct variable to be used in the template is found using
SMT.

3.3. Crashing inputs
Behavioral repair can happen as a response to a field failure (e.g. a crashing exception

or a SegFault caused by a buffer overflow). The repair process happens once the crashing
input has been identified and minimized if possible. The failing test case of a test suite can
also be seen as a crashing input. However, the main difference of crashing inputs and test
suites from the viewpoint of oracle for repair is the following. A test suite also contains
passing test cases (the regression oracle), and that failing test case contains assertions on
the expected value, while crashing inputs, as their name suggests, only refer to a violation
of the non-functional contract “the program shall not crash”.

Gao et al. [50] repairs crashing exceptions based on Stackoverflow. Their system, called
QACrashFix, mines pairs of buggy and fixed code on Stackoverflow, in order to extracts an
edit script. The edit scripts are tried in sequence in order to suppress the crashing exception.
Azim et al. [10] detect field failures on Android smartphone applications. The considered
faults are unhandled exceptions, the repair operator consists of adding try/catch blocks
with binary rewriting. Clotho [39] is a system that generates simple catch blocks to handle
certain runtime exceptions related to string manipulation in Java. The content of the catch
block is based on constraints that are collected both statically and dynamically.

Sidoroglou and Keromytis [158] detect buffer overflow vulnerabilities at runtime in pro-
duction, then they obtain the source of the vulnerability through the use of ProPolice [44];
finally, they use code transformation rules written in the transformation language TXL to
modify source code. Regressions are caught by manually provided test suites.

Lin et al. [100] tries to generate a source code patch from a working exploit that triggers
an array overflow in C code. Its repair operators consist of fixing out-of-bound reads by
adding a modulo in the read expression and out-of-bound writes by truncating data to be
written (similarly to failure-oblivious computing).

Wang et al. [182] target automatic repair of integer overflows. They have three repair
operators. The first one is to force taking an error branch before the overflow happens, the
second one is to force taking an error branch after the overflow has happened, and the last

ACM Computing Surveys, Vol. online, No. , Article , Publication date: June 2017.



:8

one is a program stop (exit). The generated conditions are path conditions obtained from
dynamic symbolic execution.

3.4. Other Oracles
Other specific oracles have been used in an automatic repair setting.
A number of techniques have been proposed to fix concurrency bugs. Jin et al. [70] present

AFix: the repair model of AFix consists of putting instructions into critical regions. This
work on automatic repair of concurrency bugs has been further extended [103]. Lin et al. [99]
also insert locks by encoding the problem as a satisfiability one. In Dfixer [17], no new locks
are introduced to repair concurrency bugs, instead existing locks are pre-acquired in one
thread. More recently, Liu et al. [102] have proposed another repair operator for concurrency
bugs in a tool called HFix: they propose to automatically add thread-join operations.

Samimi et al. [150] have presented an approach for repairing web application in PHP
that generates HTML tags. The oracle that is used is whether the output HTML string is
malformed, i.e. that it does not contain a inconsistent sequence of opening and closing tags
(e.g. “<a></i></a>”). They encode the repair as a constraint problem on strings. Wang
et al. [183] also repairs the HTML code output by PHP code, using runtime tracing in-
stead of constraint solving. Medeiros et al. [118] also repairs web applications, but consider
SQL injection, and their repair operator consists of wrapping certain call by a sanitization
function.

Liu et al. [101] uses as oracle a manually written bug report. The have parameterized
repair templates and extract the actual value of the template parameter from the bug
report. For instance, for a not-null checker template, they extract the name of the variable
to be checked from the bug report.

Dennis et al. [38] uses proof-based program verification on ML programs using Isabel
as oracle. When the proof fails, the counter-example of the proof drives a repair approach
based on repair templates (replacing one method call by another, adding some code).

It is possible to use a reference implementation as specification for repair. In this case, the
reference implementation both acts as the bug oracle (when the behavior of the reference
implementation and of the buggy program do not correspond) and as a regression oracle.
This has been little explored in the context of repair. The approach by Könighofer and Bloem
[84] uses SMT-based templates. The approach by Singh et al. [163] is conceptually similar
but is realized differently and the evaluation is much larger. The reference implementation
and the program to be repaired are written in Python. The system translates them to a
programming environment called Sketch, which is responsible for exploring the space of
candidate fixes. The evaluation is made on thousands of buggy programs submitted for an
online course. Qlose [30] is a similar approach based on Sketch, the novelty of Qlose is that
it tries to semantic impact of the repair, by minimizing the number of inputs for which
there is a behavioral change.

Jiang et al. [69] have proposed to use metamorphic relations as repair oracle. They eval-
uate their approach on the Introclass benchmark made of student programs. Due to the
limited size of their experimental subjects, it is yet to be proven that metamorphic rela-
tions can help repair large and real programs. Kneuss et al. [80] use a kind of symbolic tests
for repairing a purely functional toy language. As metamorphic relations, the symbolic tests
enable to generate new test data.

3.5. Domain Specific Repair
The concept of automatic repair can be applied on many computational artifacts. Indeed,

there are many works doing automatic repair in contexts that are specific to an application
domain.

Lazaar et al. [89] repair constraint programs. With a domains-specific fault localiza-
tion strategy, the repair consists of removing or adding new constraints. Gopinath et al.
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[56] repair database selection statements in a specific data-oriented language called Abap.
Kalyanpur et al. [75] state an automatic repair problem in the context of OWL ontologies.
Griesmayer et al. [58] repair a specific class of programs called boolean programs: those
that only contain boolean variables. Further work has been done on repairing boolean pro-
grams [149]. Son et al. [167] repairs access-control policies in web applications, using a static
analysis and transformations tailored to this domain.

Nentwich et al. [127] detect inconsistencies and propose repair actions on XML documents.
Their approach is applicable to all structured documents with explicit static inconsistency
rules. Along the same line, Xiong et al. [191] detect and fix inconsistencies in MOF and
UML models ; da Silva [162] use Prolog to propose a repair plan that fixes inconsistencies
in UML models; Xiong et al. [192] focuses on automatically repairing configuration errors
in software product lines.

Tran et al. [179] uses repair in the sense of forcing a match between source code depen-
dencies and a dependency model that specifies the acceptable dependencies; this can be
called “architectural repair”

The approach of Daniel et al. [32] does not repair programs but the test cases that are
broken in the presence of refactoring. Memon [119] and Gao et al. [51] repair GUI test
scripts. For instance, the approaches change the identifiers that are used for driving the
GUI manipulation. Leotta et al. [95] do test repair in the context of Selenium tests, which
are tests for web applications with HTML output.

3.6. Fault Classes and Repair
Some fault classes are well-enough understood so that one can write a code transformation

that suppresses all instances of the fault class at once. For instance, one can transform 64-bit
integers to unlimited precision arithmetic objects (such as BigInteger in Java) to avoid all
arithmetic overflows. In the related work, most repair transformations for fault classes are
semantic-preserving, but not necessarily.

For instance, a seminal work on semantic modifying transformations is failure-oblivious
computing [143]. Considering erroneous reads out of the bounds of an array, failure-oblivious
computing transforms the code so that the read returns either the first non-null element,
or the element modulo the length of the allocated array. Along the same line, Rinard et
al. [147] proposes that out-of-bounds writes are stored in a hashtable and that subsequent
reads to the out-of-bound index return the object previously stored in the hashtable. This
line of research is based on the philosophical foundation than acceptable results is more
important than correct results, this is called “acceptability-oriented computing” [145].

Thomas and Williams [177] propose an approach to automatically transform PHP code
to secure SQL statements. The transformations modify the abstract syntax trees in order
to inject secured “prepared statements”.

At Google, they develop and use a tool called “error-prone’ ’[2], it does automatic repair
of Findbugs like errors [63]. Lawall et al. [88] also defined an approach for declaratively
specifying bug patterns and the corresponding patches in a tool called Coccinelle. The
same idea has been developed by Kalval and Warburton [74] where the repair strategy is
written using a formal transformation language called Trans.

Shaw et al. [153] describe two transformations to fix C buffer overflows: replacement of
unsafe calls by alternative safe libraries and replacement of unsafe types by safer ones. They
show that the transformations scale to large programs, do not break the existing tests and
do not slow down the programs. Coker and Hafiz employ a similar approach for another fault
class: integer arithmetic bugs [27]. They propose three program transformations dedicated
to integers, and show that the approach scales to real programs.

Long et al. [110] uses a static analysis specific to integer arithmetic that detects integer
overflow. For all detected potential overflows, the system infers a filter that simply discards
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the input. To this extent, the repair action is denying the input, a technique also done at
runtime and discussed in Section 4.5.

Cornu et al. [28] target unhandled exceptions in Java. They analyze test suite executions
to identify the good catch blocks that have resilience capabilities. Then, they transform the
caught exception type into a more generic one (i.e. a superclass exception) so as to catch
exceptions that would not be caught otherwise. The code transformation, called “catch
stretching” is a kind of proactive repair against unexpected exceptions.

4. STATE REPAIR

State repair consists in changing the state of the program under repair. The state is
meant in its largest acceptation: it can be changing the input, the heap, the stack, the
environment. For instance, automatic breaking a cycle in a linked list is one kind of
state repair. As opposed to behavioral repair, state repair is necessarily done at runtime.

State repair can be rooted in classical fault tolerance [9]. In this large research field,
much research has targeted “recovery”, which Avizienis et al. defines as transforming “a
system state that contains one or more errors and (possibly) faults into a state without
detected errors” [9]. In this paper, the term“state repair” is used instead of “recovery”. This
terminological move allows to have an umbrella term, “repair” above intrinsically related
concepts (recovery, resilience, etc), and above behavioral and state repair, see Figure 5.1 of
[9] for a bird’s eye presentation of classical recovery, error handling and fault handling.

State repair requires an oracle of the bug, an oracle of incorrectness. As opposed to
behavioral repair, those oracles have to be available in production, at runtime. This rules
out certain oracles discussed in Section 3, such as test suites, and oracles based on static
analysis. For state repair, there are three main families of bug oracles. First, state repair
often considers violations of non-functional contracts. For instance, crashing with a Segfault
or a null pointer exception violates the non-functional contract “the program shall never
crash”. Second, state repair can also consider functional contracts that are verifiable in
production such as pre- and post-conditions. This will be much discussed in Section 4.7.1.
Third, there are state repair approaches that reason on “inferred contracts”, obtained by
observing the regularities of program states at runtime. In this case, a bug is defined as a
program state or behavior that violates those inferred contracts and repair is a follow-up of
anomaly detection on program states and executions.

In the following, the approaches are ordered by repair operators. This more fits to the
history of the field than the ordering by kind of oracles, as what was done for behavioral
repair.

4.1. Reinitialization & Restart
Restarting (aka rebooting) a software application is the simplest repair action. It has been

much explored under the term “software rejuvenation” [64], but rather with a theoretical
stance rather than a practical one.

Candea and colleagues [19, 20, 21] explored in depth the concept of microreboot. Microre-
boot consists of having a hierarchical structure of fine-grain rebootable components, and,
in the presence of failures, to try to restart the application from the smallest component
(an EJB) to the biggest one (the physical machine) (in a way that is similar to progressive
retry in distributed computing [184]). Their experiments show that this can significantly
improve the availability of systems.
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Table III. Examples of state change operators for runtime repair

Operator Example Ref.
restart [19, 184]
try an alternative implementation [8, 142, 23]
modify the input [3, 107, 98]
simulate a known error (aka error virtualization) [159, 104]
change the execution environment [141, 129, 53]

4.2. Checkpoint & Rollback
A checkpoint and rollback mechanism takes regular snapshots of the execution state and

is capable of restoring them later on. The challenges of checkpoint and rollback are first the
size and boundaries of the captured state and second the point in time of checkpointing [85,
76]. When a system is equipped with a checkpoint and rollback mechanism, the rollback is
the repair. Despite being an old technique, it is valuable in a number of contexts.

Dira [164] is a system that instruments code to detect and recover from control-hijacking
attacks through malicious payloads. The repair consists of finding the least common ancestor
of the function in which the attack is detected and the one in which the payload was read
in. Then, the execution is resumed to this frame and all state changes are undone. Similarly,
Assure [159] is a technique also based on checkpointing to provide self-healing capabilities.
Recent papers also do checkpoint and rollback as part of the repair, such as [23].

4.3. Alternatives
Another classical concept of fault-tolerance is n-version programming. Either with voting

[8] or retrying with recovery blocks [142], it consists of relying on alternative implementa-
tions to recover from errors. This concept is now explored using natural sets of alternatives
(as opposed to being engineered) or with automatically created sets of variants [16]. For
instance, Carzaniga et al. [24] repair web applications at runtime with a repair strategy
that is based on a set of API-specific alternative rules: for instance calling bar() instead of
foo(). They later applied the same idea for recovering from runtime exceptions in Java [23].
Hosek and Cadar [62] use a different kind of natural diversity: upon failures, they switch
from past or newer versions of the same application. The key idea is that bugginess is not
monotonic: some bugs disappear while others appear over time.

4.4. Reconfiguration
Reconfiguring an application is one kind of recovery [9], thus one kind of state repair.

Indeed, it has much been explored when “self-healing” was a hype term. For instance, Cheng
et al. [26] use the three core runtime reconfiguration operators (add component, move
component, delete component) to optimize quality-of-service values. The same line of repair
can be found in [52, 155], which are relatively cited papers. In the context of web service
orchestration, the repair actions of Friedrich et al. [135, 46] consist of substituting it a web
service by another (which is a reconfiguration) and retrying a service call.

4.5. Input Modification
If the system fails on some input, one state repair action consists of modifying the input.

Denying the input is also a possible option, which can be considered as an extreme case of
input modification.

Ammann and Knight’s “data diversity” [3] aims at enabling the computation of a program
in the presence of failures. The idea of data diversity is that, when a failure occurs, the
input data is changed so that the new input resulting from the change does not result in a
failure. The assumption is that the output based on this artificial input, through an inverse
transformation, remains acceptable in the domain under consideration.

ACM Computing Surveys, Vol. online, No. , Article , Publication date: June 2017.



:12

Long et al [107] present the idea of automated input rectification: instead of refusing
anomalous inputs, they change it so that it fits into the space of typical and acceptable
inputs, this is called “input rectification”.

Liand and Sekar [98] repair buffer overflows by learning common profiles between the
characteristics of crashing inputs. Once a valid profile is identified, crashing inputs are
denied. While the paper is about security, it can be seen as a runtime technique to repair
memory errors of the form of buffer overflows. The fact that the buffer overflow is accidental
(due to a bug) or maliciously triggered is irrelevant from a repair perspective. Along the
same line of input denying, Vigilante [29] is an integrated approach for mitigating malicious
attacks. The counter-measure to worm attacks is filtering: once invalid or malicious inputs
are detected they are filtered out and the current request or task is aborted.

4.6. Environment Perturbation
If the system fails under certain conditions, one can get the next requests to succeed by

changing the runtime environment (e.g. the memory, the scheduling) or the configuration.
Qin et al. [141] shows that memory errors can be avoided by padding allocated memory

blocks with extra space. Berger and Zorn [13] do the same thing and add replication.
However, the difference with Rx is that their system allows for probabilistic reasoning on
the resulting memory safety. Novark et al. [131] explores the same idea. Differently, Nguyen
and Rinard [129] enforces a bounded memory size by cyclic memory allocation in a way
that is similar to failure-oblivious computing (already presented in Section 3.6). Garvin et
al. [53] address configuration bugs and propose “reconfiguration workarounds” that change
the configuration causing a failure.

Jula et al. [72] presents a system to defend against deadlocks at runtime. The system
first detects synchronization patterns of deadlocks, and when the pattern is detected, the
system avoids re-occurrences of the deadlock with additional locks.

Tallam et al. [174] names this family of technique “execution perturbations”. For concur-
rency and memory bugs, they show that removing thread interruptions, padding memory
allocations, and performing denial of requests is a way to avoid failures.

4.7. Rollforward
Rollforward (or forward recovery) means transforming the current system state into a

correct one. There are several techniques of forward recovery: invariant restoration, error
virtualization, etc.

4.7.1. Invariant Restoration. In some cases, state correctness can be expressed as an invariant.
Consequently, repair means restoring the invariant, if possible with a minimum of changes
from the current erroneous state.

Demsky and Rinard [35] uses a specification language to express correctness properties on
data structures. This specification is then used at runtime to automatically repair broken
data structure (concrete instances at runtime, not the abstract data type). Elkarablieh et al.
[43] also automatically repair data structures at runtime, the difference with Demsky and
Rinard is that they rely on an invariant written in regular Java code (a “repOK” boolean
method).

Perkins et al. [134] presented ClearView a system for automatically repairing errors in
production. The system works on low level x86 binaries and consists of monitoring the
system execution to learn invariants. Those invariants are then monitored, and a violation
is followed by a forced restoration. The repairs are at the level of CPU registers and memory
location changes.

Lewis and Whitehead [97] have a generic repair approach for event-based system by
defining a runtime fault-monitor, but the core idea is that same: when an invariant is
violated, the repair system automatically restores it. The example in a video-game domain
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is fun: if Mario is hanged in the sky due to specific sequence of actions and interactions, it is
forcefully put back on the ground. Beyond data structures and video-games, in real systems,
many strange and undesired system states can happen from complex chains of events and
interactions, but it is often possible to state simple invariants to guide runtime repair.

4.7.2. Error virtualization. Error virtualization consists of handling an unknown and unre-
coverable error with error-handling code that is already present in the system yet designed
for handling other errors.

This idea has been much explored at Columbia University. For instance, Sidiroglou et al.
[160] do error virtualization in system that imitates biological immunity. They combine error
virtualization with selective transactional emulation, a technique consisting of emulating the
execution of native code with an interpreter in a transactional manner. When a failure occurs
in an emulated section, all state changes are undone (a kind of micro rollback at the level
of functions). In Assure [159], the idea of error virtualization is associated with fuzzing to
discover and test in advance valuable error virtualization points, called rescue points.

4.7.3. Other Forward Recovery. Carbin et al. [22] introduced a system that monitors pro-
grams in order to detect infinite loops and escaping them. The system works with binary
code instrumentation and breaks the loops with no memory state changes detected during
their execution. Along the same line is the concept of “loop perforation” [157]. Sidiroglou et
al. have shown [157] that it is possible to skip the execution of loop iterations in certain ap-
plication domains. For instance, in a video decoding algorithm (codec), skipping some loop
iterations only has an effect on some pixels or contours but does not completely degrade
or crash the software application. On the other hand, skipping loop iterations is key with
respect to performance. In other words, there is a trade-off between the performance and
accuracy. This trade-off can be set offline (e.g. by arbitrarily skipping one every two loops)
or dynamically based on the current load of the machine.

Dobilyi and Weimer [40] target repair of null pointer exceptions. Using code transfor-
mation, they introduce hooks to a recovery framework. This framework is responsible for
forward recovery of the form of creating a default object of an appropriate type to replace
the null value or of skipping instructions.

Long et al. [111] introduces the idea of “recovery shepherding”. Upon certain errors (null
dereferences and divide by zero), recovery shepherding consists in returning a manufactured
value, as for failure oblivious computing. However, the key idea of recovery shepherding is
to track the manufactured value so as to see 1) whether they are passed to system calls
or files and 2) whether they disappear. In the former case, system calls and file writes are
disabled if they involve a fake manufactured value, in order to limit error propagation.
When a manufactured value is no longer used and referenced, it means that the error has
somehow evaporated, and the experiments of the paper show that this is often the case.

4.8. Collaborative Repair
A cross-cutting concern of repair at runtime is to share the repairs that work across all

instances of the same application. This has been explored under the name of “application
community”. Locasto et al. [104] uses application communities to find and distribute repairs
of the form of stack manipulation. Rinard et al. [144] also reports on experiments on the
centralization of monitoring information and the distribution of repairs across a community
of applications.

5. EMPIRICAL KNOWLEDGE ON REPAIR
Beyond proposing new repair techniques, there is a thread of research on empirically inves-

tigating the foundations, impact and applicability of automatic repair, whether behavioral
or state repair.
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There is wealth of information in software repositories that can be used for repair. In par-
ticular, one can mine bug reports and commits for knowledge that is valuable for automatic
repair. Martinez & Monperrus [114] studied 89, 993 of commits to mine repair actions from
manually-written patches. By repair actions, they mean kinds of changes on the abstract
syntax trees of programs such as modifying an if condition. They later investigated [115]
the redundancy assumption in automatic repair (whether you can fix bugs by rearranging
existing code), and found that it holds in practice: many bug fix commits only rearrange
existing code, a result confirmed by Barr et al. [12]. Zhong & Su [196] conducted a case
study on over 9,000 real-world patches and found important facts for automatic repair: for
instance, their analysis outlines that some bugs are repaired with changing the configuration
files.

On the goodness of synthesized patches, Fry et al. [47] conducted a study of machine-
generated patches based on 150 participants and 32 real-world defects. Their work shows
that machine-generated patches are slightly less maintainable than human-written ones.
Tao et al. [176] performed a similar study to study whether machine-generated patches
assist human debugging. Monperrus [124] further discussed the patch acceptability criteria
of synthesized patches and emphasized that assessing patch acceptability may require a
high level of expertise, a result confirmed by [113]. Qi et al. [140] are the first to thoroughly
analyze the patches generated by Genprog, and found that most of them are incorrect. It
is an open question whether this holds for test-suite based repair in general or not [113].
When they are incorrect, it is because they exploit specificities and weaknesses of the test
suite, which can be seen as a kind of overfitting . A repair technique is said to overfit when
the synthesized patch only works on the failing inputs and fails to generalize. Smith et al.
[165] also studied the problem of overfitting in automatic repair; on a dataset of student
programs, they show that Genprog and related techniques do suffer from overfitting.

A study by Kong et al. [82] compares different repair systems: GenProg [90], RSRepair
[139], and AE [189]. They report repair results on 119 seeded bugs and 34 real bugs from
the Siemens benchmark, and show that not all techniques are equal.

Finally, for the knowledge on repair to consolidate, there is a need for accepted, well-
defined and publicly available benchmarks [124]. Le Goues et al. [92] have set up such a
benchmarks for bugs in C programs, it totals 1183 bugs, collected in open-source projects
and student code.

6. RELATED TECHNIQUES
We now present works that are related to automatic repair, yet not being “automatic

repair” per se, according to the definitions we gave in Section 3 and 4. In particular, they
either miss the full automation or the actual repair of real programs.

6.1. Forward Engineering For Repair
Many authors have tried to list the important principles to have robust, resilient if not

self-repairable applications. These principles can be implemented and enforced as first-class
concepts in frameworks and libraries. This is what can be called “forward engineering for
repair”.

Somayaji et al. describe principles to build immune computer systems [166]: distributabil-
ity, multi-layering, diversity, disposability, autonomy, adaptability, behavioral sense-of-self,
anomaly detection. Candea and Fox [18] define a set of characteristics for programs to re-
cover quickly: with those characteristics an application becomes “crash-only software”. The
two key characteristics are that all interactions between components have a timeout and
all resources are leased. Sussmann [173] as well as Gabriel and Goldmann [48] also provide
insightful perspectives on how to build resilient and self-repairable software.

There are also frameworks for supporting repair. Flora [168] is a framework to support
local restart in applications. It is principally composed of a communication manager for
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dropping or queuing messages between components. Denaro et al. [37] proposes an archi-
tecture to fix interoperability bugs in service oriented systems. Adaptors between service
variants are manually written and are selected at runtime to enable correct communication.
Levinson [96] defines an embedded DSL to support runtime searches in a space of program
variations. Zhou et al. [197] defines annotations for operating system C code in order to re-
cover from driver errors in Linux. The annotations are checked by a type system and drives
invariant restoration. Demsky and Dash [36] proposes Bristlecone, a language with built-in
robustness capabilities. Bristlecone is based on tasks and dependences between tasks, as
well as transactional state changes. Error-handling is thus fully automated.

A known characteristic of bugs is that the same kind of bug can affect many different
locations in the same code base. In this case, it is desirable to write a unique patch that
is then applied to all those locations. The generic patch can be inferred from a concrete
instance at a given location or written in an abstract way. This has been called “systematic
editing” by Meng et al. [121]. Similarly, Sun et al. [171, 172] propose tool support for patch
applications. The Coccinelle tool [133] also provides this functionality. The abstract patches
can be automatically inferred from concrete instances [4, 120].

6.2. Repair Suggestions
There are some systems which give “repair suggestions” to the developer. While it is not

fully automated, if the suggestion is correct, such a system can be seen as providing partial
automatic repair, where the repair system and the developer work in tandem.

Hartmann et al. [60] designed a system called “HelpMeout” that proposes suggestions to
fix error messages. The system targets compiler error messages and runtime exceptions. It
first collects error messages and the associated changes that occur on developer’s machines
that are monitored. Then, when the same error message is encountered by another developer,
the system compares the erroneous source file with the closest fixed version that is in the
database. It uses a tailored distance metric to increase the relevance of suggestions.

Jeffrey et al. [66] presented a fix suggestion approach based on association rules. The rules
suggest a bug fix action for suspicious statements represented by a number of features (in the
machine learning meaning). The features (called “descriptors” in the paper) are abstraction
over the tokens of the statements. The prediction also uses “interesting value mapping pairs”
(IVMP) which are concrete values that enable test cases to pass (aka value replacement [67]
and angelic values [25, 34]). The bug fix recommendations are typical comparison operator
change, constant change, add or increase numerical values.

Kaleeswaran et al. [73] have proposed a repair suggestion approach based on correlations
variable values and expected output. The expected output is obtained through concolic ex-
ecutions, and the repair hints consist of changing the RHS of a single assignment statement.

Abraham and Erwig [1] suggest change in Excel formulas. Malik et al. [112] transform
runtime data structure repair (see 4.7.1) as fix suggestions. Brodie et al. [15] design a
distance metric across call stacks (stack trace) to match issue reports and known fixes.

6.3. Theoretical Software Repair
Some authors explore automatic repair with strong assumptions under which there exists

no program in practice. To the best of our knowledge, there is no survey paper on this area,
but the article by Bodik and Jobstmann contains a dedicated section about this [14]. Here,
the most notable papers in this area are briefly mentioned for giving the reader a first set
of pointers. For instance, Jobstmann et al. [71] repair programs that are expressed in linear
temporal logics. George [54] describes a simple and theoretical programming model that
supports automatic recovery via a kind of homeostasis that maintains invariants. Fisher et
al. [138] also perform repair on a toy formal language. Wang and Cheng [181] state program
repair as edit sequences on state machines. Zhang and Ding [195] repair computation tree
logic models.
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7. CONCLUSION
This article has presented an annotated bibliography on automatic software repair. This

research field is both old and new. It is old because we can find techniques related to
automatic repair in fault-tolerance papers from the 70es and 80es, for instance a 1973 paper
is entitled “STAREX self-repair routines: software recovery in the JPL-STAR computer”
[148]. It is new, because the idea of automatically changing the code, i.e. behavioral repair,
has started to be explored only since the end of 2000. Whether old or new, the techniques
have to scale to today’s size and complexity or software stacks, and we are not there yet.
This means that this is only the beginning, and in the upcoming years, we are going to have
much fun, surprise and admiration in the field of automatic software repair.
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